1
|
Nady ME, El-Raouf OMA, El-Sayed ESM. Linagliptin ameliorates tacrolimus-induced renal injury: role of Nrf2/HO-1 and HIF-1α/CTGF/PAI-1. Mol Biol Rep 2024; 51:608. [PMID: 38704766 PMCID: PMC11070395 DOI: 10.1007/s11033-024-09533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Tacrolimus (TAC) is a frequently used immunosuppressive medication in organ transplantation. However, its nephrotoxic impact limits its long-term usage. This study aims to investigate the effect of linagliptin (Lina) on TAC-induced renal injury and its underlying mechanisms. METHODS AND RESULTS Thirty-two Sprague Dawley rats were treated with TAC (1.5 mg/kg/day, subcutaneously) and/or Lina (5 mg/kg/day, orally) for 4 weeks. Histological examination was conducted, and serum and urinary biomarkers were measured to assess kidney function and integrity. Furthermore, ELISA, Western blot analysis and immunohistochemical assay were employed to determine signaling molecules of oxidative stress, profibrogenic, hypoxic, and apoptotic proteins. Tacrolimus caused renal dysfunction and histological deterioration evidenced by increased serum creatinine, blood urea nitrogen (BUN), urinary cystatin C, and decreased serum albumin as well as elevated tubular injury and interstitial fibrosis scores. Additionally, TAC significantly increased the expression of collagen type-1, alpha-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and transforming growth factor-beta1 (TGF-β1) renal content. Moreover, TAC decreased the expression of nuclear factor erythroid-2-related factor2 (Nrf2), heme oxygenase 1 (HO-1), and mitochondrial superoxide dismutase (SOD2). In addition, TAC increased protein expression of hypoxia-inducible factor1-alpha (HIF-1α), connective tissue growth factor (CTGF), inducible nitric oxide synthase (iNOS), 8-hydroxy-2-deoxyguanosine (8-OHdG), as well as nitric oxide (NO), 4-hydroxynonenal, caspase-3 and Bax renal contents. Furthermore, TAC decreased Bcl-2 renal contents. The Lina administration markedly attenuated these alterations. CONCLUSION Lina ameliorated TAC-induced kidney injury through modulation of oxidative stress, hypoxia, and apoptosis related proteins.
Collapse
Affiliation(s)
- Mohamed E Nady
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ola M Abd El-Raouf
- Pharmacology Department, Egyptian Drug Authority (EDA), formerly known as National Organization for Drug Control and Research (NODCAR), 6 Abou Hazem St., Pyramids Ave, Giza, Egypt
| | - El-Sayed M El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
2
|
Yao B, Lv J, Du L, Zhang H, Xu Z. Phoenixin-14 protects cardiac damages in a streptozotocin-induced diabetes mice model through SIRT3. Arch Physiol Biochem 2024; 130:110-118. [PMID: 34618648 DOI: 10.1080/13813455.2021.1981946] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Type I diabetes is a metabolic syndrome that severely impacts the normal lives of patients through its multiple complications, such as diabetic cardiomyopathy (DCM). Phoenixin-14 is a peptide found to be widely expressed in eukaryons with multiple protective properties, including anti-oxidative stress and anti-inflammatory effects. The present study aims to explore the potential therapeutic impacts of Phoenixin-14 on DCM. METHODS Type I diabetes was induced by treatment with a single dose of STZ (40 mg/kg body weight) intraperitoneally for 5 consecutive days. Mice were divided into four groups: the Control, Phoenixin-14, T1DM, and Phoenixin-14 +T1DM groups. The levels of myocardial injury markers were measured. Cardiac hypertrophy was assessed using wheat germ agglutinin (WGA) staining. RESULTS Phoenixin-14 was significantly downregulated in the cardiac tissue of diabetic mice. The myocardial injury and deteriorated cardiac function in diabetic mice induced by STZ were significantly ameliorated by Phoenixin-14, accompanied by the alleviation of cardiac hypertrophy. In addition, the severe oxidative stress and inflammation in diabetic mice were dramatically mitigated by Phoenixin-14. Lastly, the downregulated SIRT3 and upregulated p-FOXO3 in diabetic mice were pronouncedly reversed by Phoenixin-14. It is worth mentioning that compared to the Control, no significant changes to any of the investigated parameters in the present study were found in the Phoenixin-14-treated normal mice, suggesting that treatment with it has no side effects. CONCLUSION Our data revealed that Phoenixin-14 protected against cardiac damages in STZ-induced diabetes mice models.
Collapse
Affiliation(s)
- Bo Yao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junlin Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Le Du
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Zhang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhao Xu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Zuo B, Li T, Liu X, Wang S, Cheng J, Liu X, Cui W, Shi H, Ling C. Dipeptidyl peptidase 4 inhibitor reduces tumor-associated macrophages and enhances anti-PD-L1-mediated tumor suppression in non-small cell lung cancer. Clin Transl Oncol 2023; 25:3188-3202. [PMID: 37115489 PMCID: PMC10514125 DOI: 10.1007/s12094-023-03187-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE The efficacy of immune checkpoint inhibitors such as programmed cell death ligand 1 (PD-L1) antibodies in non-small cell lung cancer (NSCLC) is limited, and combined use with other therapies is recommended. Dipeptidyl peptidase 4 (DPP4) inhibitors, a class of small molecule inhibitors, are highly effective for treating type 2 diabetes. Emerging evidence implicates DPP4 inhibitors as immunomodulators that modify aspects of innate and adaptive immunity. We evaluated the combination of a DPP4 inhibitor (anagliptin) and PD-L1 blockade in an NSCLC mouse model. METHODS The effect of the combination of anti-PD-L1 and anagliptin was evaluated in subcutaneous mouse models of NSCLC. Tumor-infiltrating immune cells were analyzed by flow cytometry. Bone marrow-derived monocytes of C57BL/6 mice were isolated in vitro to examine the underlying mechanism of anagliptin on the differentiation and polarization of macrophage. RESULTS Anagliptin dramatically improved the efficacy of PD-L1 antibody monotherapy by inhibiting macrophage formation and M2 polarization in the tumor microenvironment. Mechanistically, anagliptin suppressed the production of reactive oxygen species in bone marrow monocytes by inhibiting NOX1 and NOX2 expression induced by macrophage colony-stimulating factor, reduced late ERK signaling pathway activation, and inhibited monocyte-macrophage differentiation. However, the inhibitory effect was reactivated by lipopolysaccharide and interferon-gamma interacting with corresponding receptors during M1 macrophage polarization, but not M2. CONCLUSIONS Anagliptin can enhance PD-L1 blockade efficacy in NSCLC by inhibiting macrophage differentiation and M2 macrophage polarization, and combination therapy may be a promising strategy for treating PD-L1 blockade therapy-resistant patients with NSCLC.
Collapse
Affiliation(s)
- Bei Zuo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Respiratory and Critical Care Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Tao Li
- Department of Respiratory and Critical Care Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Xiaoyun Liu
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Shuling Wang
- Department of Respiratory and Critical Care Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Jianxiang Cheng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiangqun Liu
- Department of Respiratory and Critical Care Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Wenjie Cui
- Department of Respiratory and Critical Care Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Hengliang Shi
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Chunhua Ling
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China.
| |
Collapse
|
4
|
Kong X, Zhao Y, Wang X, Yu Y, Meng Y, Yan G, Yu M, Jiang L, Song W, Wang B, Wang X. Loganin reduces diabetic kidney injury by inhibiting the activation of NLRP3 inflammasome-mediated pyroptosis. Chem Biol Interact 2023; 382:110640. [PMID: 37473909 DOI: 10.1016/j.cbi.2023.110640] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Diabetic kidney disease (DKD) is an essential cause of end-stage renal disease. The ongoing inflammatory response in the proximal tubule promotes the progression of DKD. Timely and effective blockade of the inflammatory process to protect the kidney during DKD progression is a proven strategy. The purpose of this study was to investigate the protective effect of loganin on diabetic nephropathy in vivo and in vitro and whether this effect was related to the inhibition of pyroptosis. The results indicated that loganin reduced fasting blood glucose, blood urea nitrogen and serum creatinine concentrations, and alleviated renal pathological changes in DKD mice. In parallel, loganin downregulated the expression of pyroptosis related proteins in the renal tubules of DKD mice and decreased serum levels of interleukin-1beta (IL-1β) and interleukin-18 (IL-18). Furthermore, in vitro experiments showed that loganin attenuated high glucose-induced HK-2 cell injury by reducing the expression of pyroptosis-related proteins, and cytokine levels were also decreased. These fundings were also confirmed in the polyphyllin VI (PPVI) -induced HK-2 cell pyroptosis model. Loganin reduces high glucose induced HK-2 cells pyroptosis by inhibiting reactive oxygen species (ROS) production and NOD-like receptor protein 3 (NLRP3) inflammasome activation. In conclusion, the inhibition of pyroptosis via inhibition of the NLRP3/Caspase-1/Gasdermin D (GSDMD) pathway might be an essential mechanism for loganin treatment of DKD.
Collapse
Affiliation(s)
- Xiangri Kong
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China; Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Yunyun Zhao
- Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Xingye Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China; Department of Cardiovascular Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Yongjiang Yu
- Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Ying Meng
- College of Clinical Medical, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Guanchi Yan
- Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Miao Yu
- Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Lihong Jiang
- Department of Cardiovascular Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Wu Song
- College of Clinical Medical, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Bingmei Wang
- College of Clinical Medical, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Xiuge Wang
- Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| |
Collapse
|
5
|
Eita MAH, Ashour RH, El‐Khawaga OY. Pentosan polysulfate exerts anti‐inflammatory effect and halts albuminuria progression in diabetic nephropathy: Role of combined losartan. Fundam Clin Pharmacol 2022; 36:801-810. [DOI: 10.1111/fcp.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Mai Abdel Hamid Eita
- Biochemistry Division, Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| | - Rehab Hamdy Ashour
- Clinical Pharmacology Department, Faculty of Medicine Mansoura University Mansoura Egypt
- Pharmacology and Toxicology Department, Al‐Qunfudah Medical College Umm Al‐Qura University Mecca Saudi Arabia
| | - Omali Youssef El‐Khawaga
- Biochemistry Division, Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| |
Collapse
|
6
|
Munawaroh HSH, Hazmatulhaq F, Gumilar GG, Pratiwi RN, Kurniawan I, Ningrum A, Hidayati NA, Koyande AK, Kumar PS, Show PL. Microalgae as a potential sustainable solution to environment health. CHEMOSPHERE 2022; 295:133740. [PMID: 35124085 DOI: 10.1016/j.chemosphere.2022.133740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/10/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria such as Spirulina platensis secretes numerous biomolecules while consuming CO2 for photosynthesis which can reduce the environmental pollution as it can also be grown in wastewater. These biomolecules can be further processed in numerous pathways such as feed, fuel, pharmaceuticals, and nutraceuticals. This study aims to screen the potential molecular mechanisms of pigments from cyanobacteria as antidiabetic type-2 candidates through molecular docking. The activities of the test compounds were compared to commercial diabetic drugs, such as acarbose, linagliptin and polydatin. The results indicated that the binding affinity of pheophytin, β-carotene, and phycocyanobilin to α-amylase were 0.4, 2, and 2.6 kcal/mol higher than that of acarbose with α-amylase. Binding affinity between pheophytin, β-carotene, and phycocyanobilin with α-glucosidase were found to be comparable, which resulted 1.2, and 1.6 kcal/mol higher than that of acarbose with α-glucosidase. Meanwhile, binding activity of β-carotene and phycocyanobilin with DPP-IV were 0.5 and 0.3 kcal/mol higher than that of linagliptin with DPP-IV, whereas pheophytin, β-carotene, and phycocyanobilin with Glucose-6-phosphate dehydrogenase (G6PD) were 0.2, 1, and 1.4 kcal/mol higher from that of polydatin with G6PD. Moreover, pheophytin, β-carotene and phycocyanobilin were likely to inhibit α-amylase, α-glucosidase, and DPP-IV competitively, while uncompetitively for G6PD. Thus, the integration of molecular docking and experimental approach, such as in vitro and in vivo studies may greatly improve the discovery of true bioactive compounds in cyanobacteria for type 2 diabetes mellitus drugs and treatments.
Collapse
Affiliation(s)
- Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudi 229, Bandung, 40154, Indonesia.
| | - Farah Hazmatulhaq
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudi 229, Bandung, 40154, Indonesia
| | - Gun Gun Gumilar
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudi 229, Bandung, 40154, Indonesia
| | - Riska Nur Pratiwi
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudi 229, Bandung, 40154, Indonesia
| | - Isman Kurniawan
- School of Computing, Telkom University, Jalan Terusan Buah Batu, Bandung, 40257, Indonesia; Research Center of Human Centric Engineering, Telkom University, Jalan Terusan Buah Batu, Bandung, 40257, Indonesia
| | - Andriati Ningrum
- Department of Food Science and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta, 5528, Indonesia
| | - Nur Akmalia Hidayati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, Indonesia
| | - Apurav Krishna Koyande
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Selangor, Malaysia
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Selangor, Malaysia.
| |
Collapse
|
7
|
Anti-Inflammatory and Immunoregulatory Action of Sesquiterpene Lactones. Molecules 2022; 27:molecules27031142. [PMID: 35164406 PMCID: PMC8839508 DOI: 10.3390/molecules27031142] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 01/21/2023] Open
Abstract
Sesquiterpene lactones (SL), characterized by their high prevalence in the Asteraceae family, are one of the major groups of secondary metabolites found in plants. Researchers from distinct research fields, including pharmacology, medicine, and agriculture, are interested in their biological potential. With new SL discovered in the last years, new biological activities have been tested, different action mechanisms (synergistic and/or antagonistic effects), as well as molecular structure–activity relationships described. The review identifies the main sesquiterpene lactones with interconnections between immune responses and anti-inflammatory actions, within different cellular models as well in in vivo studies. Bioaccessibility and bioavailability, as well as molecular structure–activity relationships are addressed. Additionally, plant metabolic engineering, and the impact of sesquiterpene lactone extraction methodologies are presented, with the perspective of biological activity enhancement. Sesquiterpene lactones derivatives are also addressed. This review summarizes the current knowledge regarding the therapeutic potential of sesquiterpene lactones within immune and inflammatory activities, highlighting trends and opportunities for their pharmaceutical/clinical use.
Collapse
|
8
|
Sugita E, Hayashi K, Hishikawa A, Itoh H. Epigenetic Alterations in Podocytes in Diabetic Nephropathy. Front Pharmacol 2021; 12:759299. [PMID: 34630127 PMCID: PMC8497789 DOI: 10.3389/fphar.2021.759299] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/13/2021] [Indexed: 01/19/2023] Open
Abstract
Recently, epigenetic alterations have been shown to be involved in the pathogenesis of diabetes and its complications. Kidney podocytes, which are glomerular epithelial cells, are important cells that form a slit membrane—a barrier for proteinuria. Podocytes are terminally differentiated cells without cell division or replenishment abilities. Therefore, podocyte damage is suggested to be one of the key factors determining renal prognosis. Recent studies, including ours, suggest that epigenetic changes in podocytes are associated with chronic kidney disease, including diabetic nephropathy. Furthermore, the association between DNA damage repair and epigenetic changes in diabetic podocytes has been demonstrated. Detection of podocyte DNA damage and epigenetic changes using human samples, such as kidney biopsy and urine-derived cells, may be a promising strategy for estimating kidney damage and renal prognoses in patients with diabetes. Targeting epigenetic podocyte changes and associated DNA damage may become a novel therapeutic strategy for preventing progression to end-stage renal disease (ESRD) and provide a possible prognostic marker in diabetic nephropathy. This review summarizes recent advances regarding epigenetic changes, especially DNA methylation, in podocytes in diabetic nephropathy and addresses detection of these alterations in human samples. Additionally, we focused on DNA damage, which is increased under high-glucose conditions and associated with the generation of epigenetic changes in podocytes. Furthermore, epigenetic memory in diabetes is discussed. Understanding the role of epigenetic changes in podocytes in diabetic nephropathy may be of great importance considering the increasing diabetic nephropathy patient population in an aging society.
Collapse
Affiliation(s)
- Erina Sugita
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kaori Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Akihito Hishikawa
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
9
|
Klein T, Tammen H, Mark M, Benetti E, Delić D, Schepers C, von Eynatten M. Urinary dipeptidyl peptidase-4 protein is increased by linagliptin and is a potential predictive marker of urine albumin-to-creatinine ratio reduction in patients with type 2 diabetes. Diabetes Obes Metab 2021; 23:1968-1972. [PMID: 33881796 DOI: 10.1111/dom.14407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 12/01/2022]
Abstract
Results of a post hoc analysis of urinary dipeptidyl peptidase-4 (DPP-4) protein as a predictor of urine albumin-to-creatinine ratio (UACR) response to linagliptin treatment based on MARLINA-T2D trial data are described. MARLINA was a 24-week, phase 3b, multinational, placebo-controlled clinical trial, in which patients with type 2 diabetes (T2D), HbA1c 6.5%-10.0% and UACR 30-3000 mg/g (n = 360) were treated with linagliptin or placebo. After 24 weeks of treatment, linagliptin significantly inhibited urinary DPP-4 activity and increased urinary DPP-4 protein. Furthermore, medium urinary DPP-4 protein levels (between 5.5 and 7.5 natural logarithmic [ln] μg/g creatinine) at baseline allowed for prediction of improved UACR in linagliptin-treated individuals. In patients with lower or higher levels of urinary DPP-4 protein at baseline, no association between linagliptin treatment and improved UACR was present. This might suggest a varying degree of importance of DPP-4 as a pathophysiological factor in T2D-associated kidney disease. In summary, urinary DPP-4 might be a useful predictive biomarker for UACR improvement by linagliptin.
Collapse
Affiliation(s)
- Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelhein, Germany
| | | | - Michael Mark
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelhein, Germany
| | - Elisa Benetti
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - Denis Delić
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelhein, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | | | - Maximilian von Eynatten
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
10
|
Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med 2021; 169:317-342. [PMID: 33910093 PMCID: PMC8285002 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Even in the absence of coronary artery disease and hypertension, diabetes mellitus (DM) may increase the risk for heart failure development. This risk evolves from functional and structural alterations induced by diabetes in the heart, a cardiac entity termed diabetic cardiomyopathy (DbCM). Oxidative stress, defined as the imbalance of reactive oxygen species (ROS) has been increasingly proposed to contribute to the development of DbCM. There are several sources of ROS production including the mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. Overproduction of ROS in DbCM is thought to be counterbalanced by elevated antioxidant defense enzymes such as catalase and superoxide dismutase. Excess ROS in the cardiomyocyte results in further ROS production, mitochondrial DNA damage, lipid peroxidation, post-translational modifications of proteins and ultimately cell death and cardiac dysfunction. Furthermore, ROS modulates transcription factors responsible for expression of antioxidant enzymes. Lastly, evidence exists that several pharmacological agents may convey cardiovascular benefit by antioxidant mechanisms. As such, increasing our understanding of the pathways that lead to increased ROS production and impaired antioxidant defense may enable the development of therapeutic strategies against the progression of DbCM. Herein, we review the current knowledge about causes and consequences of ROS in DbCM, as well as the therapeutic potential and strategies of targeting oxidative stress in the diabetic heart.
Collapse
Affiliation(s)
- Nikole J Byrne
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
11
|
Sesquiterpene lactones of Aucklandia lappa: Pharmacology, pharmacokinetics, toxicity, and structure–activity relationship. CHINESE HERBAL MEDICINES 2021; 13:167-176. [PMID: 36117502 PMCID: PMC9476744 DOI: 10.1016/j.chmed.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/28/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
|
12
|
Kawanami D, Takashi Y, Takahashi H, Motonaga R, Tanabe M. Renoprotective Effects of DPP-4 Inhibitors. Antioxidants (Basel) 2021; 10:antiox10020246. [PMID: 33562528 PMCID: PMC7915260 DOI: 10.3390/antiox10020246] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. Dipeptidyl peptidase (DPP)-4 inhibitors are widely used in the treatment of patients with type 2 diabetes (T2D). DPP-4 inhibitors reduce glucose levels by inhibiting degradation of incretins. DPP-4 is a ubiquitous protein with exopeptidase activity that exists in cell membrane-bound and soluble forms. It has been shown that an increased renal DPP-4 activity is associated with the development of DKD. A series of clinical and experimental studies showed that DPP-4 inhibitors have beneficial effects on DKD, independent of their glucose-lowering abilities, which are mediated by anti-fibrotic, anti-inflammatory, and anti-oxidative stress properties. In this review article, we highlight the current understanding of the clinical efficacy and the mechanisms underlying renoprotection by DPP-4 inhibitors under diabetic conditions.
Collapse
|
13
|
Song C, Gan S, He J, Shen X. Effects of Nano-Zinc on Immune Function in Qianbei-Pockmarked Goats. Biol Trace Elem Res 2021; 199:578-584. [PMID: 32394354 DOI: 10.1007/s12011-020-02182-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Qianbei-pockmarked goats are vital to the production system of western China. This study aimed to determine the influence of nano-zinc on immune function in zinc-deprived goats. We analyzed the mineral concentrations in soil, forage, and animal tissue. Blood parameters and immune indexes were also determined. Results showed that the zinc concentrations in soil and forage from affected area were significantly lower than those in control area (P < 0.01). Zinc contents in tissues (blood and hair) from affected Qianbei-pockmarked goats were also significantly lower than those in healthy animals (P < 0.01). Levels of hemoglobin, erythrocyte count, and packed cell volume from affected animals were markedly lower than those in healthy animals (P < 0.01). Levels of lactate dehydrogenase, alkaline phosphatase, superoxide dismutase, glutathione peroxide, catalase, and total antioxidant capacity in serum in affected animals were significantly lower, and aspartate aminotransferase, alanine transaminase, malondialdehyde in serum were significantly higher than those in healthy goats (P < 0.01). The contents of immunoglobulin A, immunoglobulin M, immunoglobulin G, interleukin-2, interleukin 6, and interleukin-1β from affected animals were significantly lower than those in healthy animals (P < 0.01). The affected Qianbei-pockmarked goats were treated orally with nano-zinc, the concentration of zinc in blood significantly increased, and serum immune indexes greatly returned to that within the healthy range. It was concluded that nano-zinc could not only markedly increase the zinc content in blood of zinc-deprived goats but also much improve the immune function.
Collapse
Affiliation(s)
- Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, 832000, China
| | - Jian He
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
| |
Collapse
|
14
|
Sembach FE, Østergaard MV, Vrang N, Feldt-Rasmussen B, Fosgerau K, Jelsing J, Fink LN. Rodent models of diabetic kidney disease: human translatability and preclinical validity. Drug Discov Today 2021; 26:200-217. [DOI: 10.1016/j.drudis.2020.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
|
15
|
Shen X, Min X, Zhang S, Song C, Xiong K. Effect of Heavy Metal Contamination in the Environment on Antioxidant Function in Wumeng Semi-fine Wool Sheep in Southwest China. Biol Trace Elem Res 2020; 198:505-514. [PMID: 32076954 DOI: 10.1007/s12011-020-02081-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
Abstract
Many environmental accidents have led to worldwide heavy metal pollution, raising concern about heavy metal toxicity in Southwest China. To study the effects of Cd and Pb in the environment on antioxidant function in Wumeng semi-fine wool sheep, contents of Cu, Zn, Mn, Mo, Fe, Se, Cd, and Pb were measured in irrigation water, soil, herbage, and animal tissues. Hematological and biochemical parameters were also determined. The concentrations of Cu, Zn, Cd, and Pb in affected samples of irrigation water, soil, herbage, and tissues were significantly higher than those in the control (P < 0.01). There was no significant difference in other element contents between affected pastures and control areas. The occurrence of anemia affected Wumeng semi-fine wool sheep. The activities of SOD, CAT, and GSH-Px in affected animals were significantly decreased than those in the control (P < 0.01). Content of MDA in serum in affected animals was significantly increased than that in control (P < 0.01). Serum T-AOC in affected animal was significantly lower than that in control (P < 0.01). Consequently, it is suggested that heavy metal contamination in natural habitat caused serious harm to antioxidant function in Wumeng semi-fine wool sheep.
Collapse
Affiliation(s)
- Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China
| | - Xiaoying Min
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Shihao Zhang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Kangning Xiong
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China.
| |
Collapse
|
16
|
El-Deeb OS, Soliman GM, Elesawy RO. Linagliptin, the dipeptidyl peptidase-4 enzyme inhibitor, lessens CHOP and GRP78 biomarkers levels in cisplatin-induced neurobehavioral deficits: A possible restorative gateway. J Biochem Mol Toxicol 2020; 34:e22541. [PMID: 32567747 DOI: 10.1002/jbt.22541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/15/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Cisplatin (CP) is a cornerstone chemotherapeutic agent, however, its neurotoxicity is a chief cause of its limited usage. Linagliptin, which is a dipeptidyl peptidase-4 enzyme inhibitor, has exhibited considerable neuroprotective potential. We aimed to evaluate the linagliptin modulatory effects on endoplasmic reticulum (ER) stress, redox status, and apoptosis in CP-induced neurotoxicity. Thirty mice were allocated equally into the control group, Group II: CP group, and Group III: linagliptin treated CP group. All groups were subjected to the measurement of hippocampal messenger RNA gene expression of glucose-regulated protein-78 and C/EBP homologous protein (CHOP). Peroxisome proliferator-activated receptor γ coactivator 1α and cleaved caspase-3 levels were assessed by the enzyme-linked immunosorbent assay technique while malondialdehyde, reduced glutathione levels and superoxide dismutase activity were detected spectrophotometrically. Linagliptin ameliorated ER stress and enhanced antioxidant status with cognitive function improvement. Linagliptin may be considered a promising neuroprotective agent owing to its ability to reduce ER/oxidative stress.
Collapse
Affiliation(s)
- Omnia S El-Deeb
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Gehan M Soliman
- Histology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rasha O Elesawy
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
17
|
Kim G, Lim S, Kwon H, Park IB, Ahn KJ, Park C, Kwon SK, Kim HS, Park SW, Kim SG, Moon MK, Kim ES, Chung CH, Park KS, Kim M, Chung DJ, Lee CB, Kim TH, Lee M. Efficacy and safety of evogliptin treatment in patients with type 2 diabetes: A multicentre, active-controlled, randomized, double-blind study with open-label extension (the EVERGREEN study). Diabetes Obes Metab 2020; 22:1527-1536. [PMID: 32319168 PMCID: PMC7496811 DOI: 10.1111/dom.14061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
AIM To investigate the efficacy and safety of evogliptin compared with linagliptin in patients with type 2 diabetes. MATERIALS AND METHODS In this 12-week, multicentre, randomized, double-blind, active-controlled, and 12-week open-label extension study, a total of 207 patients with type 2 diabetes who had HbA1c levels of 7.0%-10.0% were randomized 1:1 to receive evogliptin 5 mg (n = 102) or linagliptin 5 mg (n = 105) daily for 12 weeks. The primary efficacy endpoint was the change from baseline HbA1c at week 12. The secondary endpoint was the change in the mean amplitude of glycaemic excursion (MAGE) assessed by continuous glucose monitoring. In the extension study conducted during the following 12 weeks, evogliptin 5 mg daily was administered to both groups: evogliptin/evogliptin group (n = 95) and linagliptin/evogliptin group (n = 92). RESULTS After 12 weeks of treatment, the mean change in HbA1c in the evogliptin group and in the linagliptin group was -0.85% and -0.75%, respectively. The between-group difference was -0.10% (95% CI: -0.32 to 0.11), showing non-inferiority based on a non-inferiority margin of 0.4%. The change in MAGE was -24.6 mg/dL in the evogliptin group and -16.7 mg/dL in the linagliptin group. These values were significantly lower than the baseline values in both groups. However, they did not differ significantly between the two groups. In the evogliptin/evogliptin group at week 24, HbA1c decreased by -0.94%, with HbA1c values of <7.0% in 80.2% of the patients. The incidence and types of adverse events were comparable between the two groups for 24 weeks. CONCLUSION In this study, the glucose-lowering efficacy of evogliptin was non-inferior to linagliptin. It was maintained at week 24 with a 0.94% reduction in HbA1c. Evogliptin therapy improved glycaemic variability without causing any serious adverse events in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Gyuri Kim
- Department of Medicine, Samsung Medical CenterSungkyunkwan UniversitySeoulKorea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of MedicineSeoul National University Bundang HospitalSeongnamKorea
| | - Hyuk‐Sang Kwon
- Department of Internal Medicine, Yeouido St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Ie B. Park
- Department of Internal MedicineGachon University Gil Medical CenterIncheonKorea
| | - Kyu J. Ahn
- Department of Internal MedicineKangdong Kyung Hee University HospitalSeoulKorea
| | - Cheol‐Young Park
- Department of Internal MedicineKangbuk Samsung HospitalSeoulKorea
| | - Su K. Kwon
- Department of Internal MedicineKosin University Gospel HospitalBusanKorea
| | - Hye S. Kim
- Department of Internal MedicineKeimyung University Dongsan Medical CenterDaeguKorea
| | - Seok W. Park
- Department of Internal MedicineYonsei University College of MedicineSeoulKorea
| | - Sin G. Kim
- Department of Internal MedicineKorea University Anam HospitalSeoulKorea
| | - Min K. Moon
- Department of Internal MedicineSeoul National University Boramae Medical CenterSeoulKorea
| | - Eun S. Kim
- Department of Internal Medicine, Ulsan University HospitalCollege of Medicine University of UlsanUlsanKorea
| | - Choon H. Chung
- Department of Internal MedicineWonju Severance Christian HospitalWonjuKorea
| | - Kang S. Park
- Department of Internal MedicineEulji University HospitalDaejeonKorea
| | - Mikyung Kim
- Department of Internal MedicineInje University Haeundae Paik HospitalBusanKorea
| | - Dong J. Chung
- Department of Internal Medicine, Chonnam National University Medical SchoolChonnam National University HospitalGwangjuKorea
| | - Chang B. Lee
- Department of Internal MedicineHanyang University Guri HospitalGuriKorea
| | - Tae H. Kim
- Department of Internal MedicineSeoul Medical CenterSeoulKorea
| | - Moon‐Kyu Lee
- Department of Internal MedicineSoonchunhyang University Gumi HospitalGumiSouth Korea
| |
Collapse
|
18
|
Kitada M, Xu J, Ogura Y, Monno I, Koya D. Manganese Superoxide Dismutase Dysfunction and the Pathogenesis of Kidney Disease. Front Physiol 2020; 11:755. [PMID: 32760286 PMCID: PMC7373076 DOI: 10.3389/fphys.2020.00755] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondria are a major source of reactive oxygen species (ROS). Superoxide anion (O2•–) is produced by the process of oxidative phosphorylation associated with glucose, amino acid, and fatty acid metabolism, resulting in the production of adenosine triphosphate (ATP) in the mitochondria. Excess production of reactive oxidants in the mitochondria, including O2•–, and its by-product, peroxynitrite (ONOO–), which is generated by a reaction between O2•– with nitric oxide (NO•), alters cellular function via oxidative modification of proteins, lipids, and nucleic acids. Mitochondria maintain an antioxidant enzyme system that eliminates excess ROS; manganese superoxide dismutase (Mn-SOD) is one of the major components of this system, as it catalyzes the first step involved in scavenging ROS. Reduced expression and/or the activity of Mn-SOD results in diminished mitochondrial antioxidant capacity; this can impair the overall health of the cell by altering mitochondrial function and may lead to the development and progression of kidney disease. Targeted therapeutic agents may protect mitochondrial proteins, including Mn-SOD against oxidative stress-induced dysfunction, and this may consequently lead to the protection of renal function. Here, we describe the biological function and regulation of Mn-SOD and review the significance of mitochondrial oxidative stress concerning the pathogenesis of kidney diseases, including chronic kidney disease (CKD) and acute kidney injury (AKI), with a focus on Mn-SOD dysfunction.
Collapse
Affiliation(s)
- Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Jing Xu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Itaru Monno
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
19
|
Barrera-Chimal J, Jaisser F. Pathophysiologic mechanisms in diabetic kidney disease: A focus on current and future therapeutic targets. Diabetes Obes Metab 2020; 22 Suppl 1:16-31. [PMID: 32267077 DOI: 10.1111/dom.13969] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Diabetic kidney disease (DKD) is the primary cause of chronic kidney disease around the globe and is one of the main complications in patients with type 1 and 2 diabetes. The standard treatment for DKD is drugs controlling hyperglycemia and high blood pressure. Renin angiotensin aldosterone system blockade and sodium glucose cotransporter 2 (SGLT2) inhibition have yielded promising results in DKD, but many diabetic patients on such treatments nevertheless continue to develop DKD, leading to kidney failure and cardiovascular comorbidities. New therapeutic options are urgently required. We review here the promising therapeutic avenues based on insights into the mechanisms of DKD that have recently emerged, including mineralocorticoid receptor antagonists, SGLT2 inhibitors, glucagon-like peptide-1 receptor agonist, endothelin receptor A inhibition, anti-inflammatory agents, autophagy activators and epigenetic remodelling. The involvement of several molecular mechanisms in DKD pathogenesis, together with the genetic and epigenetic variability of this condition, makes it difficult to target this heterogeneous patient population with a single drug. Personalized medicine, taking into account the genetic and mechanistic variability, may therefore improve renal and cardiovascular protection in diabetic patients with DKD.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación en Medicina Traslacional, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Frédéric Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne University, Paris Descartes University, Paris, France
- INSERM U1116, Clinical Investigation Centre, Lorraine University, Vandoeuvre-lès-Nancy, France
- INI-CRCT (Cardiovascular and Renal Clinical Trialists) F-CRIN Network, Nancy, France
| |
Collapse
|
20
|
Ide M, Sonoda N, Inoue T, Kimura S, Minami Y, Makimura H, Hayashida E, Hyodo F, Yamato M, Takayanagi R, Inoguchi T. The dipeptidyl peptidase-4 inhibitor, linagliptin, improves cognitive impairment in streptozotocin-induced diabetic mice by inhibiting oxidative stress and microglial activation. PLoS One 2020; 15:e0228750. [PMID: 32032367 PMCID: PMC7006898 DOI: 10.1371/journal.pone.0228750] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Accumulating epidemiological studies have demonstrated that diabetes is an important risk factor for dementia. However, the underlying pathological and molecular mechanisms, and effective treatment, have not been fully elucidated. Herein, we investigated the effect of the dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin, on diabetes-related cognitive impairment. METHOD Streptozotocin (STZ)-induced diabetic mice were treated with linagliptin (3 mg/kg/24 h) for 17 weeks. The radial arm water maze test was performed, followed by evaluation of oxidative stress using DNP-MRI and the expression of NAD(P)H oxidase components and proinflammatory cytokines and of microglial activity. RESULTS Administration of linagliptin did not affect the plasma glucose and body weight of diabetic mice; however, it improved cognitive impairment. Additionally, linagliptin reduced oxidative stress and the mRNA expression of NAD(P)H oxidase component and TNF-α, and the number and body area of microglia, all of which were significantly increased in diabetic mice. CONCLUSIONS Linagliptin may have a beneficial effect on diabetes-related dementia by inhibiting oxidative stress and microglial activation, independently of glucose-lowering.
Collapse
Affiliation(s)
- Makoto Ide
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Sonoda
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Tomoaki Inoue
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichiro Kimura
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yohei Minami
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Makimura
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiichi Hayashida
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fuminori Hyodo
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Mayumi Yamato
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Ryoichi Takayanagi
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toyoshi Inoguchi
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
- Fukuoka City Health Promotion Support Center, Fukuoka, Japan
| |
Collapse
|
21
|
Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. J Clin Med 2019; 8:jcm8091385. [PMID: 31487953 PMCID: PMC6780404 DOI: 10.3390/jcm8091385] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disorder characterized by hyperglycemia and insulin resistance in which oxidative stress is thought to be a primary cause. Considering that mitochondria are the main source of ROS, we have set out to provide a general overview on how oxidative stress is generated and related to T2D. Enhanced generation of reactive oxygen species (ROS) and oxidative stress occurs in mitochondria as a consequence of an overload of glucose and oxidative phosphorylation. Endoplasmic reticulum (ER) stress plays an important role in oxidative stress, as it is also a source of ROS. The tight interconnection between both organelles through mitochondrial-associated membranes (MAMs) means that the ROS generated in mitochondria promote ER stress. Therefore, a state of stress and mitochondrial dysfunction are consequences of this vicious cycle. The implication of mitochondria in insulin release and the exposure of pancreatic β-cells to hyperglycemia make them especially susceptible to oxidative stress and mitochondrial dysfunction. In fact, crosstalk between both mechanisms is related with alterations in glucose homeostasis and can lead to the diabetes-associated insulin-resistance status. In the present review, we discuss the current knowledge of the relationship between oxidative stress, mitochondria, ER stress, inflammation, and lipotoxicity in T2D.
Collapse
|
22
|
More than just an enzyme: Dipeptidyl peptidase-4 (DPP-4) and its association with diabetic kidney remodelling. Pharmacol Res 2019; 147:104391. [PMID: 31401210 DOI: 10.1016/j.phrs.2019.104391] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW This review article discusses recent advances in the mechanism of dipeptidyl peptidase-4 (DPP-4) actions in renal diseases, especially diabetic kidney fibrosis, and summarizes anti-fibrotic functions of various DPP-4 inhibitors in diabetic nephropathy (DN). RECENT FINDINGS DN is a common complication of diabetes and is a leading cause of the end-stage renal disease (ESRD). DPP-4 is a member of serine proteases, and more than 30 substrates have been identified that act via several biochemical messengers in a variety of tissues including kidney. Intriguingly, DPP-4 actions on the diabetic kidney is a complex mechanism, and a variety of pathways are involved including increasing GLP-1/SDF-1, disrupting AGE-RAGE pathways, and integrin-β- and TGF-β-Smad-mediated signalling pathways that finally lead to endothelial to mesenchymal transition. Interestingly, an array of DPP-4 inhibitors is well recognized as oral drugs to treat type 2 diabetic (T2D) patients, which promote better glycemic control. Furthermore, recent experimental and preclinical data reveal that DPP-4 inhibitors may also exhibit protective effects in renal disease progression including anti-fibrotic effects in the diabetic kidney by attenuating above signalling cascade(s), either singly or as a combinatorial effect. In this review, we discussed the anti-fibrotic effects of DPP-4 inhibitors based on recent reports along with the possible mechanism of actions and future perspectives to underscore the beneficial effects of DPP-4 inhibitors in DN. SUMMARY With recent experimental, preclinical, and clinical evidence, we summarized DPP-4 activities and its mechanism of actions in diabetic kidney diseases. A knowledge gap of DPP-4 inhibition in controlling renal fibrosis in DN has also been postulated in this review for future research perspectives.
Collapse
|
23
|
Yaribeygi H, Atkin SL, Katsiki N, Sahebkar A. Narrative review of the effects of antidiabetic drugs on albuminuria. J Cell Physiol 2018; 234:5786-5797. [PMID: 30367464 DOI: 10.1002/jcp.27503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is the most prevalent metabolic disorder worldwide. Glycemic control is the main focus of antidiabetic therapy. However, there are data suggesting that some antidiabetic drugs may have intrinsic beneficial renal effects and protect against the development and progression of albuminuria, thus minimizing the risk of diabetic nephropathy. These pharmacological agents can suppress upstream molecular pathways involved in the pathophysiology of diabetes-induced renal dysfunction such as oxidative stress, inflammatory responses, and apoptosis. In this narrative review, the pathophysiology of albuminuria in patients with diabetic nephropathy is discussed. Furthermore, the renoprotective effects of antidiabetic drugs, focusing on albuminuria, are reviewed.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|