1
|
Luo Y, Xu T, Li B, Liu F, Wu B, Dobson PS, Yin H, Chen Z, Qiu Y, Huang X. The effects of small plastic particles on antibiotic resistance gene transfer revealed by single cell and community level analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136271. [PMID: 39515144 DOI: 10.1016/j.jhazmat.2024.136271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Small plastic particles with sizes comparable to bacterial cells, widely exist in environment. However, their effects on antibiotic resistance gene (ARG) dissemination remain unclear. Using polystyrene (PS) particles (0.2 µm, 2 µm, 5 µm, 10 µm, 15 µm, 20 µm) as models, conjugative transfer of ARGs between the donor E. coli and different recipients (E. coli or sludge bacterial community) was investigated. Compared to the pure strain, the sludge bacterial community exposed to PS particles showed higher transfer frequencies (1.67 to 14.31 times the blank control). The transfer frequencies first decreased and then increased with particle size, and plastics similar in size to bacteria (e.g., 2 µm) appear to be a transitional zone with minimal impact on ARG transmission. Furthermore, using microfluidics, in-situ observation at single cell level found that 2 µm plastics can act as barriers between donor and recipient bacteria inhibiting growth, but conjugation events mostly occurred around them. Conversely, nanoplastics (e.g., 0.2 µm) and larger microplastics (e.g., 20 µm) significantly promote conjugation, mainly due to increased reactive oxygen species production and cell membrane permeability, or facilitating bacterial adhesion and biofilm formation, respectively. This study aids in assessing environmental risks of small plastic particles on ARG dissemination.
Collapse
Affiliation(s)
- Yuqiu Luo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tiansi Xu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Fan Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beibei Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Phil S Dobson
- School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Zheng Chen
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yong Qiu
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Tripathi S, Tiwari K, Mahra S, Victoria J, Rana S, Tripathi DK, Sharma S. Nanoparticles and root traits: mineral nutrition, stress tolerance and interaction with rhizosphere microbiota. PLANTA 2024; 260:34. [PMID: 38922515 DOI: 10.1007/s00425-024-04409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/07/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION This review article highlights a broader perspective of NPs and plant-root interaction by focusing on their beneficial and deleterious impacts on root system architecture (RSA). The root performs a vital function by securing itself in the soil, absorbing and transporting water and nutrients to facilitate plant growth and productivity. In dicots, the architecture of the root system (RSA) is markedly shaped by the development of the primary root and its branches, showcasing considerable adaptability in response to changes in the environment. For promoting agriculture and combating global food hunger, the use of nanoparticles (NPs) may be an exciting option, for which it is essential to understand the behaviour of plants under NPs exposure. The nature of NPs and their physicochemical characteristics play a significant role in the positive/negative response of roots and shoots. Root morphological features, such as root length, root mass and root development features, may regulated positively/negatively by different types of NPs. In addition, application of NPs may also enhance nutrient transport and soil fertility by the promotion of soil microorganisms including plant growth-promoting rhizobacteria (PGPRs) and also soil enzymes. Interestingly the interaction of nanomaterials (NMs) with rhizospheric bacteria can enhance plant development and soil health. However, some studies also suggested that the increased use of several types of engineered nanoparticles (ENPs) may disrupt the equilibrium of the soil-root interface and unsafe morphogenesis by causing the browning of roots and suppressing the growth of root and soil microbes. Thus, this review article has sought to compile a broader perspective of NPs and plant-root interaction by focusing on their beneficial or deleterious impacts on RSA.
Collapse
Affiliation(s)
- Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - J Victoria
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shweta Rana
- Departments of Physical and Natural Sciences, FLAME University, Pune, India
| | - Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India.
| |
Collapse
|
3
|
Wang C, Zhao H, Liu Y, Qu M, Lv S, He G, Liang H, Chen K, Yang L, He Y, Ou C. Neurotoxicity of manganese via ferroptosis induced by redox imbalance and iron overload. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116404. [PMID: 38705038 DOI: 10.1016/j.ecoenv.2024.116404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Manganese (Mn) is an essential trace element for maintaining bodily functions. Excessive exposure to Mn can pose serious health risks to humans and animals, particularly to the nervous system. While Mn has been implicated as a neurotoxin, the exact mechanism of its toxicity remains unclear. Ferroptosis is a form of programmed cell death that results from iron-dependent lipid peroxidation. It plays a role in various physiological and pathological cellular processes and may be closely related to Mn-induced neurotoxicity. However, the mechanism of ferroptosis in Mn-induced neurotoxicity has not been thoroughly investigated. Therefore, this study aims to investigate the role and mechanism of ferroptosis in Mn-induced neurotoxicity. Using bioinformatics, we identified significant changes in genes associated with ferroptosis in Mn-exposed animal and cellular models. We then evaluated the role of ferroptosis in Mn-induced neurotoxicity at both the animal and cellular levels. Our findings suggest that Mn exposure causes weight loss and nervous system damage in mice. In vitro and in vivo experiments have shown that exposure to Mn increases malondialdehyde, reactive oxygen species, and ferrous iron, while decreasing glutathione and adenosine triphosphate. These findings suggest that Mn exposure leads to a significant increase in lipid peroxidation and disrupts iron metabolism, resulting in oxidative stress injury and ferroptosis. Furthermore, we assessed the expression levels of proteins and mRNAs related to ferroptosis, confirming its significant involvement in Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Changyong Wang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Hongyan Zhao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Yaoyang Liu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Minghai Qu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Shanyu Lv
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Guoguo He
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Hongshuo Liang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Kemiao Chen
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Lin Yang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Yonghua He
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Chaoyan Ou
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
4
|
Nizamani MM, Hughes AC, Zhang HL, Wang Y. Revolutionizing agriculture with nanotechnology: Innovative approaches in fungal disease management and plant health monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172473. [PMID: 38615773 DOI: 10.1016/j.scitotenv.2024.172473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Nanotechnology has emerged as a transformative force in modern agriculture, offering innovative solutions to address challenges related to fungal plant diseases and overall agricultural productivity. Specifically, the antifungal activities of metal, metal oxide, bio-nanoparticles, and polymer nanoparticles were examined, highlighting their unique mechanisms of action against fungal pathogens. Nanoparticles can be used as carriers for fungicides, offering advantages in controlled release, targeted delivery, and reduced environmental toxicity. Nano-pesticides and nano-fertilizers can enhance nutrient uptake, plant health, and disease resistance were explored. The development of nanosensors, especially those utilizing quantum dots and plasmonic nanoparticles, promises early and accurate detection of fungal pathogens, a crucial step in timely disease management. However, concerns about their potential toxic effects on non-target organisms, environmental impacts, and regulatory hurdles underscore the importance of rigorous research and impact assessments. The review concludes by emphasizing the significant prospects of nanotechnology in reshaping the future of agriculture but advocates for a balanced approach that prioritizes safety, sustainability, and environmental stewardship.
Collapse
Affiliation(s)
- Mir Muhammad Nizamani
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, China
| | - Hai-Li Zhang
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Alshihri AA, Khan SU, Alissa M, Alnoud MAH, Shams Ul Hassan S, Alghamdi SA, Mushtaq RY, Albariqi AH, Almhitheef AI, Anthony S, Sheirdil RA, Murshed A. Nano guardians of the heart: A comprehensive investigation into the impact of silver nanoparticles on cardiovascular physiology. Curr Probl Cardiol 2024; 49:102542. [PMID: 38527698 DOI: 10.1016/j.cpcardiol.2024.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Globally, cardiovascular diseases (CVDs) constitute the leading cause of death at the moment. More effective treatments to combat CVDs are urgently required. Recent advances in nanotechnology have opened the door to new avenues for cardiovascular health treatment. Silver nanotechnology's inherent therapeutic powers and wide-ranging applications have made it the center of focus in recent years. This review aims to analyze the chemical, physical, and biological processes ofproducing AgNPs and determine their potential utility as theranostics. Despite significant advances, the precise mechanism by which AgNPs function in numerous biological systems remains a mystery. We hope that at the end of this review, you will better understand how AgNPs affect the cardiovascular system from the research done thus far. This endeavor thoroughly investigates the possible toxicological effects and risks associated with exposure to AgNPs. The findings shed light on novel applications of these versatile nanomaterials and point the way toward future research directions. Due to a shortage of relevant research, we will limit our attention to AgNPs as they pertain to CVDs. Future research can use this opportunity to investigate the many medical uses of AgNPs. Given their global prevalence, we fully endorse academics' efforts to prioritize nanotechnological techniques in pursuing risk factor targeting for cardiovascular diseases. The critical need for innovative solutions to this widespread health problem is underscored by the fact that this technique may help with the early diagnosis and treatment of CVDs.
Collapse
Affiliation(s)
- Abdulaziz A Alshihri
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mohammed A H Alnoud
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112; USA
| | - Syed Shams Ul Hassan
- Department of Natural product chemistry, School of Pharmacy, Shanghai Jiao Tong Unviversity, Shanghai, China
| | - Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rayan Y Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ahmed H Albariqi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Stefan Anthony
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China.
| | | | - Abduh Murshed
- Department of Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, 524000, Zhanjiang, China
| |
Collapse
|
6
|
Rijo P, Abuamara TMM, Ali Lashin LS, Kamar SA, Isca VMS, Mohammed TS, Abdrabo MSM, Amin MA, Abd El Maksoud AI, Hassan A. Glycyrrhizic Acid Nanoparticles Subside the Activity of Methicillin-Resistant Staphylococcus aureus by Suppressing PBP2a. Pharmaceuticals (Basel) 2024; 17:589. [PMID: 38794159 PMCID: PMC11123903 DOI: 10.3390/ph17050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) are classified as high-risk infections that can lead to death, particularly among older individuals. Nowadays, plant nanoparticles such as glycyrrhizic acid are recognized as efficient bactericides against a wide range of bacterial strains. Recently, scientists have shown interest in plant extract nanoparticles, derived from natural sources, which can be synthesized into nanomaterials. Interestingly, glycyrrhizic acid is rich in antioxidants as well as antibacterial agents, and it exhibits no adverse effects on normal cells. In this study, glycyrrhizic acid nanoparticles (GA-NPs) were synthesized using the hydrothermal method and characterized through physicochemical techniques such as UV-visible spectrometry, DLS, zeta potential, and TEM. The antimicrobial activity of GA-NPs was investigated through various methods, including MIC assays, anti-biofilm activity assays, ATPase activity assays, and kill-time assays. The expression levels of mecA, mecR1, blaR1, and blaZ genes were measured by quantitative RT-qPCR. Additionally, the presence of the penicillin-binding protein 2a (PBP2a) protein of S. aureus and MRSA was evaluated by a Western blot assay. The results emphasized the fabrication of GA nanoparticles in spherical shapes with a diameter in the range of 40-50 nm. The data show that GA nanoparticles exhibit great bactericidal effectiveness against S. aureus and MRSA. The treatment with GA-NPs remarkably reduces the expression levels of the mecA, mecR1, blaR1, and blaZ genes. PBP2a expression in MRSA was significantly reduced after treatment with GA-NPs. Overall, this study demonstrates that glycyrrhizic acid nanoparticles have potent antibacterial activity, particularly against MRSA. This research elucidates the inhibition mechanism of glycyrrhizic acid, which involves the suppressing of PBP2a expression. This work emphasizes the importance of utilizing plant nanoparticles as effective antimicrobial agents against a broad spectrum of bacteria.
Collapse
Affiliation(s)
- Patricia Rijo
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Tamer M. M. Abuamara
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Lashin Saad Ali Lashin
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Sherif A. Kamar
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Vera M. S. Isca
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
| | - Tahseen S. Mohammed
- Department of Public Health and Community Medicine, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt; (T.S.M.); (M.S.M.A.)
| | - Mohamed S. M. Abdrabo
- Department of Public Health and Community Medicine, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt; (T.S.M.); (M.S.M.A.)
| | - Mohamed A. Amin
- Department of Basic Medical Science, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan;
- Department of Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed I. Abd El Maksoud
- College of Biotechnology, Misr University of Science and Technology, Giza 12573, Egypt;
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| | - Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| |
Collapse
|
7
|
Miškovská A, Michailidu J, Kolouchová IJ, Barone L, Gornati R, Montali A, Tettamanti G, Berini F, Marinelli F, Masák J, Čejková A, Maťátková O. Biological activity of silver nanoparticles synthesized using viticultural waste. Microb Pathog 2024; 190:106613. [PMID: 38484919 DOI: 10.1016/j.micpath.2024.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
This research paper presents a novel approach to the green synthesis of silver nanoparticles (AgNPs) using viticultural waste, allowing to obtain NP dispersions with distinct properties and morphologies (monodisperse and polydisperse AgNPs, referred to as mAgNPs and pAgNPs) and to compare their biological activities. Our synthesis method utilized the ethanolic extract of Vitis vinifera pruning residues, resulting in the production of mAgNPs and pAgNPs with average sizes of 12 ± 5 nm and 19 ± 14 nm, respectively. Both these AgNPs preparations demonstrated an exceptional stability in terms of size distribution, which was maintained for one year. Antimicrobial testing revealed that both types of AgNPs inhibited either the growth of planktonic cells or the metabolic activity of biofilm sessile cells in Gram-negative bacteria and yeasts. No comparable activity was found towards Gram-positives. Overall, pAgNPs exhibited a higher antimicrobial efficacy compared to their monodisperse counterparts, suggesting that their size and shape may provide a broader spectrum of interactions with target cells. Both AgNP preparations showed no cytotoxicity towards a human keratinocyte cell line. Furthermore, in vivo tests using a silkworm animal model indicated the biocompatibility of the phytosynthesized AgNPs, as they had no adverse effects on insect larvae viability. These findings emphasize the potential of targeted AgNPs synthesized from viticultural waste as environmentally friendly antimicrobial agents with minimal impact on higher organisms.
Collapse
Affiliation(s)
- Anna Miškovská
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic.
| | - Jana Michailidu
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | | | - Ludovica Barone
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
| | - Jan Masák
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Alena Čejková
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Olga Maťátková
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| |
Collapse
|
8
|
Jahan I, Matpan Bekler F, Tunç A, Güven K. The Effects of Silver Nanoparticles (AgNPs) on Thermophilic Bacteria: Antibacterial, Morphological, Physiological and Biochemical Investigations. Microorganisms 2024; 12:402. [PMID: 38399806 PMCID: PMC10892981 DOI: 10.3390/microorganisms12020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/19/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Since thermophilic microorganisms are valuable sources of thermostable enzymes, it is essential to recognize the potential toxicity of silver nanoparticles used in diverse industrial sectors. Thermophilic bacteria Geobacillus vulcani 2Cx, Bacillus licheniformis 3CA, Paenibacillus macerans 3CA1, Anoxybacillus ayderensis FMB1, and Bacillus paralicheniformis FMB2-1 were selected, and their MIC and MBC values were assessed by treatment with AgNPs in a range of 62.5-1500 μg mL-1. The growth inhibition curves showed that the G. vulcani 2Cx, and B. paralicheniformis FMB2-1 strains were more sensitive to AgNPs, demonstrating a reduction in population by 71.1% and 31.7% at 62.5 μg mL-1 and by 82.9% and 72.8% at 250 μg mL-1, respectively. TEM and FT-IR analysis revealed that AgNPs caused structural damage, cytoplasmic leakage, and disruption of cellular integrity. Furthermore, cell viability showed a significant decrease alongside an increase in superoxide radical (SOR; O2-) production. β-galactosidase biosynthesis decreased to 28.8% level at 500 μg mL-1 AgNPs for G. vulcani 2Cx, 32.2% at 250 μg mL-1 for A. ayderensis FMB1, and 38.8% only at 62.5 μg mL-1, but it was completely inhibited at 500 μg mL-1 for B. licheniformis 3CA. Moreover, B. paralicheniformis FMB2-1 showed a significant decrease to 11.2% at 125 μg mL-1. This study is the first to reveal the toxic effects of AgNPs on thermophilic bacteria.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Health Care Services, Vocational School of Health Services, Mardin Artuklu University, 47100 Mardin, Türkiye;
| | - Fatma Matpan Bekler
- Department of Molecular Biology and Genetics, Faculty of Science, Dicle University, 21280 Diyarbakir, Türkiye;
| | - Ahmed Tunç
- Department of Interdisciplinary Nanotechnology, Graduate School of Natural and Applied Sciences, Dicle University, 21280 Diyarbakir, Türkiye;
| | - Kemal Güven
- Department of Molecular Biology and Genetics, Faculty of Science, Dicle University, 21280 Diyarbakir, Türkiye;
| |
Collapse
|
9
|
Samal D, Khandayataray P, Sravani M, Murthy MK. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8400-8428. [PMID: 38182947 DOI: 10.1007/s11356-023-31669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Silver nanoparticles (AgNPs) are widely used in various industries, including textiles, electronics, and biomedical fields, due to their unique optical, electronic, and antimicrobial properties. However, the extensive use of AgNPs has raised concerns about their potential ecotoxicity and adverse effects on the environment. AgNPs can enter the environment through different pathways, such as wastewater, surface runoff, and soil application and can interact with living organisms through adsorption, ingestion, and accumulation, causing toxicity and harm. The small size, high surface area-to-volume ratio, and ability to generate reactive oxygen species (ROS) make AgNPs particularly toxic. Various bioremediation strategies, such as phytoremediation, have been proposed to mitigate the toxic effects of AgNPs and minimize their impact on the environment. Further research is needed to improve these strategies and ensure their safety and efficacy in different environmental settings.
Collapse
Affiliation(s)
- Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Bhopal, Madhya Pradesh, India
| | - Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, 752057, Odisha, India
| | - Meesala Sravani
- Department of Computer Science and Engineering, GMR Institute of Technology, Rajam, 532127, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
10
|
Fan Z, Huang Y, Duan Y, Tang Z, Yang X. Effects of silver nanoparticles and various forms of silver on nitrogen removal by the denitrifier Pseudomonas stutzeri and their toxicity mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115785. [PMID: 38056119 DOI: 10.1016/j.ecoenv.2023.115785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in daily life and industry because of their excellent antibacterial properties. AgNPs can exist in wastewater in various forms, such as Ag+, Ag2SO4, Ag2CO3, Ag2S, Ag2O, and AgCl. To assess the potential environmental risk of AgNPs and various forms of Ag, their toxic effects were investigated using the common denitrifier species Pseudomonas stutzeri (P. stutzeri). The inhibitory effect of AgNPs and various forms of Ag on P. stutzeri growth and its denitrification performance occurred in a concentration-dependent manner. The denitrification efficiency of P. stutzeri decreased from 95%∼97% to 89∼95%, 74∼95%, and 56∼85% under low, medium, and high exposure doses, respectively, of AgNPs and various forms of Ag. The changes in cell membrane morphology and increases in lactate dehydrogenase (LDH) release indicated that AgNPs and various forms of Ag damaged the cell membrane of P. stutzeri. Oxidative stress caused by excessive accumulation of reactive oxygen species (ROS) increased superoxide dismutase (SOD) and catalase (CAT) activities and decreased glutathione (GSH) levels. Overall, this study will help elucidate the impact of AgNPs and their transformation products on nitrogen removal efficiency in wastewater biological treatment systems.
Collapse
Affiliation(s)
- Zengzeng Fan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yahui Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Duan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhu Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinping Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Ali HM, Karam K, Khan T, Wahab S, Ullah S, Sadiq M. Reactive oxygen species induced oxidative damage to DNA, lipids, and proteins of antibiotic-resistant bacteria by plant-based silver nanoparticles. 3 Biotech 2023; 13:414. [PMID: 38009163 PMCID: PMC10665289 DOI: 10.1007/s13205-023-03835-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/25/2023] [Indexed: 11/28/2023] Open
Abstract
This study assesses the mechanism of action of plant-based silver nanoparticles (AgNPs) against antibiotic-resistant bacteria. We compared AgNPs synthesized through Salvia moorcroftiana and Origanum vulgare extracts and their conjugates with the antibiotic Ceftriaxone for their capacity to cause oxidative damage through reactive oxygen species (ROS). We quantified ROS in the cells of two bacterial strains after treating them with all AgNP types and observed that AgNPs were most effective in K. pneumoniae as they resulted in the highest ChS1 count (44,675), while in P. aeruginosa, Cfx-AgNPs induced the highest levels of ROS with ChS1 count of 56,865. DNA analysis showed that both plant-based AgNPs (O-AgNPs = 0.192 and S-AgNPs = 0.152) were most effective in K. pneumoniae and S-AgNPs (abs = 0.174) and O-Cfx-AgNPs (abs = 0.261) in P. aeruginosa. We observed a significant increase in the levels of conjugated dienes (86.4 μM) and malondialdehyde (172.25 nM) in the bacterial strains after treatment with AgNPs, compared to the control (71.65 μM and 18.064 nM, respectively, in K. pneumoniae and P. aeruginosa). These results indicate lipid peroxidation. AgNPs also increased the levels of protein thiols (0.672 nM) compared to the control (0.441 nM) in K. pneumoniae, except for Chem-AgNPs (0.21 nM). These results suggest that plant-based AgNPs are more effective in oxidizing bacterial DNA, protein, and lipids than Chem-AgNPs. Furthermore, protein oxidation varied between AgNPs alone and AgNPs-antibiotic conjugates. The highest levels of protein thiols were found in the samples treated with O-Cfx-AgNPs (0.672 nM and 0.525 nM in K. pneumoniae and P. aeruginosa, respectively). The results demonstrated that AgNPs kill bacteria by altering bacterial macromolecules such as DNA, lipids, and proteins.
Collapse
Affiliation(s)
- Haroon Muhammad Ali
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Kashmala Karam
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Shahid Wahab
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
- School of Applied Biotechnology, College of Agriculture and Convergence Technology, Jeonbuk National University, Jeonju-si, South Korea
| | - Safi Ullah
- Department of Chemistry, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Muhammad Sadiq
- Department of Chemistry, University of Malakand, Chakdara Dir Lower, Pakistan
| |
Collapse
|
12
|
Yamini V, Shanmugam V, Rameshpathy M, Venkatraman G, Ramanathan G, Al Garalleh H, Hashmi A, Brindhadevi K, Devi Rajeswari V. Environmental effects and interaction of nanoparticles on beneficial soil and aquatic microorganisms. ENVIRONMENTAL RESEARCH 2023; 236:116776. [PMID: 37517486 DOI: 10.1016/j.envres.2023.116776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
A steadily increasing production volume of nanoparticles reflects their numerous industrial and domestic applications. These economic successes come with the potential adverse effects on natural systems that are associated with their presence in the environment. Biological activities and effects of nanoparticles are affected by their entry method together with their specificities like their size, shape, charge, area, and chemical composition. Particles can be classified as safe or dangerous depending on their specific properties. As both aquatic and terrestrial systems suffer from organic and inorganic contamination, nanoparticles remain a sink for these contaminants. Researching the sources, synthesis, fate, and toxicity of nanoparticles has advanced significantly during the last ten years. We summarise nanoparticle pathways throughout the ecosystem and their interactions with beneficial microorganisms in this research. The prevalence of nanoparticles in the ecosystem causes beneficial microorganisms to become hazardous to their cells, which prevents the synthesis of bioactive molecules from undergoing molecular modifications and diminishes the microbe population. Recently, observed concentrations in the field could support predictions of ambient concentrations based on modeling methodologies. The aim is to illustrate the beneficial and negative effects that nanoparticles have on aqueous and terrestrial ecosystems, as well as the methods utilized to reduce their toxicity.
Collapse
Affiliation(s)
- V Yamini
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Venkatkumar Shanmugam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - M Rameshpathy
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology, Dahban, Jeddah, 21361, Saudi Arabia
| | - Ahmed Hashmi
- Architectural Engineering Department, College of Engineering, University of Business and Technology - Dahban, Jeddah, 21361, Saudi Arabia
| | - Kathirvel Brindhadevi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, 140103, India.
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
13
|
Eid AM, Sayed OM, Hozayen W, Dishisha T. Mechanistic study of copper oxide, zinc oxide, cadmium oxide, and silver nanoparticles-mediated toxicity on the probiotic Lactobacillus reuteri. Drug Chem Toxicol 2023; 46:825-840. [PMID: 35930385 DOI: 10.1080/01480545.2022.2104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/07/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
The use of metal/metal oxide nanoparticles (NPs) in consumer products has increased dramatically. Accordingly, human exposure to these NPs has increased. Lactobacillus reuteri, a member of the beneficial gut microbiota, is essential for human health. In the present study, the toxic effect of three metal oxides (CuO, ZnO, and CdO) and one metal (Ag) NPs on L. reuteri were investigated in vitro. L. reuteri was susceptible to all the prepared NPs in a dose-dependent manner, visualized as an increase in the zones of inhibition and a significant reduction in the maximum specific growth rates (µmax). The minimal inhibitory concentrations were 5.8, 26, 560, and 560 µg/mL for CdO-, Ag-, ZnO-, and CuO-NPs, respectively, and the respective minimal bactericidal concentrations were 60, 70, 1500, and 1500 µg/mL. Electron microscopic examinations revealed the adsorption of the prepared NPs on L. reuteri cell surface, causing cell wall disruption and morphological changes. These changes were accompanied by significant leakage of cellular protein content by 214%, 191%, 112%, and 101% versus the untreated control when L. reuteri was treated with CdO-, Ag-, CuO-, and ZnO-NPs, respectively. NPs also induced oxidative damage, where the malondialdehyde level was significantly increased, and glutathione content was significantly decreased. Quantifying the DNA damage using comet assay showed that CuONPs had the maximum DNA tail length (8.2 px vs. 2.1 px for the control). While CdONPs showed the maximum percentage of DNA in tail (15.5% vs. 3.1%). This study provides a mechanistic evaluation of the NPs-mediated toxicity to a beneficial microorganism.
Collapse
Affiliation(s)
- Aya M Eid
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Osama M Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University Qantra, Ismailia, Egypt
| | - Walaa Hozayen
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
14
|
Qureshi AK, Farooq U, Shakeel Q, Ali S, Ashiq S, Shahzad S, Tariq M, Seleiman MF, Jamal A, Saeed MF, Manachini B. The Green Synthesis of Silver Nanoparticles from Avena fatua Extract: Antifungal Activity against Fusarium oxysporum f.sp. lycopersici. Pathogens 2023; 12:1247. [PMID: 37887762 PMCID: PMC10609796 DOI: 10.3390/pathogens12101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Using plant extracts as eco-friendly reducing and stabilizing agents for the synthesis of nanoparticles has gained significant attention in recent years. The current study explores the green synthesis of silver nanoparticles (AgNPs) using the Avena fatua extract and evaluates their antifungal activity against Fusarium oxysporum f.sp. lycopersici (Fol), a fungal plant pathogen. A green and sustainable approach was adopted to synthesize silver nanoparticles before these nanoparticles were employed for anti-fungal activity. The primary indication that AgNPs had formed was performed using UV-vis spectroscopy, where a strong peak at 425 nm indicated the effective formation of these nanoparticles. The indication of important functional groups acting as reducing and stabilizing agents was conducted using the FTIR study. Additionally, morphological studies were executed via SEM and AFM, which assisted with more effectively analyzing AgNPs. Crystalline behavior and size were estimated using powder XRD, and it was found that AgNPs were highly crystalline, and their size ranged from 5 to 25 nm. Synthesized AgNPs exhibited significant antifungal activity against Fol at a concentration of 40 ppm. Furthermore, the inhibitory index confirmed a positive correlation between increasing AgNPs concentration and exposure duration. This study suggests that the combined phytochemical mycotoxic effect of the plant extract and the smaller size of synthesized AgNPs were responsible for the highest penetrating power to inhibit Fol growth. Moreover, this study highlights the potential of using plant extracts as reducing and capping agents for the green synthesis of AgNPs with antifungal properties. The study concludes that A. fatua extract can synthesize antifungal AgNPs as a sustainable approach with robust antifungal efficacy against Fol, underscoring their promising potential for integration into plant protection strategies.
Collapse
Affiliation(s)
- Ahmad Kaleem Qureshi
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan;
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (U.F.); (S.A.)
| | - Umar Farooq
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (U.F.); (S.A.)
| | - Qaiser Shakeel
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Sajjad Ali
- Department of Entomology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Sarfraz Ashiq
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (U.F.); (S.A.)
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan;
| | - Muhammad Tariq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan, Multan 60800, Pakistan;
| | - Mahmoud F. Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Aftab Jamal
- Department of Soil and Environmental Sciences, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar 25130, Pakistan;
| | - Muhammad Farhan Saeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan;
| | - Barbara Manachini
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
15
|
Singh A, Rajput VD, Sharma R, Ghazaryan K, Minkina T. Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. ENVIRONMENTAL RESEARCH 2023; 235:116585. [PMID: 37437867 DOI: 10.1016/j.envres.2023.116585] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Salinized land is slowly spreading across the world. Reduced crop yields and quality due to salt stress threaten the ability to feed a growing population. We discussed the mechanisms behind nano-enabled antioxidant enzyme-mediated plant tolerance, such as maintaining reactive oxygen species (ROS) homeostasis, enhancing the capacity of plants to retain K+ and eliminate Na+, increasing the production of nitric oxide, involving signaling pathways, and lowering lipoxygenase activities to lessen oxidative damage to membranes. Frequently used techniques were highlighted like protecting cells from oxidative stress and keeping balance in ionic state. Salt tolerance in plants enabled by nanotechnology is also discussed, along with the potential role of physiobiochemical and molecular mechanisms. As a whole, the goal of this review is meant to aid researchers in fields as diverse as plant science and nanoscience in better-comprehending potential with novel solutions to addressing salinity issues for sustainable agriculture.
Collapse
Affiliation(s)
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | | | | | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
16
|
Abdallah Y, Nehela Y, Ogunyemi SO, Ijaz M, Ahmed T, Elashmony R, Alkhalifah DHM, Hozzein WN, Xu L, Yan C, Chen J, Li B. Bio-functionalized nickel-silica nanoparticles suppress bacterial leaf blight disease in rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1216782. [PMID: 37655220 PMCID: PMC10466215 DOI: 10.3389/fpls.2023.1216782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/12/2023] [Indexed: 09/02/2023]
Abstract
Introduction Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastative diseases that threatens rice plants worldwide. Biosynthesized nanoparticle (NP) composite compounds have attracted attention as environmentally safe materials that possess antibacterial activity that could be used in managing plant diseases. Methods During this study, a nanocomposite of two important elements, nickel and silicon, was biosynthesized using extraction of saffron stigmas (Crocus sativus L.). Characterization of obtained nickel-silicon dioxide (Ni-SiO2) nanocomposite was investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission/Scanning electron microscopy (TEM/SEM), and energy-dispersive spectrum (EDS). Antibacterial activities of the biosynthesized Ni-SiO2 nanocomposite against Xoo were tested by measuring bacterial growth, biofilm formation, and dead Xoo cells. Results and discussions The bacterial growth (OD600) and biofilm formation (OD570) of Xoo treated with distilled water (control) was found to be 1.21 and 1.11, respectively. Treatment with Ni-SiO2 NPs composite, respectively, reduced the growth and biofilm formation by 89.07% and 80.40% at 200 μg/ml. The impact of obtained Ni-SiO2 nanocomposite at a concentration of 200 μg/ml was assayed on infected rice plants. Treatment of rice seedlings with Ni-SiO2 NPs composite only had a plant height of 64.8 cm while seedlings treated with distilled water reached a height of 45.20 cm. Notably, Xoo-infected seedlings treated with Ni-SiO2 NPs composite had a plant height of 57.10 cm. Furthermore, Ni-SiO2 NPs composite sprayed on inoculated seedlings had a decrease in disease leaf area from 43.83% in non-treated infected seedlings to 13.06% in treated seedlings. The FTIR spectra of biosynthesized Ni-SiO2 nanocomposite using saffron stigma extract showed different bands at 3,406, 1,643, 1,103, 600, and 470 cm-1. No impurities were found in the synthesized composite. Spherically shaped NPs were observed by using TEM and SEM. EDS revealed that Ni-SiO2 nanoparticles (NPs) have 13.26% Ni, 29.62% Si, and 57.11% O. Xoo treated with 200 µg/ml of Ni-SiO2 NPs composite drastically increased the apoptosis of bacterial cells to 99.61% in comparison with 2.23% recorded for the control. Conclusions The application of Ni-SiO2 NPs significantly improved the vitality of rice plants and reduced the severity of BLB.
Collapse
Affiliation(s)
- Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Plant Pathology, Faculty of Agriculture, Minia University, ElMinya, Egypt
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ranya Elashmony
- Department of Plant Pathology, Faculty of Agriculture, Minia University, ElMinya, Egypt
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Padmanaban S, Pully D, Samrot AV, Gosu V, Sadasivam N, Park IK, Radhakrishnan K, Kim DK. Rising Influence of Nanotechnology in Addressing Oxidative Stress-Related Liver Disorders. Antioxidants (Basel) 2023; 12:1405. [DOI: https:/doi.org/10.3390/antiox12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Reactive oxygen species (ROS) play a significant role in the survival and decline of various biological systems. In liver-related metabolic disorders such as steatohepatitis, ROS can act as both a cause and a consequence. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are two distinct types of steatohepatitis. Recently, there has been growing interest in using medications that target ROS formation and reduce ROS levels as a therapeutic approach for oxidative stress-related liver disorders. Mammalian systems have developed various antioxidant defenses to protect against excessive ROS generation. These defenses modulate ROS through a series of reactions, limiting their potential impact. However, as the condition worsens, exogenous antioxidants become necessary to control ROS levels. Nanotechnology has emerged as a promising avenue, utilizing nanocomplex systems as efficient nano-antioxidants. These systems demonstrate enhanced delivery of antioxidants to the target site, minimizing leakage and improving targeting accuracy. Therefore, it is essential to explore the evolving field of nanotechnology as an effective means to lower ROS levels and establish efficient therapeutic interventions for oxidative stress-related liver disorders.
Collapse
Affiliation(s)
- Sathiyamoorthy Padmanaban
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Durgasruthi Pully
- Biochemistry and Biotechnology, Faculty of Science, KU Leuven, 3000 Leuven, Belgium
| | - Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
18
|
Padmanaban S, Pully D, Samrot AV, Gosu V, Sadasivam N, Park IK, Radhakrishnan K, Kim DK. Rising Influence of Nanotechnology in Addressing Oxidative Stress-Related Liver Disorders. Antioxidants (Basel) 2023; 12:1405. [PMID: 37507944 PMCID: PMC10376173 DOI: 10.3390/antiox12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Reactive oxygen species (ROS) play a significant role in the survival and decline of various biological systems. In liver-related metabolic disorders such as steatohepatitis, ROS can act as both a cause and a consequence. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are two distinct types of steatohepatitis. Recently, there has been growing interest in using medications that target ROS formation and reduce ROS levels as a therapeutic approach for oxidative stress-related liver disorders. Mammalian systems have developed various antioxidant defenses to protect against excessive ROS generation. These defenses modulate ROS through a series of reactions, limiting their potential impact. However, as the condition worsens, exogenous antioxidants become necessary to control ROS levels. Nanotechnology has emerged as a promising avenue, utilizing nanocomplex systems as efficient nano-antioxidants. These systems demonstrate enhanced delivery of antioxidants to the target site, minimizing leakage and improving targeting accuracy. Therefore, it is essential to explore the evolving field of nanotechnology as an effective means to lower ROS levels and establish efficient therapeutic interventions for oxidative stress-related liver disorders.
Collapse
Affiliation(s)
- Sathiyamoorthy Padmanaban
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Durgasruthi Pully
- Biochemistry and Biotechnology, Faculty of Science, KU Leuven, 3000 Leuven, Belgium
| | - Antony V Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
19
|
Bilardo R, Traldi F, Brennan CH, Resmini M. The Role of Crosslinker Content of Positively Charged NIPAM Nanogels on the In Vivo Toxicity in Zebrafish. Pharmaceutics 2023; 15:1900. [PMID: 37514086 PMCID: PMC10383542 DOI: 10.3390/pharmaceutics15071900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Polymeric nanogels as drug delivery systems offer great advantages, such as high encapsulation capacity and easily tailored formulations; however, data on biocompatibility are still limited. We synthesized N-isopropylacrylamide nanogels, with crosslinker content between 5 and 20 mol%, functionalized with different positively charged co-monomers, and investigated the in vivo toxicity in zebrafish. Our results show that the chemical structure of the basic unit impacts the toxicity profile depending on the degree of ionization and hydrogen bonding capability. When the degree of crosslinking of the polymer was altered, from 5 mol% to 20 mol%, the distribution of the positively charged monomer 2-tert-butylaminoethyl methacrylate was significantly altered, leading to higher surface charges for the more rigid nanogels (20 mol% crosslinker), which resulted in >80% survival rate (48 h, up to 0.5 mg/mL), while the more flexible polymers (5 mol% crosslinker) led to 0% survival rate (48 h, up to 0.5 mg/mL). These data show the importance of tailoring both chemical composition and rigidity of the formulation to minimize toxicity and demonstrate that using surface charge data to guide the design of nanogels for drug delivery may be insufficient.
Collapse
Affiliation(s)
- Roberta Bilardo
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Federico Traldi
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Marina Resmini
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
20
|
Liang C, Zhong Q, Pan L, Liu F, Li X, Yang J, Ma Y, Zhou J, Yang ST. Organic ligands regulate the environmental impacts of metal-organic frameworks on nitrogen-fixing bacterium Azotobacter vinelandii. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131373. [PMID: 37031673 DOI: 10.1016/j.jhazmat.2023.131373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Metal-organic frameworks (MOFs) are rapidly developed materials with fantastic properties and wide applications. The increasing studies highlighted the potential threats of MOF materials to the environment. Comparing to the limited species of metal elements, the organic ligands have much higher diversity, but the influence of organic ligands on the environmental impacts of MOFs has not been revealed. Herein, we synthesized three Cu-MOFs with different organic ligands, namely Cu-BDC (1,4-terephthalic acid), Cu-IM (imidazole) and Cu-TATB (2,4,6-tris(4-carboxyphenyl)- 1,3,5-triazine), and evaluated their environmental toxicity to the nitrogen-fixing bacterium Azotobacter vinelandii. Cu-BDC inhibited the bacterial growth at lower concentrations than Cu-IM and Cu-TATB. The transcriptomes suggested the changes of membrane components by Cu-MOFs, consistent with the membrane leakage and cell wall damages. Cu-MOFs inhibited the nitrogen fixation activity through energy metabolism disturbance according to Gene Ontology functional annotation of ATP binding, Ca2+Mg2+-ATPase activity and ATP content. Only Cu-IM lowered the nitrogen fixation related nif genes, and affected the ribosome, purine metabolism and oxidative phosphorylation pathways. Otherwise, Cu-BDC and Cu-TATB mainly affected the flagellar assemblies and bacterial chemotaxis pathways. Our results collectively indicated that organic ligands regulated the environmental toxicity of MOFs through different metabolism pathways.
Collapse
Affiliation(s)
- Chengzhuang Liang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qinmei Zhong
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Lejie Pan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Fangshi Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xin Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jinwei Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yusen Ma
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Junrou Zhou
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Sheng-Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
21
|
Lu C, Hei R, Song X, Fan Z, Guo D, Luo J, Ma Y. Metal oxide nanoparticles inhibit nitrogen fixation and rhizosphere colonization by inducing ROS in associative nitrogen-fixing bacteria Pseudomonas stutzeri A1501. CHEMOSPHERE 2023:139223. [PMID: 37327828 DOI: 10.1016/j.chemosphere.2023.139223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
The potential effects of engineered metal oxide nanoparticles (MONPs) on bacterial nitrogen fixation are of great concern. Herein, the impact and mechanism of the increasing-used MONPs, including TiO2, Al2O3, and ZnO nanoparticles (TiO2NP, Al2O3NP, and ZnONP, respectively), on nitrogenase activity was studied at the concentrations ranging from 0 to 10 mg L-1 using associative rhizosphere nitrogen-fixing bacteria Pseudomonas stutzeri A1501. Nitrogen fixation capacity was inhibited by MONPs in an increasing degree of TiO2NP < Al2O3NP < ZnONP. Realtime qPCR analysis showed that the expressions of nitrogenase synthesis-related genes, including nifA and nifH, were inhibited significantly when MONPs were added. MONPs could cause the explosion of intracellular ROS, and ROS not only changed the permeability of the membrane but also inhibited the expression of nifA and biofilm formation on the root surface. The repressed nifA gene could inhibit transcriptional activation of nif-specific genes, and ROS reduced the biofilm formation on the root surface which had a negative effect on resisting environmental stress. This study demonstrated that MONPs, including TiO2NP, Al2O3NP, and ZnONP, inhibited bacterial biofilm formation and nitrogen fixation in the rice rhizosphere, which might have a negative effect on the nitrogen cycle in bacteria-rice system.
Collapse
Affiliation(s)
- Chao Lu
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
| | - Ruonan Hei
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Xiuchao Song
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Zixian Fan
- GenScript Biotech, Nanjing, 210003, China
| | - Dejie Guo
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Jia Luo
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
| | - Yan Ma
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
| |
Collapse
|
22
|
Hassan A, AL-Salmi FA, Saleh MA, Sabatier JM, Alatawi FA, Alenezi MA, Albalwe FM, Meteq R. Albalawi H, Darwish DBE, Sharaf EM. Inhibition Mechanism of Methicillin-Resistant Staphylococcus aureus by Zinc Oxide Nanorods via Suppresses Penicillin-Binding Protein 2a. ACS OMEGA 2023; 8:9969-9977. [PMID: 36969461 PMCID: PMC10034842 DOI: 10.1021/acsomega.2c07142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening infections. Zinc oxide is well known as an effective antibacterial drug against many bacterial strains. We investigated the performance of zinc oxide nanorods synthesized by Albmiun as a biotemplate as an antibacterial drug in this study; the fabrication of zinc oxide nanorods was synthesized by sol-gel methods. We performed physicochemical characterization of zinc oxide nanorods by physiochemical techniques such as FTIR spectroscopy, X-ray diffraction, and TEM and investigation of their antimicrobial toxicity efficiency by MIC, ATPase activity assay, anti-biofilm activity, and kill time assays, as well as the mecA, mecR1, blaR1, blaZ, and biofilm genes (ica A, ica D, and fnb A) by using a quantitative RT-PCR assay and the penicillin-binding protein 2a (PBP2a) level of MRSA by using a Western blot. The data confirmed the fabrication of rod-shaped zinc oxide nanorods with a diameter in the range of 50 nm, which emphasized the formation of zinc oxide nanoparticles with regular shapes. The results show that zinc oxide nanorods inhibited methicillin-resistant S. aureus effectively. The MIC value was 23 μg/mL. The time kill of ZnO-NRs against MRSA was achieved after 2 h of incubation at 4MIC (92 μg/mL) and after 3 h of incubation at 2MIC (46 μg/mL), respectively. The lowest concentration of zinc oxide nanorods with over 75% biofilm killing in all strains tested was 32 μg/mL. Also, we examined the influence of the zinc oxide nanorods on MRSA by analyzing mecA, mecR1, blaR1, and blaZ by using a quantitative RT-PCR assay. The data obtained revealed that the presence of 2× MIC (46 μg/mL) of ZnO-NRs reduced the transcriptional levels of blaZ, blaR1, mecA, and mecR1 by 3.4-fold, 3.6-fold, 4-fold, and 3.8-fold, respectively. Furthermore, the gene expression of biofilm encoding genes (ica A, ica B, ica D, and fnb A) was tested using quantitative real-time reverse transcriptase-polymerase chain reaction (rt-PCR). The results showed that the presence of 2× MIC (46 μg/mL) of ZnO-NRs reduced the transcriptional levels of ica A, ica B, ica D, and fnb A. Also, the PBP2a level was markedly reduced after treatment with ZnO-NRs.
Collapse
Affiliation(s)
- Amr Hassan
- Department
of Bioinformatics, Genetic Engineering and Biotechnology Research
Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| | - Fawziah A. AL-Salmi
- Department
of Biology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Muneera A. Saleh
- Department
of Biology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Jean-Marc Sabatier
- Institute
de Neurophysiopathologie (INP), Aix-Marseille
Université, Marseille 13005, France
| | - Fuad A. Alatawi
- Department
of Biology, Faculty of Science, University
of Tabuk, Tabuk 71421, Saudi Arabia
| | | | - Fauzeya M. Albalwe
- Department
of Biology, Faculty of Science, University
of Tabuk, Tabuk 71421, Saudi Arabia
| | | | - Doaa Bahaa Eldin Darwish
- Department
of Biology, Faculty of Science, University
of Tabuk, Tabuk 71421, Saudi Arabia
- Botany Department,
Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Eman M. Sharaf
- Department
of Bacteriology, Immunology, and Mycology, Animal Health Research Institute (AHRI), Shebin El Kom 11564, Egypt
| |
Collapse
|
23
|
Oladipo AO, Lebelo SL, Msagati TAM. Nanocarrier design–function relationship: The prodigious role of properties in regulating biocompatibility for drug delivery applications. Chem Biol Interact 2023; 377:110466. [PMID: 37004951 DOI: 10.1016/j.cbi.2023.110466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The concept of drug delivery systems as a magic bullet for the delivery of bioactive compounds has emerged as a promising approach in the treatment of different diseases with significant advantages over the limitations of traditional methods. While nanocarrier-based drug delivery systems are the main advocates of drug uptake because they offer several advantages including reduced non-specific biodistribution, improved accumulation, and enhanced therapeutic efficiency; their safety and biocompatibility within cellular/tissue systems are therefore important for achieving the desired effect. The underlying power of "design-interplay chemistry" in modulating the properties and biocompatibility at the nanoscale level will direct the interaction with their immediate surrounding. Apart from improving the existing nanoparticle physicochemical properties, the balancing of the hosts' blood components interaction holds the prospect of conferring newer functions altogether. So far, this concept has been remarkable in achieving many fascinating feats in addressing many challenges in nanomedicine such as immune responses, inflammation, biospecific targeting and treatment, and so on. This review, therefore, provides a diverse account of the recent advances in the fabrication of biocompatible nano-drug delivery platforms for chemotherapeutic applications, as well as combination therapy, theragnostic, and other diseases that are of interest to scientists in the pharmaceutical industries. Thus, careful consideration of the "property of choice" would be an ideal way to realize specific functions from a set of delivery platforms. Looking ahead, there is an enormous prospect for nanoparticle properties in regulating biocompatibility.
Collapse
Affiliation(s)
- Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida, 1710, South Africa.
| | - Sogolo L Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida, 1710, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering, and Technology, University of South Africa, Private Bag X06, Florida, 1710, South Africa
| |
Collapse
|
24
|
Shabatina TI, Vernaya OI, Melnikov MY. Hybrid Nanosystems of Antibiotics with Metal Nanoparticles-Novel Antibacterial Agents. Molecules 2023; 28:molecules28041603. [PMID: 36838591 PMCID: PMC9959110 DOI: 10.3390/molecules28041603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
The appearance and increasing number of microorganisms resistant to the action of antibiotics is one of the global problems of the 21st century. Already, the duration of therapeutic treatment and mortality from infectious diseases caused by pathogenic microorganisms have increased significantly over the last few decades. Nanoscale inorganic materials (metals and metal oxides) with antimicrobial potential are a promising solution to this problem. Here we discuss possible mechanisms of pathogenic microorganisms' resistance to antibiotics, proposed mechanisms of action of inorganic nanoparticles on bacterial cells, and the possibilities and benefits of their combined use with antibacterial drugs. The prospects of using metal and metal oxide nanoparticles as carriers in targeted delivery systems for antibacterial compositions are also discussed.
Collapse
Affiliation(s)
- Tatyana I. Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Fundamental Sciences, N.E. Bauman Moscow Technical University, 105005 Moscow, Russia
- Correspondence:
| | - Olga I. Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Fundamental Sciences, N.E. Bauman Moscow Technical University, 105005 Moscow, Russia
| | - Mikhail Y. Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
25
|
Makky S, Rezk N, Abdelsattar AS, Hussein AH, Eid A, Essam K, Kamel AG, Fayez MS, Azzam M, Agwa MM, El-Shibiny A. Characterization of the biosynthesized Syzygium aromaticum-mediated silver nanoparticles and its antibacterial and antibiofilm activity in combination with bacteriophage. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
26
|
Jena B, Singh SS, Behera SK, Mishra S, Chakrabortty S, Meher D, Mulia B, Tripathy SK, Kumar R, Jeon BH, Lundborg CS, Mishra A. To decipher the phytochemical agent and mechanism for Urginea indica mediated green synthesis of Ag nanoparticles and investigation of its antibacterial activity against Methicillin-resistant Staphylococcus aureus. ENVIRONMENTAL RESEARCH 2023; 216:114700. [PMID: 36370814 DOI: 10.1016/j.envres.2022.114700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Globally, Methicillin-Resistant Staphylococcus aureus bacteraemia is one of the commonest bloodstream infections associated with clinical complications and high mortality. Thence, devising effective and targeted biogenic silver based strategies are in great demand. However, limited insights regarding the biosynthesis methodologies impedes the possible scale up and commercial potentials. We, hereby demonstrate the biosynthesis of Ag nanoparticles using the phytochemical agent extracted and purified from bulb extract of Urginea indica. The chemical structure of the phytochemical agent is investigated by various chromatographic and spectroscopic techniques and was found closely relatable to N-ethylacetamide. Ag nanoparticles synthesis by this agent was found to have a strong Surface Plasmon band at 402 nm. X-ray diffraction and transmission electron microscopy further validated the formation of Ag nanoparticles with face-centred cubic structure with a size range of 20-30 nm. The biogenic metal nanoparticles have shown potential antibacterial activity against S. aureus and MRSA (within a range of 10-50 μg/mL). The nanoparticles have also shown promising anti-biofim activity against the above mentioned strains. The nanoparticles were expected to induce ROS mediated bactericidal mechamism. Cell viability and in-vitro infection studies advocate noticeable biocompatibility and future clinical potential of the developed nanoparticles against Staphylococcus infections.
Collapse
Affiliation(s)
- Bhumika Jena
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Swati Sucharita Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Susanta Kumar Behera
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India; IMGENIX India Pvt. Ltd., Bhubaneswar, 751024, India
| | - Smrutirekha Mishra
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Sankha Chakrabortty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Dayanidhi Meher
- Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Bansidhar Mulia
- Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Suraj K Tripathy
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Ramesh Kumar
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | | | - Amrita Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India.
| |
Collapse
|
27
|
Samrot AV, Ram Singh SP, Deenadhayalan R, Rajesh VV, Padmanaban S, Radhakrishnan K. Nanoparticles, a Double-Edged Sword with Oxidant as Well as Antioxidant Properties—A Review. OXYGEN 2022; 2:591-604. [DOI: https:/doi.org/10.3390/oxygen2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
The usage of nanoparticles became inevitable in medicine and other fields when it was found that they could be administered to hosts to act as oxidants or antioxidants. These oxidative nanoparticles act as pro-oxidants and induce oxidative stress-mediated toxicity through the generation of free radicals. Some nanoparticles can act as antioxidants to scavenge these free radicals and help in maintaining normal metabolism. The oxidant and antioxidant properties of nanoparticles rely on various factors including size, shape, chemical composition, etc. These properties also help them to be taken up by cells and lead to further interaction with cell organelles/biological macromolecules, leading to either the prevention of oxidative damage, the creation of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. It is important to know the properties that make these nanoparticles act as oxidants/antioxidants and the mechanisms behind them. In this review, the roles and mechanisms of nanoparticles as oxidants and antioxidants are explained.
Collapse
|
28
|
Yeap SP, Rajendran SD, Wahab SN. The microbial‐killing Ag nanoparticles in food supply chain: How it was applied and what a consumer should know? FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Swee Pin Yeap
- Department of Chemical & Petroleum Engineering Faculty of Engineering, Technology & Built Environment, UCSI University Kuala Lumpur 56000 Malaysia
- UCSI‐Cheras Low Carbon Innovation Hub Research Consortium Kuala Lumpur Malaysia
| | - Salini Devi Rajendran
- Faculty of Social Sciences and Leisure Management Taylor's University Subang Jaya 47500 Malaysia
| | - Siti Norida Wahab
- Faculty of Business and Management Universiti Teknologi MARA Shah Alam 40450 Malaysia
| |
Collapse
|
29
|
Kim SY, Kim YJ, Lee SW, Lee EH. Interactions between bacteria and nano (micro)-sized polystyrene particles by bacterial responses and microscopy. CHEMOSPHERE 2022; 306:135584. [PMID: 35798153 DOI: 10.1016/j.chemosphere.2022.135584] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms play an important role in biogeochemical cycles, and are inevitably found associated with plastic debris. The interplay between microbes and plastics may change the characteristics of certain plastics over time and drive the environmental fate of plastics. In this study, we evaluated interactions of bacteria with nano- and microplastics. Here, polystyrene (PS) polymer particles of various diameters, specifically 60, 220, 430, 700, 1040, 1700, and 2260 nm, were used as the plastics. Escherichia coli (E. coli, gram-negative) and Bacillus sp. (gram-positive) were chosen as model bacteria. The effects of nano- and microPS particles on E. coli and Bacillus sp. cells were investigated by measuring the growth and viability of the cells in laboratory-scale flasks and their generation of reactive oxygen species (ROS) upon their exposure to these particles of 100 mg/L. The particles inhibited the growth and viability of both types of bacterial cells, but their inhibitory effects varied depending on the diameter of PS particle. The 60-nm-diameter PS particles were visually observed to enter the cells as well as accumulate on their surfaces and enhanced ROS generation of the cells. Unexpectedly, the 1040-nm-diameter PS particles, similar in size to the bacterial cells, inhibited the growth of both E. coli and Bacillus sp. cells the most. The E. coli and Bacillus sp. cells formed microPS-biofilm complex by secreting an extracellular polymeric substance (EPS) in response to their exposure to the ∼ 1-μm-diameter PS particles. A positive correlation between relative ROS levels and specific growth rates of the E. coli cells were observed with a Pearson correlation coefficient r value of 0.676 (p < 0.05).
Collapse
Affiliation(s)
- So Yoon Kim
- Department of Microbiology, Pusan National University, 2 Busandaehak-ro 63 Beon-gil, Geumjeong-gu, Busan, Republic of Korea
| | - Yong Jin Kim
- Department of Microbiology, Pusan National University, 2 Busandaehak-ro 63 Beon-gil, Geumjeong-gu, Busan, Republic of Korea
| | - Seung-Woo Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, Republic of Korea; Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, Republic of Korea
| | - Eun-Hee Lee
- Department of Microbiology, Pusan National University, 2 Busandaehak-ro 63 Beon-gil, Geumjeong-gu, Busan, Republic of Korea.
| |
Collapse
|
30
|
Tian Y, Luo J, Wang H, Zaki HEM, Yu S, Wang X, Ahmed T, Shahid MS, Yan C, Chen J, Li B. Bioinspired Green Synthesis of Silver Nanoparticles Using Three Plant Extracts and Their Antibacterial Activity against Rice Bacterial Leaf Blight Pathogen Xanthomonas oryzae pv. oryzae. PLANTS (BASEL, SWITZERLAND) 2022; 11:2892. [PMID: 36365347 PMCID: PMC9654092 DOI: 10.3390/plants11212892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 06/02/2023]
Abstract
Rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is responsible for a significant reduction in rice production. Due to the small impact on the environment, biogenic nanomaterials are regarded as a new type of antibacterial agent. In this research, three colloids of silver nanoparticles (AgNPs) were synthesized with different biological materials such as Arctium lappa fruit, Solanum melongena leaves, and Taraxacum mongolicum leaves, and called Al-AgNPs, Sm-AgNPs and Tm-AgNPs, respectively. The appearance of brown colloids and the UV-Visible spectroscopy analysis proved the successful synthesis of the three colloids of AgNPs. Moreover, FTIR and XRD analysis revealed the formation of AgNPs structure. The SEM and TEM analysis indicated that the average diameters of the three synthesized spherical AgNPs were 20.18 nm, 21.00 nm, and 40.08 nm, respectively. The three botanical AgNPs had the strongest bacteriostatic against Xoo strain C2 at 20 μg/mL with the inhibition zone of 16.5 mm, 14.5 mm, and 12.4 mm, while bacterial numbers in a liquid broth (measured by OD600) decreased by 72.10%, 68.19%, and 65.60%, respectively. Results showed that the three AgNPs could inhibit biofilm formation and swarming motility of Xoo. The ultrastructural observation showed that Al-AgNPs adhered to the surface of bacteria and broke the bacteria. Overall, the three synthetic AgNPs could be used to inhibit the pathogen Xoo of rice bacterial leaf blight.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Hui Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur 411, Oman
| | - Shanhong Yu
- Taizhou Academy of Agricultural Sciences, Taizhou 317000, China
| | - Xiao Wang
- Ningbo Jiangbei District Agricultural Technology Extension Service Station, Ningbo 315033, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-khod 123, Oman
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Double functionalized haemocompatible silver nanoparticles control cell inflammatory homeostasis. PLoS One 2022; 17:e0276296. [PMID: 36269783 PMCID: PMC9586410 DOI: 10.1371/journal.pone.0276296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Infection, trauma, and autoimmunity trigger tissue inflammation, often leading to pain and loss of function. Therefore, approaches to control inflammation based on nanotechnology principles are being developed in addition to available methods. The metal-based nanoparticles are particularly attractive due to the ease of synthesis, control over physicochemical properties, and facile surface modification with different types of molecules. Here, we report curcumin conjugated silver (Cur-Ag) nanoparticles synthesis, followed by their surface functionalization with isoniazid, tyrosine, and quercetin, leading to Cur-AgINH, Cur-AgTyr, and Cur-AgQrc nanoparticles, respectively. These nanoparticles possess radical scavenging capacity, haemocompatibility, and minimal cytotoxicity to macrophages. Furthermore, the nanoparticles inhibited the secretion of pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-α, and interleukin-1β from macrophages stimulated by lipopolysaccharide (LPS). The findings reveal that the careful design of surface corona of nanoparticles could be critical to increasing their efficacy in biomedical applications.
Collapse
|
32
|
Sharaf EM, Hassan A, AL-Salmi FA, Albalwe FM, Albalawi HMR, Darwish DB, Fayad E. Synergistic antibacterial activity of compact silver/magnetite core-shell nanoparticles core shell against Gram-negative foodborne pathogens. Front Microbiol 2022; 13:929491. [PMID: 36118244 PMCID: PMC9478199 DOI: 10.3389/fmicb.2022.929491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The development of innovative antibacterial drugs against foodborne pathogens has led to an interest in novel materials such as nanomaterials. The unique features of nanomaterial qualify it for use as an antibacterial treatment. Noble metals and metal oxide nanoparticles, such as silver and magnetite nanoparticles, have been shown to be effective antibacterial medications against a range of microorganisms. In this work, Ag@Fe3O4 -NPs were fabricated by using a wet chemical reduction and modified co-precipitation techniques. The antibacterial efficiency of the Ag/Fe3O4 core shell nanoparticles was investigated by applying various techniques, such as the Kirby–Bauer Disk Diffusion test, minimum inhibitory concentration (MIC) and bactericidal concentration (MBC), Colony Forming Unit (CFU), and kill time assay. The toxicity mechanism of Ag@Fe3O4 -NPs against Salmonella typhimurium and Escherichia coli was studied by apoptosis and reactive oxygen species (ROS) assays. The data revealed that a cubic core was surrounded by a silver shell, which indicated the regular morphology of silver magnetite core shell nanoparticles without any aggregation. Furthermore, Ag@Fe3O4 -NPs is more toxic against S. typhimurium and E. coli than Ag-NPs and Fe3O4 NPs. The MIC values for Ag/Fe3O4 NPs against S. typhimurium and E. coli were 3.1 and 5.4 μg/ml, respectively, whereas the MIC values for Ag-NPs and MNPs against S. typhimurium and E. coli were 4.1 and 8.2 μg/ml for Ag-NPs and 6.9 and 10.3 μg/ml for MNPs. The results showed the ability of Ag@Fe3O4 -NPs to induce apoptosis by generating ROS. Also, the ability of Ag@Fe3O4 -NPs to liberate free Ag+ and generate ROS via the Haber-Weiss cycle may be a plausible mechanism to explain the toxicity of Ag@Fe3O4 -NPs - NPs.
Collapse
Affiliation(s)
- Eman M. Sharaf
- Department of Bacteriology, Immunology, and Mycology, Animal Health Research Institute (AHRI), Shebin El Kom, Egypt
| | - Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt
- *Correspondence: Amr Hassan,
| | - Fawziah A. AL-Salmi
- Department of Biology, Faculty of Sciences, Taif University, Taif, Saudi Arabia
| | - Fauzeya M. Albalwe
- Department of Biology, Faculty of Science, Tabuk University, Tabuk, Saudi Arabia
| | | | - Doaa B. Darwish
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
33
|
Sharma P, Kumari R, Yadav M, Lal R. Evaluation of TiO 2 Nanoparticles Physicochemical Parameters Associated with their Antimicrobial Applications. Indian J Microbiol 2022; 62:338-350. [PMID: 35974921 PMCID: PMC9375816 DOI: 10.1007/s12088-022-01018-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) usage is increasing in everyday consumer products, hence, assessing their toxic impacts on living organisms and environment is essential. Various studies have revealed the significant role of TiO2NPs physicochemical properties on their toxicity. However, TiO2NPs are still poorly characterized with respect to their physicochemical properties, and environmental factors influencing their toxicity are either ignored or are too complex to be assessed under laboratory conditions. The outcomes of these studies are diverse and inconsistent due to lack of standard protocols. TiO2NPs toxicity also differs for in vivo and in vitro systems, which must also be considered during standardization of protocols to maintain uniformity and reproducibility of results. This review critically evaluates impact of different physicochemical parameters of TiO2NPs and other experimental conditions, employed in different laboratories in determining their toxicity towards bacteria. These important observations may be helpful in evaluation of environmental risks posed by these nanoparticles and this can further assist regulatory bodies in policymaking.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Zoology, Gargi College, University of Delhi, New Delhi, 110049 India
| | - Rekha Kumari
- Molecular Microbiology and Bioinformatics Laboratory, Department of Zoology, University of Delhi, Miranda House, Delhi, 110007 India
| | - Meena Yadav
- Department of Zoology, Maitreyi College, University of Delhi, New Delhi, India
| | - Rup Lal
- The Energy and Resources Institute, IHC Complex, Lodhi Road, New Delhi, 110003 India
| |
Collapse
|
34
|
Rezk N, Abdelsattar AS, Makky S, Hussein AH, Kamel AG, El-Shibiny A. New formula of the green synthesised Au@Ag core@shell nanoparticles using propolis extract presented high antibacterial and anticancer activity. AMB Express 2022; 12:108. [PMID: 35987838 PMCID: PMC9392670 DOI: 10.1186/s13568-022-01450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial alternatives such as nanoparticles are critically required to tackle bacterial infections, especially with the emerging threat of antibiotic resistance. Therefore, this study aimed to biosynthesize Au-Ag nanoparticles using propolis as a natural reducing agent and investigate their antibacterial activity against antibiotic-resistant Staphylococcus sciuri (S. sciuri), Pseudomonas aeruginosa (P. aeruginosa), and Salmonella enterica Typhimurium (S. enterica), besides demonstrating their anticancer activity in cancer cell lines. The biosynthesized Au@AgNPs were characterized using UV-Vis spectrophotometer, Transmission Electron Microscopy (TEM), Zeta potential, Dynamic Light Scattering (DLS), Fourier Transformation Infrared (FTIR), and Scanning Electron Microscopy (SEM). Moreover, the detection of antibacterial activity was assessed through disc diffusion, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC), time-killing curve, and detection of cell membrane integrity via SEM. As a result, the UV-Vis spectrum revealed the formation of Au@AgNPs in a single peak between 533 and 555 nm. Furthermore, FTIR analysis confirmed nanoparticles' green synthesis due to the presence of carbon functional groups. The formulated Au@AgNPs showed antibacterial activity against both Gram-positive and Gram-negative bacteria. The MIC and the MBC of P. aeruginosa and S. sciuri were 31.25 µg/mL. However, nanoparticles were more effective on S. enterica with MIC of 7.5 µg/mL and MBC of 15.6 µg/mL. Furthermore, the time-killing curve of the three model bacteria with the treatment was effective at 50 µg/mL. Besides, SEM of the tested bacteria indicated unintegrated bacterial cell membranes and damage caused by Au@AgNPs. Regarding the anticancer activity, the results indicated that the biosynthesized Au@AgNPs have a cytotoxic effect on HEPG2 cell lines. In conclusion, this research revealed that the green synthesized Au@AgNPs could be effective antibacterial agents against S. sciuri, P. aeruginosa, and S. enterica and anticancer agents against HEPG2.
Collapse
Affiliation(s)
- Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Assmaa H Hussein
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Azza G Kamel
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511, Egypt.
| |
Collapse
|
35
|
Morales Santos FJ, Piñón Castillo HA, QuinteroRamos A, Zaragoza Galán G, Duran R, Orrantia Borunda E. Comparison of catalytic activity and antimicrobial properties of palladium nanoparticles obtained by Aloe barbadensis and Glycine max extracts, and chemical synthesis. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Miškovská A, Rabochová M, Michailidu J, Masák J, Čejková A, Lorinčík J, Maťátková O. Antibiofilm activity of silver nanoparticles biosynthesized using viticultural waste. PLoS One 2022; 17:e0272844. [PMID: 35947573 PMCID: PMC9365141 DOI: 10.1371/journal.pone.0272844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Green methods have become vital for sustainable development of the scientific and commercial sphere; however, they can bring new challenges, including the need for detailed characterization and elucidation of efficacy of their products. In this study, green method of silver nanoparticles (AgNPs) production was employed using an extract from grapevine canes. The aim of the study was to contribute to the knowledge about biosynthesized AgNPs by focusing on elucidation of their antifungal efficiency based on their size and/or hypothesized synergy with bioactive substances from Vitis vinifera cane extract. The antifungal activity of AgNPs capped and stabilized with bioactive compounds was tested against the opportunistic pathogenic yeast Candida albicans. Two dispersions of nanoparticles with different morphology (characterized by SEM-in-STEM, DLS, UV-Vis, XRD, and AAS) were prepared by modification of reaction conditions suitable for economical production and their long-term stability monitored for six months was confirmed. The aims of the study included the comparison of the antifungal effect against suspension cells and biofilm of small monodisperse AgNPs with narrow size distribution and large polydisperse AgNPs. The hypothesis of synergistic interaction of biologically active molecules from V. vinifera extracts and AgNPs against both cell forms were tested. The interactions of all AgNPs dispersions with the cell surface and changes in cell morphology were imaged using SEM. All variants of AgNPs dispersions were found to be active against suspension and biofilm cells of C. albicans; nevertheless, surprisingly, larger polydisperse AgNPs were found to be more effective. Synergistic action of nanoparticles with biologically active extract compounds was proven for biofilm cells (MBIC80 20 mg/L of polydisperse AgNPs in extract), while isolated nanoparticles suspended in water were more active against suspension cells (MIC 20 mg/L of polydisperse AgNPs dispersed in water). Our results bring new insight into the economical production of AgNPs with defined characteristics, which were proven to target a specific mode of growth of significant pathogen C. albicans.
Collapse
Affiliation(s)
- Anna Miškovská
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
- * E-mail:
| | - Michaela Rabochová
- Research Centre Řež, Husinec, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Jana Michailidu
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jan Masák
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Alena Čejková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | | | - Olga Maťátková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
37
|
Tariq M, Mohammad KN, Ahmed B, Siddiqui MA, Lee J. Biological Synthesis of Silver Nanoparticles and Prospects in Plant Disease Management. Molecules 2022; 27:4754. [PMID: 35897928 PMCID: PMC9330430 DOI: 10.3390/molecules27154754] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Exploration of nanoparticles (NPs) for various biological and environmental applications has become one of the most important attributes of nanotechnology. Due to remarkable physicochemical properties, silver nanoparticles (AgNPs) are the most explored and used NPs in wide-ranging applications. Also, they have proven to be of high commercial use since they possess great chemical stability, conductivity, catalytic activity, and antimicrobial potential. Though several methods including chemical and physical methods have been devised, biological approaches using organisms such as bacteria, fungi, and plants have emerged as economical, safe, and effective alternatives for the biosynthesis of AgNPs. Recent studies highlight the potential of AgNPs in modern agricultural practices to control the growth and spread of infectious pathogenic microorganisms since the introduction of AgNPs effectively reduces plant diseases caused by a spectrum of bacteria and fungi. In this review, we highlight the biosynthesis of AgNPs and discuss their applications in plant disease management with recent examples. It is proposed that AgNPs are prospective NPs for the successful inhibition of pathogen growth and plant disease management. This review gives a better understanding of new biological approaches for AgNP synthesis and modes of their optimized applications that could contribute to sustainable agriculture.
Collapse
Affiliation(s)
- Moh Tariq
- Department of Botany, Lords University, Alwar 301028, India
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh 202002, India; (K.N.M.); (M.A.S.)
| | - Khan Nazima Mohammad
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh 202002, India; (K.N.M.); (M.A.S.)
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Mansoor A. Siddiqui
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh 202002, India; (K.N.M.); (M.A.S.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
38
|
Shabatina T, Vernaya O, Shumilkin A, Semenov A, Melnikov M. Nanoparticles of Bioactive Metals/Metal Oxides and Their Nanocomposites with Antibacterial Drugs for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3602. [PMID: 35629629 PMCID: PMC9147160 DOI: 10.3390/ma15103602] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
The increasing appearance of new strains of microorganisms resistant to the action of existing antibiotics is a modern problem that requires urgent decision. A promising potential solution is the use of nanoparticles of bioactive metals and their oxides as new antibacterial agents, since they are capable of affecting pathogenic microorganisms by mechanisms different from the mechanisms of action of antibiotics. Inorganic nanoparticles possess a wide spectrum of antibacterial activity. These particles can be easily conjugated with drug molecules and become carriers in targeted drug-delivery systems. This paper discusses the benefits and prospects of the application of nanoparticles from metals and metal oxides and their nanocomposites with antibacterial drugs.
Collapse
Affiliation(s)
- Tatyana Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
- Department of Natural Sciences, N.E. Bauman Moscow State Technical University, Moscow 105005, Russia
| | - Olga Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| | - Aleksei Shumilkin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| | - Alexander Semenov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
- Department of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| |
Collapse
|
39
|
Sasmita Mishra, Nathsarma SK, Mishra KG, Paramguru RK. Antimicrobial Activity of Silver Nanoparticles on Pseudomonas aeruginosa: Influence of Particle Size Controlled through Mixed Current. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2022. [DOI: 10.3103/s1068375522020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Lau ZL, Low SS, Ezeigwe ER, Chew KW, Chai WS, Bhatnagar A, Yap YJ, Show PL. A review on the diverse interactions between microalgae and nanomaterials: Growth variation, photosynthetic performance and toxicity. BIORESOURCE TECHNOLOGY 2022; 351:127048. [PMID: 35337989 DOI: 10.1016/j.biortech.2022.127048] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/09/2023]
Abstract
Vast improvements in nanotechnology have led to the wide usage of nanomaterials (NMs) in daily products. This study reviews the interactions between NMs and microalgae in terms of impacts on growth and photosynthetic efficiency, and their toxicity on microalgae. All types of NMs such as carbon-based NMs (CNMs), metal oxide-based NMs (MONMs) and noble metal-based NMs (NMNMs) improve microalgal growth and photosynthetic efficiency at low concentration, typically ranging between 1 and 15 mg/L depending on the type of NMs, due to hormetic responses by microalgae. Higher concentrations of NMs have been found to reduce photosynthetic efficiency and subsequent growth inhibition of microalgae. MONMs-microalgae and NMNMs-microalgae interactions focus on membrane alteration, whereas carbon-based NMs-microalgae focus more on shading effect. The toxicity of each type of NMs on microalgae is in the order rGO > GO > MG > CNT for carbon-based NMs, ZnO > TiO2 > CuO > Fe2O3 for MONMs and Ag > Au > Pt for NMNMs. Incorporation of NMs in microalgae are seen to have promising future on producing higher microalgae yield with increased economic efficiency.
Collapse
Affiliation(s)
- Zhi Lin Lau
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sze Shin Low
- Research Centre of Life Science and Healthcare, China Beacons Institute, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, Zhejiang, PR China
| | - Ejikeme Raphael Ezeigwe
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, PR China; Zhaoqing Leoch Battery Technology Co. Ltd., 518000 Guangdong, PR China
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Wai Siong Chai
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, Guangdong, PR China; School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Yee Jiun Yap
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
41
|
Metryka O, Wasilkowski D, Mrozik A. Evaluation of the Effects of Ag, Cu, ZnO and TiO 2 Nanoparticles on the Expression Level of Oxidative Stress-Related Genes and the Activity of Antioxidant Enzymes in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. Int J Mol Sci 2022; 23:4966. [PMID: 35563357 PMCID: PMC9103769 DOI: 10.3390/ijms23094966] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022] Open
Abstract
Although the molecular response of bacteria exposed to metal nanoparticles (NPs) is intensively studied, many phenomena related to their survival, metal uptake, gene expression and protein production are not fully understood. Therefore, this work aimed to study Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs-induced alterations in the expression level of selected oxidative stress-related genes in connection with the activity of antioxidant enzymes: catalase (CAT), peroxidase (PER) and superoxide dismutase (SOD) in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. The methodology used included: the extraction of total RNA and cDNA synthesis, the preparation of primers for selected housekeeping and oxidative stress genes, RT-qPCR reaction and the measurements of CAT, PER and SOD activities. It was established that the treatment of E. coli and S. epidermidis with NPs resulted mainly in the down-regulation of targeted genes, whilst the up-regulation of genes was confirmed in B. cereus. The greatest differences in the relative expression levels of tested genes occurred in B. cereus and S. epidermidis treated with TiO2-NPs, while in E. coli, they were observed under ZnO-NPs exposure. The changes found were mostly related to the expression of genes encoding proteins with PER and CAT-like activity. Among NPs, ZnO-NPs and Cu-NPs increased the activity of antioxidants in E. coli and B. cereus. In turn, TiO2-NPs had a major effect on enzymes activity in S. epidermidis. Considering all of the collected results for tested bacteria, it can be emphasised that the impact of NPs on the antioxidant system functioning was dependent on their type and concentration.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| |
Collapse
|
42
|
Al-Otibi F, Alfuzan SA, Alharbi RI, Al-Askar AA, AL-Otaibi RM, Al Subaie HF, Moubayed NM. Comparative study of antifungal activity of two preparations of green silver nanoparticles from Portulaca oleracea extract. Saudi J Biol Sci 2022; 29:2772-2781. [PMID: 35531187 PMCID: PMC9073049 DOI: 10.1016/j.sjbs.2021.12.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/07/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022] Open
Abstract
The green silver nanoparticles (green AgNPs) exhibit an exceptional antimicrobial property against different microbes, including bacteria and fungi. The current study aimed to compare the antifungal activities of both the crude aqueous extract of Portulaca oleracea or different preparations of green AgNPs biosynthesized by mixing that aqueous extract with silver nitrate (AgNO3). Two preparations of the green AgNPs were synthesized either by mixing the aqueous extract of P. oleracea with silver nitrate (AgNO3) (normal AgNPs) or either irradiation of the AgNPs, previously prepared, under 60Co γ-ray using chitosan (gamma-irradiated AgNPs). Characterization of different AgNPs were tested by Zeta potential analyzer, Ultraviolet (UV) Visible Spectroscopy, and Fourier-Transform Infrared (FTIR) spectrometry. Three different plant pathogenic fungi were tested, Curvularia spicifera, Macrophomina phaseolina, and Bipolaris sp. The antifungal activities were evaluated by Transmission Electron Microscope (TEM) for either the crude aqueous extract of P. oleracea at three doses (25%, 50%, and 100%) or the newly biosynthesized AgNPs, normal or gamma-irradiated. With a few exceptions, the comparative analysis revealed that the irradiated green AgNPs at all three concentrations showed a relatively stronger antifungal effect than the normal AgNPs against all the three selected fungal strains. UV-visible spectroscopy of both preparations showed surface plasmon resonance at 421 nm. TEM results showed that both AgNPs were aggregated and characterized by a unique spherical shape, however, the gamma-irradiated AgNPs were smaller than the non-irradiated AgNPs (0.007-0.026 µM vs. 0.009-0.086 µM). TEM photographs of the fungal strains treated with the two AgNPs preparations showed flaccid structures, condensed hyphae, and shrunken surface compared with control cells. The data suggested that the biosynthesized P. oleracea AgNPs have antifungal properties against C. spicifera, M. phaseolina, and Bipolaris sp. These AgNPs may be considered a fungicide to protect different plants against phytopathogenic fungi.
Collapse
Affiliation(s)
- Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Shahad A. Alfuzan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Raedah I. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Rana M. AL-Otaibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Hajar F. Al Subaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Nadine M.S. Moubayed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
43
|
Zhang J, Wang F, Yalamarty SSK, Filipczak N, Jin Y, Li X. Nano Silver-Induced Toxicity and Associated Mechanisms. Int J Nanomedicine 2022; 17:1851-1864. [PMID: 35502235 PMCID: PMC9056105 DOI: 10.2147/ijn.s355131] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
Nano silver is one of the most widely used engineering nanomaterials with antimicrobial activity against bacteria, fungi, and viruses. However, the widespread application of nano silver preparations in daily life raises concerns about public health. Although several review articles have described the toxicity of nano silver to specific major organs, an updated comprehensive review that clearly and systematically outlines the harmful effects of nano silver is lacking. This review begins with the routes of exposure to nano silver and its distribution in vivo. The toxic reactions are then discussed on three levels, from the organ to the cellular and subcellular levels. This review also provides new insights on adjusting the toxicity of nano silver by changing their size and surface functionalization and their combination with other materials to form a composite formulation. Finally, future development, challenges, and research directions are discussed.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, People’s Republic of China
| | - Fang Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, People’s Republic of China
| | | | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, 02115, USA
| | - Yi Jin
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, People’s Republic of China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, People’s Republic of China
- Correspondence: Xiang Li, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China, Email
| |
Collapse
|
44
|
Particularities of Fungicides and Factors Affecting Their Fate and Removal Efficacy: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14074056] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic fungicide use has increased over the last decades, despite the susceptibility of resistance development and the side effects to human health and the environment. Although herbicides and insecticides are detected more frequently in environmental samples, there are many fungicides that have the ability to enter water bodies due to their physicochemical properties and their increasing use. Key factors affecting fungicide fate in the environment have been discussed, including the non-target effects of fungicides. For instance, fungicides are associated with the steep decline in bumblebee populations. Secondary actions of certain fungicides on plants have also been reported recently. In addition, the use of alternative eco-friendly disease management approaches has been described. Constructed Wetlands (CWs) comprise an environmentally friendly, low cost, and efficient fungicide remediation technique. Fungicide removal within CWs is dependent on plant uptake and metabolism, absorption in porous media and soil, hydrolysis, photodegradation, and biodegradation. Factors related to the efficacy of CWs on the removal of fungicides, such as the type of CW, plant species, and the physicochemical parameters of fungicides, are also discussed in this paper. There are low-environmental-risk fungicides, phytohormones and other compounds, which could improve the removal performance of CW vegetation. In addition, specific parameters such as the multiple modes of action of fungicides, side effects on substrate microbial communities and endophytes, and plant physiological response were also studied. Prospects and challenges for future research are suggested under the prism of reducing the risk related to fungicides and enhancing CW performance.
Collapse
|
45
|
Temerdashev ZA, Galitskaya OA, Bol’shov MA, Romanovskii KA. Determination of Sizes of Silver Nanoparticles in an Aqueous Dispersions by Single Particle Inductively Coupled Plasma Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822010130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Yonathan K, Mann R, Mahbub KR, Gunawan C. The impact of silver nanoparticles on microbial communities and antibiotic resistance determinants in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118506. [PMID: 34793904 DOI: 10.1016/j.envpol.2021.118506] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/14/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Nanosilver (NAg) is currently one of the major alternative antimicrobials to control microorganisms. With its broad-spectrum efficacy and lucrative commercial values, NAg has been used in medical devices and increasingly, in consumer products and appliances. This widespread use has inevitably led to the release and accumulation of the nanoparticle in water and sediment, in soil and even, wastewater treatment plants (WWTPs). This Article describes the physical and chemical transformations of NAg as well as the impact of the nanoparticle on microbial communities in different environmental settings; how the nanoparticle shifts not only the diversity and abundance of microbes, including those that are important in nitrogen cycles and decomposition of organic matters, but also their associated genes and in turn, the key metabolic processes. Current findings on the microbiological activity of the leached soluble silver, solid silver particulates and their respective transformed products, which underpin the mechanism of the nanoparticle toxicity in environmental microbes, is critically discussed. The Article also addresses the emerging evidence of silver-driven co-selection of antibiotic resistance determinants. The mechanism has been linked to the increasing pools of many antibiotic resistance genes already detected in samples from different environmental settings, which could ultimately find their ways to animals and human. The realized ecological impact of NAg calls for more judicial use of the nanoparticle. The generated knowledge can inform strategies for a better 'risks versus benefits' assessment of NAg applications, including the disposal stage.
Collapse
Affiliation(s)
- Kevin Yonathan
- iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Riti Mann
- iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Khandaker Rayhan Mahbub
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; South Australian Research and Development Institute, Primary Industries and Regions SA, Urrbrae, SA 5064, Australia
| | - Cindy Gunawan
- iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; School of Chemical Engineering, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
47
|
Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol Adv 2022; 58:107905. [DOI: 10.1016/j.biotechadv.2022.107905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
|
48
|
Palanisamy S, Subramanian K, Bennet LG, Ambrose J, Gopalakrishnan A, Babu S, Rajamani R, Jha NK, Pandit S, Singh SK, Dua K, Gupta PK. Synthesis and characterization of PCU@C-Ag/AgCl nanoparticles as an antimicrobial material for respiratory tract infection. NANOFABRICATION 2021. [DOI: 10.1515/nanofab-2020-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The pregnant cow urine (PCU) is an active source of antimicrobial agents that is used for fabricating chitosan coated Ag/AgCl nanoparticles (NPs) in the present study. These PCU@C-Ag/AgCl NPs were physicochemically characterized and evaluated for antimicrobial activity against selected respiratory tract infection (RTI) pathogens. The absorption band around 420 nm in UV-Visible spectrum indicated the presence of Ag NPs. The spherical shape of NPs was observed using TEM. Also, the crystalline structure was confirmed using the XRD pattern. The PCU@C-Ag/AgCl NPs showed strong antimicrobial activity against all tested RTI pathogens. In addition, FESEM analysis showed morphological changes in RTI bacterial pathogens. Thereby, PCU@C-Ag/AgCl NPs may be used as an antimicrobial material to treat RTIs in near future at clinical level.
Collapse
Affiliation(s)
- Senthilkumar Palanisamy
- Department of Biotechnology , Nehru Arts and Science College , Coimbatore – , Tamil Nadu , India
| | - Kalaivani Subramanian
- Department of Biotechnology , Kongunadu Arts and Science College , Coimbatore – , Tamil Nadu , India
| | - Lerince Godrina Bennet
- Department of Biotechnology , Kongunadu Arts and Science College , Coimbatore – , Tamil Nadu , India
| | - Janani Ambrose
- Department of Biotechnology , Kongunadu Arts and Science College , Coimbatore – , Tamil Nadu , India
| | - Aganiya Gopalakrishnan
- Department of Biotechnology , Kongunadu Arts and Science College , Coimbatore – , Tamil Nadu , India
| | - Sudhagar Babu
- Structural Biology Laboratory , Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS) , Bangalore – , Karnataka , India
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET) , Sharda University, Knowledge Park III , Greater Noida – 201310 , Uttar Pradesh , India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research (SBSR) , Sharda University, Knowledge Park III , Greater Noida – 201310 , Uttar Pradesh , India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences , Lovely Professional University , Phagwara – 144411 , Punjab , India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health , University of Technology Sydney , NSW 2007 , Australia ; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine , University of Technology Sydney , Ultimo, 2007 New South Wales , Australia
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research (SBSR) , Sharda University, Knowledge Park III , Greater Noida – 201310 , Uttar Pradesh , India ;
| |
Collapse
|
49
|
Khan ST, Adil SF, Shaik MR, Alkhathlan HZ, Khan M, Khan M. Engineered Nanomaterials in Soil: Their Impact on Soil Microbiome and Plant Health. PLANTS (BASEL, SWITZERLAND) 2021; 11:109. [PMID: 35009112 PMCID: PMC8747355 DOI: 10.3390/plants11010109] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 05/27/2023]
Abstract
A staggering number of nanomaterials-based products are being engineered and produced commercially. Many of these engineered nanomaterials (ENMs) are finally disposed into the soil through various routes in enormous quantities. Nanomaterials are also being specially tailored for their use in agriculture as nano-fertilizers, nano-pesticides, and nano-based biosensors, which is leading to their accumulation in the soil. The presence of ENMs considerably affects the soil microbiome, including the abundance and diversity of microbes. In addition, they also influence crucial microbial processes, such as nitrogen fixation, mineralization, and plant growth promoting activities. ENMs conduct in soil is typically dependent on various properties of ENMs and soil. Among nanoparticles, silver and zinc oxide have been extensively prepared and studied owing to their excellent industrial properties and well-known antimicrobial activities. Therefore, at this stage, it is imperative to understand how these ENMs influence the soil microbiome and related processes. These investigations will provide necessary information to regulate the applications of ENMs for sustainable agriculture and may help in increasing agrarian production. Therefore, this review discusses several such issues.
Collapse
Affiliation(s)
- Shams Tabrez Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 2002002, UP, India
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| | - Hamad Z. Alkhathlan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| | - Merajuddin Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| |
Collapse
|
50
|
Sharma P, Goyal D, Baranwal M, Chudasama B. Oxidative Stress Induced Cytotoxicity of Colloidal Copper Nanoparticles on RAW 264.7 Macrophage Cell Line. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5066-5074. [PMID: 33875092 DOI: 10.1166/jnn.2021.19365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Copper is an essential trace mineral that plays an important role in various physiological processes of human body and also possesses excellent antimicrobial properties, however its high dose results in the formation of free-radicals, which can induce cytotoxicity through chromosomal and DNA damage. Therefore, cytotoxicity of colloidal copper nanoparticles (CuNPs) on murine macrophage cell line (RAW 264.7) was studied to understand the correlation between the cytotoxicity and the nanoparticle yield. Three identical sets of CuNPs with similar physical properties having hydrodynamic particle size of 11-14 nm were prepared by chemical reduction method with target yield of 0.2 g, 0.3 g and 0.4 g. CuNPs exhibited dose-dependent (0.001-100 μg/mL) cytotoxicity due to the mitochondrial damage as indicated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) assay. Oxidative stress induced by reactive oxygen species (ROS) in RAW 246.7 macrophage cell lines exposed to CuNPs was the primary cause of observed cytotoxicity in all CuNPs test samples. Morphological changes in cells also indicated strong dose-dependent oxidative damage by CuNPs. IC50 (half maximal inhibitory concentration) values of CuNPs were independent of nanoparticle yield. This suggests that per batch variation in CuNPs yield from 0.2 g to 0.4 g had no negative correlation with their toxicity that makes CuNPs a potential candidate for further development of nanotherapeutics and anticancer drugs.
Collapse
Affiliation(s)
- Purnima Sharma
- Department Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Dinesh Goyal
- Department Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Manoj Baranwal
- Department Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Bhupendra Chudasama
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala 147004, India
| |
Collapse
|