1
|
Chatterjee P, Spalinger MR, Acevedo C, Gries CM, Manz SM, Canale V, Santos AN, Shawki A, Sayoc-Becerra A, Lei H, Crawford MS, Eckmann L, Borneman J, McCole DF. Intestinal Epithelial PTPN2 Limits Pathobiont Colonization by Immune-Directed Antimicrobial Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614848. [PMID: 39386684 PMCID: PMC11463449 DOI: 10.1101/2024.09.24.614848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Background and Aims Loss of activity of the inflammatory bowel disease (IBD) susceptibility gene, protein tyrosine phosphatase non-receptor type 2 (PTPN2), is associated with altered microbiome composition in both human subjects and mice. Further, expansion of the bacterial pathobiont, adherent-invasive E. coli (AIEC), is strongly linked to IBD pathogenesis. The mechanism by which intestinal epithelial cells (IEC) maintain equilibrium between commensal microbiota and immune cells to restrict invading pathobionts is poorly understood. Here, we investigated the role of IEC-specific PTPN2 in regulating AIEC colonization. Methods Tamoxifen-inducible, intestinal epithelial cell-specific Ptpn2 knockout mice (Ptpn2 ΔIEC) and control Ptpn2 fl/fl mice were infected with either non-invasive E. coli K12, or fluorescent-tagged mAIEC (mAIECred) for four consecutive days or administered PBS. Subsequently, bacterial colonization in mouse tissues was quantified. mRNA and protein expression were assayed in intestinal epithelial cells (IECs) or whole tissue lysates by PCR and Western blot. Tissue cytokine expression was determined by ELISA. Intestinal barrier function was determined by in vivo administration of 4 kDa FITC-dextran (FD4) or 70kDa Rhodamine-B dextran (RD70) fluorescent probes. Confocal microscopy was used to determine the localization of tight-junction proteins. Results Ptpn2 ΔIEC mice exhibited increased mAIECred - but not K12 - bacterial load in the distal colon compared to infected Ptpn2 fl/fl mice. The higher susceptibility to mAIECred infection was associated with altered levels of antimicrobial peptide (AMPs). Ileal RNA expression of the alpha-defensin AMPs, Defa5 and Defa6, as well as MMP7, was significantly lower in Ptpn2 ΔIEC vs. Ptpn2 fl/fl mice, after mAIECred but not K12 infection. Further, we observed increased tight junction-regulated permeability determined by elevated in vivo FD4 but not RD70 permeability in Ptpn2 ΔIEC-K12 mice compared to their respective controls. This effect was further exacerbated in Ptpn2 ΔIEC mAIEC-infected mice. Further, Ptpn2 ΔIEC mice displayed lower IL-22, IL-6, IL-17A cytokine expression post mAIEC infection compared to Ptpn2 fl/fl controls. Recombinant IL-22 reversed the FD4 permeability defect and reduced bacterial burden in Ptpn2 ΔIEC mice post mAIEC challenge. Conclusion Our findings highlight that intestinal epithelial PTPN2 is crucial for mucosal immunity and gut homeostasis by promoting anti-bacterial defense mechanisms involving coordinated epithelial-immune responses to restrict pathobiont colonization.
Collapse
Affiliation(s)
- Pritha Chatterjee
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Marianne R. Spalinger
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Charly Acevedo
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Casey M. Gries
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Salomon M. Manz
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Vinicius Canale
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Alina N. Santos
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Ali Shawki
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Anica Sayoc-Becerra
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Hillmin Lei
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Meli’sa S. Crawford
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Lars Eckmann
- Division of Gastroenterology, University of California, San Diego, La Jolla, California
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California
| | - Declan F. McCole
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| |
Collapse
|
2
|
Rocha CM, Kawamoto D, Martins FH, Bueno MR, Ishikawa KH, Ando-Suguimoto ES, Carlucci AR, Arroteia LS, Casarin RV, Saraiva L, Simionato MRL, Mayer MPA. Experimental Inoculation of Aggregatibacter actinomycetemcomitans and Streptococcus gordonii and Its Impact on Alveolar Bone Loss and Oral and Gut Microbiomes. Int J Mol Sci 2024; 25:8090. [PMID: 39125663 PMCID: PMC11312116 DOI: 10.3390/ijms25158090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 08/12/2024] Open
Abstract
Oral bacteria are implicated not only in oral diseases but also in gut dysbiosis and inflammatory conditions throughout the body. The periodontal pathogen Aggregatibacter actinomycetemcomitans (Aa) often occurs in complex oral biofilms with Streptococcus gordonii (Sg), and this interaction might influence the pathogenic potential of this pathogen. This study aims to assess the impact of oral inoculation with Aa, Sg, and their association (Aa+Sg) on alveolar bone loss, oral microbiome, and their potential effects on intestinal health in a murine model. Sg and/or Aa were orally administered to C57Bl/6 mice, three times per week, for 4 weeks. Aa was also injected into the gingiva three times during the initial experimental week. After 30 days, alveolar bone loss, expression of genes related to inflammation and mucosal permeability in the intestine, serum LPS levels, and the composition of oral and intestinal microbiomes were determined. Alveolar bone resorption was detected in Aa, Sg, and Aa+Sg groups, although Aa bone levels did not differ from that of the SHAM-inoculated group. Il-1β expression was upregulated in the Aa group relative to the other infected groups, while Il-6 expression was downregulated in infected groups. Aa or Sg downregulated the expression of tight junction genes Cldn 1, Cldn 2, Ocdn, and Zo-1 whereas infection with Aa+Sg led to their upregulation, except for Cldn 1. Aa was detected in the oral biofilm of the Aa+Sg group but not in the gut. Infections altered oral and gut microbiomes. The oral biofilm of the Aa group showed increased abundance of Gammaproteobacteria, Enterobacterales, and Alloprevotella, while Sg administration enhanced the abundance of Alloprevotella and Rothia. The gut microbiome of infected groups showed reduced abundance of Erysipelotrichaceae. Infection with Aa or Sg disrupts both oral and gut microbiomes, impacting oral and gut homeostasis. While the combination of Aa with Sg promotes Aa survival in the oral cavity, it mitigates the adverse effects of Aa in the gut, suggesting a beneficial role of Sg associations in gut health.
Collapse
Affiliation(s)
- Catarina Medeiros Rocha
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Fernando Henrique Martins
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Manuela Rocha Bueno
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Division of Periodontics, Faculdade São Leopoldo Mandic, São Leopoldo Mandic Research Institute, Campinas 13045-755, SP, Brazil
| | - Karin H. Ishikawa
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Ellen Sayuri Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Aline Ramos Carlucci
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Leticia Sandoli Arroteia
- Department of Prosthesis and Periodontology, School of Dentistry, University of Campinas, Campinas 13083-875, SP, Brazil; (L.S.A.); (R.V.C.)
| | - Renato V. Casarin
- Department of Prosthesis and Periodontology, School of Dentistry, University of Campinas, Campinas 13083-875, SP, Brazil; (L.S.A.); (R.V.C.)
| | - Luciana Saraiva
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Maria Regina Lorenzetti Simionato
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
3
|
Bosselaar S, Dhelin L, Dautel E, Titecat M, Duthoy S, Stelmaszczyk M, Delory N, De Sousa Violante M, Machuron F, Ait-Abderrahim H, Desreumaux P, Foligné B, Monnet C. Taxonomic and phenotypic analysis of bifidobacteria isolated from IBD patients as potential probiotic strains. BMC Microbiol 2024; 24:233. [PMID: 38951788 PMCID: PMC11218132 DOI: 10.1186/s12866-024-03368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Inflammatory Bowel Diseases (IBD) are a major public health issue with unclear aetiology. Changes in the composition and functionality of the intestinal microbiota are associated with these pathologies, including the depletion of strict anaerobes such as Feacalibacterium prausnitzii. Less evidence is observed for depletion in other anaerobes, among which bifidobacteria. This study characterized the taxonomic and functional diversity of bifidobacteria isolated from the human intestinal microbiota in active and non-active IBD patients by a culturomics approach and evaluated if these bifidobacteria might be used as probiotics for gut health. RESULTS A total of 341 bifidobacteria were isolated from the intestinal microbiota of IBD patients (52 Crohn's disease and 26 ulcerative colitis patients), with a high proportion of Bifidobacterium dentium strains (28% of isolated bifidobacteria). In ulcerative colitis, the major species identified was B. dentium (39% of isolated bifidobacteria), in active and non-active ulcerative colitis. In Crohn's disease, B. adolescentis was the major species isolated from non-active patients (40%), while similar amounts of B. dentium and B. adolescentis were found in active Crohn's disease patients. The relative abundance of B. dentium was increased with age, both in Crohn's disease and ulcerative colitis and active and non-active IBD patients. Antibacterial capacities of bifidobacteria isolated from non-active ulcerative colitis against Escherichia coli LF82 and Salmonella enterica ATCC 14028 were observed more often compared to strains isolated from active ulcerative colitis. Finally, B. longum were retained as strains with the highest probiotic potential as they were the major strains presenting exopolysaccharide synthesis, antibacterial activity, and anti-inflammatory capacities. Antimicrobial activity and EPS synthesis were further correlated to the presence of antimicrobial and EPS gene clusters by in silico analysis. CONCLUSIONS Different bifidobacterial taxonomic profiles were identified in the microbiota of IBD patients. The most abundant species were B. dentium, mainly associated to the microbiota of ulcerative colitis patients and B. adolescentis, in the intestinal microbiota of Crohn's disease patients. Additionally, the relative abundance of B. dentium significantly increased with age. Furthermore, this study evidenced that bifidobacteria with probiotic potential (antipathogenic activity, exopolysaccharide production and anti-inflammatory activity), especially B. longum strains, can be isolated from the intestinal microbiota of both active and non-active Crohn's disease and ulcerative colitis patients.
Collapse
Affiliation(s)
- Sabine Bosselaar
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France.
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France.
| | - Lucile Dhelin
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Ellena Dautel
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Marie Titecat
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Stéphanie Duthoy
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Marie Stelmaszczyk
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Nathan Delory
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Madeleine De Sousa Violante
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - François Machuron
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Hassina Ait-Abderrahim
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Pierre Desreumaux
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
- Department of Hepato-Gastroenterology, Lille University Hospital, 59037, Lille, France
| | - Benoit Foligné
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Céline Monnet
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| |
Collapse
|
4
|
Heidari A, Emami MH, Maghool F, Mohammadzadeh S, Kadkhodaei Elyaderani P, Safari T, Fahim A, Kamali Dolatabadi R. Molecular epidemiology, antibiotic resistance profile and frequency of integron 1 and 2 in adherent-invasive Escherichia coli isolates of colorectal cancer patients. Front Microbiol 2024; 15:1366719. [PMID: 38939191 PMCID: PMC11208319 DOI: 10.3389/fmicb.2024.1366719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
This study explores the prevalence of adherent-invasive Escherichia coli (AIEC) in colorectal cancer (CRC) patients and investigates the potential of effective intracellular antibiotics as a therapeutic strategy for CRC patients with AIEC infections. Considering the pivotal role of integrons in bacterial antibiotic resistance, the frequency of class 1 and 2 integrons in AIEC isolated from CRC patients, in one of the referenced 3 gastroenterology clinics in Isfahan, Iran was examined. AIEC strains were isolated from the colorectal biopsies and their antimicrobial sensitivity was assessed using the disc diffusion method. Polymerase chain reaction (PCR) was employed to detect intl1 and intl2. The multilocus sequence typing (MLST) method was utilized to type 10 selected isolates. Of the 150 samples, 24 were identified as AIEC, with the highest number isolated from CRC2 (33.4%) and CRC1 (29.16%), and the least from the FH group (8.3%) and control group (12.5%). int1 in 79.2% and int2 in 45.8% of AIEC strains were found and 41.6% of strains had both integrons. AIEC isolates with int1 exhibited the highest sensitivity to trimethoprim-sulfamethoxazole (57.9%), while those with int2 showed the highest sensitivity to ciprofloxacin (63.6%). A significant association between resistance to rifampin and integron 2 presence in AIEC isolates was observed. Furthermore, a significant correlation between integron 1 presence, invasion, survival, and replication within macrophages in AIEC strains was identified. MLST analysis revealed ST131 from CC131 with integron 1 as the most common sequence type (ST). The emergence of such strains in CRC populations poses a serious public health threat. The distribution pattern of STs varied among studied groups, with pandemic STs highlighting the importance of examining and treating patients infected with these isolates. Comprehensive prospective clinical investigations are warranted to assess the prognostic value of detecting this pathovar in CRC and to evaluate therapeutic techniques targeting drug-resistant AIECs, such as phage therapy, bacteriocins, and anti-adhesion compounds, for CRC prevention and treatment.
Collapse
Affiliation(s)
- Aida Heidari
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hassan Emami
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Maghool
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samane Mohammadzadeh
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Tahereh Safari
- Physiology Department, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Alireza Fahim
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razie Kamali Dolatabadi
- Department of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
- Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
5
|
Li J, Zhang X, Luan F, Duan J, Zou J, Sun J, Shi Y, Guo D, Wang C, Wang X. Therapeutic Potential of Essential Oils Against Ulcerative Colitis: A Review. J Inflamm Res 2024; 17:3527-3549. [PMID: 38836243 PMCID: PMC11149639 DOI: 10.2147/jir.s461466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic non-sp ecific inflammatory disease of the colorectal mucosa. Researchers have associated UC onset with familial genetics, lifestyle behavior, inflammatory immune factors, intestinal microbiota, and the integrity of the intestinal mucosal barrier. The primary therapeutic interventions for UC consist of pharmacological management to control inflammation and promote mucosal healing and surgical interventions. The available drugs effectively control and decelerate the progression of UC in most patients; nonetheless, their long-term administration can exert adverse effects and influence the therapeutic effect. Plant essential oils (EOs) refer to a group of hydrophobic aromatic volatile substances. EOs have garnered considerable attention in both domestic and international research because of their anti-inflammatory, antibacterial, and antioxidant properties. They include peppermint, peppercorns, rosemary, and lavender, among others. Researchers have investigated the role of EOs in medicine and have elucidated their potential to mitigate the detrimental effects of UC through their anti-inflammatory, antioxidant, antidepressant, and anti-insomnia properties as well as their ability to regulate the intestinal flora. Furthermore, EOs exert minimal toxic adverse effects, further enhancing their appeal for therapeutic applications. However, these speculations are based on theoretical experiments, thereby warranting more clinical studies to confirm their effectiveness and safety. In this article, we aim to provide an overview of the advancements in utilizing natural medicine EOs for UC prevention and treatment. We will explore the potential pathogenesis of UC and examine the role of EOs therapy in basic research, quality stability, and management specification of inadequate EOs for UC treatment. We intend to offer novel insights into the use of EOs in UC prevention and management.
Collapse
Affiliation(s)
- Jinkai Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Fei Luan
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Jiawei Duan
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Junbo Zou
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Yajun Shi
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Changli Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Xiao Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| |
Collapse
|
6
|
Iaquinto G, Mazzarella G, Sellitto C, Lucariello A, Melina R, Iaquinto S, De Luca A, Rotondi Aufiero V. Antibiotic Therapy for Active Crohn's Disease Targeting Pathogens: An Overview and Update. Antibiotics (Basel) 2024; 13:151. [PMID: 38391539 PMCID: PMC10886129 DOI: 10.3390/antibiotics13020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Crohn's disease (CD) is a multifactorial chronic disorder that involves a combination of factors, including genetics, immune response, and gut microbiota. Therapy includes salicylates, immunosuppressive agents, corticosteroids, and biologic drugs. International guidelines do not recommend the use of antibiotics for CD patients, except in the case of septic complications. Increasing evidence of the involvement of gut bacteria in this chronic disease supports the rationale for using antibiotics as the primary treatment for active CD. In recent decades, several pathogens have been reported to be involved in the development of CD, but only Escherichia coli (E. coli) and Mycobacterium avium paratubercolosis (MAP) have aroused interest due to their strong association with CD pathogenesis. Several meta-analyses have been published concerning antibiotic treatment for CD patients, but randomized trials testing antibiotic treatment against E. coli and MAP have not shown prolonged benefits and have generated conflicting results; several questions are still unresolved regarding trial design, antibiotic dosing, the formulation used, the treatment course, and the outcome measures. In this paper, we provide an overview and update of the trials testing antibiotic treatment for active CD patients, taking into account the role of pathogens, the mechanisms by which different antibiotics act on harmful pathogens, and antibiotic resistance. Finally, we also present new lines of study for the future regarding the use of antibiotics to treat patients with active CD.
Collapse
Affiliation(s)
- Gaetano Iaquinto
- Gastroenterology Unit, St. Rita Hospital, 83042 Atripalda, Italy
| | - Giuseppe Mazzarella
- Institute of Food Sciences, Consiglio Nazionale Delle Ricerche (CNR), 83100 Atripalda, Italy
- E.L.F.I.D, Department of Translational Medical Science, University "Federico II", 80147 Napoli, Italy
| | - Carmine Sellitto
- Section of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Salerno, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", 80100 Naples, Italy
| | - Raffaele Melina
- Gastroenterology Unit, San G. Moscati Hospital, 83100 Atripalda, Italy
| | | | - Antonio De Luca
- Section of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Vera Rotondi Aufiero
- Institute of Food Sciences, Consiglio Nazionale Delle Ricerche (CNR), 83100 Atripalda, Italy
- E.L.F.I.D, Department of Translational Medical Science, University "Federico II", 80147 Napoli, Italy
| |
Collapse
|
7
|
Cronin P, McCarthy S, Hurley C, Ghosh TS, Cooney JC, Tobin AM, Murphy M, O’Connor EM, Shanahan F, O’Toole PW. Comparative diet-gut microbiome analysis in Crohn's disease and Hidradenitis suppurativa. Front Microbiol 2023; 14:1289374. [PMID: 38029085 PMCID: PMC10667482 DOI: 10.3389/fmicb.2023.1289374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The chronic inflammatory skin disease Hidradenitis suppurativa (HS) is strongly associated with Crohn's Disease (CD). HS and CD share clinical similarities and similar inflammatory pathways are upregulated in both conditions. Increased prevalence of inflammatory disease in industrialised nations has been linked to the Western diet. However, gut microbiota composition and diet interaction have not been compared in HS and CD. Methods Here we compared the fecal microbiota (16S rRNA gene amplicon sequencing) and habitual diet of previously reported subjects with HS (n = 55), patients with CD (n = 102) and controls (n = 95). Results and discussion Patients with HS consumed a Western diet similar to patients with CD. Meanwhile, habitual diet in HS and CD was significantly different to controls. Previously, we detected differences in microbiota composition among patients with HS from that of controls. We now show that 40% of patients with HS had a microbiota configuration similar to that of CD, characterised by the enrichment of pathogenic genera (Enterococcus, Veillonella and Escherichia_Shigella) and the depletion of putatively beneficial genera (Faecalibacterium). The remaining 60% of patients with HS harboured a normal microbiota similar to that of controls. Antibiotics, which are commonly used to treat HS, were identified as a co-varying with differences in microbiota composition. We examined the levels of several inflammatory markers highlighting that growth-arrest specific 6 (Gas6), which has anti-inflammatory potential, were significantly lower in the 40% of patients with HS who had a CD microbiota configuration. Levels of the pro-inflammatory cytokine IL-12, which is a modulator of intestinal inflammation in CD, were negatively correlated with the abundance of health-associated genera in patients with HS. In conclusion, the fecal microbiota may help identify patients with HS who are at greater risk for development of CD.
Collapse
Affiliation(s)
- Peter Cronin
- Department of Biological Science, University of Limerick, Limerick, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Siobhan McCarthy
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Dermatology, South Infirmary Victoria University Hospital, Cork, Ireland
| | - Cian Hurley
- School of Microbiology, University College Cork, Cork, Ireland
| | - Tarini Shankar Ghosh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Delhi, India
| | - Jakki C. Cooney
- Department of Biological Science, University of Limerick, Limerick, Ireland
| | - Ann-Marie Tobin
- Department of Dermatology, Tallaght University Hospital, Dublin, Ireland
| | - Michelle Murphy
- Department of Dermatology, South Infirmary Victoria University Hospital, Cork, Ireland
- School of Medicine, University College Cork, Cork, Ireland
| | - Eibhlís M. O’Connor
- Department of Biological Science, University of Limerick, Limerick, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Medicine, University College Cork, Cork, Ireland
| | - Paul W. O’Toole
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Zheng L, Duan SL, Dai YC, Wu SC. Role of adherent invasive Escherichia coli in pathogenesis of inflammatory bowel disease. World J Clin Cases 2022; 10:11671-11689. [PMID: 36405271 PMCID: PMC9669839 DOI: 10.12998/wjcc.v10.i32.11671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/04/2022] [Accepted: 10/11/2022] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota imbalances play an important role in inflammatory bowel disease (IBD), but no single pathogenic microorganism critical to IBD that is specific to the IBD terminal ileum mucosa or can invade intestinal epithelial cells has been found. Invasive Escherichia coli (E. coli) adhesion to macrophages is considered to be closely related to the pathogenesis of inflammatory bowel disease. Further study of the specific biological characteristics of adherent invasive E. coli (AIEC) may contribute to a further understanding of IBD pathogenesis. This review explores the relationship between AIEC and the intestinal immune system, discusses the prevalence and relevance of AIEC in Crohn's disease and ulcerative colitis patients, and describes the relationship between AIEC and the disease site, activity, and postoperative recurrence. Finally, we highlight potential therapeutic strategies to attenuate AIEC colonization in the intestinal mucosa, including the use of phage therapy, antibiotics, and anti-adhesion molecules. These strategies may open up new avenues for the prevention and treatment of IBD in the future.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 322000, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 322000, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Shi-Cheng Wu
- Department of Proctology, Gansu Academy of Traditional Chinese Medicine, Gansu Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu Province, China
| |
Collapse
|
9
|
Vaghari-Tabari M, Alemi F, Zokaei M, Moein S, Qujeq D, Yousefi B, Farzami P, Hosseininasab SS. Polyphenols and inflammatory bowel disease: Natural products with therapeutic effects? Crit Rev Food Sci Nutr 2022; 64:4155-4178. [PMID: 36345891 DOI: 10.1080/10408398.2022.2139222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inflammatory bowel disease (IBD) is a long-life disease with periods of recurrence and relief. Oxidative stress plays an important role in the pathogenesis of this disease. Recent years' studies in the field of IBD treatment mostly have focused on targeting cytokines and immune cell trafficking using antibodies and inhibitors, altering the composition of intestinal bacteria in the line of attenuation of inflammation using probiotics and prebiotics, and attenuating oxidative stress through antioxidant supplementation. Studies in animal models of IBD have shown that some polyphenolic compounds including curcumin, quercetin, resveratrol, naringenin, and epigallocatechin-3-gallate can affect almost all of the above aspects and are useful compounds in the treatment of IBD. Clinical studies performed on IBD patients have also confirmed the findings of animal model studies and have shown that supplementation with some of the above-mentioned polyphenolic compounds has positive effects in reducing disease clinical and endoscopic activity, inducing and maintaining remission, and improving quality of life. In this review article, in addition to a detailed reviewing the effects of the above-mentioned polyphenolic compounds on the events involved in the pathogenesis of IBD, the results of these clinical studies will also be reviewed.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Payam Farzami
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
10
|
Bucheli JEV, Todorov SD, Holzapfel WH. Role of gastrointestinal microbial populations, a terra incognita of the human body in the management of intestinal bowel disease and metabolic disorders. Benef Microbes 2022; 13:295-318. [PMID: 35866598 DOI: 10.3920/bm2022.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intestinal bowel disease (IBD) is a chronic immune-mediated clinical condition that affects the gastrointestinal tract and is mediated by an inflammatory response. Although it has been extensively studied, the multifactorial aetiology of this disorder makes it difficult to fully understand all the involved mechanisms in its development and therefore its treatment. In recent years, the fundamental role played by the human microbiota in the pathogenesis of IBD has been emphasised. Microbial imbalances in the gut bacterial communities and a lower species diversity in patients suffering from inflammatory gastrointestinal disorders compared to healthy individuals have been reported as principal factors in the development of IBD. These served to support scientific arguments for the use of probiotic microorganisms in alternative approaches for the prevention and treatment of IBD. In a homeostatic environment, the presence of bacteria (including probiotics) on the intestinal epithelial surface activates a cascade of processes by which immune responses inhibited and thereby commensal organisms maintained. At the same time these processes may support activities against specific pathogenic bacteria. In dysbiosis, these underlying mechanisms will serve to provoke a proinflammatory response, that, in combination with the use of antibiotics and the genetic predisposition of the host, will culminate in the development of IBD. In this review, we summarised the main causes of IBD, the physiological mechanisms involved and the related bacterial groups most frequently associated with these processes. The intention was to enable a better understanding of the interaction between the intestinal microbiota and the host, and to suggest possibilities by which this knowledge can be useful for the development of new therapeutic treatments.
Collapse
Affiliation(s)
- J E Vazquez Bucheli
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| | - S D Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| | - W H Holzapfel
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| |
Collapse
|
11
|
Nadalian B, Nadalian B, Houri H, Shahrokh S, Abdehagh M, Yadegar A, Ebrahimipour G. Phylogrouping and characterization of Escherichia coli isolated from colonic biopsies and fecal samples of patients with flare of inflammatory bowel disease in Iran. Front Med (Lausanne) 2022; 9:985300. [PMID: 36106322 PMCID: PMC9464868 DOI: 10.3389/fmed.2022.985300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Background Although the etiopathogenesis of inflammatory bowel disease (IBD) is still poorly understood, Escherichia coli has been described as a potential causative microorganism in IBD pathogenesis and also disease progression, offering a potential therapeutic target for disease management. Therefore, we conducted this study to investigate the pathotypes, phylogenetic groups, and antimicrobial resistance of E. coli isolates from patients with IBD in Iran. Methods Fecal and biopsy colonic samples were collected from IBD patients experiencing flare-up episodes referred to Taleghani hospital in Tehran, Iran, between August 2020 and January 2021. Identification of E. coli strains was performed based on biochemical and molecular methods. Antibiotic susceptibility testing was performed as recommended by the Clinical and Laboratory Standards Institute. Phylogrouping and pathotyping of each isolate were carried out using polymerase chain reaction (PCR) and multilocus sequence typing (MLST) assays. Results A total of 132 non-duplicate E. coli strains were isolated from 113 IBD patients, including 96 ulcerative colitis (UC), and 17 Crohn’s disease (CD) patients. In our study, 55% of CD-related E. coli and 70.5% of UC-related isolates were non-susceptible to at least three or more unique antimicrobial classes, and were considered as multidrug-resistant (MDR) strains. E. coli strains exhibited a high level of resistance to cefazolin, ampicillin, tetracycline, ceftazidime, ciprofloxacin, and cefotaxime. Enterotoxigenic E. coli (ETEC) and diffusely adherent E. coli (DAEC) were the most prevalent pathotypes, and groups B2 and D were the predominant phylogroups. Conclusion In the present study, we found that E. coli strains that colonize the gut of Iranian patients with IBD most frequently belonged to phylogenetic groups B2 and D. We also conclude that E. coli isolates from IBD patients have been revealed to be resistant to commonly used antibiotics, in which most of them harbored strains that would be categorized as MDR.
Collapse
Affiliation(s)
- Banafsheh Nadalian
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Bahareh Nadalian
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdehagh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Abbas Yadegar, ;
| | - Gholamhossein Ebrahimipour
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Gholamhossein Ebrahimipour,
| |
Collapse
|
12
|
Gelalcha BD, Brown SM, Crocker HE, Agga GE, Kerro Dego O. Regulation Mechanisms of Virulence Genes in Enterohemorrhagic Escherichia coli. Foodborne Pathog Dis 2022; 19:598-612. [PMID: 35921067 DOI: 10.1089/fpd.2021.0103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is one of the most common E. coli pathotypes reported to cause several outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen, and ruminants, especially cattle, are considered important reservoirs for the most common EHEC serotype, E. coli O157:H7. Humans are infected indirectly through the consumption of food (milk, meat, leafy vegetables, and fruits) and water contaminated by animal feces or direct contact with carrier animals or humans. E. coli O157:H7 is one of the most frequently reported causes of foodborne illnesses in developed countries. It employs two essential virulence mechanisms to trigger damage to the host. These are the development of attaching and effacing (AE) phenotypes on the intestinal mucosa of the host and the production of Shiga toxin (Stx) that causes hemorrhagic colitis and hemolytic uremic syndrome. The AE phenotype is controlled by the pathogenicity island, the locus of enterocyte effacement (LEE). The induction of both AE and Stx is under strict and highly complex regulatory mechanisms. Thus, a good understanding of these mechanisms, major proteins expressed, and environmental cues involved in the regulation of the expression of the virulence genes is vital to finding a method to control the colonization of reservoir hosts, especially cattle, and disease development in humans. This review is a concise account of the current state of knowledge of virulence gene regulation in the LEE-positive EHEC.
Collapse
Affiliation(s)
- Benti D Gelalcha
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Selina M Brown
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Hannah E Crocker
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| |
Collapse
|
13
|
Kamali Dolatabadi R, Fazeli H, Emami MH, Karbasizade V, Maghool F, Fahim A, Rahimi H. Phenotypicand Genotypic Characterization of Clinical Isolates of Intracellular Adherent–Invasive Escherichia coli Among Different Stages, Family History, and Treated Colorectal Cancer Patients in Iran. Front Cell Infect Microbiol 2022; 12:938477. [PMID: 35899040 PMCID: PMC9309365 DOI: 10.3389/fcimb.2022.938477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
There is increasing evidence showing that microbial dysbiosis impacts the health and cancer risk of the host. An association between adherent–invasive Escherichia coli (AIEC) and colorectal cancer (CRC) has been revealed. Cyclomodulins (CMs) have been receiving increasing attention for carcinogenic changes. In this study, the incidence and features of intracellular AIEC and cyclomodulin-encoding genes were investigated and the phylogenetic grouping and genetic relatedness were evaluated. E. coli strains were isolated from the colorectal biopsies. Adhesion and invasion assays and intramacrophage cell survival test were performed to separate the AIEC isolates. Virulence genotyping for the genes htrA, dsbA, chuA, and lpfA and the cyclomodulin toxins was also conducted. In addition, phylogenetic grouping of the isolates was determined. Subsequently, repetitive element sequence-based PCR (rep-PCR) fingerprinting was performed. A total of 24 AIEC pathovars were isolated from 150 patients. The prevalence rates of htr, dsbA, and lpfA were 70.83% and that of chuA was 91.66%. The frequencies of the cyclomodulin toxins were as follows: cnf1, 29.2%; cnf2, 25%; colibactin, 29.2%; and cdt, 4.2%; cif was not found. Among the AIEC isolates, 4.2%, 4.2%, 54.2%, 29.2%, and 8.3% with phylotypes A or C, B1, B2, D, and E were identified, respectively. Left-sided colon carcinoma and adenocarcinoma T≥1 stage (CRC2) were colonized by B2 phylogroup AIEC-producing CMs more often than the samples from the other groups. Close genetic relatedness was observed in AIEC isolates with rep-PCR.
Collapse
Affiliation(s)
- Razie Kamali Dolatabadi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- *Correspondence: Hossein Fazeli,
| | - Mohammad Hassan Emami
- Poursina Hakim Digestive Diseases Research center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Karbasizade
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Maghool
- Poursina Hakim Digestive Diseases Research center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Fahim
- Poursina Hakim Digestive Diseases Research center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojatollah Rahimi
- Poursina Hakim Digestive Diseases Research center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Cortes GM, Marcialis MA, Bardanzellu F, Corrias A, Fanos V, Mussap M. Inflammatory Bowel Disease and COVID-19: How Microbiomics and Metabolomics Depict Two Sides of the Same Coin. Front Microbiol 2022; 13:856165. [PMID: 35391730 PMCID: PMC8981987 DOI: 10.3389/fmicb.2022.856165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
The integrity of the gastrointestinal tract structure and function is seriously compromised by two pathological conditions sharing, at least in part, several pathogenetic mechanisms: inflammatory bowel diseases (IBD) and coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. IBD and COVID-19 are marked by gut inflammation, intestinal barrier breakdown, resulting in mucosal hyperpermeability, gut bacterial overgrowth, and dysbiosis together with perturbations in microbial and human metabolic pathways originating changes in the blood and fecal metabolome. This review compared the most relevant metabolic and microbial alterations reported from the literature in patients with IBD with those in patients with COVID-19. In both diseases, gut dysbiosis is marked by the prevalence of pro-inflammatory bacterial species and the shortfall of anti-inflammatory species; most studies reported the decrease in Firmicutes, with a specific decrease in obligately anaerobic producers short-chain fatty acids (SCFAs), such as Faecalibacterium prausnitzii. In addition, Escherichia coli overgrowth has been observed in IBD and COVID-19, while Akkermansia muciniphila is depleted in IBD and overexpressed in COVID-19. In patients with COVID-19, gut dysbiosis continues after the clearance of the viral RNA from the upper respiratory tract and the resolution of clinical symptoms. Finally, we presented and discussed the impact of gut dysbiosis, inflammation, oxidative stress, and increased energy demand on metabolic pathways involving key metabolites, such as tryptophan, phenylalanine, histidine, glutamine, succinate, citrate, and lipids.
Collapse
Affiliation(s)
- Gian Mario Cortes
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Antonietta Marcialis
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Angelica Corrias
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Michele Mussap
- Laboratory Medicine, Department of Surgical Sciences, School of Medicine, University of Cagliari, Monserrato, Italy
| |
Collapse
|
15
|
López-Siles M, Camprubí-Font C, Gómez Del Pulgar EM, Sabat Mir M, Busquets D, Sanz Y, Martinez-Medina M. Prevalence, Abundance, and Virulence of Adherent-Invasive Escherichia coli in Ulcerative Colitis, Colorectal Cancer, and Coeliac Disease. Front Immunol 2022; 13:748839. [PMID: 35359974 PMCID: PMC8960851 DOI: 10.3389/fimmu.2022.748839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
Abstract
Background & Aims Adherent-invasive E. coli (AIEC) has largely been implicated in the pathogenesis of Crohn’s disease (CD). E. coli strains with similar genetic backgrounds and virulence genes profiles have been associated with other intestinal disorders, such as ulcerative colitis (UC), colorectal cancer (CRC), and coeliac disease (CeD), but the role of AIEC in these diseases remains unexplored. We aimed to assess the distribution, abundance, and pathogenic features of AIEC in UC, CRC, and CeD. Methods The AIEC phenotype was investigated in 4,233 E. coli isolated from the ileum and colon of 14 UC and 15 CRC patients and in 38 fecal E. coli strains obtained from 17 CeD and 10 healthy (H) children. AIEC prevalence and abundance were compared with previous data from CD patients and H controls. Clonality, virulence gene carriage, and phylogenetic origin were determined for the AIEC identified. Results In UC, AIEC prevalence was intermediate between CD and H subjects (UC: 35.7%, CD: 55.0%, H: 21.4%), and similar to CD patients with colonic disease (C-CD: 40.0%). In CRC, the prevalence was lower (6.7%) than these groups. In patients with AIEC, the estimated abundance was similar across all intestinal conditions. All AIEC strains isolated from UC and CRC belonged to the B1 phylogroup, except for a strain of the A phylogroup, and the majority (75% of clonally distinct AIEC) harbored the Afa/Dr operon and the cdt gene. None of the E. coli isolated from the CeD cohort were AIEC. Nonetheless, E. coli strains isolated from active CeD patients showed higher invasion indices than those isolated from H and inactive CeD pediatric patients. Conclusion We support the hypothesis that AIEC-like strains can be involved not only in CD but also in UC. Further works are needed to study the virulence particularities of these groups of strains and to determine if there is a causative link between AIEC and UC. In contrast, we rule out the possible association of AIEC with CRC. In addition, to further study the E. coli strains in CeD for their possible pathogenic role would be of interest.
Collapse
Affiliation(s)
- Mireia López-Siles
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, Girona, Spain
| | - Carla Camprubí-Font
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, Girona, Spain
| | - Eva M Gómez Del Pulgar
- Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Paterna, Spain
| | - Miriam Sabat Mir
- Department of Gastroenterology, Hospital Santa Caterina, Salt, Spain
| | - David Busquets
- Department of Gastroenterology, Hospital Universitari Doctor Josep Trueta, Girona, Spain
| | - Yolanda Sanz
- Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Paterna, Spain
| | | |
Collapse
|
16
|
Efficacy of Probiotics-Based Interventions as Therapy for Inflammatory Bowel Disease: A Recent Update. Saudi J Biol Sci 2022; 29:3546-3567. [PMID: 35844369 PMCID: PMC9280206 DOI: 10.1016/j.sjbs.2022.02.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Probiotics such as Lactobacillus spp. play an important role in human health as they embark beneficial effect on the human gastrointestinal microflora composition and immune system. Dysbiosis in the gastrointestinal microbial composition has been identified as a major contributor to chronic inflammatory conditions, such as inflammatory bowel disease (IBD). Higher prevalence of IBD is often recorded in most of the developed Western countries, but recent data has shown an increase in previously regarded as lower risk regions, such as Japan, Malaysia, Singapore, and India. Although the IBD etiology remains a subject of speculation, the disease is likely to have developed because of interaction between extrinsic environmental elements; the host’s immune system, and the gut microbial composition. Compared to conventional treatments, probiotics and probiotic-based interventions including the introduction of specific prebiotics, symbiotic and postbiotic products had been demonstrated as more promising therapeutic measures. The present review discusses the association between gut dysbiosis, the pathogenesis of IBD, and risk factors leading to gut dysbiosis. In addition, it discusses recent studies focused on the alteration of the gastrointestinal microbiome as an effective therapy for IBD. The impact of the COVID-19 pandemic and other viral infections on IBD are also discussed in this review. Clinical and animal-based studies have shown that probiotic-based therapies can restore the gastrointestinal microbiota balance and reduce gut inflammations. Therefore, this review also assesses the status quo of these microbial-based therapies for the treatment of IBD. A better understanding of the mechanisms of their actions on modulating altered gut microbiota is required to enhance the effectiveness of the IBD therapeutics.
Collapse
|
17
|
Huang B, Wang L, Liu M, Wu X, Lu Q, Liu R. The underlying mechanism of A-type procyanidins from peanut skin on DSS-induced ulcerative colitis mice by regulating gut microbiota and metabolism. J Food Biochem 2022; 46:e14103. [PMID: 35218055 DOI: 10.1111/jfbc.14103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 12/18/2022]
Abstract
Ulcerative colitis (UC) is a kind of inflammatory bowel disease. Procyanidins have been found to prevent UC. However, most research has been focused on the alleviation effect of B-type procyanidins on UC and ignored those of A-type procyanidins. Hence, this study aims to investigate the anti-UC effect and the potential mechanism of A-type procyanidins by combining gut microbiome and metabolic profile. UC was induced by dextran sulfate sodium (DSS) in Balb/c mice, and then the mice were administrated with peanut skin procyanidins (PSP; rich in A-type procyanidins) for 9 days. Administration of PSP can ameliorate DSS-induced UC by mediating the intestinal barrier, the expression of inflammatory cytokines (TNF-α, IL-β, IL-6, and IL-10) and oxidative stress (MDA, T-SOD, NO, and iNOS) in mice. We observed that PSP affects the gut microbiota and colon metabolomic patterns of mice. The 16S rDNA sequencing showed increase in abundance of Lachnospiraceae_NK4A136_group, Oscillibacter and Roseburia and decrease of Bacteroides, Helicobacter, Parabacteroides, Escherichia-Shigella, and Enterobacter after PSP treatment. The colon tissue metabolome was significantly altered, as reflected by regulating taste transduction, mTOR signaling pathway, PI3K-Akt signaling pathway, and FoxO signaling pathway to improve the protection against UC. PRACTICAL APPLICATIONS: We investigated the anti-ulcerative colitis (UC) effect and its potential mechanism of peanut skin procyanidins (PSP). This suggests that PSP with abundant A-type procyanidins may be an effective candidate for dietary supplementation to alleviate the symptoms of UC by regulating gut microbiota and metabolism.
Collapse
Affiliation(s)
- Bijun Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China
| | - Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China
| | - Min Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China
| | - Xin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China.,Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wu Han, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China.,Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wu Han, China.,Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wu Han, P. R. China
| |
Collapse
|
18
|
Luo H, Cao G, Luo C, Tan D, Vong CT, Xu Y, Wang S, Lu H, Wang Y, Jing W. Emerging Pharmacotherapy for Inflammatory Bowel Diseases. Pharmacol Res 2022; 178:106146. [DOI: 10.1016/j.phrs.2022.106146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/13/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
|
19
|
Kamali Dolatabadi R, Feizi A, Halaji M, Fazeli H, Adibi P. The Prevalence of Adherent-Invasive Escherichia coli and Its Association With Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:730243. [PMID: 34926490 PMCID: PMC8678049 DOI: 10.3389/fmed.2021.730243] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are known as chronic gastrointestinal inflammatory disorders. The present systematic review and meta analysis was conducted to estimate the prevalence of adherent-invasive Escherichia coli (AIEC) isolates and their phylogenetic grouping among IBD patients compared with the controls. A systematic literature search was conducted among published papers by international authors until April 30, 2020 in Web of Science, Scopus, EMBASE, and PubMed databases. The pooled prevalence of AIEC isolates and their phylogenetic grouping among IBD patients as well as in controls was estimated using fixed or random effects models. Furthermore, for estimating the association of colonization by AIEC with IBD, odds ratio along with 95% confidence interval was reported. A total of 205 articles retrieved by the initial search of databases, 13 case–control studies met the eligibility criteria for inclusion in the meta analysis. There were 465 IBD cases (348 CD and 117 UC) and 307 controls. The pooled prevalence of AIEC isolates were 28% (95% CI: 18–39%), 29% (95% CI: 20–40%), 13% (95% CI: 1–30%), and 9% (95% CI: 3–19%), respectively among IBD, CD, UC, and control group, respectively. Our results revealed that the most frequent AIEC phylogroup in the IBD, CD, and control groups was B2. Fixed-effects meta analysis showed that colonization of AIEC is significantly associated with IBD (OR: 2.93; 95% CI: 1.90–4.52; P < 0.001) and CD (OR: 3.07; 95% CI: 1.99–4.74; P < 0.001), but not with UC (OR: 2.29; 95% CI: 0.81–6.51; P = 0.11). In summary, this meta analysis revealed that colonization by AIEC is more frequent in IBD and is associated with IBD (CD and UC). Our results suggested that the affects of IBD in patients colonized with the AIEC pathovar is not random, it is in fact a specific disease-related pathovar.
Collapse
Affiliation(s)
- Razie Kamali Dolatabadi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran.,Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Adibi
- Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
20
|
Lei D, Xu H, Peng R, Yang M, Li X, Zuo W, Gou J, Yu S, Huang M, Liu H. Efficacy of faecal microbiota transplantation on ulcerative colitis and its effect on gastrointestinal motility and immune function. Am J Transl Res 2021; 13:14057-14066. [PMID: 35035748 PMCID: PMC8748100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the efficacy of faecal microbiota transplantation (FMT) in the treatment of ulcerative colitis (UC) and its effect on gastrointestinal motility (GM) and immune function. METHODS A retrospective cohort study was conducted on 47 UC patients. The patients were divided into an observation group (n=17, treated with FMT) and a control group (n=30, treated with conventional treatment) according to the treatment regimen. In the observation group, FMT was used to treat colonic lesions by transplanting colonic bacteria fluid from healthy people. Clinical efficacy, immune function, level of inflammatory factors and gastrointestinal function of the two groups were observed before and after treatment. RESULTS The total response rates of observation group was 94.12%, which was higher than that of control group (70.00%; P<0.05). After treatment, the contents of CD3+, CD4+ T cells and CD4+/CD8+ ratio were increased, while the content of CD8+ T cells was decreased in both groups compared with those before treatment (all P<0.05); and the contents of CD3+, CD4+ T cells and CD4+/CD8+ ratio in the observation group were higher than those in the control group, while CD8+ T cells showed an opposite trend (P<0.05). The levels of immunoglobulin A, immunoglobulin G and immunoglobulin M as well as interleukin-6, C-reactive protein, tumor necrosis factor-α and motilin were lower than those before treatment in both groups (all P<0.05), and the decreases in the observation group were more significant than those in the control group (all P<0.001). After treatment, cholecystokinin and vasoactive peptide were higher than those before treatment in both groups (all P<0.05), and the increased degree in the observation group was more obvious than that in the control group (all P<0.001). CONCLUSION FMT has significant clinical efficacy in the treatment of UC, which may be related to the improvement of immune function, alleviation of inflammatory response and promotion of GM recovery.
Collapse
Affiliation(s)
- Dengshun Lei
- Department of Clinical Laboratory, Rongchang District Maternal and Child Health Care Center of ChongqingChongqing 402460, China
| | - Hong Xu
- Department of Obstetrics and Gynecology, Rongchang District People’s Hospital of ChongqingChongqing 402460, China
| | - Renqun Peng
- Department of Digestion, Rongchang District People’s Hospital of ChongqingChongqing 402460, China
| | - Mei Yang
- Department of Digestion, Rongchang District People’s Hospital of ChongqingChongqing 402460, China
| | - Xinghui Li
- Department of Digestion, Rongchang District People’s Hospital of ChongqingChongqing 402460, China
| | - Wei Zuo
- Department of Digestion, Rongchang District People’s Hospital of ChongqingChongqing 402460, China
| | - Juhua Gou
- Department of Digestion, Rongchang District People’s Hospital of ChongqingChongqing 402460, China
| | - Shuangjiang Yu
- Department of Neurosurgery, The First Hospital Affiliated to Army Military Medical University (Southwest Hospital)Chongqing 400000, China
| | - Min Huang
- Department of Digestion, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000, Sichuan Province, China
| | - Hao Liu
- Department of Digestion, Rongchang District People’s Hospital of ChongqingChongqing 402460, China
| |
Collapse
|
21
|
Pakbin B, Brück WM, Rossen JWA. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int J Mol Sci 2021; 22:9922. [PMID: 34576083 PMCID: PMC8468683 DOI: 10.3390/ijms22189922] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
Escherichia coli are remarkably versatile microorganisms and important members of the normal intestinal microbiota of humans and animals. This harmless commensal organism can acquire a mixture of comprehensive mobile genetic elements that contain genes encoding virulence factors, becoming an emerging human pathogen capable of causing a broad spectrum of intestinal and extraintestinal diseases. Nine definite enteric E. coli pathotypes have been well characterized, causing diseases ranging from various gastrointestinal disorders to urinary tract infections. These pathotypes employ many virulence factors and effectors subverting the functions of host cells to mediate their virulence and pathogenesis. This review summarizes new developments in our understanding of diverse virulence factors associated with encoding genes used by different pathotypes of enteric pathogenic E. coli to cause intestinal and extraintestinal diseases in humans.
Collapse
Affiliation(s)
- Babak Pakbin
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland;
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| | - Wolfram M. Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland;
| | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|
22
|
Li H, Christman LM, Li R, Gu L. Synergic interactions between polyphenols and gut microbiota in mitigating inflammatory bowel diseases. Food Funct 2021; 11:4878-4891. [PMID: 32490857 DOI: 10.1039/d0fo00713g] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic and recurring inflammatory conditions in the colon and intestine. Their etiology is not fully understood but involves the combination of gut dysbiosis, genetics, immune functions, and environmental factors including diet. Polyphenols from plant-based food synergistically interact with gut microbiota to suppress inflammation and alleviate symptoms of IBD. Polyphenols increase the diversity of gut microbiota, improve the relative abundance of beneficial bacteria, and inhibit the pathogenic species. Polyphenols not absorbed in the small intestine are catabolized in the colon by microbiota into microbial metabolites, many of which have higher anti-inflammatory activity and bioavailability than their precursors. The polyphenols and their microbial metabolites alleviate IBD through reduction of oxidative stress, inhibition of inflammatory cytokines secretion (TNF-α, IL-6, IL-8, and IL-1β), suppression of NF-κB, upregulation of Nrf2, gut barrier protection, and modulation of immune function. Future studies are needed to discover unknown microbial metabolites of polyphenols and correlate specific gut microbes with microbial metabolites and IBD mitigating activity. A better knowledge of the synergistic interactions between polyphenols and gut microbiota will help to devise more effective prevention strategies for IBD. This review focuses on the role of polyphenols, gut microbiota and their synergistic interactions on the alleviation of IBD as well as current trends and future directions of IBD management.
Collapse
Affiliation(s)
- Hao Li
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA.
| | - Lindsey M Christman
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA.
| | - Ruiqi Li
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA.
| | - Liwei Gu
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
23
|
Curciarello R, Canziani KE, Salto I, Barbiera Romero E, Rocca A, Doldan I, Peton E, Brayer S, Sambuelli AM, Goncalves S, Tirado P, Correa GJ, Yantorno M, Garbi L, Docena GH, Serradell MDLÁ, Muglia CI. Probiotic Lactobacilli Isolated from Kefir Promote Down-Regulation of Inflammatory Lamina Propria T Cells from Patients with Active IBD. Front Pharmacol 2021; 12:658026. [PMID: 33935778 PMCID: PMC8082687 DOI: 10.3389/fphar.2021.658026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/04/2021] [Indexed: 01/17/2023] Open
Abstract
Ulcerative colitis and Crohn’s disease, the two main forms of inflammatory bowel disease (IBD), are immunologically mediated disorders. Several therapies are focused on activated T cells as key targets. Although Lactobacillus kefiri has shown anti-inflammatory effects in animal models, few studies were done using human mucosal T cells. The aim of this work was to investigate the immunomodulatory effects of this bacterium on intestinal T cells from patients with active IBD. Mucosal biopsies and surgical samples from IBD adult patients (n = 19) or healthy donors (HC; n = 5) were used. Lamina propria mononuclear cells were isolated by enzymatic tissue digestion, and entero-adhesive Escherichia coli-specific lamina propria T cells (LPTC) were expanded. The immunomodulatory properties of L. kefiri CIDCA 8348 strain were evaluated on biopsies and on anti-CD3/CD28-activated LPTC. Secreted cytokines were quantified by ELISA, and cell proliferation and viability were assessed by flow cytometry. We found that L. kefiri reduced spontaneous release of IL-6 and IL-8 from inflamed biopsies ex vivo. Activated LPTC from IBD patients showed low proliferative rates and reduced secretion of TNF-α, IL-6, IFN-γ and IL-13 in the presence of L. kefiri. In addition, L. kefiri induced an increased frequency of CD4+FOXP3+ LPTC along with high levels of IL-10. This is the first report showing an immunomodulatory effect of L. kefiri CIDCA 8348 on human intestinal cells from IBD patients. Understanding the mechanisms of interaction between probiotics and immune mucosal cells may open new avenues for treatment and prevention of IBD.
Collapse
Affiliation(s)
- Renata Curciarello
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Asociado CIC PBA, La Plata, Argentina
| | - Karina E Canziani
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Asociado CIC PBA, La Plata, Argentina
| | - Ileana Salto
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Asociado CIC PBA, La Plata, Argentina
| | - Emanuel Barbiera Romero
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Asociado CIC PBA, La Plata, Argentina
| | - Andrés Rocca
- Unidad Endoscopía, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ivan Doldan
- Unidad Endoscopía, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Emmanuel Peton
- Unidad de Proctología, Departamento de Cirugía, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Santiago Brayer
- Unidad de Proctología, Departamento de Cirugía, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alicia M Sambuelli
- Sección de Enfermedades Inflamatorias Del Intestino, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvina Goncalves
- Sección de Enfermedades Inflamatorias Del Intestino, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Tirado
- Sección de Enfermedades Inflamatorias Del Intestino, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gustavo J Correa
- Área de Enfermedad Inflamatoria Intestinal, Sala de Endoscopía, Servicio de Gastroenterología, Hospital Interzonal General de Agudos General San Martín, La Plata, Argentina
| | - Martín Yantorno
- Área de Enfermedad Inflamatoria Intestinal, Sala de Endoscopía, Servicio de Gastroenterología, Hospital Interzonal General de Agudos General San Martín, La Plata, Argentina
| | - Laura Garbi
- Área de Enfermedad Inflamatoria Intestinal, Sala de Endoscopía, Servicio de Gastroenterología, Hospital Interzonal General de Agudos General San Martín, La Plata, Argentina
| | - Guillermo H Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Asociado CIC PBA, La Plata, Argentina
| | - María de Los Ángeles Serradell
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Cecilia I Muglia
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Asociado CIC PBA, La Plata, Argentina
| |
Collapse
|
24
|
Xu Z, Liu W, Zhang Y, Zhang D, Qiu B, Wang X, Liu J, Liu L. Therapeutic and Prebiotic Effects of Five Different Native Starches on Dextran Sulfate Sodium-Induced Mice Model of Colonic Colitis. Mol Nutr Food Res 2021; 65:e2000922. [PMID: 33629501 DOI: 10.1002/mnfr.202000922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/14/2021] [Indexed: 12/12/2022]
Abstract
SCOPE The availability of studies related to the effects of natural macronutrients on inflammatory bowel disease (IBD) remain relatively limited. This study investigates whether and to what extent the consumption of five different native starches alleviate the clinical symptoms and dysbiosis of gut microbiota associated with colitis. METHODS AND RESULTS Using dextran sodium sulfate (DSS)-induced mouse model of colitis, the potential effects of native potato starch (PS), pea starch (PEAS), corn starch (CS), Chinese yam starch (CYS), and red sorghum starch (RSS) on the clinical manifestations and dysbiosis of gut microbiota are studied. Compared to CS and RSS, the consumption of PEAS, PS, and CYS significantly diminishes clinical enteritis symptoms, including reduced disease activity index, and the alleviated degree of colonic histological damage. Furthermore, the analysis of gut microbiota reveals the significant prebiotic characteristics of PEAS, PS and CYS, as indicated by the maintenance of gut microbiota hemostasis and the inhibition of typically pathogenic bacteria, including Escherichia coli and Helicobacter hepaticus. CONCLUSION Starches from potato, pea, and Chinese yam alleviate colitis symptoms in a mouse model, and also show significant prebiotic characteristics. These findings suggest a cost-effective and convenient dietary strategy for the management of IBD.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Shandong Academy of Agricultural Sciences, Institute of Agro-Food Science and Technology, Jinan, 250100, China
| | - Wei Liu
- Shandong Academy of Agricultural Sciences, Institute of Agro-Food Science and Technology, Jinan, 250100, China
| | - Yuhan Zhang
- Shandong Academy of Agricultural Sciences, Institute of Agro-Food Science and Technology, Jinan, 250100, China
| | - Di Zhang
- Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Bin Qiu
- Shandong Academy of Agricultural Sciences, Institute of Agro-Food Science and Technology, Jinan, 250100, China
| | - Xianshu Wang
- Shandong Academy of Agricultural Sciences, Institute of Agro-Food Science and Technology, Jinan, 250100, China
| | - Jie Liu
- Beijing Technology and Business University (BTBU), Beijing, 10048, China
| | - Lina Liu
- Shandong Academy of Agricultural Sciences, Institute of Agro-Food Science and Technology, Jinan, 250100, China
| |
Collapse
|
25
|
Nadalian B, Yadegar A, Houri H, Olfatifar M, Shahrokh S, Asadzadeh Aghdaei H, Suzuki H, Zali MR. Prevalence of the pathobiont adherent-invasive Escherichia coli and inflammatory bowel disease: a systematic review and meta-analysis. J Gastroenterol Hepatol 2021; 36:852-863. [PMID: 32929762 DOI: 10.1111/jgh.15260] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/08/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM Escherichia coli pathobionts and particularly the adherent-invasive E. coli (AIEC) may play a putative role in initiating and maintaining the inflammatory process in the intestinal tissues of inflammatory bowel disease (IBD) patients, by providing stimulatory factors that trigger gut immune system activation. The aim of this study is to conduct a systematic review and meta-analysis to determine the prevalence of AIEC among patients with Crohn's disease (CD) and ulcerative colitis (UC). METHODS Electronic databases were searched up to February 2020 for relevant publications reporting the prevalence of AIEC in IBD patients. The prevalence rate of AIEC among CD and UC patients, the odds ratio (OR) and 95% confidence interval (CI) were calculated compared to non-IBD controls. RESULTS The final dataset included 12 studies, all investigating AIEC isolates from ileal/colonic specimens. The OR for prevalence of AIEC in CD patients was 3.27 (95% CI 1.79-5.9) compared with non-IBD controls. The overall pooled prevalence of AIEC among CD patients was 29% (95% CI 0.17-0.45), whereas this prevalence was calculated to be 9% (95% CI 0.03-0.19) in controls. Moreover, the prevalence of AIEC in UC subjects was calculated 12% (95% CI 0.01-0.34), while AIEC showed a prevalence of 5% (95% CI 0.0-0.17) among the controls. The OR for prevalence of AIEC in UC patients was 2.82 (95% CI 1.11-7.14) compared with controls. CONCLUSIONS There is a substantial increase in the prevalence of AIEC in IBD patients compared with controls. This review supports the growing evidence that AIEC could be involved in both CD and UC pathogenesis.
Collapse
Affiliation(s)
- Banafsheh Nadalian
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Olfatifar
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hidekazu Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Tokai University, Isehara, Japan
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Mayorgas A, Dotti I, Martínez-Picola M, Esteller M, Bonet-Rossinyol Q, Ricart E, Salas A, Martínez-Medina M. A Novel Strategy to Study the Invasive Capability of Adherent-Invasive Escherichia coli by Using Human Primary Organoid-Derived Epithelial Monolayers. Front Immunol 2021; 12:646906. [PMID: 33854511 PMCID: PMC8039293 DOI: 10.3389/fimmu.2021.646906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last decades, Adherent-Invasive Escherichia coli (AIEC) has been linked to the pathogenesis of Crohn’s Disease. AIEC’s characteristics, as well as its interaction with the gut immune system and its role in intestinal epithelial barrier dysfunction, have been extensively studied. Nevertheless, the currently available techniques to investigate the cross-talk between this pathogen and intestinal epithelial cells (IECs) are based on the infection of immortalized cell lines. Despite their many advantages, cell lines cannot reproduce the conditions in tissues, nor do they reflect interindividual variability or gut location-specific traits. In that sense, the use of human primary cultures, either healthy or diseased, offers a system that can overcome all of these limitations. Here, we developed a new infection model by using freshly isolated human IECs. For the first time, we generated and infected monolayer cultures derived from human colonic organoids to study the mechanisms and effects of AIEC adherence and invasion on primary human epithelial cells. To establish the optimal conditions for AIEC invasion studies in human primary organoid-derived epithelial monolayers, we designed an infection-kinetics study to assess the infection dynamics at different time points, as well as with two multiplicities of infection (MOI). Overall, this method provides a model for the study of host response to AIEC infections, as well as for the understanding of the molecular mechanisms involved in adhesion, invasion and intracellular replication. Therefore, it represents a promising tool for elucidating the cross-talk between AIEC and the intestinal epithelium in healthy and diseased tissues.
Collapse
Affiliation(s)
- Aida Mayorgas
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Isabella Dotti
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Marta Martínez-Picola
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Miriam Esteller
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Queralt Bonet-Rossinyol
- Laboratory of Molecular Microbiology, Department of Biology, Universitat de Girona, Girona, Spain
| | - Elena Ricart
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Azucena Salas
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | | |
Collapse
|
27
|
Xue Y, Li Q, Park CG, Klena JD, Anisimov AP, Sun Z, Wei X, Chen T. Proteus mirabilis Targets Atherosclerosis Plaques in Human Coronary Arteries via DC-SIGN (CD209). Front Immunol 2021; 11:579010. [PMID: 33488579 PMCID: PMC7820866 DOI: 10.3389/fimmu.2020.579010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial DNAs are constantly detected in atherosclerotic plaques (APs), suggesting that a combination of chronic infection and inflammation may have roles in AP formation. A series of studies suggested that certain Gram-negative bacteria were able to interact with dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin [DC-SIGN; cluster of differentiation (CD) 209] or langerin (CD207), thereby resulting in deposition of CD209s at infection sites. We wondered if Proteus mirabilis (a member of Proteobacteria family) could interact with APs through CD209/CD207. In this study, we first demonstrated that CD209/CD207 were also receptors for P. mirabilis that mediated adherence and phagocytosis by macrophages. P. mirabilis interacted with fresh and CD209s/CD207-expressing APs cut from human coronary arteries, rather than in healthy and smooth arteries. These interactions were inhibited by addition of a ligand-mimic oligosaccharide and the coverage of the ligand, as well as by anti-CD209 antibody. Finally, the hearts from an atherosclerotic mouse model contained higher numbers of P. mirabilis than that of control mice during infection-challenging. We therefore concluded that the P. mirabilis interacts with APs in human coronary arteries via CD209s/CD207. It may be possible to slow down the progress of atherosclerosis by blocking the interactions between CD209s/CD207 and certain atherosclerosis-involved bacteria with ligand-mimic oligosaccharides.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/metabolism
- Bacterial Adhesion/drug effects
- CHO Cells
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/metabolism
- Coronary Artery Disease/drug therapy
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/microbiology
- Coronary Artery Disease/pathology
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/microbiology
- Coronary Vessels/pathology
- Cricetulus
- Disease Models, Animal
- Female
- Host-Pathogen Interactions
- Humans
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/metabolism
- Ligands
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/microbiology
- Male
- Mannose-Binding Lectins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Middle Aged
- Oligosaccharides/pharmacology
- Plaque, Atherosclerotic
- Proteus mirabilis/growth & development
- Proteus mirabilis/metabolism
- RAW 264.7 Cells
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- Ying Xue
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiao Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chae Gyu Park
- Laboratory of Immunology, Brain Korea 21 FOUR Project for Medical Science, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - John D. Klena
- Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Andrey P. Anisimov
- Laboratory for Plague Microbiology, State Research Center for Applied Microbiology and Biotechnology, Especially Dangerous Infections Department, Obolensk, Russia
| | - Ziyong Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Zhang X, Tong Y, Lyu X, Wang J, Wang Y, Yang R. Prevention and Alleviation of Dextran Sulfate Sodium Salt-Induced Inflammatory Bowel Disease in Mice With Bacillus subtilis-Fermented Milk via Inhibition of the Inflammatory Responses and Regulation of the Intestinal Flora. Front Microbiol 2021; 11:622354. [PMID: 33519783 PMCID: PMC7845695 DOI: 10.3389/fmicb.2020.622354] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) might be related to the local inflammatory damage and the dysbacteriosis of intestinal flora. Probiotics can regulate the intestinal flora and ameliorate IBD. The probiotic Bacillus subtilis strain B. subtilis JNFE0126 was used as the starter of fermented milk. However, the therapeutic effects of B. subtilis-fermented milk on IBD remain to be explored. In this research, the therapeutic effect of B. subtilis-fermented milk on dextran sulfate sodium salt (DSS)-induced IBD mouse model was evaluated. Besides, the expression of pro-inflammatory/anti-inflammatory cytokines, the proliferation of the intestinal stem cells, and the reconstruction of the mucosa barrier were investigated. Finally, alteration of the gut microbiota was investigated by taxonomic analysis. As shown by the results, the disease activity index (DAI) of IBD was significantly decreased through oral administration of B. subtilis (JNFE0126)-fermented milk, and intestinal mucosa injury was attenuated. Moreover, B. subtilis could reduce the inflammatory response of the intestinal mucosa, induce proliferation of the intestinal stem cell, and promote reconstruction of the mucosal barrier. Furthermore, B. subtilis could rebalance the intestinal flora, increasing the abundance of Bacillus, Alistipes, and Lactobacillus while decreasing the abundance of Escherichia and Bacteroides. In conclusion, oral administration of the B. subtilis-fermented milk could alleviate DSS-induced IBD via inhibition of inflammatory response, promotion of the mucosal barrier reconstruction, and regulation of the intestinal flora.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuxue Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
29
|
Derer S, Brethack AK, Pietsch C, Jendrek ST, Nitzsche T, Bokemeyer A, Hov JR, Schäffler H, Bettenworth D, Grassl GA, Sina C. Inflammatory Bowel Disease-associated GP2 Autoantibodies Inhibit Mucosal Immune Response to Adherent-invasive Bacteria. Inflamm Bowel Dis 2020; 26:1856-1868. [PMID: 32304568 DOI: 10.1093/ibd/izaa069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Adherent-invasive Escherichia coli have been suggested to play a pivotal role within the pathophysiology of inflammatory bowel disease (IBD). Autoantibodies against distinct splicing variants of glycoprotein 2 (GP2), an intestinal receptor of the bacterial adhesin FimH, frequently occur in IBD patients. Hence, we aimed to functionally characterize GP2-directed autoantibodies as a putative part of IBD's pathophysiology. Ex vivo, GP2-splicing variant 4 (GP2#4) but not variant 2 was expressed on intestinal M or L cells with elevated expression patterns in IBD patients. The GP2#4 expression was induced in vitro by tumor necrosis factor (TNF)-α. The IBD-associated GP2 autoantibodies inhibited FimH binding to GP2#4 and were decreased in anti-TNFα-treated Crohn's disease patients with ileocolonic disease manifestation. In vivo, mice immunized against GP2 before infection with adherent-invasive bacteria displayed exacerbated intestinal inflammation. In summary, autoimmunity against intestinal expressed GP2#4 results in enhanced attachment of flagellated bacteria to the intestinal epithelium and thereby may drive IBD's pathophysiology.
Collapse
Affiliation(s)
- Stefanie Derer
- Institute of Nutritional Medicine, Molecular Gastroenterology, University Hospital Schleswig- Holstein, Campus Lübeck, Lübeck, Germany
| | - Ann-Kathrin Brethack
- Institute of Nutritional Medicine, Molecular Gastroenterology, University Hospital Schleswig- Holstein, Campus Lübeck, Lübeck, Germany
| | - Carlotta Pietsch
- Institute of Nutritional Medicine, Molecular Gastroenterology, University Hospital Schleswig- Holstein, Campus Lübeck, Lübeck, Germany
| | - Sebastian T Jendrek
- Department of Rheumatology, University of Schleswig-Holstein, Lübeck, Germany
| | - Thomas Nitzsche
- Institute of Nutritional Medicine, Molecular Gastroenterology, University Hospital Schleswig- Holstein, Campus Lübeck, Lübeck, Germany.,Institute for Experimental Immunology, Euroimmun Corp., Lübeck, Germany
| | - Arne Bokemeyer
- Department of Medicine B, Gastroenterology and Hepatology, University of Münster, Münster, Germany
| | - Johannes R Hov
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian PSC Research Center, Section of Gastroenterology and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Holger Schäffler
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University of Münster, Münster, Germany
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover Medical School, Hannover, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, Molecular Gastroenterology, University Hospital Schleswig- Holstein, Campus Lübeck, Lübeck, Germany.,1st Department of Medicine, Section of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
30
|
Shawki A, Ramirez R, Spalinger MR, Ruegger PM, Sayoc-Becerra A, Santos AN, Chatterjee P, Canale V, Mitchell JD, Macbeth JC, Gries CM, Tremblay ML, Hsiao A, Borneman J, McCole DF. The autoimmune susceptibility gene, PTPN2, restricts expansion of a novel mouse adherent-invasive E. coli. Gut Microbes 2020; 11:1547-1566. [PMID: 32586195 PMCID: PMC7524159 DOI: 10.1080/19490976.2020.1775538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) pathogenesis involves significant contributions from genetic and environmental factors. Loss-of-function single-nucleotide polymorphisms (SNPs) in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) gene increase IBD risk and are associated with altered microbiome population dynamics in IBD. Expansion of intestinal pathobionts, such as adherent-invasive E. coli (AIEC), is strongly implicated in IBD pathogenesis as AIEC increases pro-inflammatory cytokine production and alters tight junction protein regulation - suggesting a potential mechanism of pathogen-induced barrier dysfunction and inflammation. We aimed to determine if PTPN2 deficiency alters intestinal microbiome composition to promote expansion of specific bacteria with pathogenic properties. In mice constitutively lacking Ptpn2, we identified increased abundance of a novel mouse AIEC (mAIEC) that showed similar adherence and invasion of intestinal epithelial cells, but greater survival in macrophages, to the IBD-associated AIEC, LF82. Furthermore, mAIEC caused disease when administered to mice lacking segmented-filamentous bacteria (SFB), and in germ-free mice but only when reconstituted with a microbiome, thus supporting its classification as a pathobiont, not a pathogen. Moreover, mAIEC infection increased the severity of, and prevented recovery from, induced colitis. Although mAIEC genome sequence analysis showed >90% similarity to LF82, mAIEC contained putative virulence genes with >50% difference in gene/protein identities from LF82 indicating potentially distinct genetic features of mAIEC. We show for the first time that an IBD susceptibility gene, PTPN2, modulates the gut microbiome to protect against a novel pathobiont. This study generates new insights into gene-environment-microbiome interactions in IBD and identifies a new model to study AIEC-host interactions.
Collapse
Affiliation(s)
- Ali Shawki
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Rocio Ramirez
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Marianne R. Spalinger
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Paul M. Ruegger
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Anica Sayoc-Becerra
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Alina N. Santos
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Pritha Chatterjee
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Vinicius Canale
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Jonathan D. Mitchell
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - John C. Macbeth
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Casey M. Gries
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | | | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Declan F. McCole
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| |
Collapse
|
31
|
Schierová D, Březina J, Mrázek J, Fliegerová KO, Kvasnová S, Bajer L, Drastich P. Gut Microbiome Changes in Patients with Active Left-Sided Ulcerative Colitis after Fecal Microbiome Transplantation and Topical 5-aminosalicylic Acid Therapy. Cells 2020; 9:cells9102283. [PMID: 33066233 PMCID: PMC7602113 DOI: 10.3390/cells9102283] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease, and intestinal bacteria are implicated in the pathogenesis of this disorder. The administration of aminosalicylates (5-ASA) is a conventional treatment that targets the mucosa, while fecal microbial transplantation (FMT) is a novel treatment that directly targets the gut microbiota. The aim of this study was to identify changes in fecal bacterial composition after both types of treatments and evaluate clinical responses. Sixteen patients with active left-sided UC underwent enema treatment using 5-ASA (n = 8) or FMT (n = 8) with a stool from a single donor. Fecal microbiota were analyzed by 16S rDNA high-throughput sequencing, and clinical indices were used to assess the efficacy of treatments. 5-ASA therapy resulted in clinical remission in 50% (4/8) of patients, but no correlation with changes in fecal bacteria was observed. In FMT, remission was achieved in 37.5% (3/8) of patients and was associated with a significantly increased relative abundance of the families Lachnospiraceae, Ruminococcaceae, and Clostridiaceae of the phylum Firmicutes, and Bifidobacteriaceae and Coriobacteriaceae of the phylum Actinobacteria. At the genus level, Faecalibacterium, Blautia, Coriobacteria, Collinsela, Slackia, and Bifidobacterium were significantly more frequent in patients who reached clinical remission. However, the increased abundance of beneficial taxa was not a sufficient factor to achieve clinical improvement in all UC patients. Nevertheless, our preliminary results indicate that FMT as non-drug-using method is thought to be a promising treatment for UC patients.
Collapse
Affiliation(s)
- Dagmar Schierová
- Institute of Animal Physiology and Genetics of the Czech Academy of Science, v.v.i., 142 20 Prague, Czech Republic; (K.O.F.); (S.K.)
- Correspondence: (D.S.); (J.M.); Tel.: +420-2-6709-0509 (D.S.); +420-2-6709-0506 (J.M.)
| | - Jan Březina
- Hepatogastroenterology Department, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (J.B.); (L.B.); (P.D.)
| | - Jakub Mrázek
- Institute of Animal Physiology and Genetics of the Czech Academy of Science, v.v.i., 142 20 Prague, Czech Republic; (K.O.F.); (S.K.)
- Correspondence: (D.S.); (J.M.); Tel.: +420-2-6709-0509 (D.S.); +420-2-6709-0506 (J.M.)
| | - Kateřina Olša Fliegerová
- Institute of Animal Physiology and Genetics of the Czech Academy of Science, v.v.i., 142 20 Prague, Czech Republic; (K.O.F.); (S.K.)
| | - Simona Kvasnová
- Institute of Animal Physiology and Genetics of the Czech Academy of Science, v.v.i., 142 20 Prague, Czech Republic; (K.O.F.); (S.K.)
| | - Lukáš Bajer
- Hepatogastroenterology Department, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (J.B.); (L.B.); (P.D.)
| | - Pavel Drastich
- Hepatogastroenterology Department, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (J.B.); (L.B.); (P.D.)
| |
Collapse
|
32
|
Mayorgas A, Dotti I, Salas A. Microbial Metabolites, Postbiotics, and Intestinal Epithelial Function. Mol Nutr Food Res 2020; 65:e2000188. [DOI: 10.1002/mnfr.202000188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/31/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Aida Mayorgas
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| | - Isabella Dotti
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| | - Azucena Salas
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| |
Collapse
|
33
|
Ohno M, Hasegawa M, Hayashi A, Caballero-Flores G, Alteri CJ, Lawley TD, Kamada N, Núñez G, Inohara N. Lipopolysaccharide O structure of adherent and invasive Escherichia coli regulates intestinal inflammation via complement C3. PLoS Pathog 2020; 16:e1008928. [PMID: 33027280 PMCID: PMC7571687 DOI: 10.1371/journal.ppat.1008928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/19/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
Gut dysbiosis associated with intestinal inflammation is characterized by the blooming of particular bacteria such as adherent-invasive E. coli (AIEC). However, the precise mechanisms by which AIEC impact on colitis remain largely unknown. Here we show that antibiotic-induced dysbiosis worsened chemically-induced colitis in IL-22-deficient mice, but not in wild-type mice. The increase in intestinal inflammation was associated with the expansion of E. coli strains with genetic and functional features of AIEC. These E. coli isolates exhibited high ability to out compete related bacteria via colicins and resistance to the host complement system in vitro. Mutation of wzy, the lipopolysaccharide O polymerase gene, rendered AIEC more sensitive to the complement system and more susceptible to engulfment and killing by phagocytes while retaining its ability to outcompete related bacteria in vitro. The wzy AIEC mutant showed impaired fitness to colonize the intestine under colitic conditions, but protected mice from chemically-induced colitis. Importantly, the ability of the wzy mutant to protect from colitis was blocked by depletion of complement C3 which was associated with impaired intestinal eradication of AIEC in colitic mice. These studies link surface lipopolysaccharide O-antigen structure to the regulation of colitic activity in commensal AIEC via interactions with the complement system.
Collapse
Affiliation(s)
- Masashi Ohno
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Mizuho Hasegawa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Atsushi Hayashi
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Miyarisan Pharmaceutical Co., Ltd., Central Research Institute, Saitama, Japan
| | - Gustavo Caballero-Flores
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Christopher J. Alteri
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, United States of America
| | - Trevor D. Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nobuhiko Kamada
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gabriel Núñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Naohiro Inohara
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
34
|
Leccese G, Bibi A, Mazza S, Facciotti F, Caprioli F, Landini P, Paroni M. Probiotic Lactobacillus and Bifidobacterium Strains Counteract Adherent-Invasive Escherichia coli (AIEC) Virulence and Hamper IL-23/Th17 Axis in Ulcerative Colitis, but Not in Crohn's Disease. Cells 2020; 9:cells9081824. [PMID: 32752244 PMCID: PMC7464949 DOI: 10.3390/cells9081824] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Hypersecretion of proinflammatory cytokines and dysregulated activation of the IL-23/Th17 axis in response to intestinal microbiota dysbiosis are key factors in the pathogenesis of inflammatory bowel diseases (IBD). In this work, we studied how Lactobacillus and Bifidobacterium strains affect AIEC-LF82 virulence mechanisms and the consequent inflammatory response linked to the CCR6–CCL20 and IL-23/Th17 axes in Crohn’s disease (CD) and ulcerative colitis (UC) patients. All Lactobacillus and Bifidobacterium strains significantly reduced the LF82 adhesion and persistence within HT29 intestinal epithelial cells, inhibiting IL-8 secretion while not affecting the CCR6–CCL20 axis. Moreover, they significantly reduced LF82 survival within macrophages and dendritic cells, reducing the secretion of polarizing cytokines related to the IL-23/Th17 axis, both in healthy donors (HD) and UC patients. In CD patients, however, only B. breve Bbr8 strain was able to slightly reduce the LF82 persistence within dendritic cells, thus hampering the IL-23/Th17 axis. In addition, probiotic strains were able to modulate the AIEC-induced inflammation in HD, reducing TNF-α and increasing IL-10 secretion by macrophages, but failed to do so in IBD patients. Interestingly, the probiotic strains studied in this work were all able to interfere with the IL-23/Th17 axis in UC patients, but not in CD patients. The different interaction mechanisms of probiotic strains with innate immune cells from UC and CD patients compared to HD suggest that testing on CD-derived immune cells may be pivotal for the identification of novel probiotic strains that could be effective also for CD patients.
Collapse
Affiliation(s)
- Gabriella Leccese
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (G.L.); (A.B.); (P.L.)
| | - Alessia Bibi
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (G.L.); (A.B.); (P.L.)
| | - Stefano Mazza
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.M.); (F.C.)
| | - Federica Facciotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy;
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.M.); (F.C.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20135 Milan, Italy
| | - Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (G.L.); (A.B.); (P.L.)
| | - Moira Paroni
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (G.L.); (A.B.); (P.L.)
- Correspondence:
| |
Collapse
|
35
|
Zhou J, Yang J, Dai M, Lin D, Zhang R, Liu H, Yu A, Vakal S, Wang Y, Li X. A combination of inhibiting microglia activity and remodeling gut microenvironment suppresses the development and progression of experimental autoimmune uveitis. Biochem Pharmacol 2020; 180:114108. [PMID: 32569628 DOI: 10.1016/j.bcp.2020.114108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Noninfectious (autoimmune and immune-mediated) uveitis is an ocular inflammatory disease which can lead to blindness in severe cases. Due to the potential side effects of first-line drugs for clinical uveitis, novel drugs and targets against uveitis are still urgently needed. In the present study, using rat experimental autoimmune uveitis (EAU) model, we first found that minocycline treatment can substantially inhibit the development of EAU and improve the retinal function by suppressing the retinal microglial activation, and block the infiltration of inflammatory cells, including Th17, into the retina by decreasing the major histocompatibility complex class II (MHC II) expression in resident and infiltrating cells. Moreover, we demonstrated that minocycline treatment can remodel the gut microenvironment of EAU rats by restoring the relative abundance of Ruminococcus bromii, Streptococcus hyointestinalis, and Desulfovibrio sp. ABHU2SB and promoting a functional shift in the gut via reversing the levels of L-proline, allicin, aceturic acid, xanthine, and leukotriene B4, and especially increasing the production of propionic acid, histamine, and pantothenic acid. At last, we revealed that minocycline treatment can significantly attenuate the progression of EAU after inflammation onset, which may be explained by the role of minocycline in the remodeling of the gut microenvironment since selective elimination of retinal microglia on the later stages of EAU was shown to have little effect. These data clearly demonstrated that inhibition of microglial activation and remodeling of the gut microenvironment can suppress the development and progression of experimental autoimmune uveitis. Considering the excellent safety profile of minocycline in multiple clinical experiments, we suggest that minocycline may have therapeutic implications for clinical uveitis.
Collapse
Affiliation(s)
- Jianhong Zhou
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Jingjing Yang
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Mali Dai
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Dan Lin
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Renshu Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Hui Liu
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Ailing Yu
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, Turku 20541, Finland
| | - Yuqin Wang
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China.
| | - Xingyi Li
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
36
|
Saikosaponin-d ameliorates dextran sulfate sodium-induced colitis by suppressing NF-κB activation and modulating the gut microbiota in mice. Int Immunopharmacol 2020; 81:106288. [PMID: 32062075 DOI: 10.1016/j.intimp.2020.106288] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/05/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022]
Abstract
Saikosaponin-d (SSd), extracts from Bupleurum falcatum L, exhibits anti-inflammatory and anti-infectious activities. However, the effect of SSd on intestinal inflammation has not been investigated. The aim of this study was to evaluate the effect of SSd on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice, and to elucidate the underlying mechanisms. UC was induced in mice by administrating 3% DSS in drinking water for 7 days. SSd (4 mg/kg and 8 mg/kg) was administered by gavage every day during the experimental process. The results showed that SSd treatment (8 mg/kg) significantly ameliorated UC mice by decreasing disease activity index (DAI), increasing colon length and improving pathological characteristics. SSd treatment (8 mg/kg) significantly suppressed the mRNA levels of pro-inflammatory cytokines including TNF-α, IL-6 and IL-1β, increased that of anti-inflammatory cytokine IL-10. Furthermore, SSd (8 mg/kg) suppressed the activation of NF-κB by decreasing the degradation and phosphorylation of IκB. SSd (8 mg/kg) also protected the intestinal barrier by increasing the mRNA levels of mucin (Muc1 and Muc2) and the protein levels of zonula occludens-1 (ZO-1) and Claudin-1. The 16S rDNA gene high-throughput sequencing revealed that SSd treatment (8 mg/kg) increased the alpha diversity and regulated the structure of gut microbiota in UC mice. Taken together, our findings demonstrated that SSd (8 mg/kg) improved DSS-induced intestinal inflammation by inhibiting NF-κB activation and regulated the gut microbiota.
Collapse
|
37
|
Perna A, Hay E, Contieri M, De Luca A, Guerra G, Lucariello A. Adherent-invasive Escherichia coli (AIEC): Cause or consequence of inflammation, dysbiosis, and rupture of cellular joints in patients with IBD? J Cell Physiol 2020; 235:5041-5049. [PMID: 31898324 DOI: 10.1002/jcp.29430] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
There are many factors contributing to the development of gastrointestinal diseases, grouped into genetic, environmental, and lifestyle factors. In recent years attention has fallen on pathogens; in particular, Bacteroides fragilis, Fusobacterium nucleatum, Escherichia coli (E. coli) and Helicobacter pylori have been studied. Several points remain to be clarified, and above all, as regards the adherent-invasive E. coli strains of E. coli, one wonders if they are a cause or a consequence of the disease. In this review, we have tried to clarify some points by examining a series of recent publications regarding the involvement of the bacterium in the pathology, even if other studies are necessary.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Eleonora Hay
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marcella Contieri
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| |
Collapse
|
38
|
Tarasiuk A, Eibl G. Nutritional Support and Probiotics as a Potential Treatment of IBD. Curr Drug Targets 2020; 21:1417-1427. [PMID: 32364071 DOI: 10.2174/1389450121666200504075519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/04/2020] [Accepted: 04/02/2020] [Indexed: 01/12/2023]
Abstract
The pathogenesis of inflammatory bowel disease (IBD) remains unknown. However, there is growing evidence that the increase in the overall incidence of IBD relates to the improvement of sanitary and hygienic conditions of the society leading to lower exposure to both bacterial and parasitic infections. IBD is incurable and characterized by alternating periods of exacerbation and remission of symptoms. Therefore, the main goal of treatment strategies in IBD patients is the most effective maintenance of clinical and endoscopic remission, which does allow patients to function normally for a significant part of life. Taking into account the evidence from different areas, there is a strong rationale supporting the concept that bacteria are important in gut inflammation and that probiotic bacteria may modulate the host-microbe interaction in a way that is directly beneficial to IBD patients along with nutritional support. In this review, we focus on the potential role of gastrointestinal microbiota in the pathogenesis of IBD and the possible value of probiotics, prebiotics, and symbiotics as well as nutritional support in the treatment of IBD.
Collapse
Affiliation(s)
- Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| |
Collapse
|
39
|
Antibiotic Resistance, Virulence Factors, Phenotyping, and Genotyping of E. coli Isolated from the Feces of Healthy Subjects. Microorganisms 2019; 7:microorganisms7080251. [PMID: 31405113 PMCID: PMC6722543 DOI: 10.3390/microorganisms7080251] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 12/26/2022] Open
Abstract
Escherichia coli may innocuously colonize the intestine of healthy subjects or may instigate infections in the gut or in other districts. This study investigated intestinal E. coli isolated from 20 healthy adults. Fifty-one strains were genotyped by molecular fingerprinting and analyzed for genetic and phenotypic traits, encompassing the profile of antibiotic resistance, biofilm production, the presence of surface structures (such as curli and cellulose), and their performance as recipients in conjugation experiments. A phylogroup classification and analysis of 34 virulence determinants, together with genes associated to the pks island (polyketide-peptide genotoxin colibactin) and conjugative elements, was performed. Most of the strains belonged to the phylogroups B1 and B2. The different phylogroups were separated in a principal coordinate space, considering both genetic and functional features, but not considering pulsed-field gel electrophoresis. Within the B2 and F strains, 12 shared the pattern of virulence genes with potential uropathogens. Forty-nine strains were sensitive to all the tested antibiotics. Strains similar to the potential pathogens innocuously inhabited the gut of healthy subjects. However, they may potentially act as etiologic agents of extra-intestinal infections and are susceptible to a wide range of antibiotics. Nevertheless, there is still the possibility to control infections with antibiotic therapy.
Collapse
|