1
|
Paturel A, Casuscelli di Tocco F, Bousquet D, Plissonnier ML, Grand X, Tak H, Berby F, Scholtès C, Testoni B, Zoulim F, Levrero M. A molecular standard for circulating HBV RNA detection and quantification assays in patients with chronic hepatitis B. JHEP Rep 2024; 6:101124. [PMID: 39328324 PMCID: PMC11424956 DOI: 10.1016/j.jhepr.2024.101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 09/28/2024] Open
Abstract
Background & Aims Circulating HBV RNAs have been proposed as a biomarker that reflects the transcriptional activity of covalently closed circular DNA (cccDNA) and may help to evaluate HBV treatment activity. Different research assays have been proposed and, although two PCR-based research use only investigational assays have been developed, the lack of standardized protocols represents an important limitation. Here we have designed and generated a stable clonal cell line producing an RNA-based standard for the calibration of PCR-based circulating HBV RNA assays. Methods HBV RNA-producing Huh7-derived stable cell lines were generated by transfecting pTriEX plasmids containing 1.1 unit length HBV DNA genomes carrying mutations in the catalytic site (YMAA mutation) and the TP domain (Y63F) of the polymerase, and the ε-loop of the pregenomic (pg)RNA (mutation A1G). Results The clonal cell line (Huh7-3D29), carrying a double YMAA and Y63F mutation, displayed, and maintained over several passages in culture, a high RNA secretion phenotype with negligible residual secreted HBV DNA. Density gradient centrifugation showed that most of the secreted HBV RNA from Huh7-3D29 cells was detected in naked capsid and virion-like particles and only a minority in small extracellular vescicles. Nanopore sequencing of 5'RACE products shows that the majority of the Huh7-3D29-secreted HBV RNAs start at the 5' end of pgRNA and pgRNA-derived spliced RNAs. Finally, Huh7-3D29 cells showed a high and up-scalable secreted RNA yield allowing 1,300 standard curves in 9 days from one flask. Conclusion We generated a clonal cell line that produces high quantities of HBV RNAs with very low quantities of contaminating HBV DNAs, representing a stable source of RNA standard for HBV RNA assay calibration. Impact and implications Several investigational assays and two research use only assays have been developed to detect and quantify circulating HBV RNAs, an emerging biomarker of covalently closed circular DNA transcriptional activity and target engagement by new HBV treatments. The lack of a unique molecular standard for circulating HBV RNA quantification represents an important limitation. Here we describe the generation of a stable clonal cell line producing and secreting an RNA-based standard containing all the HBV RNA species found in HBV patients' sera (e.g. pgRNA, HBx transcripts). This new RNA standard can be used to calibrate all PCR-based assays for circulating HBV RNA quantification to evaluate, in a non-invasive manner, the size of the transcriptionally active cccDNA pool and the activity of novel strategies aimed at curing HBV infection.
Collapse
Affiliation(s)
- Alexia Paturel
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Francesca Casuscelli di Tocco
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Delphine Bousquet
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Marie-Laure Plissonnier
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
| | - Xavier Grand
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Hyosun Tak
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Françoise Berby
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Department of Hepatology, Hospices Civils de Lyon, France
| | - Caroline Scholtès
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
- Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Barbara Testoni
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
| | - Fabien Zoulim
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
- Department of Hepatology, Hospices Civils de Lyon, France
| | - Massimo Levrero
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
- Department of Hepatology, Hospices Civils de Lyon, France
- Department of Internal Medicine, SCIAC and the IIT Center for Life Nanoscience, Sapienza University, Rome, Italy
| |
Collapse
|
2
|
Zhang Z, Liu J, Yu L, Zeng R, Pan W. The hijacking of HBV by small extracellular vesicles inhibits M1 macrophages to facilitate immune evasion. Sci Rep 2024; 14:19917. [PMID: 39198597 PMCID: PMC11358331 DOI: 10.1038/s41598-024-70924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Small extracellular vesicles (sEVs) have the ability to transfer genetic material between cells, but their role in mediating HBV infection and regulating M1 macrophages to promote immune evasion remains unclear. In this study, we utilized PMA + LPS + IFN-γ to induce THP-1 into M1 macrophages. We then extracted sEVs from HepG2.2.15 cell and treated the M1 macrophages with these sEVs. QPCR detection revealed the presence of HBV-DNA in the M1 macrophages. Additionally, RT-qPCR and WB analysis demonstrated a significantly decreased in the expression of TLR4, NLRP3, pro-caspase-1, caspase-1p20, IL-1β and IL-18 in the M1 macrophages (P < 0.05). Furthermore, RT-qPCR results displayed high expression levels of that miR-146a and FEN-1 in the sEVs derived from HepG2.2.15 cells (P < 0.01). RT -qPCR and WB analysis showed that these sEVs enhanced the expression of FEN-1 or miR-146a in the M1 macrophages through miR-146a or FEN-1 (P < 0.05), while simultaneously reducing the expression of TLR4, NLRP3, caspase-1p20, IL-1β and IL-18 in the M1 macrophages (P < 0.05). In summary, our findings indicate that sEVs loaded with HBV inhibit the inflammatory function of M1 macrophages and promote immune escape. Additionally, miR-146a and FEN-1 present in the sEVs play a crucial role in this process.
Collapse
Affiliation(s)
- Zili Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
- Xichong County People's Hospital, Nanchong, 637200, Sichuan, China
| | - Jiamin Liu
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Ling Yu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Rong Zeng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Wanlong Pan
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
3
|
Adugna A, Muche Y, Melkamu A, Jemal M, Belew H, Amare GA. Current updates on the molecular and genetic signals as diagnostic and therapeutic targets for hepatitis B virus-associated hepatic malignancy. Heliyon 2024; 10:e34288. [PMID: 39100497 PMCID: PMC11295980 DOI: 10.1016/j.heliyon.2024.e34288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/28/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Liver cancer caused by the hepatitis B virus (HBV) is the third most common cancer-related cause of death worldwide. Early detection of HBV-caused hepatic tumors increases the likelihood of a successful cure. Molecular and genetic signals are becoming more and more recognized as possible indicators of HBV-associated hepatic malignancy and of how well a treatment is working. As a result, we have discussed the current literature on molecular and genetic sensors, including extracellular vesicle microRNAs (EV-miRNAs), long non-coding circulating RNAs (lncRNAs), extracellular vesicles (EVs), and cell free circulating DNA (cfDNA), for the diagnosis and forecasting of HBV-related hepatic cancer. Extracellular vesicle microRNAs such as miR-335-5p, miR-172-5p, miR-1285-5p, miR-497-5p, miR-636, miR-187-5p, miR-223-3p, miR-21, miR-324-3p, miR-210-3p, miR-718, miR-122, miR-522, miR-0308-3p, and miR-375 are essential for the posttranscriptional regulation of oncogenes in hepatic cells as well as the epigenetic modulation of many internal and external signaling pathways in HBV-induced hepatic carcinogenesis. LncRNAs like lnc01977, HULC (highly up-regulated in liver cancer), MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), and HOTAIR (hox transcript antisense intergenic RNA) have been demonstrated to control hepatic-tumors cell growth, relocation, encroachment, and cell death resiliency. They are also becoming more and more involved in immune tracking, hepatic shifting, vasculature oversight, and genomic destabilization. EVs are critical mediators involved in multiple aspects of liver-tumors like angiogenesis, immunology, tumor formation, and the dissemination of malignant hepatocytes. Furthermore, cfDNA contributes to signals associated with tumors, including mutations and abnormal epigenetic changes during HBV-related hepatic tumorigenesis.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abateneh Melkamu
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Belew
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
4
|
Lin X, Shao H, Tang Y, Wang Q, Yang Z, Wu H, Xing T. High expression of circulating exosomal PD-L1 contributes to immune escape of hepatocellular carcinoma and immune clearance of chronic hepatitis B. Aging (Albany NY) 2024; 16:11373-11384. [PMID: 39028365 PMCID: PMC11315384 DOI: 10.18632/aging.206020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE To investigate the expression of programmed death ligand-1 (PD-L1) in circulating exosomes, and to define the role of exosomal PD-L1 in promoting immune escape mechanism during chronic hepatitis B infection (CHB) and related liver diseases. METHODS The levels of PD-L1 expressed in exosomes were detected by ELISA. CD8+T cells were sorted and cytotoxicity test was assessed by flow cytometry. PD-L1 protein expression in hepatocellular carcinoma (HCC) and normal adjacent tissues were detected by immunohistochemistry. RESULTS Circulating exosomal PD-L1 levels were significantly higher in patients with CHB and HCC than in healthy controls (F =7.46, P=0.001). Levels of CD107a on CD8+T cells in patients with CHB receiving PD-L1 blocking antibody were significantly lower than in patients receiving isotype blocking antibody (t = 4.96, P < 0.01). Levels of TNF-α in cell culture supernatants of the PD-L1 blocking antibody group were significantly higher than in the isotype blocking antibody group (t =5.92, P < 0.01). Compared with patients receiving isotype blocking antibody, levels of CD107a on CD8+T cells significantly increased in patients with HCC receiving anti-PD-L1 antibody (t = 3.51, P<0.05). Compared with adjacent tissues, the levels of PD-L1 protein expression in HCC tissues were slightly higher; however, no significant difference between the two groups was observed. CONCLUSIONS PD-L1 blockade in exosomes might promote the cytotoxic function of CD8+T cells and inhibit immune evasion during progression of HCC. Blocking PD-L1 in exosomes reduced the cytotoxic function of CD8+T cells in patients with CHB while enhancing the production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Xiaoqing Lin
- Wenzhou Central Hospital, Dingli Clinical College of Wenzhou Medical University, Wenzhou Sixth People’s Hospital, Wenzhou, Zhejiang, China
| | - Hui Shao
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yongzhi Tang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Qiupeng Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Zhenyu Yang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Hongwei Wu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Tongjing Xing
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
5
|
Wu X, Niu J, Shi Y. Exosomes target HBV-host interactions to remodel the hepatic immune microenvironment. J Nanobiotechnology 2024; 22:315. [PMID: 38840207 PMCID: PMC11151510 DOI: 10.1186/s12951-024-02544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Chronic hepatitis B poses a significant global burden, modulating immune cells, leading to chronic inflammation and long-term damage. Due to its hepatotropism, the hepatitis B virus (HBV) cannot infect other cells. The mechanisms underlying the intercellular communication among different liver cells in HBV-infected individuals and the immune microenvironment imbalance remain elusive. Exosomes, as important intercellular communication and cargo transportation tools between HBV-infected hepatocytes and immune cells, have been shown to assist in HBV cargo transportation and regulate the immune microenvironment. However, the role of exosomes in hepatitis B has only gradually received attention in recent years. Minimal literature has systematically elaborated on the role of exosomes in reshaping the immune microenvironment of the liver. This review unfolds sequentially based on the biological processes of exosomes: exosomes' biogenesis, release, transport, uptake by recipient cells, and their impact on recipient cells. We delineate how HBV influences the biogenesis of exosomes, utilizing exosomal covert transmission, and reshapes the hepatic immune microenvironment. And based on the characteristics and functions of exosomes, potential applications of exosomes in hepatitis B are summarized and predicted.
Collapse
Affiliation(s)
- Xiaojing Wu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Ying Shi
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
6
|
Amin S, Massoumi H, Tewari D, Roy A, Chaudhuri M, Jazayerli C, Krishan A, Singh M, Soleimani M, Karaca EE, Mirzaei A, Guaiquil VH, Rosenblatt MI, Djalilian AR, Jalilian E. Cell Type-Specific Extracellular Vesicles and Their Impact on Health and Disease. Int J Mol Sci 2024; 25:2730. [PMID: 38473976 PMCID: PMC10931654 DOI: 10.3390/ijms25052730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs), a diverse group of cell-derived exocytosed particles, are pivotal in mediating intercellular communication due to their ability to selectively transfer biomolecules to specific cell types. EVs, composed of proteins, nucleic acids, and lipids, are taken up by cells to affect a variety of signaling cascades. Research in the field has primarily focused on stem cell-derived EVs, with a particular focus on mesenchymal stem cells, for their potential therapeutic benefits. Recently, tissue-specific EVs or cell type-specific extracellular vesicles (CTS-EVs), have garnered attention for their unique biogenesis and molecular composition because they enable highly targeted cell-specific communication. Various studies have outlined the roles that CTS-EVs play in the signaling for physiological function and the maintenance of homeostasis, including immune modulation, tissue regeneration, and organ development. These properties are also exploited for disease propagation, such as in cancer, neurological disorders, infectious diseases, autoimmune conditions, and more. The insights gained from analyzing CTS-EVs in different biological roles not only enhance our understanding of intercellular signaling and disease pathogenesis but also open new avenues for innovative diagnostic biomarkers and therapeutic targets for a wide spectrum of medical conditions. This review comprehensively outlines the current understanding of CTS-EV origins, function within normal physiology, and implications in diseased states.
Collapse
Affiliation(s)
- Sohil Amin
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Hamed Massoumi
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Deepshikha Tewari
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Arnab Roy
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Madhurima Chaudhuri
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Cedra Jazayerli
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Abhi Krishan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mannat Singh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Emine E. Karaca
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Department of Ophthalmology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara 06800, Turkey
| | - Arash Mirzaei
- Department of Ophthalmology, University of Medical Sciences, Farabi Eye Hospital, Tehran 13366 16351, Iran;
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
7
|
Wang B, Cheng D, Ma D, Chen R, Li D, Zhao W, Fang C, Ji M. Mutual regulation of PD-L1 immunosuppression between tumor-associated macrophages and tumor cells: a critical role for exosomes. Cell Commun Signal 2024; 22:21. [PMID: 38195554 PMCID: PMC10775441 DOI: 10.1186/s12964-024-01473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
Tumor cells primarily employ the PD-1/PD-L1 pathway to thwart the anti-tumor capabilities of T lymphocytes, inducing immunosuppression. This occurs through the direct interaction of PD-L1 with PD-1 on T lymphocyte surfaces. Recent research focusing on the tumor microenvironment has illuminated the pivotal role of immune cells, particularly tumor-associated macrophages (TAMs), in facilitating PD-L1-mediated immunosuppression. Exosomes, characterized by their ability to convey information and be engulfed by cells, significantly contribute to promoting TAM involvement in establishing PD-L1-mediated immunosuppression within the tumor microenvironment. Exosomes, characterized by their ability to convey information and be engulfed by cells, significantly contribute to promoting TAM involvement in establishing PD-L1-mediated immunosuppression within the tumor microenvironment. In addition to receiving signals from tumor-derived exosomes that promote PD-L1 expression, TAMs also exert control over PD-L1 expression in tumor cells through the release of exosomes. This paper aims to summarize the mechanisms by which exosomes participate in this process, identify crucial factors that influence these mechanisms, and explore innovative strategies for inhibiting or reversing the tumor-promoting effects of TAMs by targeting exosomes.
Collapse
Affiliation(s)
- Banglu Wang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Daoan Cheng
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Danyu Ma
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Rui Chen
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Dong Li
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Weiqing Zhao
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Cheng Fang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Mei Ji
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
8
|
Srinivas AN, Suresh D, Kaur S, Kumar DP. The promise of small particles: extracellular vesicles as biomarkers in liver pathology. J Physiol 2023; 601:4953-4971. [PMID: 35708653 DOI: 10.1113/jp283074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscopic packages that are heterogeneous and bona fide players in hepatic physiology and pathology as they are involved in intercellular communication. EVs carrying bioactive cargoes rich in lipids, proteins or nucleic acids are implicated in the onset and progression of liver diseases. Liver pathology using liver biopsy has been assessed for several intricate conditions such as viral hepatitis, alcoholic and non-alcoholic fatty liver disease, hepatic malignancies and drug-induced liver injury. The lacunae, however, lie in early diagnosis and timely treatment of the above conditions, underscoring the need for non-invasive, accurate diagnostic tools that could replace the gold standard method of tissue biopsy. In this regard, EVs have emerged as promising candidates that could serve as potential biomarkers. In the last two decades, EVs, owing to their multifaceted charm in bringing out cell-free therapeutic responses and the ability of their cargoes to be applied to novel biomarkers, have drawn the great attention of researchers with the advancement and clinical application of liquid biopsy. In this review, we recapitulate the role of EVs and provide insights into the promising role of these small packages as biomarkers in liver pathology.
Collapse
Affiliation(s)
- Akshatha N Srinivas
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Diwakar Suresh
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Divya P Kumar
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
9
|
Kushch AA, Ivanov AV. [Exosomes in the life cycle of viruses and the pathogenesis of viral infections]. Vopr Virusol 2023; 68:181-197. [PMID: 37436410 DOI: 10.36233/0507-4088-173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 07/13/2023]
Abstract
Exosomes are extracellular vesicles of endosomal origin, with a bilayer membrane, 30160 nm in diameter. Exosomes are released from cells of different origins and are detected in various body fluids. They contain nucleic acids, proteins, lipids, metabolites and can transfer the contents to recipient cells. Exosome biogenesis involves cellular proteins of the Rab GTPase family and the ESCRT system, which regulate budding, vesicle transport, molecule sorting, membrane fusion, formation of multivesicular bodies and exosome secretion. Exosomes are released from cells infected with viruses and may contain viral DNA and RNA, as well as mRNA, microRNA, other types of RNA, proteins and virions. Exosomes are capable of transferring viral components into uninfected cells of various organs and tissues. This review analyzes the impact of exosomes on the life cycle of widespread viruses that cause serious human diseases: human immunodeficiency virus (HIV-1), hepatitis B virus, hepatitis C virus, SARS-CoV-2. Viruses are able to enter cells by endocytosis, use molecular and cellular pathways involving Rab and ESCRT proteins to release exosomes and spread viral infections. It has been shown that exosomes can have multidirectional effects on the pathogenesis of viral infections, suppressing or enhancing the course of diseases. Exosomes can potentially be used in noninvasive diagnostics as biomarkers of the stage of infection, and exosomes loaded with biomolecules and drugs - as therapeutic agents. Genetically modified exosomes are promising candidates for new antiviral vaccines.
Collapse
Affiliation(s)
- A A Kushch
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - A V Ivanov
- Institute of Molecular Biology named after V.A. Engelhardt of Russian Academy of Sciences
| |
Collapse
|
10
|
Parthasarathy G, Hirsova P, Kostallari E, Sidhu GS, Ibrahim SH, Malhi H. Extracellular Vesicles in Hepatobiliary Health and Disease. Compr Physiol 2023; 13:4631-4658. [PMID: 37358519 PMCID: PMC10798368 DOI: 10.1002/cphy.c210046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanoparticles released by cells and are an important means of intercellular communication in physiological and pathological states. We provide an overview of recent advances in the understanding of EV biogenesis, cargo selection, recipient cell effects, and key considerations in isolation and characterization techniques. Studies on the physiological role of EVs have relied on cell-based model systems due to technical limitations of studying endogenous nanoparticles in vivo . Several recent studies have elucidated the mechanistic role of EVs in liver diseases, including nonalcoholic fatty liver disease, viral hepatitis, cholestatic liver disease, alcohol-associated liver disease, acute liver injury, and liver cancers. Employing disease models and human samples, the biogenesis of lipotoxic EVs downstream of endoplasmic reticulum stress and microvesicles via intracellular activation stress signaling are discussed in detail. The diverse cargoes of EVs including proteins, lipids, and nucleic acids can be enriched in a disease-specific manner. By carrying diverse cargo, EVs can directly confer pathogenic potential, for example, recruitment and activation of monocyte-derived macrophages in NASH and tumorigenicity and chemoresistance in hepatocellular carcinoma. We discuss the pathogenic role of EVs cargoes and the signaling pathways activated by EVs in recipient cells. We review the literature that EVs can serve as biomarkers in hepatobiliary diseases. Further, we describe novel approaches to engineer EVs to deliver regulatory signals to specific cell types, and thus use them as therapeutic shuttles in liver diseases. Lastly, we identify key lacunae and future directions in this promising field of discovery and development. © 2023 American Physiological Society. Compr Physiol 13:4631-4658, 2023.
Collapse
Affiliation(s)
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Guneet S. Sidhu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samar H. Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Tamasi V, Németh K, Csala M. Role of Extracellular Vesicles in Liver Diseases. Life (Basel) 2023; 13:life13051117. [PMID: 37240762 DOI: 10.3390/life13051117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane structures that are formed by budding from the plasma membrane or originate from the endosomal system. These microparticles (100 nm-100 µm) or nanoparticles (>100 nm) can transport complex cargos to other cells and, thus, provide communication and intercellular regulation. Various cells, such as hepatocytes, liver sinusoidal endothelial cells (LSECs) or hepatic stellate cells (HSCs), secrete and take up EVs in the healthy liver, and the amount, size and content of these vesicles are markedly altered under pathophysiological conditions. A comprehensive knowledge of the modified EV-related processes is very important, as they are of great value as biomarkers or therapeutic targets. In this review, we summarize the latest knowledge on hepatic EVs and the role they play in the homeostatic processes in the healthy liver. In addition, we discuss the characteristic changes of EVs and their potential exacerbating or ameliorating effects in certain liver diseases, such as non-alcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease (AFLD), drug induced liver injury (DILI), autoimmune hepatitis (AIH), hepatocarcinoma (HCC) and viral hepatitis.
Collapse
Affiliation(s)
- Viola Tamasi
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Krisztina Németh
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary
- ELKH-SE Translational Extracellular Vesicle Research Group, 1085 Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
12
|
Peng Y, Yang Y, Li Y, Shi T, Luan Y, Yin C. Exosome and virus infection. Front Immunol 2023; 14:1154217. [PMID: 37063897 PMCID: PMC10098074 DOI: 10.3389/fimmu.2023.1154217] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Exosomes are messengers of intercellular communication in monolayer vesicles derived from cells. It affects the pathophysiological process of the body in various diseases, such as tumors, inflammation, and infection. It has been confirmed that exosomes are similar to viruses in biogenesis, and exosome cargo is widely involved in many viruses’ replication, transmission, and infection. Simultaneously, virus-associated exosomes can promote immune escape and activate the antiviral immune response of the body, which bidirectionally modulates the immune response. This review focuses on the role of exosomes in HIV, HBV, HCV, and SARS-CoV-2 infection and explores the prospects of exosome development. These insights may be translated into therapeutic measures for viral infections and reduce the disease burden.
Collapse
Affiliation(s)
| | | | | | | | - Yingyi Luan
- *Correspondence: Yingyi Luan, ; Chenghong Yin,
| | | |
Collapse
|
13
|
Pandit R, Ipinmoroti AO, Crenshaw BJ, Li T, Matthews QL. Canine Coronavirus Infection Modulates the Biogenesis and Composition of Cell-Derived Extracellular Vesicles. Biomedicines 2023; 11:976. [PMID: 36979955 PMCID: PMC10046050 DOI: 10.3390/biomedicines11030976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Coronavirus (CoV) has persistently become a global health concern causing various diseases in a wide variety of hosts, including humans, birds, and companion animals. However, the virus-mediated responses in animal hosts have not been studied extensively due to pathogenesis complexity and disease developments. Extracellular vesicles (EVs) are widely explored in viral infections for their intercellular communication, nanocarrier, and immunomodulatory properties. We proposed that coronavirus hijacks the host exosomal pathway and modulates the EV biogenesis, composition, and protein trafficking in the host. In the present study, Crandell-Rees feline kidney (CRFK) cells were infected with canine coronavirus (CCoV) in an exosome-free medium at the multiplicity of infection (MOI) of 400 infectious units (IFU) at various time points. The cell viability was significantly decreased over time, as determined by the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Post-infection EVs were isolated, and transmission electron microscopy (TEM) showed the presence of small EVs (sEVs) after infection. NanoSight particle tracking analysis (NTA) revealed that EV sizes averaged between 100 and 200 nm at both incubation times; however, the mean size of infection-derived EVs was significantly decreased at 48 h when compared to uninfected control EVs. Quantitative analysis of protein levels performed by dot blot scanning showed that the expression levels of ACE-2, annexin-V, flotillin-1, TLR-7, LAMP, TNF-α, caspase-1, caspase-8, and others were altered in EVs after infection. Our findings suggested that coronavirus infection impacts cell viability, modulates EV biogenesis, and alters cargo composition and protein trafficking in the host, which could impact viral progression and disease development. Future experiments with different animal CoVs will provide a detailed understanding of host EV biology in infection pathogenesis and progression. Hence, EVs could offer a diagnostic and therapeutic tool to study virus-mediated host responses that could be extended to study the interspecies jump of animal CoVs to cause infection in humans.
Collapse
Affiliation(s)
- Rachana Pandit
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA; (R.P.); (A.O.I.); (B.J.C.)
| | - Ayodeji O. Ipinmoroti
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA; (R.P.); (A.O.I.); (B.J.C.)
| | - Brennetta J. Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA; (R.P.); (A.O.I.); (B.J.C.)
| | - Ting Li
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA;
| | - Qiana L. Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA; (R.P.); (A.O.I.); (B.J.C.)
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA;
| |
Collapse
|
14
|
Many Ways to Communicate-Crosstalk between the HBV-Infected Cell and Its Environment. Pathogens 2022; 12:pathogens12010029. [PMID: 36678377 PMCID: PMC9866324 DOI: 10.3390/pathogens12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) affects an estimated 257 million people worldwide and can lead to liver diseases such as cirrhosis and liver cancer. Viral replication is generally considered not to be cytopathic, and although some HBV proteins may have direct carcinogenic effects, the majority of HBV infection-related disease is related to chronic inflammation resulting from disrupted antiviral responses and aberrant innate immune reactions. Like all cells, healthy and HBV-infected cells communicate with each other, as well as with other cell types, such as innate and adaptive immune cells. They do so by both interacting directly and by secreting factors into their environment. Such factors may be small molecules, such as metabolites, single viral proteins or host proteins, but can also be more complex, such as virions, protein complexes, and extracellular vesicles. The latter are small, membrane-enclosed vesicles that are exchanged between cells, and have recently gained a lot of attention for their potential to mediate complex communication and their potential for therapeutic repurposing. Here, we review how HBV infection affects the communication between HBV-infected cells and cells in their environment. We discuss the impact of these interactions on viral persistence in chronic infection, as well as their relation to HBV infection-related pathology.
Collapse
|
15
|
Muñoz-Hernández R, Rojas Á, Gato S, Gallego J, Gil-Gómez A, Castro MJ, Ampuero J, Romero-Gómez M. Extracellular Vesicles as Biomarkers in Liver Disease. Int J Mol Sci 2022; 23:ijms232416217. [PMID: 36555854 PMCID: PMC9786586 DOI: 10.3390/ijms232416217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-derived vesicles released by a variety of cell types, including hepatocytes, hepatic stellate cells, and immune cells in normal and pathological conditions. Depending on their biogenesis, there is a complex repertoire of EVs that differ in size and origin. EVs can carry lipids, proteins, coding and non-coding RNAs, and mitochondrial DNA causing alterations to the recipient cells, functioning as intercellular mediators of cell-cell communication (auto-, para-, juxta-, or even endocrine). Nevertheless, many questions remain unanswered in relation to the function of EVs under physiological and pathological conditions. The development and optimization of methods for EV isolation are crucial for characterizing their biological functions, as well as their potential as a treatment option in the clinic. In this manuscript, we will comprehensively review the results from different studies that investigated the role of hepatic EVs during liver diseases, including non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, alcoholic liver disease, fibrosis, and hepatocellular carcinoma. In general, the identification of patients with early-stage liver disease leads to better therapeutic interventions and optimal management. Although more light needs to be shed on the mechanisms of EVs, their use for early diagnosis, follow-up, and prognosis has come into the focus of research as a high-potential source of 'liquid biopsies', since they can be found in almost all biological fluids. The use of EVs as new targets or nanovectors in drug delivery systems for liver disease therapy is also summarized.
Collapse
Affiliation(s)
- Rocío Muñoz-Hernández
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (R.M.-H.); (M.R.-G.)
| | - Ángela Rojas
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sheila Gato
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Gallego
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - Antonio Gil-Gómez
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María José Castro
- Servicio de Citometría y Separación Celular, Instituto de Biomedicina de Sevilla Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - Javier Ampuero
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
- UCM Digestive Diseases, Virgen del Rocío University Hospital, 41013 Seville, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
- UCM Digestive Diseases, Virgen del Rocío University Hospital, 41013 Seville, Spain
- Correspondence: (R.M.-H.); (M.R.-G.)
| |
Collapse
|
16
|
Yeung CLS, Yam JWP. Therapy-induced modulation of extracellular vesicles in hepatocellular carcinoma. Semin Cancer Biol 2022; 86:1088-1101. [PMID: 35158067 DOI: 10.1016/j.semcancer.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023]
Abstract
Despite rapid development of anti-tumorigenic treatments, the clinical outcome for hepatocellular carcinoma (HCC) is still far from satisfactory. With a deeper understanding about tumor microenvironment (TME), the critical role of extracellular vesicles (EVs) as intercellular liaison has come into spotlight. The dynamic functionality of these nanoparticles revealed cancer cells can employ both tumor and non-tumorous components for their own benefit, so as to mediate cell-to-cell communication and interchange of oncogenic biomolecules. Increasing studies on HCC-derived EVs have identified various irregulated biomolecules, that may serve as biomarkers or therapeutic targets. In this review, we first introduce the current knowledge about EVs and how they operate to maintain a healthy liver microenvironment. We then summarize some of the aberrant observations reported on HCC-derived EVs and how they contribute to HCC pathogenesis. Finally, we describe how current treatments for HCC alter behavior of EVs, which may shed light for potential prognostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Cherlie Lot Sum Yeung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong.
| |
Collapse
|
17
|
Osna NA, Rasineni K, Ganesan M, Donohue TM, Kharbanda KK. Pathogenesis of Alcohol-Associated Liver Disease. J Clin Exp Hepatol 2022; 12:1492-1513. [PMID: 36340300 PMCID: PMC9630031 DOI: 10.1016/j.jceh.2022.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.
Collapse
Key Words
- AA, Arachidonic acid
- ADH, Alcohol dehydrogenase
- AH, Alcoholic hepatitis
- ALD, Alcohol-associated liver disease
- ALDH, Aldehyde dehydrogenase
- ALT, Alanine transaminase
- ASH, Alcohol-associated steatohepatitis
- AST, Aspartate transaminase
- AUD, Alcohol use disorder
- BHMT, Betaine-homocysteine-methyltransferase
- CD, Cluster of differentiation
- COX, Cycloxygenase
- CTLs, Cytotoxic T-lymphocytes
- CYP, Cytochrome P450
- CYP2E1, Cytochrome P450 2E1
- Cu/Zn SOD, Copper/zinc superoxide dismutase
- DAMPs, Damage-associated molecular patterns
- DC, Dendritic cells
- EDN1, Endothelin 1
- ER, Endoplasmic reticulum
- ETOH, Ethanol
- EVs, Extracellular vesicles
- FABP4, Fatty acid-binding protein 4
- FAF2, Fas-associated factor family member 2
- FMT, Fecal microbiota transplant
- Fn14, Fibroblast growth factor-inducible 14
- GHS-R1a, Growth hormone secretagogue receptor type 1a
- GI, GOsteopontinastrointestinal tract
- GSH Px, Glutathione peroxidase
- GSSG Rdx, Glutathione reductase
- GST, Glutathione-S-transferase
- GWAS, Genome-wide association studies
- H2O2, Hydrogen peroxide
- HA, Hyaluronan
- HCC, Hepatocellular carcinoma
- HNE, 4-hydroxynonenal
- HPMA, 3-hydroxypropylmercapturic acid
- HSC, Hepatic stellate cells
- HSD17B13, 17 beta hydroxy steroid dehydrogenase 13
- HSP 90, Heat shock protein 90
- IFN, Interferon
- IL, Interleukin
- IRF3, Interferon regulatory factor 3
- JAK, Janus kinase
- KC, Kupffer cells
- LCN2, Lipocalin 2
- M-D, Mallory–Denk
- MAA, Malondialdehyde-acetaldehyde protein adducts
- MAT, Methionine adenosyltransferase
- MCP, Macrophage chemotactic protein
- MDA, Malondialdehyde
- MIF, Macrophage migration inhibitory factor
- Mn SOD, Manganese superoxide dismutase
- Mt, Mitochondrial
- NK, Natural killer
- NKT, Natural killer T-lymphocytes
- OPN, Osteopontin
- PAMP, Pathogen-associated molecular patterns
- PNPLA3, Patatin-like phospholipase domain containing 3
- PUFA, Polyunsaturated fatty acid
- RIG1, Retinoic acid inducible gene 1
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SCD, Stearoyl-CoA desaturase
- STAT, Signal transduction and activator of transcription
- TIMP1, Tissue inhibitor matrix metalloproteinase 1
- TLR, Toll-like receptor
- TNF, Tumor necrosis factor-α
- alcohol
- alcohol-associated liver disease
- ethanol metabolism
- liver
- miRNA, MicroRNA
- p90RSK, 90 kDa ribosomal S6 kinase
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
18
|
Lee Y, Kim JH. The emerging roles of extracellular vesicles as intercellular messengers in liver physiology and pathology. Clin Mol Hepatol 2022; 28:706-724. [PMID: 35232008 PMCID: PMC9597227 DOI: 10.3350/cmh.2021.0390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 01/05/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles released from almost all cell types. EVs mediate intercellular communication by delivering their surface and luminal cargoes, including nucleic acids, proteins, and lipids, which reflect the pathophysiological conditions of their cellular origins. Hepatocytes and hepatic non-parenchymal cells utilize EVs to regulate a wide spectrum of biological events inside the liver and transfer them to distant organs through systemic circulation. The liver also receives EVs from multiple organs and integrates these extrahepatic signals that participate in pathophysiological processes. EVs have recently attracted growing attention for their crucial roles in maintaining and regulating hepatic homeostasis. This review summarizes the roles of EVs in intrahepatic and interorgan communications under different pathophysiological conditions of the liver, with a focus on chronic liver diseases including nonalcoholic steatohepatitis, alcoholic hepatitis, viral hepatitis, liver fibrosis, and hepatocellular carcinoma. This review also discusses recent progress for potential therapeutic applications of EVs by targeting or enhancing EV-mediated cellular communication for the treatment of liver diseases.
Collapse
Affiliation(s)
- Youngseok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea,Corresponding author : Jong-Hoon Kim Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea Tel: +82-2-3290-3007, Fax: +82-2-3290-3040, E-mail:
| |
Collapse
|
19
|
Hepatitis Viruses Control Host Immune Responses by Modifying the Exosomal Biogenesis Pathway and Cargo. Int J Mol Sci 2022; 23:ijms231810862. [PMID: 36142773 PMCID: PMC9505460 DOI: 10.3390/ijms231810862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The development of smart immune evasion mechanisms is crucial for the establishment of acute and chronic viral hepatitis. Hepatitis is a major health problem worldwide arising from different causes, such as pathogens, metabolic disorders, and xenotoxins, with the five hepatitis viruses A, B, C, D, and E (HAV, HBV, HCV, HDV, and HEV) representing the majority of the cases. Most of the hepatitis viruses are considered enveloped. Recently, it was reported that the non-enveloped HAV and HEV are, in reality, quasi-enveloped viruses exploiting exosomal-like biogenesis mechanisms for budding. Regardless, all hepatitis viruses use exosomes to egress, regulate, and eventually escape from the host immune system, revealing another key function of exosomes apart from their recognised role in intercellular communication. This review will discuss how the hepatitis viruses exploit exosome biogenesis and transport capacity to establish successful infection and spread. Then, we will outline the contribution of exosomes in viral persistence and liver disease progression.
Collapse
|
20
|
Effects of Exosomal Viral Components on the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14143552. [PMID: 35884611 PMCID: PMC9317196 DOI: 10.3390/cancers14143552] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Oncogenic viral infection may lead to cancers, such as nasopharyngeal carcinoma, hepatocellular carcinoma, and cervical cancer. In addition to the tumor cells themselves, the tumor microenvironment also plays a decisive role in tumor evolution. Oncogenic viruses can affect the tumor microenvironment via exosomes influencing the occurrence and development of tumors by encapsulating and transporting viral components. This review focuses on the effects of virus-infected cancer exosomes on tumor microenvironment and tumor progression. Abstract Exosomes are extracellular membrane vesicles with a diameter of 30–100 nm, produced by different eukaryotic cells that contain multitudinous lipids, nucleic acids, and proteins. They transfer membrane components and nucleic acids between cells, thereby performing an information exchange between cells. Many studies have shown that a variety of tumor-associated viruses can exert their biological functions through exosomes. The tumor microenvironment (TME) is very important in the occurrence, development, and chemoresistance of tumors. It is composed of tumor cells, fibroblasts, endothelial cells, immune cells, stromal cells, and acellular components, such as exosomes and cytokines. This review focuses on the effects of virus-related components secreted by tumor cells over the TME in several virus-associated cancers.
Collapse
|
21
|
The RNA-Binding Protein ELAVL1 Regulates Hepatitis B Virus Replication and Growth of Hepatocellular Carcinoma Cells. Int J Mol Sci 2022; 23:ijms23147878. [PMID: 35887229 PMCID: PMC9316910 DOI: 10.3390/ijms23147878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022] Open
Abstract
Previous RNA immunoprecipitation followed by proteomic approaches successfully demonstrated that Embryonic Lethal, Abnormal Vision, Drosophila-Like 1 (ELAVL1) interacts with hepatitis B virus (HBV)-derived RNAs. Although ELAVL family proteins stabilize AU-rich element (ARE)-containing mRNAs, their role in HBV transcription remains unclear. This study conducted loss-of-function assays of ELAVL1 for inducible HBV-replicating HepAD38 cells and HBx-overexpressed HepG2 cells. In addition, clinicopathological analyses in primary hepatocellular carcinoma (HCC) surgical samples were also conducted. Lentivirus-mediated short hairpin RNA knockdown of ELAVL1 resulted in a decrease in both viral RNA transcription and production of viral proteins, including HBs and HBx, probably due to RNA stabilization by ELAVL1. Cell growth of HepAD38 cells was more significantly impaired in ELAVL1-knockdown than those in the control group, with or without HBV replication, indicating that ELAVL1 is involved in proliferation by factors other than HBV-derived RNAs. Immunohistochemical analyses of 77 paired HCC surgical specimens demonstrated that diffuse ELAVL1 expression was detected more frequently in HCC tissues (61.0%) than in non-tumor tissues (27.3%). In addition, the abundant expression of ELAVL1 tended to affect postoperative recurrence in HBV-related HCC patients. In conclusion, ELAVL1 contributes not only to HBV replication but also to HCC cell growth. It may be a potent therapeutic target for HBV-related HCC treatment.
Collapse
|
22
|
Newman LA, Muller K, Rowland A. Circulating cell-specific extracellular vesicles as biomarkers for the diagnosis and monitoring of chronic liver diseases. Cell Mol Life Sci 2022; 79:232. [PMID: 35397694 PMCID: PMC8995281 DOI: 10.1007/s00018-022-04256-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
AbstractChronic liver diseases represent a burgeoning health problem affecting billions of people worldwide. The insufficient performance of current minimally invasive tools is recognised as a significant barrier to the clinical management of these conditions. Extracellular vesicles (EVs) have emerged as a rich source of circulating biomarkers closely linked to pathological processes in originating tissues. Here, we summarise the contribution of EVs to normal liver function and to chronic liver pathologies; and explore the use of circulating EV biomarkers, with a particular focus on techniques to isolate and analyse cell- or tissue-specific EVs. Such approaches present a novel strategy to inform disease status and monitor changes in response to treatment in a minimally invasive manner. Emerging technologies that support the selective isolation and analysis of circulating EVs derived only from hepatic cells, have driven recent advancements in EV-based biomarker platforms for chronic liver diseases and show promise to bring these techniques to clinical settings.
Collapse
Affiliation(s)
- Lauren A Newman
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Kate Muller
- Department of Gastroenterology and Hepatology, College of Medicine and Public Health, Flinders Medical Centre, Adelaide, SA, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
23
|
Li Y, Wu J, Liu R, Zhang Y, Li X. Extracellular vesicles: catching the light of intercellular communication in fibrotic liver diseases. Theranostics 2022; 12:6955-6971. [PMID: 36276639 PMCID: PMC9576620 DOI: 10.7150/thno.77256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
The increasing prevalence of fibrotic liver diseases resulting from different etiologies has become a major global problem for public health. Fibrotic liver diseases represent a redundant accumulation of extracellular matrix, dysregulation of immune homeostasis and angiogenesis, which eventually contribute to the progression of cirrhosis and liver malignancies. The concerted actions among liver cells including hepatocytes, hepatic stellate cells, kupffer cells, liver sinusoidal endothelial cells and other immune cells are essential for the outcome of liver fibrosis. Recently, a growing body of literature has highlighted that extracellular vesicles (EVs) are critical mediators of intercellular communication among different liver cells either in local or distant microenvironments, coordinating a variety of systemic pathological and physiological processes. Despite the increasing interests in this field, there are still relatively few studies to classify the contents and functions of EVs in intercellular transmission during hepatic fibrogenesis. This review aims to summarize the latest findings with regards to the cargo loading, release, and uptake of EVs in different liver cells and clarify the significant roles of EVs played in fibrotic liver diseases.
Collapse
Affiliation(s)
- Yijie Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
- ✉ Corresponding author: Xiaojiaoyang Li, Ph.D., School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China. E-mail:
| |
Collapse
|
24
|
Ipinmoroti AO, Crenshaw BJ, Pandit R, Kumar S, Sims B, Matthews QL. Human Adenovirus Serotype 3 Infection Modulates the Biogenesis and Composition of Lung Cell-Derived Extracellular Vesicles. J Immunol Res 2021; 2021:2958394. [PMID: 34926703 PMCID: PMC8677401 DOI: 10.1155/2021/2958394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/16/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Adenovirus (Ad) is a major causal agent of acute respiratory infections. However, they are a powerful delivery system for gene therapy and vaccines. Some Ad serotypes antagonize the immune system leading to meningitis, conjunctivitis, gastroenteritis, and/or acute hemorrhagic cystitis. Studies have shown that the release of small, membrane-derived extracellular vesicles (EVs) may offer a mechanism by which viruses can enter cells via receptor-independent entry and how they influence disease pathogenesis and/or host protection considering their existence in almost all bodily fluids. We proposed that Ad3 could alter EV biogenesis, composition, and trafficking and may stimulate various immune responses in vitro. In the present study, we evaluated the impact of in vitro infection with Ad3 vector on EV biogenesis and composition in the human adenocarcinoma lung epithelial cell line A549. Cells were infected in an exosome-free media at different multiplicity of infections (MOIs) and time points. The cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and fluorometric calcein-AM. EVs were isolated via ultracentrifugation. Isolated EV proteins were quantified and evaluated via nanoparticle tracking, transmission electron microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunoblotting assays. The cell viability significantly decreased with an increase in MOI and incubation time. A significant increase in particle mean sizes, concentrations, and total EV protein content was detected at higher MOIs when compared to uninfected cells (control group). A549 cell-derived EVs revealed the presence of TSG101, tetraspanins CD9 and CD63, and heat shock proteins 70 and 100 with significantly elevated levels of Rab5, 7, and 35 at higher MOIs (300, 750, and 1500) when compared to the controls. Our findings suggested Ad3 could modulate EV biogenesis, composition, and trafficking which could impact infection pathogenesis and disease progression. This study might suggest EVs could be diagnostic and therapeutic advancement to Ad infections and other related viral infections. However, further investigation is warranted to explore the underlying mechanism(s).
Collapse
Affiliation(s)
- Ayodeji O. Ipinmoroti
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| | - Brennetta J. Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| | - Rachana Pandit
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| | - Sanjay Kumar
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brian Sims
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qiana L. Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| |
Collapse
|
25
|
Liyanage DS, Omeka WKM, Yang H, Lim C, Kwon H, Choi CY, Lee J. Expression profiling, immune functions, and molecular characteristics of the tetraspanin molecule CD63 from Amphiprion clarkii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104168. [PMID: 34118281 DOI: 10.1016/j.dci.2021.104168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/05/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
CD63, a member of the tetraspanin family, is involved in the activation of immune cells, antiviral immunity, and signal transduction. The economically important anemonefishes Amphiprion sp. often face disease outbreaks, and the present study aimed to characterize CD63 in Amphiprion clarkii (denoted AcCD63) to enable better disease management. The in-silico analysis revealed that the AcCD63 transcript is 723 bp long and encodes 240 amino acids. The 26.2 kDa protein has a theoretical isoelectric point of 5.51. Similar to other tetraspanins, AcCD63 consists of four domains: short N-/C-terminal domains and small/large extracellular loops. Pairwise sequence alignment revealed that AcCD63 has the highest identity (100%) and similarity (99.2%) with CD63 from Amphiprion ocellaris. Multiple sequence alignment identified a conserved tetraspanin CCG motif, PXSCC motif, and C-terminal lysosome-targeting GYEVM motif. The quantitative polymerase chain reaction analysis showed that AcCD63 was highly expressed in the spleen and head kidney tissue, with low levels of expression in the liver. Temporal expression patterns of AcCD63 were measured in the head kidney and blood tissue after injection of polyinosinic:polycytidylic acid (poly (I:C)), lipolysacharides (LPS), or Vibrio harveyi (V. harveyi). AcCD63 was upregulated at 12 h post-injection with poly (I:C) or V. harveyi, and at 24 h post-injection with all stimulants in the head kidney. At 24 h post-injection, poly (I:C) and LPS upregulated, whereas V. harveyi downregulated AcCD63 expression in the blood. All viral hemorrhagic septicemia virus transcripts (M, G, N, RdRp, P, and NV) were downregulated in response to AcCD63 overexpression, and removal of viral particles occurred via the involvement of AcCD63. The expression of antiviral genes MX dynamin-like GTPase 1, interferon regulatory factor 3, interferon-stimulated gene 15, interferon-gamma, and viperin in CD63-overexpressing fathead minnow cells was downregulated. Collectively, our findings suggest that AcCD63 is an immunologically important gene involved in the A. clarkii pathogen stress response.
Collapse
Affiliation(s)
- D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Cheol Young Choi
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
26
|
Kostallari E, Valainathan S, Biquard L, Shah VH, Rautou PE. Role of extracellular vesicles in liver diseases and their therapeutic potential. Adv Drug Deliv Rev 2021; 175:113816. [PMID: 34087329 PMCID: PMC10798367 DOI: 10.1016/j.addr.2021.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023]
Abstract
More than eight hundred million people worldwide have chronic liver disease, with two million deaths per year. Recurring liver injury results in fibrogenesis, progressing towards cirrhosis, for which there doesn't exists any cure except liver transplantation. Better understanding of the mechanisms leading to cirrhosis and its complications is needed to develop effective therapies. Extracellular vesicles (EVs) are released by cells and are important for cell-to-cell communication. EVs have been reported to be involved in homeostasis maintenance, as well as in liver diseases. In this review, we present current knowledge on the role of EVs in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, alcohol-associated liver disease, chronic viral hepatitis, primary liver cancers, acute liver injury and liver regeneration. Moreover, therapeutic strategies involving EVs as targets or as tools to treat liver diseases are summarized.
Collapse
Affiliation(s)
- Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States.
| | - Shantha Valainathan
- Université de Paris, AP-HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de recherche sur l'inflammation, Inserm, UMR 1149, Paris, France
| | - Louise Biquard
- Université de Paris, Centre de recherche sur l'inflammation, Inserm, UMR 1149, Paris, France.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States.
| | - Pierre-Emmanuel Rautou
- Université de Paris, AP-HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de recherche sur l'inflammation, Inserm, UMR 1149, Paris, France.
| |
Collapse
|
27
|
Netter HJ, Barrios MH, Littlejohn M, Yuen LKW. Hepatitis Delta Virus (HDV) and Delta-Like Agents: Insights Into Their Origin. Front Microbiol 2021; 12:652962. [PMID: 34234753 PMCID: PMC8256844 DOI: 10.3389/fmicb.2021.652962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/12/2021] [Indexed: 01/05/2023] Open
Abstract
Hepatitis delta virus (HDV) is a human pathogen, and the only known species in the genus Deltavirus. HDV is a satellite virus and depends on the hepatitis B virus (HBV) for packaging, release, and transmission. Extracellular HDV virions contain the genomic HDV RNA, a single-stranded negative-sense and covalently closed circular RNA molecule, which is associated with the HDV-encoded delta antigen forming a ribonucleoprotein complex, and enveloped by the HBV surface antigens. Replication occurs in the nucleus and is mediated by host enzymes and assisted by cis-acting ribozymes allowing the formation of monomer length molecules which are ligated by host ligases to form unbranched rod-like circles. Recently, meta-transcriptomic studies investigating various vertebrate and invertebrate samples identified RNA species with similarities to HDV RNA. The delta-like agents may be representatives of novel subviral agents or satellite viruses which share with HDV, the self-complementarity of the circular RNA genome, the ability to encode a protein, and the presence of ribozyme sequences. The widespread distribution of delta-like agents across different taxa with considerable phylogenetic distances may be instrumental in comprehending their evolutionary history by elucidating the transition from transcriptome to cellular circular RNAs to infectious subviral agents.
Collapse
Affiliation(s)
- Hans J Netter
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia.,School of Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Marilou H Barrios
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia.,The Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia
| | - Lilly K W Yuen
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Non-coding RNAs and lipids mediate the function of extracellular vesicles in cancer cross-talk. Semin Cancer Biol 2021; 74:121-133. [PMID: 34033894 DOI: 10.1016/j.semcancer.2021.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 11/22/2022]
Abstract
Research on extracellular vesicles (EVs) has been expanded, especially in the field of cancer. The cargoes in EVs, especially those in small EVs such as exosomes include microRNAs (miRNAs), mRNA, proteins, and lipids, are assumed to work cooperatively in the tumor microenvironment. In 2007, it was reported that miRNAs were abundant among the non-coding RNAs present in exosomes. Since then, many studies have investigated the functions of miRNAs and have tried to apply these molecules to aid in the diagnosis of cancer. Accordingly, many reviews of non-coding RNAs in EVs have been published for miRNAs. This review focuses on relatively new cargoes, covering long noncoding (lnc) RNAs, circular RNAs, and repeat RNAs, among non-coding RNAs. These RNAs, regardless of EV or cell type, have newly emerged due to the innovation of sequencing technology. The poor conservation, low quantity, and technical difficulty in detecting these RNA types have made it difficult to elucidate their functions and expression patterns. We herein summarize a limited number of studies. Although lipids are major components of EVs, current research on EVs focuses on miRNA and protein biology, while the roles of lipids in exosomes have not drawn attention. However, several recent studies revealed that phospholipids, which are components of the EV membrane, play important roles in the intercommunication between cells and in the generation of lipid mediators. Here, we review the reported roles of these molecules, and describe their potential in cancer biology.
Collapse
|
29
|
Jiang Y, Han Q, Zhao H, Zhang J. The Mechanisms of HBV-Induced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:435-450. [PMID: 34046368 PMCID: PMC8147889 DOI: 10.2147/jhc.s307962] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy, and the hepatitis B virus (HBV) is its major pathogenic factor. Over the past decades, it has been confirmed that HBV infection could promote disease progression through a variety of mechanisms, ultimately leading to the malignant transformation of liver cells. Many factors have been identified in the pathogenesis of HBV-associated HCC (HBV-HCC), including HBV gene integration, genomic instability caused by mutation, and activation of cancer-promoting signaling pathways. As research in the progression of HBV-HCC progresses, the role of many new mechanisms, such as epigenetics, exosomes, autophagy, metabolic regulation, and immune suppression, is also being continuously explored. The occurrence of HBV-HCC is a complex process caused by interactions across multiple genes and multiple steps, where the synergistic effects of various cancer-promoting mechanisms accelerate the process of disease evolution from inflammation to tumorigenesis. In this review, we aim to provide a brief overview of the mechanisms involved in the occurrence and development of HBV-HCC, which may contribute to a better understanding of the role of HBV in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| |
Collapse
|
30
|
Farrukh H, El-Sayes N, Mossman K. Mechanisms of PD-L1 Regulation in Malignant and Virus-Infected Cells. Int J Mol Sci 2021; 22:ijms22094893. [PMID: 34063096 PMCID: PMC8124996 DOI: 10.3390/ijms22094893] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Programmed cell death protein 1 (PD-1), a receptor on T cells, and its ligand, PD-L1, have been a topic of much interest in cancer research. Both tumour and virus-infected cells can upregulate PD-L1 to suppress cytotoxic T-cell killing. Research on the PD-1/PD-L1 axis has led to the development of anti-PD-1/PD-L1 immune checkpoint blockades (ICBs) as promising cancer therapies. Although effective in some cancer patients, for many, this form of treatment is ineffective due to a lack of immunogenicity in the tumour microenvironment (TME). Despite the development of therapies targeting the PD-1/PD-L1 axis, the mechanisms and pathways through which these proteins are regulated are not completely understood. In this review, we discuss the latest research on molecules of inflammation and innate immunity that regulate PD-L1 expression, how its expression is regulated during viral infection, and how it is modulated by different cancer therapies. We also highlight existing research on the development of different combination therapies with anti-PD-1/PD-L1 antibodies. This information can be used to develop better cancer immunotherapies that take into consideration the pathways involved in the PD-1/PD-L1 axis, so these molecules do not reduce their efficacy, which is currently seen with some cancer therapies. This review will also assist in understanding how the TME changes during treatment, which will provide further rationale for combination therapies.
Collapse
Affiliation(s)
- Hadia Farrukh
- School of Interdisciplinary Science, Faculty of Science, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Nader El-Sayes
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Karen Mossman
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence:
| |
Collapse
|
31
|
Kim Y, Mensah GA, Al Sharif S, Pinto DO, Branscome H, Yelamanchili SV, Cowen M, Erickson J, Khatkar P, Mahieux R, Kashanchi F. Extracellular Vesicles from Infected Cells Are Released Prior to Virion Release. Cells 2021; 10:cells10040781. [PMID: 33916140 PMCID: PMC8066806 DOI: 10.3390/cells10040781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Here, we have attempted to address the timing of EV and virion release from virally infected cells. Uninfected (CEM), HIV-1-infected (J1.1), and human T cell leukemia virus-1 (HTLV-1)-infected (HUT102) cells were synchronized in G0. Viral latency was reversed by increasing gene expression with the addition of serum-rich media and inducers. Supernatants and cell pellets were collected post-induction at different timepoints and assayed for extracellular vesicle (EV) and autophagy markers; and for viral proteins and RNAs. Tetraspanins and autophagy-related proteins were found to be differentially secreted in HIV-1- and HTLV-1-infected cells when compared with uninfected controls. HIV-1 proteins were present at 6 h and their production increased up to 24 h. HTLV-1 proteins peaked at 6 h and plateaued. HIV-1 and HTLV-1 RNA production correlated with viral protein expression. Nanoparticle tracking analysis (NTA) showed increase of EV concentration over time in both uninfected and infected samples. Finally, the HIV-1 supernatant from the 6-h samples was found not to be infectious; however, the virus from the 24-h samples was successfully rescued and infectious. Overall, our data indicate that EV release may occur prior to viral release from infected cells, thereby implicating a potentially significant effect of EVs on uninfected recipient cells prior to subsequent viral infection and spread.
Collapse
Affiliation(s)
- Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Gifty A. Mensah
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Daniel O. Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - James Erickson
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, Ecole Normale Superieure de Lyon, Université de Lyon, Fondation Pour La Recherche Médicale, Labex Ecofect, 69007 Lyon, France;
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
- Correspondence: ; Tel.: +703-993-9160; Fax: +703-993-7022
| |
Collapse
|
32
|
Ito M, Kudo K, Higuchi H, Otsuka H, Tanaka M, Fukunishi N, Araki T, Takamatsu M, Ino Y, Kimura Y, Kotani A. Proteomic and phospholipidomic characterization of extracellular vesicles inducing tumor microenvironment in Epstein-Barr virus-associated lymphomas. FASEB J 2021; 35:e21505. [PMID: 33723887 DOI: 10.1096/fj.202002730r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) causes malignant carcinomas including B cell lymphomas accompanied by the systemic inflammation. Previously, we observed that phosphatidylserine (PS)-exposing subset of extracellular vesicles (EVs) secreted from an EBV strain Akata-transformed lymphoma (Akata EVs) convert surrounding phagocytes into tumor-associated macrophages (TAMs) via induction of inflammatory response, which is in part mediated by EBV-derived micro RNAs. However, it is still unclear about EV-carried other potential inflammatory factors associated with TAM formation in EBV lymphomas. To this end, we sought to explore proteomic and phospholipidomic profiles of PS-exposing EVs derived from EBV-transformed lymphomas. Mass spectrometric analysis revealed that several immunomodulatory proteins including integrin αLβ2 and fibroblast growth factor 2 (FGF2) were highly expressed in PS-exposing Akata EVs compared with another EBV strain B95-8-transformed lymphoma-derived counterparts which significantly lack TAM-inducing ability. Pharmacological inhibition of either integrin αLβ2 or FGF2 hampered cytokine induction in monocytic cultured cells elicited by PS-exposing Akata EVs, suggesting the involvement of these proteins in EV-mediated TAM induction in EBV lymphomas. In addition, phospholipids containing precursors of immunomodulatory lipid mediators were also enriched in PS-exposing Akata EVs compared with B95-8 counterparts. Phospholipidomic analysis of fractionated Akata EVs by density gradient centrifugation further demonstrated that PS-exposing Akata EVs might be identical to certain Akata EVs in low density fractions containing exosomes. Therefore, we concluded that a variety of immunomodulatory cargo molecules in a certain EV subtype are presumably conducive to the development of EBV lymphomas.
Collapse
Affiliation(s)
- Masatoshi Ito
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Kai Kudo
- Department of Hematological Malignancy, Tokai University, Isehara, Japan.,Department of Innovative Medical Science, Institute of Medical Science, Tokai University, Isehara, Japan
| | - Hiroshi Higuchi
- Department of Hematological Malignancy, Tokai University, Isehara, Japan
| | - Hiroko Otsuka
- Department of Hematological Malignancy, Tokai University, Isehara, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Nahoko Fukunishi
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Takuma Araki
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Masako Takamatsu
- Department of Hematological Malignancy, Tokai University, Isehara, Japan.,Department of Innovative Medical Science, Institute of Medical Science, Tokai University, Isehara, Japan
| | - Yoko Ino
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Ai Kotani
- Department of Hematological Malignancy, Tokai University, Isehara, Japan.,Department of Innovative Medical Science, Institute of Medical Science, Tokai University, Isehara, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
33
|
Padariya M, Kalathiya U, Mikac S, Dziubek K, Tovar Fernandez MC, Sroka E, Fahraeus R, Sznarkowska A. Viruses, cancer and non-self recognition. Open Biol 2021; 11:200348. [PMID: 33784856 PMCID: PMC8061760 DOI: 10.1098/rsob.200348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Virus-host interactions form an essential part of every aspect of life, and this review is aimed at looking at the balance between the host and persistent viruses with a focus on the immune system. The virus-host interaction is like a cat-and-mouse game and viruses have developed ingenious mechanisms to manipulate cellular pathways, most notably the major histocompatibility (MHC) class I pathway, to reside within infected cell while evading detection and destruction by the immune system. However, some of the signals sensing and responding to viral infection are derived from viruses and the fact that certain viruses can prevent the infection of others, highlights a more complex coexistence between the host and the viral microbiota. Viral immune evasion strategies also illustrate that processes whereby cells detect and present non-self genetic material to the immune system are interlinked with other cellular pathways. Immune evasion is a target also for cancer cells and a more detailed look at the interfaces between viral factors and components of the MHC class I peptide-loading complex indicates that these interfaces are also targets for cancer mutations. In terms of the immune checkpoint, however, viral and cancer strategies appear different.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Sara Mikac
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Maria C. Tovar Fernandez
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Ewa Sroka
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
- Department of Medical Biosciences, Umeå University, Building 6M, 901 85 Umeå, Sweden
| | - Alicja Sznarkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| |
Collapse
|
34
|
Liu LL, Zhang SW, Chao X, Wang CH, Yang X, Zhang XK, Wen YL, Yun JP, Luo RZ. Coexpression of CMTM6 and PD-L1 as a predictor of poor prognosis in macrotrabecular-massive hepatocellular carcinoma. Cancer Immunol Immunother 2021; 70:417-429. [PMID: 32770259 PMCID: PMC7889680 DOI: 10.1007/s00262-020-02691-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
The "macrotrabecular-massive" (MTM) pattern of hepatocellular carcinoma (HCC) has been suggested to represent a distinct HCC subtype and is associated with specific molecular features. Since the immune microenvironment is heterogenous in HCC, it is important to evaluate the immune microenvironment of this novel variant. CMTM6, a key regulator of PD-L1, is an important immunocheckpoint inhibitor. This study aimed to evaluate the prognostic effect of CMTM6/PD-L1 coexpression and its relationship with inflammatory cells in HCC. We analyzed 619 HCC patients and tumors were classified into MTM and non-MTM HCC subtypes. The expression levels of CMTM6 and PD-L1 in tumor and inflammatory cells were evaluated by immunohistochemistry. The density of inflammatory cells in the cancer cell nest was calculated. Tumoral PD-L1 expression and inflammatory cell density were higher in the MTM type than in the non-MTM type. CMTM6-high expression was significantly associated with shorter OS and DFS than CMTM6-low expression in the whole HCC patient population and the MTM HCC patient population. Moreover, MTM HCC patients with CMTM6/PD-L1 coexpression experienced a higher risk of HCC progression and death. In addition, CMTM6/PD-L1 coexpression was shown to be related to a high density of inflammatory cells. Notably, a new immune classification, based on CMTM6/PD-L1 coexpression and inflammatory cells, successfully stratified OS and DFS in MTM HCC. CMTM6/PD-L1 coexpression has an adverse effect on the prognosis of HCC patients, especially MTM HCC patients. Our study provides evidence for the combination of immune status assessment with anti-CMTM6 and anti-PD-L1 therapy in MTM HCC patients.
Collapse
Affiliation(s)
- Li-Li Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Shi-Wen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 51800, China
| | - Xue Chao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Chun-Hua Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Xin-Ke Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Yan-Lin Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Rong-Zhen Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
35
|
Lim HK, Jeffrey GP, Ramm GA, Soekmadji C. Pathogenesis of Viral Hepatitis-Induced Chronic Liver Disease: Role of Extracellular Vesicles. Front Cell Infect Microbiol 2020; 10:587628. [PMID: 33240824 PMCID: PMC7683521 DOI: 10.3389/fcimb.2020.587628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles are encapsulated lipid nanoparticles secreted by a variety of cell types in living organisms. They are known to carry proteins, metabolites, nucleic acids, and lipids as their cargoes and are important mediators of intercellular communication. The role of extracellular vesicles in chronic liver disease has been reported. Chronic liver disease such as viral hepatitis accounts for a significant mortality and morbidity burden worldwide. Hepatic fibrosis has been commonly associated with the chronic form of viral hepatitis, which results in end-stage liver disease, including cirrhosis, liver failure, and carcinoma in some patients. In this review, we discuss the potential role of extracellular vesicles in mediating communication between infectious agents (hepatitis B and C viruses) and host cells, and how these complex cell-cell interactions may facilitate the development of chronic liver disease. We will further discuss how understanding their biological mechanism of action might be beneficial for developing therapeutic strategies to treat chronic liver disease.
Collapse
Affiliation(s)
- Hong Kiat Lim
- Hepatic Fibrosis Group, Department of Cellular and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gary P Jeffrey
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia.,Sir Charles Gairdner Hospital, Nedlands, Hepatology Department and Liver Transplant Service, Perth, WA, Australia
| | - Grant A Ramm
- Hepatic Fibrosis Group, Department of Cellular and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Carolina Soekmadji
- Hepatic Fibrosis Group, Department of Cellular and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
36
|
Sphingomyelinases and Liver Diseases. Biomolecules 2020; 10:biom10111497. [PMID: 33143193 PMCID: PMC7692672 DOI: 10.3390/biom10111497] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs) are critical components of membrane bilayers that play a crucial role in their physico-chemical properties. Ceramide is the prototype and most studied SL due to its role as a second messenger in the regulation of multiple signaling pathways and cellular processes. Ceramide is a heterogeneous lipid entity determined by the length of the fatty acyl chain linked to its carbon backbone sphingosine, which can be generated either by de novo synthesis from serine and palmitoyl-CoA in the endoplasmic reticulum or via sphingomyelin (SM) hydrolysis by sphingomyelinases (SMases). Unlike de novo synthesis, SMase-induced SM hydrolysis represents a rapid and transient mechanism of ceramide generation in specific intracellular sites that accounts for the diverse biological effects of ceramide. Several SMases have been described at the molecular level, which exhibit different pH requirements for activity: neutral, acid or alkaline. Among the SMases, the neutral (NSMase) and acid (ASMase) are the best characterized for their contribution to signaling pathways and role in diverse pathologies, including liver diseases. As part of a Special Issue (Phospholipases: From Structure to Biological Function), the present invited review summarizes the physiological functions of NSMase and ASMase and their role in chronic and metabolic liver diseases, of which the most relevant is nonalcoholic steatohepatitis and its progression to hepatocellular carcinoma, due to the association with the obesity and type 2 diabetes epidemic. A better understanding of the regulation and role of SMases in liver pathology may offer the opportunity for novel treatments of liver diseases.
Collapse
|
37
|
Parackova Z, Zentsova I, Bloomfield M, Vrabcova P, Smetanova J, Klocperk A, Mesežnikov G, Casas Mendez LF, Vymazal T, Sediva A. Disharmonic Inflammatory Signatures in COVID-19: Augmented Neutrophils' but Impaired Monocytes' and Dendritic Cells' Responsiveness. Cells 2020; 9:E2206. [PMID: 33003471 PMCID: PMC7600406 DOI: 10.3390/cells9102206] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2 virus, emerged as a pandemic disease posing a severe threat to global health. To date, sporadic studies have demonstrated that innate immune mechanisms, specifically neutrophilia, NETosis, and neutrophil-associated cytokine responses, are involved in COVID-19 pathogenesis; however, our understanding of the exact nature of this aspect of host-pathogen interaction is limited. Here, we present a detailed dissection of the features and functional profiles of neutrophils, dendritic cells, and monocytes in COVID-19. We portray the crucial role of neutrophils as drivers of hyperinflammation associated with COVID-19 disease via the shift towards their immature forms, enhanced degranulation, cytokine production, and augmented interferon responses. We demonstrate the impaired functionality of COVID-19 dendritic cells and monocytes, particularly their low expression of maturation markers, increased PD-L1 levels, and their inability to upregulate phenotype upon stimulation. In summary, our work highlights important data that prompt further research, as therapeutic targeting of neutrophils and their associated products may hold the potential to reduce the severity of COVID-19.
Collapse
Affiliation(s)
- Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic; (I.Z.); (M.B.); (P.V.); (J.S.); (A.K.); (A.S.)
| | - Irena Zentsova
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic; (I.Z.); (M.B.); (P.V.); (J.S.); (A.K.); (A.S.)
| | - Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic; (I.Z.); (M.B.); (P.V.); (J.S.); (A.K.); (A.S.)
- Department of Pediatrics, 1st Faculty of Medicine, Charles University in Prague and Thomayer’s Hospital, 15006 Prague, Czech Republic
| | - Petra Vrabcova
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic; (I.Z.); (M.B.); (P.V.); (J.S.); (A.K.); (A.S.)
| | - Jitka Smetanova
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic; (I.Z.); (M.B.); (P.V.); (J.S.); (A.K.); (A.S.)
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic; (I.Z.); (M.B.); (P.V.); (J.S.); (A.K.); (A.S.)
| | - Grigorij Mesežnikov
- Department of Infectious Diseases, University Hospital in Motol, 15006 Prague, Czech Republic;
| | - Luis Fernando Casas Mendez
- Department of Pneumology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic;
| | - Tomas Vymazal
- Department of Anesthesiology and Intensive Care Medicine, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic;
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 15006 Prague, Czech Republic; (I.Z.); (M.B.); (P.V.); (J.S.); (A.K.); (A.S.)
| |
Collapse
|
38
|
Kakizaki M, Yamamoto Y, Otsuka M, Kitamura K, Ito M, Kawai HD, Muramatsu M, Kagawa T, Kotani A. Extracellular vesicles secreted by HBV-infected cells modulate HBV persistence in hydrodynamic HBV transfection mouse model. J Biol Chem 2020; 295:12449-12460. [PMID: 32651230 DOI: 10.1074/jbc.ra120.014317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B, a viral infection that affects the liver, is thought to affect over 257 million people worldwide, and long-term infection can lead to life-threatening issues such as cirrhosis or liver cancer. Chronic hepatitis B develops by the interaction between hepatitis B virus (HBV) and host immune response. However, questions of how HBV-infected cells thwart immune system defenses remain unanswered. Extracellular vesicles (EVs) are used for cellular communication, carrying cargoes such as RNAs, proteins, and lipids and delivering them intracellularly after being endocytosed by target cells. HBV-infected liver cells secrete several types of EVs into body fluids such as complete and incomplete virions, and exosomes. We previously demonstrated that monocytes that incorporated EVs moved to immunoregulatory phenotypes via up-regulation of PD-L1, an immunocheckpoint molecule, and down-regulation of CD69, a leukocyte activation molecule. In this study, we transfected mice with HBV using hydrodynamic injection and studied the effects of EVs secreted by HBV-infected liver cells. EVs secreted from cells with HBV replication strongly suppressed the immune response, inhibiting the eradication of HBV-replicating cells in the mice transfected with HBV. EVs were systemically incorporated in multiple organs, including liver, bone marrow (BM), and intestine. Intriguingly, the BM cells that incorporated EVs acquired intestinal tropism and the dendritic cell populations in the intestine increased. These findings suggest that the EVs secreted by HBV-infected liver cells exert immunosuppressive functions, and that an association between the liver, bone marrow, and intestinal tract exists through EVs secreted from HBV-infected cells.
Collapse
Affiliation(s)
- Masatoshi Kakizaki
- Department of Innovative Medical Science, Tokai University School of Medicine, Kanagawa, Japan.,Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Kanagawa, Japan
| | - Yuichiro Yamamoto
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Kanagawa, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kouichi Kitamura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masatoshi Ito
- Support Center for Medical Research and Education, Tokai University School of Medicine, Kanagawa, Japan
| | - Hideki Derek Kawai
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Ai Kotani
- Department of Innovative Medical Science, Tokai University School of Medicine, Kanagawa, Japan .,Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Kanagawa, Japan
| |
Collapse
|
39
|
Extracellular Vesicles in Viral Infections of the Nervous System. Viruses 2020; 12:v12070700. [PMID: 32605316 PMCID: PMC7411781 DOI: 10.3390/v12070700] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Almost all types of cells release extracellular vesicles (EVs) into the extracellular space. EVs such as exosomes and microvesicles are membrane-bound vesicles ranging in size from 30 to 1000 nm in diameter. Under normal conditions, EVs mediate cell to cell as well as inter-organ communication via the shuttling of their cargoes which include RNA, DNA and proteins. Under pathological conditions, however, the number, size and content of EVs are found to be altered and have been shown to play crucial roles in disease progression. Emerging studies have demonstrated that EVs are involved in many aspects of viral infection-mediated neurodegenerative diseases. In the current review, we will describe the interactions between EV biogenesis and the release of virus particles while also reviewing the role of EVs in various viral infections, such as HIV-1, HTLV, Zika, CMV, EBV, Hepatitis B and C, JCV, and HSV-1. We will also discuss the potential uses of EVs and their cargoes as biomarkers and therapeutic vehicles for viral infections.
Collapse
|
40
|
Dogrammatzis C, Waisner H, Kalamvoki M. Cloaked Viruses and Viral Factors in Cutting Edge Exosome-Based Therapies. Front Cell Dev Biol 2020; 8:376. [PMID: 32528954 PMCID: PMC7264115 DOI: 10.3389/fcell.2020.00376] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) constitute a heterogeneous group of vesicles released by all types of cells that play a major role in intercellular communication. The field of EVs started gaining attention since it was realized that these vesicles are not waste bags, but they carry specific cargo and they communicate specific messages to recipient cells. EVs can deliver different types of RNAs, proteins, and lipids from donor to recipient cells and they can influence recipient cell functions, despite their limited capacity for cargo. EVs have been compared to viruses because of their size, cell entry pathways, and biogenesis and to viral vectors because they can be loaded with desired cargo, modified, and re-targeted. These properties along with the fact that EVs are stable in body fluids, they can be produced and purified in large quantities, they can cross the blood-brain barrier, and autologous EVs do not appear to cause major adverse effects, have rendered them attractive for therapeutic use. Here, we discuss the potential for therapeutic use of EVs derived from virus infected cells or EVs carrying viral factors. We have focused on six major concepts: (i) the role of EVs in virus-based oncolytic therapy or virus-based gene delivery approaches; (ii) the potential use of EVs for developing viral vaccines or optimizing already existing vaccines; (iii) the role of EVs in delivering RNAs and proteins in the context of viral infections and modulating the microenvironment of infection; (iv) how to take advantage of viral features to design effective means of EV targeting, uptake, and cargo packaging; (v) the potential of EVs in antiviral drug delivery; and (vi) identification of novel antiviral targets based on EV biogenesis factors hijacked by viruses for assembly and egress. It has been less than a decade since more attention was given to EV research and some interesting concepts have already been developed. In the coming years, additional information on EV biogenesis, how they are hijacked and utilized by pathogens, and their impact on the microenvironment of infection is expected to indicate avenues to optimize existing therapeutic tools and develop novel approaches.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
41
|
Wang J, Cao D, Yang J. Exosomes in Hepatitis B Virus Transmission and Related Immune Response. TOHOKU J EXP MED 2020; 252:309-320. [PMID: 33268600 DOI: 10.1620/tjem.252.309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chronicity of Hepatitis B virus (HBV) infection relates to both viral factors and host factors. HBV could result in persistent infection and even serious liver disease, including chronic hepatitis B (CHB), cirrhosis and hepatocellular carcinoma (HCC). Although the HBV vaccine can effectively prevent HBV infection, chronic HBV infection still endangers human health and results in a large social burden. Moreover, the mechanisms underlying the HBV-mediated imbalance of the immune response and persistent infection are not fully understood. Exosomes are extracellular vesicles (EVs) 40-160 nm in size that are released from many cells and transfer specific functional RNAs, proteins, lipids and viral components from donor to recipient cells. These exosome nanovesicles are associated with various biological processes, such as cellular homeostasis, immune response and cancer progression. Besides, previous studies on exosomes have shown that they take part in viral pathogenicity due to the similarity in structure and function between exosomes and enveloped viruses. Moreover, exosome as a novel immunomodulatory carrier plays a significant role in viral immunology. In this review, we focus on the latest progress in understanding the role of exosomes in HBV transmission as well as their vital roles in immune regulation during HBV infection. Furthermore, we discuss the potential clinical applications of exosomes in hepatitis B infection, including the use of exosomes in the auxiliary diagnosis and treatment of hepatitis B.
Collapse
Affiliation(s)
- Ju Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine
| | - Dan Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine
| |
Collapse
|
42
|
INDRASETIAWAN PUGUH, AOKI-UTSUBO CHIE, HANAFI MUHAMMAD, HARTATI SRI, WAHYUNI TUTIKSRI, KAMEOKA MASANORI, YANO YOSHIHIKO, HOTTA HAK, HAYASHI YOSHITAKE. Antiviral Activity of Cananga odorata Against Hepatitis B Virus. THE KOBE JOURNAL OF MEDICAL SCIENCES 2019; 65:E71-E79. [PMID: 31956259 PMCID: PMC7012192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Chronic hepatitis B virus (HBV) infection can lead to liver cirrhosis and hepatocellular carcinoma. Current therapeutic drugs for chronic hepatitis B using pegylated interferons and nucleos(t)ide analogs have limited efficacy. Therefore, the development of novel and safe antivirals is required. Natural products including medicinal plants produce complex and structurally diverse compounds, some of which offer suitable targets for antiviral screening studies. In the present study, we screened various crude extracts from Indonesian plants for anti-HBV activity by determining their effects on the production of extracellular HBV DNA in Hep38.7-Tet cells and HBV entry onto a HBV-susceptible cell line, HepG2-NTCP, with the following results: (1) In Hep38.7-Tet cells, Cananga odorata exhibited the highest anti-HBV activity with a 50% inhibitory concentration (IC50) of 56.5 µg/ml and 50% cytotoxic concentration (CC50) of 540.2 µg/ml (Selectivity Index: 9.6). (2) The treatment of HepG2-NTCP cells with Cassia fistula, C. odorata, and Melastoma malabathricum at concentrations of 100 µg/ml lowered the levels of HBsAg production to 51.2%, 58.0%, and 40.1%, respectively, compared to untreated controls, and IC50 and CC50 values of C. odorata were 142.9 µg/ml and >400 µg/ml. In conclusion, the C. odorata extract could be a good candidate for the development of anti-HBV drugs.
Collapse
Affiliation(s)
- PUGUH INDRASETIAWAN
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
- Division of Infectious Disease Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - CHIE AOKI-UTSUBO
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - MUHAMMAD HANAFI
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek, Serpong 15314, Indonesia
| | - SRI HARTATI
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek, Serpong 15314, Indonesia
| | - TUTIK SRI WAHYUNI
- Institute of Tropical Disease, Airlangga University, Jalan Mulyorejo, Surabaya 60115, Indonesia
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Jalan Dharmawangsa Dalam, Surabaya 60286, Indonesia
| | - MASANORI KAMEOKA
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - YOSHIHIKO YANO
- Division of Infectious Disease Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - HAK HOTTA
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
- Faculty of Clinical Nutrition and Dietetics, Konan Women’s University, 6-2-23 Morikita-machi, Higashinada-ku, Kobe 658-0001, Japan
| | - YOSHITAKE HAYASHI
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
- Division of Infectious Disease Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
43
|
Abstract
Extracellular vesicles (EVs) are membrane-defined nanoparticles released by most cell types. The EVs released by cells may differ quantitatively and qualitatively from physiological states to disease states. There are several unique properties of EVs, including their proteins, lipids and nucleic acid cargoes, stability in circulation, and presence in biofluids, which make them a critical vector for cell-to-cell communication and impart utility as a biomarker. EVs may also serve as a vehicle for selective cargo secretion. Similarly, EV cargo may be selectively manipulated for targeted therapeutic delivery. In this review an overview is provided on the EV classification, biogenesis, and secretion pathways, which are conserved across cell types. Next, cargo characterization and effector cell responses are discussed in the context of nonalcoholic steatohepatitis, alcoholic hepatitis, and acetaminophen-induced liver injury. The review also discusses the potential biomarker and therapeutic uses of circulating EVs.
Collapse
Affiliation(s)
- Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
44
|
Balaphas A, Meyer J, Sadoul R, Morel P, Gonelle-Gispert C, Bühler LH. Extracellular vesicles: Future diagnostic and therapeutic tools for liver disease and regeneration. Liver Int 2019; 39:1801-1817. [PMID: 31286675 DOI: 10.1111/liv.14189] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 02/13/2023]
Abstract
Extracellular vesicles are membrane fragments that can be produced by all cell types. Interactions between extracellular vesicles and various liver cells constitute an emerging field in hepatology and recent evidences have established a role for extracellular vesicles in various liver diseases and physiological processes. Extracellular vesicles originating from liver cells are implicated in intercellular communication and fluctuations of specific circulating extracellular vesicles could constitute new diagnostic tools. In contrast, extracellular vesicles derived from progenitor cells interact with hepatocytes or non-parenchymal cells, thereby protecting the liver from various injuries and promoting liver regeneration. Our review focuses on recent developments investigating the role of various types of extracellular vesicles in acute and chronic liver diseases as well as their potential use as biomarkers and therapeutic tools.
Collapse
Affiliation(s)
- Alexandre Balaphas
- Division of Digestive Surgery, University Hospitals of Geneva, Geneva, Switzerland.,Surgical Research Unit, University Hospitals of Geneva, Geneva, Switzerland.,Geneva Medical School, University Hospitals of Geneva, Geneva, Switzerland
| | - Jeremy Meyer
- Division of Digestive Surgery, University Hospitals of Geneva, Geneva, Switzerland.,Surgical Research Unit, University Hospitals of Geneva, Geneva, Switzerland.,Geneva Medical School, University Hospitals of Geneva, Geneva, Switzerland
| | - Rémy Sadoul
- Université Grenoble Alpes, Institut des Neurosciences, Grenoble, France
| | - Philippe Morel
- Division of Digestive Surgery, University Hospitals of Geneva, Geneva, Switzerland.,Surgical Research Unit, University Hospitals of Geneva, Geneva, Switzerland.,Geneva Medical School, University Hospitals of Geneva, Geneva, Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit, University Hospitals of Geneva, Geneva, Switzerland.,Geneva Medical School, University Hospitals of Geneva, Geneva, Switzerland
| | - Leo Hans Bühler
- Division of Digestive Surgery, University Hospitals of Geneva, Geneva, Switzerland.,Surgical Research Unit, University Hospitals of Geneva, Geneva, Switzerland.,Geneva Medical School, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
45
|
Schönrich G, Raftery MJ. The PD-1/PD-L1 Axis and Virus Infections: A Delicate Balance. Front Cell Infect Microbiol 2019; 9:207. [PMID: 31263684 PMCID: PMC6584848 DOI: 10.3389/fcimb.2019.00207] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
Programmed cell death protein (PD-1) and its ligands play a fundamental role in the evasion of tumor cells from antitumor immunity. Less well appreciated is the fact that the PD-1/PD-L1 axis also regulates antiviral immune responses and is therefore modulated by a number of viruses. Upregulation of PD-1 and its ligands PD-L1 and PD-L2 is observed during acute virus infection and after infection with persistent viruses including important human pathogens such as human immunodeficiency virus (HIV), hepatitis C virus (HCV), and hepatitis B virus (HBV). Experimental evidence suggests that insufficient signaling through the PD-1 pathway promotes immunopathology during acute infection by exaggerating primary T cell responses. If chronic infection is established, however, high levels of PD-1 expression can have unfavorable immunological consequences. Exhaustion and suppression of antiviral immune responses can result in viral immune evasion. The role of the PD-1/PD-L1 axis during viral infections is further complicated by evidence that PD-L1 also mediates inflammatory effects in the acute phase of an immune response. In this review, we discuss the intricate interplay between viruses and the PD-1/PD-L1 axis.
Collapse
Affiliation(s)
- Günther Schönrich
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | | |
Collapse
|
46
|
Exosomes Modulate the Viral Replication and Host Immune Responses in HBV Infection. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2103943. [PMID: 31275965 PMCID: PMC6558633 DOI: 10.1155/2019/2103943] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/21/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022]
Abstract
Although current diagnosis and treatment of hepatitis B virus (HBV) infection can maintain viral suppression, new therapies need to be invented to sustain off-treatment virologic suppression and reduce side effects. Exosomes act as intercellular communicators to facilitate direct transfer of proteins, lipids, and nucleic acids between cells in vitro and in vivo. Pioneering work has demonstrated that exosomal cargos changed markedly during HBV infection. An improved understanding of the functions of exosomes during HBV infection could lead to a powerful new strategy for preventing and treating HBV. In this review, we point out the role of exosomes in HBV infection: (1) exosomes could directly participate in HBV replication; (2) exosomes modulate immune response during HBV infections; (3) exosomal RNAs and proteins might be selected as novel biomarkers for the diagnosis of HBV infections; and (4) exosomes can also be designed as vaccines.
Collapse
|