1
|
Pilipenko T, Premoli M, Gnutti A, Bonini SA, Leonardi R, Memo M, Migliorati P. Exploring ultrasonic communication in mice treated with Cannabis sativa oil: Audio data processing and correlation study with different behaviours. Eur J Neurosci 2024; 60:4244-4253. [PMID: 38816916 DOI: 10.1111/ejn.16433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/18/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Studying ultrasonic vocalizations (USVs) plays a crucial role in understanding animal communication, particularly in the field of ethology and neuropharmacology. Communication is associated with social behaviour; so, USVs study is a valid assay in behavioural readout and monitoring in this context. This paper delved into an investigation of ultrasonic communication in mice treated with Cannabis sativa oil (CS mice), which has been demonstrated having a prosocial effect on behaviour of mice, versus control mice (vehicle-treated, VH mice). To conduct this study, we created a dataset by recording audio-video files and annotating the duration of time that test mice spent engaging in social activities, along with categorizing the types of emitted USVs. The analysis encompassed the frequency of individual sounds as well as more complex sequences of consecutive syllables (patterns). The primary goal was to examine the extent and nature of diversity in ultrasonic communication patterns emitted by these two groups of mice. As a result, we observed statistically significant differences for each considered pattern length between the two groups of mice. Additionally, the study extended its research by considering specific behaviours, aiming to ascertain whether dissimilarities in ultrasonic communication between CS and VH mice are more pronounced or subtle within distinct behavioural contexts. Our findings suggest that while there is variation in USV communication between the two groups of mice, the degree of this diversity may vary depending on the specific behaviour being observed.
Collapse
Affiliation(s)
- Tatiana Pilipenko
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Marika Premoli
- Department of Molecular and Translational, Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Gnutti
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational, Medicine, University of Brescia, Brescia, Italy
| | - Riccardo Leonardi
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational, Medicine, University of Brescia, Brescia, Italy
| | | |
Collapse
|
2
|
Warren MR, Young LJ, Liu RC. Vocal recognition of partners by female prairie voles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604991. [PMID: 39091789 PMCID: PMC11291111 DOI: 10.1101/2024.07.24.604991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Recognizing conspecifics is vitally important for differentiating kin, mates, offspring and social threats.1 Although often reliant upon chemical or visual cues, individual recognition across the animal kingdom is also facilitated by unique acoustic signatures in vocalizations.2-4 However, amongst the large Muroidea superfamily of rodents that encompasses laboratory species amenable to neurobiological studies, there is scant behavioral evidence for individual vocal recognition despite individual acoustic variation.5-10 Playback studies have found evidence for coarse communicative functions like mate attraction and territorial defense, but limited finer ability to discriminate known individuals' vocalizations.11-17 Such a capacity would be adaptive for species that form lifelong pair bonds requiring partner identification across timescales, distances and sensory modalities, so to improve the chance of finding individual vocal recognition in a Muroid rodent, we investigated vocal communication in the prairie vole (Microtus ochrogaster) - one of the few socially monogamous mammals.18 We found that the ultrasonic vocalizations of adult prairie voles can communicate individual identity. Even though the vocalizations of individual males change after cohabitating with a female to form a bond, acoustic variation across individuals is greater than within an individual so that vocalizations of different males in a common context are identifiable above chance. Critically, females behaviorally discriminate their partner's vocalizations over a stranger's, even if emitted to another stimulus female. These results establish the acoustic and behavioral foundation for individual vocal recognition in prairie voles, where neurobiological tools19-22 enable future studies revealing its causal neural mechanisms.
Collapse
Affiliation(s)
- Megan R. Warren
- Department of Biology, Emory University, Atlanta, GA, USA
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Atlanta, GA, USA
| | - Larry J. Young
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, GA, USA
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Atlanta, GA, USA
| |
Collapse
|
3
|
Xie B, Daunay V, Petersen TC, Briefer EF. Vocal repertoire and individuality in the plains zebra ( Equus quagga). ROYAL SOCIETY OPEN SCIENCE 2024; 11:240477. [PMID: 39076369 PMCID: PMC11286140 DOI: 10.1098/rsos.240477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/31/2024]
Abstract
Acoustic signals are vital in animal communication, and quantifying them is fundamental for understanding animal behaviour and ecology. Vocalizations can be classified into acoustically and functionally or contextually distinct categories, but establishing these categories can be challenging. Newly developed methods, such as machine learning, can provide solutions for classification tasks. The plains zebra is known for its loud and specific vocalizations, yet limited knowledge exists on the structure and information content of its vocalzations. In this study, we employed both feature-based and spectrogram-based algorithms, incorporating supervised and unsupervised machine learning methods to enhance robustness in categorizing zebra vocalization types. Additionally, we implemented a permuted discriminant function analysis to examine the individual identity information contained in the identified vocalization types. The findings revealed at least four distinct vocalization types-the 'snort', the 'soft snort', the 'squeal' and the 'quagga quagga'-with individual differences observed mostly in snorts, and to a lesser extent in squeals. Analyses based on acoustic features outperformed those based on spectrograms, but each excelled in characterizing different vocalization types. We thus recommend the combined use of these two approaches. This study offers valuable insights into plains zebra vocalization, with implications for future comprehensive explorations in animal communication.
Collapse
Affiliation(s)
- Bing Xie
- Behavioural Ecology Group, Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
- Research and Conservation, Copenhagen Zoo, Roskildevej 38, 2000 Frederiksberg, Denmark
| | - Virgile Daunay
- Behavioural Ecology Group, Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
- Laboratoire Dynamique du Langage, CNRS, University Lumière Lyon 2, Lyon, France
- ENES Bioacoustics Research Lab, CRNL, CNRS, Inserm, University of Saint-Etienne, 42100 Saint-Etienne, France
| | | | - Elodie F. Briefer
- Behavioural Ecology Group, Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Ziobro P, Woo Y, He Z, Tschida K. Midbrain neurons important for the production of mouse ultrasonic vocalizations are not required for distress calls. Curr Biol 2024; 34:1107-1113.e3. [PMID: 38301649 PMCID: PMC11696906 DOI: 10.1016/j.cub.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/17/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
A fundamental feature of vocal communication is that animals produce vocalizations with different acoustic features in different behavioral contexts (contact calls, territorial calls, courtship calls, etc.). The midbrain periaqueductal gray (PAG) is a key region that regulates vocal production, and artificial activation of the PAG can elicit the production of multiple species-typical vocalization types.1,2,3,4,5,6,7,8,9 How PAG circuits are organized to regulate the production of different vocalization types remains unknown. On the one hand, studies have found that partial PAG lesions abolish the production of some vocalization types while leaving others intact,3,8,10,11 suggesting that different populations of PAG neurons might control the production of different vocalization types. On the other hand, electrophysiological recordings have revealed individual PAG neurons that increase their activity during the production of multiple vocalization types,12,13,14 suggesting that some PAG neurons may regulate the production of more than one vocalization type. To test whether a single population of midbrain neurons regulates the production of different vocalization types, we applied intersectional methods to selectively ablate a population of midbrain neurons important for the production of ultrasonic vocalizations (USVs) in mice. We find that, although ablation of these PAG-USV neurons blocks USV production in both males and females, these neurons are not required for the production of distress calls. Our findings suggest that distinct populations of midbrain neurons control the production of different vocalization types.
Collapse
Affiliation(s)
- Patryk Ziobro
- Department of Psychology, Cornell University, 109 Tower Road, Ithaca, NY 14853, USA
| | - Yena Woo
- Department of Psychology, Cornell University, 109 Tower Road, Ithaca, NY 14853, USA
| | - Zichen He
- Department of Psychology and Neuroscience, Duke University, 417 Chapel Drive, Durham, NC 27710, USA
| | - Katherine Tschida
- Department of Psychology, Cornell University, 109 Tower Road, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Hood KE, Hurley LM. Listening to your partner: serotonin increases male responsiveness to female vocal signals in mice. Front Hum Neurosci 2024; 17:1304653. [PMID: 38328678 PMCID: PMC10847236 DOI: 10.3389/fnhum.2023.1304653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024] Open
Abstract
The context surrounding vocal communication can have a strong influence on how vocal signals are perceived. The serotonergic system is well-positioned for modulating the perception of communication signals according to context, because serotonergic neurons are responsive to social context, influence social behavior, and innervate auditory regions. Animals like lab mice can be excellent models for exploring how serotonin affects the primary neural systems involved in vocal perception, including within central auditory regions like the inferior colliculus (IC). Within the IC, serotonergic activity reflects not only the presence of a conspecific, but also the valence of a given social interaction. To assess whether serotonin can influence the perception of vocal signals in male mice, we manipulated serotonin systemically with an injection of its precursor 5-HTP, and locally in the IC with an infusion of fenfluramine, a serotonin reuptake blocker. Mice then participated in a behavioral assay in which males suppress their ultrasonic vocalizations (USVs) in response to the playback of female broadband vocalizations (BBVs), used in defensive aggression by females when interacting with males. Both 5-HTP and fenfluramine increased the suppression of USVs during BBV playback relative to controls. 5-HTP additionally decreased the baseline production of a specific type of USV and male investigation, but neither drug treatment strongly affected male digging or grooming. These findings show that serotonin modifies behavioral responses to vocal signals in mice, in part by acting in auditory brain regions, and suggest that mouse vocal behavior can serve as a useful model for exploring the mechanisms of context in human communication.
Collapse
Affiliation(s)
- Kayleigh E. Hood
- Hurley Lab, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| | - Laura M. Hurley
- Hurley Lab, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
6
|
Sterling ML, Teunisse R, Englitz B. Rodent ultrasonic vocal interaction resolved with millimeter precision using hybrid beamforming. eLife 2023; 12:e86126. [PMID: 37493217 PMCID: PMC10522333 DOI: 10.7554/elife.86126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023] Open
Abstract
Ultrasonic vocalizations (USVs) fulfill an important role in communication and navigation in many species. Because of their social and affective significance, rodent USVs are increasingly used as a behavioral measure in neurodevelopmental and neurolinguistic research. Reliably attributing USVs to their emitter during close interactions has emerged as a difficult, key challenge. If addressed, all subsequent analyses gain substantial confidence. We present a hybrid ultrasonic tracking system, Hybrid Vocalization Localizer (HyVL), that synergistically integrates a high-resolution acoustic camera with high-quality ultrasonic microphones. HyVL is the first to achieve millimeter precision (~3.4-4.8 mm, 91% assigned) in localizing USVs, ~3× better than other systems, approaching the physical limits (mouse snout ~10 mm). We analyze mouse courtship interactions and demonstrate that males and females vocalize in starkly different relative spatial positions, and that the fraction of female vocalizations has likely been overestimated previously due to imprecise localization. Further, we find that when two male mice interact with one female, one of the males takes a dominant role in the interaction both in terms of the vocalization rate and the location relative to the female. HyVL substantially improves the precision with which social communication between rodents can be studied. It is also affordable, open-source, easy to set up, can be integrated with existing setups, and reduces the required number of experiments and animals.
Collapse
Affiliation(s)
- Max L Sterling
- Computational Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
- Visual Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Ruben Teunisse
- Computational Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Bernhard Englitz
- Computational Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
7
|
Oliveira-Stahl G, Farboud S, Sterling ML, Heckman JJ, van Raalte B, Lenferink D, van der Stam A, Smeets CJLM, Fisher SE, Englitz B. High-precision spatial analysis of mouse courtship vocalization behavior reveals sex and strain differences. Sci Rep 2023; 13:5219. [PMID: 36997591 PMCID: PMC10063627 DOI: 10.1038/s41598-023-31554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
Mice display a wide repertoire of vocalizations that varies with sex, strain, and context. Especially during social interaction, including sexually motivated dyadic interaction, mice emit sequences of ultrasonic vocalizations (USVs) of high complexity. As animals of both sexes vocalize, a reliable attribution of USVs to their emitter is essential. The state-of-the-art in sound localization for USVs in 2D allows spatial localization at a resolution of multiple centimeters. However, animals interact at closer ranges, e.g. snout-to-snout. Hence, improved algorithms are required to reliably assign USVs. We present a novel algorithm, SLIM (Sound Localization via Intersecting Manifolds), that achieves a 2-3-fold improvement in accuracy (13.1-14.3 mm) using only 4 microphones and extends to many microphones and localization in 3D. This accuracy allows reliable assignment of 84.3% of all USVs in our dataset. We apply SLIM to courtship interactions between adult C57Bl/6J wildtype mice and those carrying a heterozygous Foxp2 variant (R552H). The improved spatial accuracy reveals that vocalization behavior is dependent on the spatial relation between the interacting mice. Female mice vocalized more in close snout-to-snout interaction while male mice vocalized more when the male snout was in close proximity to the female's ano-genital region. Further, we find that the acoustic properties of the ultrasonic vocalizations (duration, Wiener Entropy, and sound level) are dependent on the spatial relation between the interacting mice as well as on the genotype. In conclusion, the improved attribution of vocalizations to their emitters provides a foundation for better understanding social vocal behaviors.
Collapse
Affiliation(s)
- Gabriel Oliveira-Stahl
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Soha Farboud
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Max L Sterling
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jesse J Heckman
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Bram van Raalte
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Dionne Lenferink
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Amber van der Stam
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Cleo J L M Smeets
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Bernhard Englitz
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Wölfl S, Zala SM, Penn DJ. Male scent but not courtship vocalizations induce estrus in wild female house mice. Physiol Behav 2023; 259:114053. [PMID: 36502894 DOI: 10.1016/j.physbeh.2022.114053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Exposure to males or male urinary scent can induce and accelerate the rate of female estrous cycling in house mice ("Whitten effect"), and this response has been replicated many times since its discovery over 60 years ago. Here, we tested whether exposing female mice to recordings of male courtship ultrasonic vocalizations (USVs) induces estrous cycling, and whether exposure to both male scent and USVs has a stronger effect than to either of these stimuli alone. We conducted our study with 60 wild-derived female house mice (Mus musculus musculus). After singly housing females for 14 days, we monitored estrous stages via vaginal cytology for two weeks while isolated from males or male stimuli. We continued monitoring estrus for two more weeks during experimental exposure to one of four different types of stimuli: (1) clean bedding and background noise playback (negative control); (2) recordings of male USVs (16 min per day) and clean bedding (male USV treatment); (3) soiled male bedding and background noise playback (male odor treatment; positive control); or (4) male USVs and soiled male bedding (male odor and USV treatment). Females were then paired with males to test whether any of the four treatments influenced female reproduction (especially latency to birth). We confirmed that exposure to male odor increased female cycling, as expected, but exposure to recordings of male USVs had no effect on estrus. Females exposed to both USVs and odor went through more cycles compared to controls, but did not differ significantly from exposure to male odor (and background noise). After pairing females with a male, females showing male odor-induced cycling produced their first litter sooner than controls, whereas USVs did not have such an effect. This is the first study to our knowledge to show that male odor induces estrus in wild house mice and to show functional effects on reproduction. Our results do not support the hypothesis that male vocalizations induce female estrus, although we suggest other approaches that could be used to further test this hypothesis.
Collapse
Affiliation(s)
- Simon Wölfl
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160, Vienna, Austria
| | - Sarah M Zala
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160, Vienna, Austria
| | - Dustin J Penn
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160, Vienna, Austria.
| |
Collapse
|
9
|
Playback of broadband vocalizations of female mice suppresses male ultrasonic calls. PLoS One 2023; 18:e0273742. [PMID: 36603000 PMCID: PMC9815654 DOI: 10.1371/journal.pone.0273742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 08/15/2022] [Indexed: 01/06/2023] Open
Abstract
Although male vocalizations during opposite- sex interaction have been heavily studied as sexually selected signals, the understanding of the roles of female vocal signals produced in this context is more limited. During intersexual interactions between mice, males produce a majority of ultrasonic vocalizations (USVs), while females produce a majority of human-audible squeaks, also called broadband vocalizations (BBVs). BBVs may be produced in conjunction with defensive aggression, making it difficult to assess whether males respond to BBVs themselves. To assess the direct effect of BBVs on male behavior, we used a split-cage paradigm in which high rates of male USVs were elicited by female presence on the other side of a barrier, but which precluded extensive male-female contact and the spontaneous production of BBVs. In this paradigm, playback of female BBVs decreased USV production, which recovered after the playback period. Trials in which female vocalizations were prevented by the use of female bedding alone or of anesthetized females as stimuli also showed a decrease in response to BBV playback. No non-vocal behaviors declined during playback, although digging behavior increased. Similar to BBVs, WNs also robustly suppressed USV production, albeit to a significantly larger extent. USVs suppression had two distinct temporal components. When grouped in 5-second bins, USVs interleaved with bursts of stimulus BBVs. USV suppression also adapted to BBV playback on the order of minutes. Adaptation occurred more rapidly in males that were housed individually as opposed to socially for a week prior to testing, suggesting that the adaptation trajectory is sensitive to social experience. These findings suggest the possibility that vocal interaction between male and female mice, with males suppressing USVs in response to BBVs, may influence the dynamics of communicative behavior.
Collapse
|
10
|
Jabarin R, Netser S, Wagner S. Beyond the three-chamber test: toward a multimodal and objective assessment of social behavior in rodents. Mol Autism 2022; 13:41. [PMID: 36284353 PMCID: PMC9598038 DOI: 10.1186/s13229-022-00521-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/06/2022] [Indexed: 12/31/2022] Open
Abstract
MAIN: In recent years, substantial advances in social neuroscience have been realized, including the generation of numerous rodent models of autism spectrum disorder. Still, it can be argued that those methods currently being used to analyze animal social behavior create a bottleneck that significantly slows down progress in this field. Indeed, the bulk of research still relies on a small number of simple behavioral paradigms, the results of which are assessed without considering behavioral dynamics. Moreover, only few variables are examined in each paradigm, thus overlooking a significant portion of the complexity that characterizes social interaction between two conspecifics, subsequently hindering our understanding of the neural mechanisms governing different aspects of social behavior. We further demonstrate these constraints by discussing the most commonly used paradigm for assessing rodent social behavior, the three-chamber test. We also point to the fact that although emotions greatly influence human social behavior, we lack reliable means for assessing the emotional state of animals during social tasks. As such, we also discuss current evidence supporting the existence of pro-social emotions and emotional cognition in animal models. We further suggest that adequate social behavior analysis requires a novel multimodal approach that employs automated and simultaneous measurements of multiple behavioral and physiological variables at high temporal resolution in socially interacting animals. We accordingly describe several computerized systems and computational tools for acquiring and analyzing such measurements. Finally, we address several behavioral and physiological variables that can be used to assess socio-emotional states in animal models and thus elucidate intricacies of social behavior so as to attain deeper insight into the brain mechanisms that mediate such behaviors. CONCLUSIONS: In summary, we suggest that combining automated multimodal measurements with machine-learning algorithms will help define socio-emotional states and determine their dynamics during various types of social tasks, thus enabling a more thorough understanding of the complexity of social behavior.
Collapse
Affiliation(s)
- Renad Jabarin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
11
|
Wilson EN, Mabry S, Bradshaw JL, Gardner JJ, Rybalchenko N, Engelland R, Fadeyibi O, Osikoya O, Cushen SC, Goulopoulou S, Cunningham RL. Gestational hypoxia in late pregnancy differentially programs subcortical brain maturation in male and female rat offspring. Biol Sex Differ 2022; 13:54. [PMID: 36175941 PMCID: PMC9524087 DOI: 10.1186/s13293-022-00463-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Hypoxia is associated with pregnancy complications, such as preeclampsia, placental abruption, and gestational sleep apnea. Hypoxic insults during gestation can impact the brain maturation of cortical and subcortical pathways, such as the nigrostriatal pathway. However, the long-term effects of in utero hypoxic stress exposure on brain maturation in offspring are unclear, especially exposure during late gestation. The purpose of this study was to determine the impact of gestational hypoxia in late pregnancy on developmental programming of subcortical brain maturation by focusing on the nigrostriatal pathway. METHODS Timed pregnant Long-Evans rats were exposed to chronic intermittent hypoxia or room air normoxia from gestational day (GD) 15-19 (term 22-23 days). Male and female offspring were assessed during two critical periods: puberty from postnatal day (PND) 40-45 or young adulthood (PND 60-65). Brain maturation was quantified by examining (1) the structural development of the nigrostriatal pathway via analysis of locomotor behaviors and the substantia nigra dopaminergic neuronal cell bodies and (2) the refinement of the nigrostriatal pathway by quantifying ultrasonic vocalizations (USVs). RESULTS The major findings of this study are gestational hypoxia has age- and sex-dependent effects on subcortical brain maturation in offspring by adversely impacting the refinement of the nigrostriatal pathway in the absence of any effects on the structural development of the pathway. During puberty, female offspring were impacted more than male offspring, as evidenced by decreased USV call frequency, chirp USV call duration, and simple call frequency. In contrast, male offspring were impacted more than female offspring during young adulthood, as evidenced by increased latency to first USV, decreased simple USV call intensity, and increased harmonic USV call bandwidth. No effects of gestational hypoxia on the structural development of the nigrostriatal pathway were observed. CONCLUSIONS These novel findings demonstrate hypoxic insults during pregnancy mediate developmental programming of the cortical and subcortical pathways, in which male offspring exhibit long-term adverse effects compared to female offspring. Impairment of cortical and subcortical pathways maturation, such as the nigrostriatal pathway, may increase risk for neuropsychiatric disorders (e.g., mood disorders, cognitive dysfunction, brain connectivity dysfunction).
Collapse
Affiliation(s)
- E Nicole Wilson
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Steve Mabry
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jessica L Bradshaw
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jennifer J Gardner
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Nataliya Rybalchenko
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Rachel Engelland
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Oluwadarasimi Fadeyibi
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Department of Basic Sciences, Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA.
| |
Collapse
|
12
|
Rigney N, Zbib A, de Vries GJ, Petrulis A. Knockdown of sexually differentiated vasopressin expression in the bed nucleus of the stria terminalis reduces social and sexual behaviour in male, but not female, mice. J Neuroendocrinol 2022; 34:e13083. [PMID: 34978098 PMCID: PMC9213575 DOI: 10.1111/jne.13083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022]
Abstract
The neuropeptide arginine-vasopressin (AVP) has long been implicated in the regulation of social behaviour and communication, but the sources of AVP release relevant for behaviour have not been precisely determined. Ablations of the sexually dimorphic AVP cells within the bed nucleus of the stria terminalis (BNST), which are more numerous in males, affect social behaviour differently in males and females. However, it is unknown whether these behavioural effects are caused by a reduction of AVP or of other factors associated with these cells. To test the role of AVP specifically, we used an shRNA viral construct to knock down AVP gene expression within the BNST of wild-type male and female mice, using scrambled sequence virus as a control, and evaluated subsequent changes in social behaviours (social investigation, ultrasonic vocalization (USV), scent marking, copulation, and aggression), or anxiety-like behaviours (elevated plus maze). We observed that, in males, knockdown of AVP expression in the BNST strongly reduced investigation of novel males, aggressive signalling towards other males (tail rattling, USV), and copulatory behaviour, but did not alter attack initiation, other measures of social communication, or anxiety-like behaviours. In females, however, BNST AVP knockdown did not alter any of these behaviours. These results point to differential involvement of AVP derived from the BNST in social behaviour.
Collapse
Affiliation(s)
- Nicole Rigney
- Center for Behavioral NeuroscienceNeuroscience InstituteGeorgia State UniversityAtlantaGeorgiaUSA
| | - Adam Zbib
- Center for Behavioral NeuroscienceNeuroscience InstituteGeorgia State UniversityAtlantaGeorgiaUSA
| | - Geert J. de Vries
- Center for Behavioral NeuroscienceNeuroscience InstituteGeorgia State UniversityAtlantaGeorgiaUSA
| | - Aras Petrulis
- Center for Behavioral NeuroscienceNeuroscience InstituteGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
13
|
Karigo T. Gaining insights into the internal states of the rodent brain through vocal communications. Neurosci Res 2022; 184:1-8. [PMID: 35908736 DOI: 10.1016/j.neures.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 10/31/2022]
Abstract
Animals display various behaviors during social interactions. Social behaviors have been proposed to be driven by the internal states of the animals, reflecting their emotional or motivational states. However, the internal states that drive social behaviors are complex and difficult to interpret. Many animals, including mice, use vocalizations for communication in various social contexts. This review provides an overview of current understandings of mouse vocal communications, its underlying neural circuitry, and the potential to use vocal communications as a readout for the animal's internal states during social interactions.
Collapse
Affiliation(s)
- Tomomi Karigo
- Division of Biology and Biological Engineering 140-18,TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena CA 91125, USA; Present address: Kennedy Krieger Institute, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Caruso A, Marconi MA, Scattoni ML, Ricceri L. Ultrasonic vocalizations in laboratory mice: strain, age, and sex differences. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12815. [PMID: 35689354 PMCID: PMC9744514 DOI: 10.1111/gbb.12815] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/31/2022]
Abstract
Mice produce ultrasonic vocalizations (USVs) in different social contexts across lifespan. There is ethological evidence that pup USVs elicit maternal retrieval and adult USVs facilitate social interaction with a conspecific. Analysis of mouse vocal and social repertoire across strains, sex and contexts remains not well explored. To address these issues, in inbred (C57BL/6, FVB) and outbred (CD-1) mouse strains, we recorded and evaluated USVs as neonates and during adult social encounters (male-female and female-female social interaction). We showed significant strain differences in the quantitative (call rate and duration of USVs) and qualitative vocal analysis (spectrographic characterization) from early stage to adulthood, in line with specific patterns of social behaviors. Inbred C57BL/6 mice produced a lower number of calls with less internal changes and shorter duration; inbred FVB mice displayed more social behaviors and produced more syllables with repeated internal changes; outbred CD-1 mice had an intermediate profile. Our results suggest specific vocal signatures in each mouse strain, thus helping to better define socio-communicative profiles of mouse strains and to guide the choice of an appropriate strain according to the experimental settings.
Collapse
Affiliation(s)
- Angela Caruso
- Research Coordination and Support ServiceIstituto Superiore di SanitàRomeItaly
| | - Maria Adelaide Marconi
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life SciencesUniversity of Veterinary MedicineViennaAustria
| | | | - Laura Ricceri
- Center for Behavioral Sciences and Mental HealthIstituto Superiore di SanitàRomeItaly
| |
Collapse
|
15
|
Abbasi R, Balazs P, Marconi MA, Nicolakis D, Zala SM, Penn DJ. Capturing the songs of mice with an improved detection and classification method for ultrasonic vocalizations (BootSnap). PLoS Comput Biol 2022; 18:e1010049. [PMID: 35551265 PMCID: PMC9098080 DOI: 10.1371/journal.pcbi.1010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
House mice communicate through ultrasonic vocalizations (USVs), which are above the range of human hearing (>20 kHz), and several automated methods have been developed for USV detection and classification. Here we evaluate their advantages and disadvantages in a full, systematic comparison, while also presenting a new approach. This study aims to 1) determine the most efficient USV detection tool among the existing methods, and 2) develop a classification model that is more generalizable than existing methods. In both cases, we aim to minimize the user intervention required for processing new data. We compared the performance of four detection methods in an out-of-the-box approach, pretrained DeepSqueak detector, MUPET, USVSEG, and the Automatic Mouse Ultrasound Detector (A-MUD). We also compared these methods to human visual or 'manual' classification (ground truth) after assessing its reliability. A-MUD and USVSEG outperformed the other methods in terms of true positive rates using default and adjusted settings, respectively, and A-MUD outperformed USVSEG when false detection rates were also considered. For automating the classification of USVs, we developed BootSnap for supervised classification, which combines bootstrapping on Gammatone Spectrograms and Convolutional Neural Networks algorithms with Snapshot ensemble learning. It successfully classified calls into 12 types, including a new class of false positives that is useful for detection refinement. BootSnap outperformed the pretrained and retrained state-of-the-art tool, and thus it is more generalizable. BootSnap is freely available for scientific use.
Collapse
Affiliation(s)
- Reyhaneh Abbasi
- Acoustic Research Institute, Austrian Academy of Sciences, Vienna, Austria
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- Vienna Doctoral School of Cognition, Behaviour and Neuroscience, University of Vienna, Vienna, Austria
| | - Peter Balazs
- Acoustic Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Maria Adelaide Marconi
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Doris Nicolakis
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Sarah M Zala
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Dustin J Penn
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
16
|
Capas-Peneda S, Saavedra Torres Y, Prins JB, Olsson IAS. From Mating to Milk Access: A Review of Reproductive Vocal Communication in Mice. Front Behav Neurosci 2022; 16:833168. [PMID: 35418843 PMCID: PMC8995852 DOI: 10.3389/fnbeh.2022.833168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Vocalisations play a central role in rodent communication, especially in reproduction related behaviours. In adult mice (Mus musculus) the emission of ultrasonic vocalisations (USVs) has been observed in courtship and mating behaviour, especially by males. These have been found to have distinctive individual signatures that influence female choice of mating partner. The most recent findings show that vocal communication also has a role in parental cooperation, in that female mice communicate with male partners in ultrasonic frequencies to induce paternal behaviour. Infant vocalisations form the other important part of reproductive vocal communication. Although born deaf, neonatal mice are capable of producing vocalisations since birth. As an altricial species, successful mother-infant communication is essential for survival, and these vocalisations are important modulators of maternal behaviour. Three main types of infant vocalisations have been identified and characterised. Most research has addressed pure USVs, related to stressful situations (e.g., cold, isolation, handling, presence of unfamiliar males or predators), which usually elicit maternal search and retrieval. In addition, broad-band spectrum signals, emitted post-partum during cleaning of foetal membranes, inhibit biting and injury by adults and “wriggling calls,” emitted during suckling, release maternal behaviour (such as licking). Several variables have been identified to modulate vocalisations in mice, including individual characteristics such as strain/genotype, age, sex, and experimental factors such as pharmacological compounds and social context. In recent years, there has been a big increase in the knowledge about the characteristics of vocal communication in rodents due to recent technological advances as well as a growing interest from the neuroscience community. Vocalisation analysis has become an essential tool for phenotyping and evaluating emotional states. In this review, we will (i) provide a comprehensive summary of the current knowledge on mouse reproductive vocal communication and (ii) discuss the most recent findings in order to provide a broad overview on this topic.
Collapse
Affiliation(s)
- Sara Capas-Peneda
- Biological Research Facility, Francis Crick Institute, London, United Kingdom
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- *Correspondence: Sara Capas-Peneda,
| | | | - Jan-Bas Prins
- Biological Research Facility, Francis Crick Institute, London, United Kingdom
- Leiden University Medical Centre, Leiden, Netherlands
| | - I. Anna S. Olsson
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Crespo-Bojorque P, Celma-Miralles A, Toro JM. Detecting surface changes in a familiar tune: exploring pitch, tempo and timbre. Anim Cogn 2022; 25:951-960. [PMID: 35138480 PMCID: PMC9334415 DOI: 10.1007/s10071-022-01604-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/30/2022]
Abstract
Humans recognize a melody independently of whether it is played on a piano or a violin, faster or slower, or at higher or lower frequencies. Much of the way in which we engage with music relies in our ability to normalize across these surface changes. Despite the uniqueness of our music faculty, there is the possibility that key aspects in music processing emerge from general sensitivities already present in other species. Here we explore whether other animals react to surface changes in a tune. We familiarized the animals (Long–Evans rats) with the “Happy Birthday” tune on a piano. We then presented novel test items that included changes in pitch (higher and lower octave transpositions), tempo (double and half the speed) and timbre (violin and piccolo). While the rats responded differently to the familiar and the novel version of the tune when it was played on novel instruments, they did not respond differently to the original song and its novel versions that included octave transpositions and changes in tempo.
Collapse
Affiliation(s)
| | - Alexandre Celma-Miralles
- Universitat Pompeu Fabra, C. Ramon Trias Fargas, 25-27, 08005, Barcelona, Spain.,Royal Academy of Music in Aarhus/Aalborg, Aarhus University, Universitetsbyen, 3, 8000, Aarhus, Denmark
| | - Juan M Toro
- Universitat Pompeu Fabra, C. Ramon Trias Fargas, 25-27, 08005, Barcelona, Spain. .,Institució Catalana de Recerca I Estudis Avançats (ICREA), Pg. Lluís Companys, 23, 08019, Barcelona, Spain.
| |
Collapse
|
18
|
|
19
|
Puścian A, Bryksa A, Kondrakiewicz L, Kostecki M, Winiarski M, Knapska E. Ability to share emotions of others as a foundation of social learning. Neurosci Biobehav Rev 2021; 132:23-36. [PMID: 34838526 DOI: 10.1016/j.neubiorev.2021.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/25/2023]
Abstract
The natural habitats of most species are far from static, forcing animals to adapt to continuously changing conditions. Perhaps the most efficient strategy addressing this challenge consists of obtaining and acting upon pertinent information from others through social learning. We discuss how animals transfer information via social channels and what are the benefits of such exchanges, playing out on different levels, from theperception of socially delivered information to emotional sharing, manifesting themselves across different taxa of increasing biological complexity. We also discuss how social learning is influenced by different factors including pertinence of information for survival, the complexity of the environment, sex, genetic relatedness, and most notably, the relationship between interacting partners. The results appear to form a consistent picture once we shift our focus from emotional contagion as a prerequisite for empathy onto the role of shared emotions in providing vital information about the environment. From this point of view, we can propose approaches that are the most promising for further investigation of complex social phenomena, including learning from others.
Collapse
Affiliation(s)
- A Puścian
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - A Bryksa
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - L Kondrakiewicz
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Kostecki
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Winiarski
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - E Knapska
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
20
|
de Chaumont F, Lemière N, Coqueran S, Bourgeron T, Ey E. LMT USV Toolbox, a Novel Methodological Approach to Place Mouse Ultrasonic Vocalizations in Their Behavioral Contexts-A Study in Female and Male C57BL/6J Mice and in Shank3 Mutant Females. Front Behav Neurosci 2021; 15:735920. [PMID: 34720899 PMCID: PMC8548730 DOI: 10.3389/fnbeh.2021.735920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Ultrasonic vocalizations (USVs) are used as a phenotypic marker in mouse models of neuropsychiatric disorders. Nevertheless, current methodologies still require time-consuming manual input or sound recordings clean of any background noise. We developed a method to overcome these two restraints to boost knowledge on mouse USVs. The methods are freely available and the USV analysis runs online at https://usv.pasteur.cloud. As little is currently known about usage and structure of ultrasonic vocalizations during social interactions over the long-term and in unconstrained context, we investigated mouse spontaneous communication by coupling the analysis of USVs with automatic labeling of behaviors. We continuously recorded during 3 days undisturbed interactions of same-sex pairs of C57BL/6J sexually naive males and females at 5 weeks and 3 and 7 months of age. In same-sex interactions, we observed robust differences between males and females in the amount of USVs produced, in the acoustic structure and in the contexts of emission. The context-specific acoustic variations emerged with increasing age. The emission of USVs also reflected a high level of excitement during social interactions. We finally highlighted the importance of studying long-term spontaneous communication by investigating female mice lacking Shank3, a synaptic protein associated with autism. While the previous short-time constrained investigations could not detect USV emission abnormalities, our analysis revealed robust differences in the usage and structure of the USVs emitted by mutant mice compared to wild-type female pairs.
Collapse
Affiliation(s)
- Fabrice de Chaumont
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Université de Paris, Paris, France
| | - Nathalie Lemière
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Université de Paris, Paris, France
| | - Sabrina Coqueran
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Université de Paris, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Université de Paris, Paris, France
| | - Elodie Ey
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Université de Paris, Paris, France
| |
Collapse
|
21
|
Grieco F, Bernstein BJ, Biemans B, Bikovski L, Burnett CJ, Cushman JD, van Dam EA, Fry SA, Richmond-Hacham B, Homberg JR, Kas MJH, Kessels HW, Koopmans B, Krashes MJ, Krishnan V, Logan S, Loos M, McCann KE, Parduzi Q, Pick CG, Prevot TD, Riedel G, Robinson L, Sadighi M, Smit AB, Sonntag W, Roelofs RF, Tegelenbosch RAJ, Noldus LPJJ. Measuring Behavior in the Home Cage: Study Design, Applications, Challenges, and Perspectives. Front Behav Neurosci 2021; 15:735387. [PMID: 34630052 PMCID: PMC8498589 DOI: 10.3389/fnbeh.2021.735387] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
The reproducibility crisis (or replication crisis) in biomedical research is a particularly existential and under-addressed issue in the field of behavioral neuroscience, where, in spite of efforts to standardize testing and assay protocols, several known and unknown sources of confounding environmental factors add to variance. Human interference is a major contributor to variability both within and across laboratories, as well as novelty-induced anxiety. Attempts to reduce human interference and to measure more "natural" behaviors in subjects has led to the development of automated home-cage monitoring systems. These systems enable prolonged and longitudinal recordings, and provide large continuous measures of spontaneous behavior that can be analyzed across multiple time scales. In this review, a diverse team of neuroscientists and product developers share their experiences using such an automated monitoring system that combines Noldus PhenoTyper® home-cages and the video-based tracking software, EthoVision® XT, to extract digital biomarkers of motor, emotional, social and cognitive behavior. After presenting our working definition of a "home-cage", we compare home-cage testing with more conventional out-of-cage tests (e.g., the open field) and outline the various advantages of the former, including opportunities for within-subject analyses and assessments of circadian and ultradian activity. Next, we address technical issues pertaining to the acquisition of behavioral data, such as the fine-tuning of the tracking software and the potential for integration with biotelemetry and optogenetics. Finally, we provide guidance on which behavioral measures to emphasize, how to filter, segment, and analyze behavior, and how to use analysis scripts. We summarize how the PhenoTyper has applications to study neuropharmacology as well as animal models of neurodegenerative and neuropsychiatric illness. Looking forward, we examine current challenges and the impact of new developments. Examples include the automated recognition of specific behaviors, unambiguous tracking of individuals in a social context, the development of more animal-centered measures of behavior and ways of dealing with large datasets. Together, we advocate that by embracing standardized home-cage monitoring platforms like the PhenoTyper, we are poised to directly assess issues pertaining to reproducibility, and more importantly, measure features of rodent behavior under more ethologically relevant scenarios.
Collapse
Affiliation(s)
| | - Briana J Bernstein
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | | | - Lior Bikovski
- Myers Neuro-Behavioral Core Facility, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- School of Behavioral Sciences, Netanya Academic College, Netanya, Israel
| | - C Joseph Burnett
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jesse D Cushman
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | | | - Sydney A Fry
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Bar Richmond-Hacham
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | | | - Michael J Krashes
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Vaishnav Krishnan
- Laboratory of Epilepsy and Emotional Behavior, Baylor Comprehensive Epilepsy Center, Departments of Neurology, Neuroscience, and Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Sreemathi Logan
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Maarten Loos
- Sylics (Synaptologics BV), Amsterdam, Netherlands
| | - Katharine E McCann
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | | | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Dr. Miriam and Sheldon G. Adelson Chair and Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv, Israel
| | - Thomas D Prevot
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lianne Robinson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Mina Sadighi
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - William Sonntag
- Department of Biochemistry & Molecular Biology, Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | | | - Lucas P J J Noldus
- Noldus Information Technology BV, Wageningen, Netherlands
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
22
|
Zhao X, Ziobro P, Pranic NM, Chu S, Rabinovich S, Chan W, Zhao J, Kornbrek C, He Z, Tschida KA. Sex- and context-dependent effects of acute isolation on vocal and non-vocal social behaviors in mice. PLoS One 2021; 16:e0255640. [PMID: 34469457 PMCID: PMC8409668 DOI: 10.1371/journal.pone.0255640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
Humans are extraordinarily social, and social isolation has profound effects on our behavior, ranging from increased social motivation following short periods of social isolation to increased anti-social behaviors following long-term social isolation. Mice are frequently used as a model to understand how social isolation impacts the brain and behavior. While the effects of chronic social isolation on mouse social behavior have been well studied, much less is known about how acute isolation impacts mouse social behavior and whether these effects vary according to the sex of the mouse and the behavioral context of the social encounter. To address these questions, we characterized the effects of acute (3-day) social isolation on the vocal and non-vocal social behaviors of male and female mice during same-sex and opposite-sex social interactions. Our experiments uncovered pronounced effects of acute isolation on social interactions between female mice, while revealing more subtle effects on the social behaviors of male mice during same-sex and opposite-sex interactions. Our findings advance the study of same-sex interactions between female mice as an attractive paradigm to investigate neural mechanisms through which acute isolation enhances social motivation and promotes social behavior.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Patryk Ziobro
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Nicole M. Pranic
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Samantha Chu
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Samantha Rabinovich
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - William Chan
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Jennifer Zhao
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Caroline Kornbrek
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Zichen He
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Katherine A. Tschida
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
23
|
Gentile Polese A, Nigam S, Hurley LM. 5-HT1A Receptors Alter Temporal Responses to Broadband Vocalizations in the Mouse Inferior Colliculus Through Response Suppression. Front Neural Circuits 2021; 15:718348. [PMID: 34512276 PMCID: PMC8430226 DOI: 10.3389/fncir.2021.718348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
Neuromodulatory systems may provide information on social context to auditory brain regions, but relatively few studies have assessed the effects of neuromodulation on auditory responses to acoustic social signals. To address this issue, we measured the influence of the serotonergic system on the responses of neurons in a mouse auditory midbrain nucleus, the inferior colliculus (IC), to vocal signals. Broadband vocalizations (BBVs) are human-audible signals produced by mice in distress as well as by female mice in opposite-sex interactions. The production of BBVs is context-dependent in that they are produced both at early stages of interactions as females physically reject males and at later stages as males mount females. Serotonin in the IC of males corresponds to these events, and is elevated more in males that experience less female rejection. We measured the responses of single IC neurons to five recorded examples of BBVs in anesthetized mice. We then locally activated the 5-HT1A receptor through iontophoretic application of 8-OH-DPAT. IC neurons showed little selectivity for different BBVs, but spike trains were characterized by local regions of high spike probability, which we called "response features." Response features varied across neurons and also across calls for individual neurons, ranging from 1 to 7 response features for responses of single neurons to single calls. 8-OH-DPAT suppressed spikes and also reduced the numbers of response features. The weakest response features were the most likely to disappear, suggestive of an "iceberg"-like effect in which activation of the 5-HT1A receptor suppressed weakly suprathreshold response features below the spiking threshold. Because serotonin in the IC is more likely to be elevated for mounting-associated BBVs than for rejection-associated BBVs, these effects of the 5-HT1A receptor could contribute to the differential auditory processing of BBVs in different behavioral subcontexts.
Collapse
Affiliation(s)
- Arianna Gentile Polese
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biology, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States
| | - Sunny Nigam
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Physics, Indiana University Bloomington, Bloomington, IN, United States
| | - Laura M. Hurley
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
24
|
Kikusui T, Sonobe M, Yoshida Y, Nagasawa M, Ey E, de Chaumont F, Bourgeron T, Nomoto K, Mogi K. Testosterone Increases the Emission of Ultrasonic Vocalizations With Different Acoustic Characteristics in Mice. Front Psychol 2021; 12:680176. [PMID: 34248780 PMCID: PMC8267093 DOI: 10.3389/fpsyg.2021.680176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/25/2021] [Indexed: 01/01/2023] Open
Abstract
Testosterone masculinizes male sexual behavior through an organizational and activational effects. We previously reported that the emission of ultrasonic vocalizations (USVs) in male mice was dependent on the organizational effects of testosterone; females treated with testosterone in the perinatal and peripubertal periods, but not in adults, had increased USV emissions compared to males. Recently, it was revealed that male USVs have various acoustic characteristics and these variations were related to behavioral interactions with other mice. In this regard, the detailed acoustic characteristic changes induced by testosterone have not been fully elucidated. Here, we revealed that testosterone administered to female and male mice modulated the acoustic characteristics of USVs. There was no clear difference in acoustic characteristics between males and females. Call frequencies were higher in testosterone propionate (TP)-treated males and females compared to control males and females. When the calls were classified into nine types, there was also no distinctive difference between males and females, but TP increased the number of calls with a high frequency, and decreased the number of calls with a low frequency and short duration. The transition analysis by call type revealed that even though there was no statistically significant difference, TP-treated males and females had a similar pattern of transition to control males and females, respectively. Collectively, these results suggest that testosterone treatment can enhance the emission of USVs both in male and female, but the acoustic characteristics of TP-treated females were not the same as those of intact males.
Collapse
Affiliation(s)
- Takefumi Kikusui
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Miku Sonobe
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Yuuki Yoshida
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Miho Nagasawa
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Elodie Ey
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Université de Paris, Paris, France
| | - Fabrice de Chaumont
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Université de Paris, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Université de Paris, Paris, France
| | - Kensaku Nomoto
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| |
Collapse
|
25
|
Premoli M, Memo M, Bonini SA. Ultrasonic vocalizations in mice: relevance for ethologic and neurodevelopmental disorders studies. Neural Regen Res 2021; 16:1158-1167. [PMID: 33269765 PMCID: PMC8224126 DOI: 10.4103/1673-5374.300340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Mice use ultrasonic vocalizations (USVs) to communicate each other and to convey their emotional state. USVs have been greatly characterized in specific life phases and contexts, such as mother isolation-induced USVs for pups or female-induced USVs for male mice during courtship. USVs can be acquired by means of specific tools and later analyzed on the base of both quantitative and qualitative parameters. Indeed, different ultrasonic call categories exist and have already been defined. The understanding of different calls meaning is still missing, and it will represent an essential step forward in the field of USVs. They have long been studied in the ethological context, but recently they emerged as a precious instrument to study pathologies characterized by deficits in communication, in particular neurodevelopmental disorders (NDDs), such as autism spectrum disorders. This review covers the topics of USVs characteristics in mice, contexts for USVs emission and factors that modulate their expression. A particular focus will be devoted to mouse USVs in the context of NDDs. Indeed, several NDDs murine models exist and an intense study of USVs is currently in progress, with the aim of both performing an early diagnosis and to find a pharmacological/behavioral intervention to improve patients' quality of life.
Collapse
Affiliation(s)
- Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| |
Collapse
|
26
|
Warren MR, Spurrier MS, Sangiamo DT, Clein RS, Neunuebel JP. Mouse vocal emission and acoustic complexity do not scale linearly with the size of a social group. J Exp Biol 2021; 224:jeb239814. [PMID: 34096599 PMCID: PMC8214829 DOI: 10.1242/jeb.239814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/22/2021] [Indexed: 11/20/2022]
Abstract
Adult mice emit ultrasonic vocalizations (USVs), sounds above the range of human hearing, during social encounters. While mice alter their vocal emissions between isolated and social contexts, technological impediments have hampered our ability to assess how individual mice vocalize in group social settings. We overcame this challenge by implementing an 8-channel microphone array system, allowing us to determine which mouse emitted individual vocalizations across multiple social contexts. This technology, in conjunction with a new approach for extracting and categorizing a complex, full repertoire of vocalizations, facilitated our ability to directly compare how mice modulate their vocal emissions between isolated, dyadic and group social environments. When comparing vocal emission during isolated and social settings, we found that socializing male mice increase the proportion of vocalizations with turning points in frequency modulation and instantaneous jumps in frequency. Moreover, males change the types of vocalizations emitted between social and isolated contexts. In contrast, there was no difference in male vocal emission between dyadic and group social contexts. Female vocal emission, while predominantly absent in isolation, was also similar during dyadic and group interactions. In particular, there were no differences in the proportion of vocalizations with frequency jumps or turning points. Taken together, the findings lay the groundwork necessary for elucidating the stimuli underlying specific features of vocal emission in mice.
Collapse
Affiliation(s)
- Megan R. Warren
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Morgan S. Spurrier
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Daniel T. Sangiamo
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Rachel S. Clein
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Joshua P. Neunuebel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
27
|
Davis SED, Sansone JM, Hurley LM. Postweaning Isolation Alters the Responses of Auditory Neurons to Serotonergic Modulation. Integr Comp Biol 2021; 61:302-315. [PMID: 33974061 DOI: 10.1093/icb/icab051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Juvenile social experience, such as social isolation, has profound effects on communicative behavior, including signal production and reception. In the current study, we explored responsiveness to the neuromodulator serotonin as a potential mechanistic link between early life social isolation and auditory processing. The serotonergic system is sensitive to social isolation in many brain regions including the inferior colliculus (IC), an auditory midbrain nucleus. We investigated the effects of social experience on serotonergic responsiveness by measuring cFos, an immediate early gene product, in the IC of female mice. Serotonin was manipulated pharmacologically by administering fenfluramine, pCPA, or saline to mice that had undergone an extreme dichotomy in social experience after weaning: being housed in social groups versus individually. These mice were exposed to a 60-min recording of vocalizations from an opposite-sex interaction and perfused. Using immunohistochemistry, we measured the density of cFos-positive (cFos+) nuclei in the major subdivisions of the IC. Housing condition, drug treatment, and IC subregion all had a significant effect on cFos+ density. The central IC showed the highest density of cFos+ cells and also the most pronounced effects of housing condition and drug treatment. In the central IC, cFos+ density was higher following fenfluramine treatment than saline, and lower following pCPA treatment than fenfluramine. Individually housed mice showed a higher cFos+ density than socially housed mice in both of the pharmacological treatment groups, but not in the saline group. Drug treatment but not housing condition had strong effects on the behaviors of grooming, digging, rearing, and movement. Once the effects of drug condition were controlled, there were no across-individual correlations between cFos+ densities and behaviors. These findings suggest that the responses of auditory neurons to neuromodulation by serotonin are influenced by early life experience.
Collapse
Affiliation(s)
- Sarah E D Davis
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47401, USA
| | - Jack M Sansone
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47401, USA
| | - Laura M Hurley
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47401, USA.,Center for the Integrative Study of Animal Behavior, 409 N Park Ave, Bloomington, IN 47408, USA
| |
Collapse
|
28
|
Lenell C, Broadfoot CK, Schaen-Heacock NE, Ciucci MR. Biological and Acoustic Sex Differences in Rat Ultrasonic Vocalization. Brain Sci 2021; 11:459. [PMID: 33916537 PMCID: PMC8067311 DOI: 10.3390/brainsci11040459] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 11/30/2022] Open
Abstract
The rat model is a useful tool for understanding peripheral and central mechanisms of laryngeal biology. Rats produce ultrasonic vocalizations (USVs) that have communicative intent and are altered by experimental conditions such as social environment, stress, diet, drugs, age, and neurological diseases, validating the rat model's utility for studying communication and related deficits. Sex differences are apparent in both the rat larynx and USV acoustics and are differentially affected by experimental conditions. Therefore, the purpose of this review paper is to highlight the known sex differences in rat USV production, acoustics, and laryngeal biology detailed in the literature across the lifespan.
Collapse
Affiliation(s)
- Charles Lenell
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Communicative Sciences and Disorders, New York University, New York, NY 10001, USA
| | - Courtney K. Broadfoot
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Department of Communication Sciences and Disorders, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Nicole E. Schaen-Heacock
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Department of Communication Sciences and Disorders, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Michelle R. Ciucci
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Department of Communication Sciences and Disorders, University of Wisconsin Madison, Madison, WI 53706, USA
| |
Collapse
|
29
|
Petersen CL, Davis SED, Patel B, Hurley LM. Social Experience Interacts with Serotonin to Affect Functional Connectivity in the Social Behavior Network following Playback of Social Vocalizations in Mice. eNeuro 2021; 8:ENEURO.0247-20.2021. [PMID: 33658309 PMCID: PMC8114900 DOI: 10.1523/eneuro.0247-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022] Open
Abstract
Past social experience affects the circuitry responsible for producing and interpreting current behaviors. The social behavior network (SBN) is a candidate neural ensemble to investigate the consequences of early-life social isolation. The SBN interprets and produces social behaviors, such as vocalizations, through coordinated patterns of activity (functional connectivity) between its multiple nuclei. However, the SBN is relatively unexplored with respect to murine vocal processing. The serotonergic system is sensitive to past experience and innervates many nodes of the SBN; therefore, we tested whether serotonin signaling interacts with social experience to affect patterns of immediate early gene (IEG; cFos) induction in the male SBN following playback of social vocalizations. Male mice were separated into either social housing of three mice per cage or into isolated housing at 18-24 d postnatal. After 28-30 d in housing treatment, mice were parsed into one of three drug treatment groups: control, fenfluramine (FEN; increases available serotonin), or pCPA (depletes available serotonin) and exposed to a 60-min playback of female broadband vocalizations (BBVs). FEN generally increased the number of cFos-immunoreactive (-ir) neurons within the SBN, but effects were more pronounced in socially isolated mice. Despite a generalized increase in cFos immunoreactivity, isolated mice had reduced functional connectivity, clustering, and modularity compared with socially reared mice. These results are analogous to observations of functional dysconnectivity in persons with psychopathologies and suggests that early-life social isolation modulates serotonergic regulation of social networks.
Collapse
Affiliation(s)
- Christopher L Petersen
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405
- Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, Bloomington, IN 47405
| | - Sarah E D Davis
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405
| | - Bhumi Patel
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405
| | - Laura M Hurley
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405
- Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, Bloomington, IN 47405
- Department of Neuroscience, Indiana University Bloomington, Bloomington, IN 47406
| |
Collapse
|
30
|
Zala SM, Nicolakis D, Marconi MA, Noll A, Ruf T, Balazs P, Penn DJ. Primed to vocalize: Wild-derived male house mice increase vocalization rate and diversity after a previous encounter with a female. PLoS One 2020; 15:e0242959. [PMID: 33296411 PMCID: PMC7725367 DOI: 10.1371/journal.pone.0242959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/13/2020] [Indexed: 01/21/2023] Open
Abstract
Males in a wide variety of taxa, including insects, birds and mammals, produce vocalizations to attract females. Male house mice emit ultrasonic vocalizations (USVs), especially during courtship and mating, which are surprising complex. It is often suggested that male mice vocalize at higher rates after interacting with a female, but the evidence is mixed depending upon the strain of mice. We conducted a study with wild-derived house mice (Mus musculus musculus) to test whether male courtship vocalizations (i.e., vocalizations emitted in a sexual context) are influenced by a prior direct interaction with a female, and if so, determine how long the effect lasts. We allowed sexually naïve males to directly interact with a female for five minutes (sexual priming), and then we recorded males'vocalizations either 1, 10, 20, or 30 days later when presented with an unfamiliar female (separated by a perforated partition) and female scent. We automatically detected USVs and processed recordings using the Automatic Mouse Ultrasound Detector (A-MUD version 3.2), and we describe our improved version of this tool and tests of its performance. We measured vocalization rate and spectro-temporal features and we manually classified USVs into 15 types to investigate priming effects on vocal repertoire diversity and composition. After sexual priming, males emitted nearly three times as many USVs, they had a larger repertoire diversity, and their vocalizations had different spectro-temporal features (USV length, slope and variability in USV frequency) compared to unprimed controls. Unprimed control males had the most distinctive repertoire composition compared to the primed groups. Most of the effects were found when comparing unprimed to all primed males (treatment models), irrespective of the time since priming. Timepoint models showed that USV length increased 1 day after priming, that repertoire diversity increased 1 and 20 days after priming, and that the variability of USV frequencies was lower 20 and 30 days after priming. Our results show that wild-derived male mice increased the number and diversity of courtship vocalizations if they previously interacted with a female. Thus, the USVs of house mice are not only context-dependent, they depend upon previous social experience and perhaps the contexts of these experiences. The effect of sexual priming on male courtship vocalizations is likely mediated by neuro-endocrine-mechanisms, which may function to advertise males' sexual arousal and facilitate social recognition.
Collapse
Affiliation(s)
- Sarah M. Zala
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Doris Nicolakis
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | | | - Anton Noll
- Acoustic Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Ruf
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Peter Balazs
- Acoustic Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Dustin J. Penn
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
31
|
Marconi MA, Nicolakis D, Abbasi R, Penn DJ, Zala SM. Ultrasonic courtship vocalizations of male house mice contain distinct individual signatures. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Jenikejew J, Chaignon B, Linn S, Scheumann M. Proximity-based vocal networks reveal social relationships in the Southern white rhinoceros. Sci Rep 2020; 10:15104. [PMID: 32934303 PMCID: PMC7492360 DOI: 10.1038/s41598-020-72052-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
Vocal communication networks can be linked to social behaviour, allowing a deeper understanding of social relationships among individuals. For this purpose, the description of vocal dyads is fundamental. In group-living species, this identification is based on behavioural indicators which require a high level of reactivity during social interactions. In the present study, we alternatively established a proximity-based approach to investigate whether sex-specific differences in vocal communication reflect social behaviour in a species with rather loose social associations and low levels of reactivity: the Southern white rhinoceros (Ceratotherium simum simum). We performed audio- and video recordings of 30 captive animals from seven groups. Vocal networks for the four most common call types were constructed by considering conspecifics at close distance (≤ 1 body length) to the sender as potential receivers. The analysis of the resulting unidirectional structures showed that not only the sex of the sender but also the sex of the potential receiver, the quality of social interactions (affiliative or agonistic) as well as association strength predict the intensity of vocal interactions between group members. Thus, a proximity-based approach can be used to construct vocal networks providing information about the social relationships of conspecifics-even in species with loose social associations where behavioural indicators are limited.
Collapse
Affiliation(s)
- Julia Jenikejew
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
| | | | | | - Marina Scheumann
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| |
Collapse
|
33
|
Serotonergic innervation of the auditory midbrain: dorsal raphe subregions differentially project to the auditory midbrain in male and female mice. Brain Struct Funct 2020; 225:1855-1871. [DOI: 10.1007/s00429-020-02098-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/06/2020] [Indexed: 01/12/2023]
|
34
|
Rigney N, Beaumont R, Petrulis A. Sex differences in vasopressin 1a receptor regulation of social communication within the lateral habenula and dorsal raphe of mice. Horm Behav 2020; 121:104715. [PMID: 32067962 PMCID: PMC7249673 DOI: 10.1016/j.yhbeh.2020.104715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
The neuropeptide arginine-vasopressin (AVP) has long been implicated in the regulation of social behavior and communication in diverse taxa, often through its actions on the V1a receptor (V1aR) and in a sex-different and steroid-dependent way. One source of sex-different brain AVP is the steroid-sensitive and sexually-dimorphic AVP neurons in the bed nucleus of the stria terminalis (BNST), a cell population that regulates social behavior in a sex-dependent manner. Potential targets of these BNST-AVP cells include the lateral habenula (LHb) and dorsal raphe (DR), areas known to be important for social behavior, yet few studies have investigated AVP action within these regions. Consequently, to test if V1aR action in the LHb or DR controls social behavior in a sexually dimorphic manner, we administered a highly-specific V1aR antagonist (or saline vehicle) in the LHb or DR of C57BL/6 male and female mice and tested its effects on social investigation, social communication (urine marking, ultrasonic vocalizations), and territorial aggression. V1aR antagonism of the LHb or DR decreased male urine marking toward unfamiliar males, but not toward unfamiliar females. Additionally, V1aR blockade of the LHb decreased ultrasonic vocalizations generated in the presence of females. Social investigation, locomotion and aggressive behavior were not altered by V1aR antagonism in either area. Blocking V1aR in the LHb or DR of females had no effect, indicating V1aR action in the DR and LHb drives sex differences in social communication.
Collapse
Affiliation(s)
- Nicole Rigney
- Neuroscience Institute, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Rachael Beaumont
- Neuroscience Institute, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Aras Petrulis
- Neuroscience Institute, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
35
|
Nicolakis D, Marconi MA, Zala SM, Penn DJ. Ultrasonic vocalizations in house mice depend upon genetic relatedness of mating partners and correlate with subsequent reproductive success. Front Zool 2020; 17:10. [PMID: 32265997 PMCID: PMC7118824 DOI: 10.1186/s12983-020-00353-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/04/2020] [Indexed: 01/27/2023] Open
Abstract
Background Courtship vocalizations are used by males of many species to attract and influence the behavior of potential mating partners. Our aim here was to investigate the modulation and reproductive consequences of courtship ultrasonic vocalizations (USVs) in wild-derived house mice (Mus musculus musculus). The courtship USVs of male mice are surprisingly complex and are composed of a variety of different syllable types. Our specific aims were to test whether (1) the emission of courtship USVs depends upon the kinship of a potential mating partner, and (2) whether USV emission during courtship affects the pairs’ subsequent reproductive success. Results We experimentally presented males with an unfamiliar female that was either genetically related or unrelated, and we recorded USV emission, first while the sexes were separated by a perforated partition and then during direct interactions, after removing the partition. USVs were detected by the Automatic Mouse Ultrasound Detector (A-MUD) and manually classified into 15 syllable types. The mice were kept together to test whether and how courtship vocalizations predict their subsequent reproductive success. We found that the mice significantly increased their amount of vocalizations (vocal performance) and number of syllable types (vocal repertoire) after the partition was removed and they began interacting directly. We show that unrelated pairs emitted longer and more complex USVs compared to related pairs during direct interactions. Unrelated pairs also had a greater reproductive success compared to related pairs, and in addition we found a negative correlation between the mean length and amount of vocalizations with the latency to their first litter. Conclusion Our study provides evidence that house mice modulate the emission of courtship USVs depending upon the kinship of potential mating partners, and that courtship USVs correlate with reproductive success.
Collapse
Affiliation(s)
- Doris Nicolakis
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, 1160 Vienna, Austria
| | - Maria Adelaide Marconi
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, 1160 Vienna, Austria
| | - Sarah M Zala
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, 1160 Vienna, Austria
| | - Dustin J Penn
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, 1160 Vienna, Austria
| |
Collapse
|
36
|
Ronald KL, Zhang X, Morrison MV, Miller R, Hurley LM. Male mice adjust courtship behavior in response to female multimodal signals. PLoS One 2020; 15:e0229302. [PMID: 32241020 PMCID: PMC7117945 DOI: 10.1371/journal.pone.0229302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/03/2020] [Indexed: 01/27/2023] Open
Abstract
Multimodal signaling is nearly ubiquitous across animal taxa. While much research has focused on male signal production contributing to female mate-choice or preferences, females often give their own multimodal signals during intersexual communication events. Multimodal signal components are often classified based on whether they contain redundant information (e.g., the backup hypothesis) or non-redundant information (e.g., the multiple messages hypothesis) from the perspective of the receiver. We investigated the role of two different female vocalizations produced by the female house mouse (Mus musculus): the broadband, relatively low-frequency squeaks (broadband vocalizations or BBVs,), and the higher-frequency ultrasonic vocalizations (USVs). These female vocalizations may convey differently valenced information to the male receivers. We paired these vocalizations with and without female urine to examine the influence of combining information across multiple modalities. We found evidence that female urine and vocalizations act as non-redundant multimodal cues as males responded with different behaviors and vocalization rates depending on the female signal presented. Additionally, male mice responded with greater courtship effort to the multimodal combination of female USVs paired with female urine than any other signal combination. These results suggest that the olfactory information contained in female urine provides the context by which males can then evaluate potentially ambiguous female vocalizations.
Collapse
Affiliation(s)
- Kelly L. Ronald
- Department of Biology, Indiana University, Bloomington, IN, United States of America
- Department of Biology, Hope College, Holland, MI, United States of America
| | - Xinzhu Zhang
- Department of Biology, Indiana University, Bloomington, IN, United States of America
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States of America
| | - Matthew V. Morrison
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Ryan Miller
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Laura M. Hurley
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| |
Collapse
|
37
|
Ultrasonic signals associated with different types of social behavior of mice. Nat Neurosci 2020; 23:411-422. [PMID: 32066980 PMCID: PMC7065962 DOI: 10.1038/s41593-020-0584-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 12/31/2019] [Indexed: 11/08/2022]
Abstract
Communication plays an integral role in human social dynamics and is impaired in several neurodevelopmental disorders. Mice are used to study the neurobiology of social behavior; however, the extent to which mouse vocalizations influence social dynamics has remained elusive because it is difficult to identify the vocalizing animal among mice involved in a group interaction. By tracking the ultrasonic vocal behavior of individual mice and using an algorithm developed to group phonically similar signals, we showed that distinct patterns of vocalization emerge as male mice perform specific social actions. Mice dominating other mice were more likely to emit different vocal signals than mice avoiding social interactions. Furthermore, we showed that the patterns of vocal expression influence the behavior of the socially engaged partner but do not influence the behavior of other animals in the cage. These findings clarify the function of mouse communication by revealing a communicative ultrasonic signaling repertoire.
Collapse
|
38
|
Warren MR, Clein RS, Spurrier MS, Roth ED, Neunuebel JP. Ultrashort-range, high-frequency communication by female mice shapes social interactions. Sci Rep 2020; 10:2637. [PMID: 32060312 PMCID: PMC7021676 DOI: 10.1038/s41598-020-59418-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/29/2020] [Indexed: 11/08/2022] Open
Abstract
Animals engage in complex social encounters that influence social groups and resource allocation. During these encounters, acoustic signals, used at both short and long ranges, play pivotal roles in regulating the behavior of conspecifics. Mice, for instance, emit ultrasonic vocalizations, signals above the range of human hearing, during close-range social interactions. How these signals shape behavior, however, is unknown due to the difficulty in discerning which mouse in a group is vocalizing. To overcome this impediment, we used an eight-channel microphone array system to determine which mouse emitted individual vocal signals during 30 minutes of unrestrained social interaction between a female and a single male or female conspecific. Females modulated both the timing and context of vocal emission based upon their social partner. Compared to opposite-sex pairings, females in same-sex pairs vocalized when closer to a social partner and later in the 30 minutes of social engagement. Remarkably, we found that female mice exhibited no immediate changes in acceleration (movement) to male-emitted vocal signals. Both males and females, in contrast, modulated their behavior following female-emitted vocal signals in a context-dependent manner. Thus, our results suggest female vocal signals function as a means of ultrashort-range communication that shapes mouse social behavior.
Collapse
Affiliation(s)
- M R Warren
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - R S Clein
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - M S Spurrier
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - E D Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - J P Neunuebel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
39
|
Mhaouty-Kodja S. Courtship vocalizations: A potential biomarker of adult exposure to endocrine disrupting compounds? Mol Cell Endocrinol 2020; 501:110664. [PMID: 31765692 DOI: 10.1016/j.mce.2019.110664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
In rodents, male courtship is stimulated by pheromones emitted by the sexually receptive female. In response, the male produces ultrasonic vocalizations, which appear to play a role in female attraction and facilitate copulation. The present review summarizes the main findings on courtship vocalizations and their tight regulation by sex steroid hormones. It describes studies that address the effects of exposure to endocrine disrupting compounds (EDC) on ultrasound production, as changes in hormone levels or their signaling pathways may interfere with the emission of ultrasonic vocalizations. It also discusses the potential use of this behavior as a noninvasive biomarker of adult exposure to EDC.
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris-Seine, 7 quai St Bernard, Bât A 3ème étage, 75005, Paris, France.
| |
Collapse
|
40
|
Ebbesen CL, Bobrov E, Rao RP, Brecht M. Highly structured, partner-sex- and subject-sex-dependent cortical responses during social facial touch. Nat Commun 2019; 10:4634. [PMID: 31604919 PMCID: PMC6789031 DOI: 10.1038/s41467-019-12511-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022] Open
Abstract
Touch is a fundamental aspect of social, parental and sexual behavior. In contrast to our detailed knowledge about cortical processing of non-social touch, we still know little about how social touch impacts cortical circuits. We investigated neural activity across five frontal, motor and sensory cortical areas in rats engaging in naturalistic social facial touch. Information about social touch and the sex of the interaction partner (a biologically significant feature) is a major determinant of cortical activity. 25.3% of units were modulated during social touch and 8.3% of units displayed ‘sex-touch’ responses (responded differently, depending on the sex of the interaction partner). Single-unit responses were part of a structured, partner-sex- and, in some cases, subject-sex-dependent population response. Spiking neural network simulations indicate that a change in inhibitory drive might underlie these population dynamics. Our observations suggest that socio-sexual characteristics of touch (subject and partner sex) widely modulate cortical activity and need to be investigated with cellular resolution. Touch is an important sensory modality during social encounters. Here the authors report that during naturalistic social encounters in rats, the cortical activity in widespread areas at the level of single neurons is modulated by sociosexual characteristics such as the subject and partner sex.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,Neuroscience Institute, New York University, New York, NY, 10016, USA. .,Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA.
| | - Evgeny Bobrov
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,QUEST Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Rajnish P Rao
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| |
Collapse
|
41
|
Trevizan-Baú P, Dhingra RR, Burrows EL, Dutschmann M, Stanić D. Tauopathy in the periaqueductal gray, kölliker-fuse nucleus and nucleus retroambiguus is not predicted by ultrasonic vocalization in tau-P301L mice. Behav Brain Res 2019; 369:111916. [PMID: 31004684 DOI: 10.1016/j.bbr.2019.111916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
Abstract
Upper airway and vocalization control areas such as the periaqueductal gray (PAG), kölliker-fuse nucleus (KF) and nucleus retroambiguus (NRA) are prone to developing tauopathy in mice expressing the mutant human tau P301L protein. Consequently, impaired ultrasonic vocalization (USV) previously identified in tau-P301L mice at the terminal disease stage of 8-9 months of age, was attributed to the presence of tauopathy in these regions. Our aim was to establish whether the onset of USV disorders manifest prior to the terminal stage, and if USV disorders are predictive of the presence of tauopathy in the PAG, KF and NRA. USVs produced by tau-P301L and wildtype mice aged 3-4, 5-6 or 8-9 months were recorded during male-female interaction. Immunohistochemistry was then performed to assess the presence or degree of tauopathy in the PAG, KF and NRA of mice displaying normal or abnormal USV patterns. Comparing various USV measurements, including the number, duration and frequency of calls, revealed no differences between tau-P301L and wildtype mice across all age groups, and linear discriminant analysis also failed to identify separate USV populations. Finally, the presence of tauopathy in the PAG, KF and NRA in individual tau-P301L mice did not reliably associate with USV disorders. Our findings that tauopathy in designated mammalian vocalization centres, such as the PAG, KF and NRA, did not associate with USV disturbances in tau-P301L mice questions whether USV phenotypes in this transgenic mouse are valid for studying tauopathy-related human voice and speech disorders.
Collapse
Affiliation(s)
- Pedro Trevizan-Baú
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, Australia
| | - Rishi R Dhingra
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, Australia
| | - Emma L Burrows
- Mental Health Theme, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mathias Dutschmann
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, Australia.
| | - Davor Stanić
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, Australia.
| |
Collapse
|