1
|
Bahadir Z, Narayan P, Wolters R, Permar SR, Fouda G, Hessell AJ, Haigwood NL. Monoclonal Antibodies for Pediatric Viral Disease Prevention and Treatment. Pediatrics 2025:e2024068690. [PMID: 40174915 DOI: 10.1542/peds.2024-068690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025] Open
Abstract
Medical advancements over the last century have improved our ability to treat pediatric infectious diseases, significantly reducing associated morbidity and mortality worldwide. Although vaccines have been pivotal in this progress, many viral pathogens still do not currently have effective vaccines. The COVID-19 pandemic highlighted the need for rapid responses to emerging viral pathogens and introduced new tools to combat them. This review addresses human monoclonal antibodies (mAbs) as a strategy for treating and preventing viral infections in pediatric populations. We discuss previously used and currently available mAbs and advancements in mAb discovery. We address the future of mAb therapy by describing novel approaches in drug production and delivery platforms in addition to alternative antibody classes. Finally, we review the challenges and limitations of mAb therapy development for newborns and children.
Collapse
Affiliation(s)
- Zeynep Bahadir
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Priyanka Narayan
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Rachael Wolters
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Genevieve Fouda
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Ann J Hessell
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Nancy L Haigwood
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| |
Collapse
|
2
|
Chawana TD, Walsh SR, Stranix-Chibanda L, Chirenje ZM, Yu C, Zhang L, Seaton KE, Heptinstall J, Zhang L, Paez CA, Gamble T, Karuna ST, Andrew P, Hanscom B, Sobieszczyk ME, Edupuganti S, Gay CL, Mannheimer SB, Hurt CB, Stephenson KE, Polakowski LL, Spiegel H, Yacovone M, Regenold S, Yen C, Baumblatt JA, Gama L, Barouch DH, Piwowar-Manning E, Koup RA, Tomaras GD, Hyrien O, Roxby AC, Huang Y. Pharmacokinetic interaction assessment of an HIV broadly neutralizing monoclonal antibody VRC07-523LS: a cross-protocol analysis of three phase 1 trials in people without HIV. BMC Immunol 2025; 26:8. [PMID: 39966732 PMCID: PMC11837431 DOI: 10.1186/s12865-025-00687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
VRC07-523LS is a safe and well-tolerated monoclonal antibody (mAb) targeting the CD4 binding site on the HIV envelope (Env) trimer. Efficacy of VRC07-523LS, in combination with mAbs targeting other HIV epitopes, will be evaluated in upcoming trials to prevent HIV acquisition in adults. However, differences in the pharmacokinetics (PK) of VRC07-523LS when administered alone vs. in combination with other mAbs have not been formally assessed. We performed a cross-protocol analysis of three clinical trials and included data from a total of 146 adults without HIV who received intravenous (n = 95) or subcutaneous (n = 51) VRC07-523LS, either alone ('single'; n = 100) or in combination with 1 or 2 other mAbs ('combined'; n = 46). We used an open, two-compartment population PK model to describe serum concentrations of VRC07-523LS over time, accounting for inter-individual variabilities. We compared individual-level PK parameters between the combined vs. single groups using the targeted maximum likelihood estimation method to adjust for participant characteristics. No significant differences were observed in clearance rate, inter-compartmental clearance, distribution half-life, or total VRC07-523LS exposure over time. However, for the combined group, mean central volume of distribution, peripheral volume of distribution, and elimination half-life were slightly greater, corresponding to slightly lower predicted concentrations early post-administration with high levels being maintained in both groups. These results suggest potential PK interactions between VRC07-523LS and other mAbs, but with small clinical impact in the context of HIV prevention. Our findings support coadministration of VRC07-523LS with other mAbs, and the use of the developed PK models to design future trials for HIV prevention.
Collapse
Affiliation(s)
- Tariro D Chawana
- University of Zimbabwe Clinical Trials Research Centre (UZ-CTRC), Harare, Zimbabwe.
| | | | | | - Zvavahera M Chirenje
- Bixby Centre for Global Reproductive Health, University of California San Francisco, San Francisco, USA
| | - Chenchen Yu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
| | - Lily Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
| | | | | | - Lu Zhang
- Duke University, Durham, NC, USA
| | - Carmen A Paez
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
| | | | - Shelly T Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
| | | | - Brett Hanscom
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
| | | | | | - Cynthia L Gay
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Christopher B Hurt
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Laura L Polakowski
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Hans Spiegel
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Margaret Yacovone
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Stephanie Regenold
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Catherine Yen
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jane Ag Baumblatt
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucio Gama
- Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Richard A Koup
- Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | | | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
| | - Alison C Roxby
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA.
| |
Collapse
|
3
|
Tomescu C, Ochoa-Ortiz A, Lu LD, Kong H, Riley JL, Montaner LJ. Gene-modified NK cells expressing CD64 and preloaded with HIV-specific BNAbs target autologous HIV-1-infected CD4+ T cells by ADCC. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:253-264. [PMID: 40073240 PMCID: PMC11878998 DOI: 10.1093/jimmun/vkae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/19/2024] [Indexed: 03/14/2025]
Abstract
Natural killer (NK) cells can efficiently mediate antibody-dependent cellular cytotoxicity (ADCC) of antibody coated target cells via the low-affinity Fc-receptor, CD16, but cannot retain antibodies over time. To increase antibody retention and facilitate targeted ADCC, we genetically modified human NK cells with the high-affinity Fc receptor, CD64, so that we could preload them with HIV-specific broadly neutralizing antibodies (BNAbs) and enhance their capacity to target HIV-infected cells via ADCC. Purified NK cells from the peripheral blood of control donors or persons living with HIV were activated with interleukin (IL)-2/IL-15/IL-21 cytokines and transduced with a lentivirus encoding CD64. High levels of CD64 surface expression were maintained for multiple weeks on NK cells and CD64-transduced NK cells were phenotypically similar to control NK cells with strong expression of CD56, CD16, NKG2A, NKp46, CD69, HLA-DR, CD38, and CD57. CD64-transduced NK cells exhibited significantly greater capacity to bind HIV-specific BNAbs in short-term antibody binding assay as well as retain the BNAbs over time (1-wk antibody retention assay) compared with control NK cells only expressing CD16. BNAb-preloaded CD64-transduced NK cells showed a significantly enhanced capacity to mediate ADCC against autologous HIV-1-infected CD4+ primary T cells in both a short-term 4 h degranulation assay as well as a 24 h HIV p24 HIV elimination assay when compared with control NK cells. A chimeric CD64 enhanced NK cell strategy (NuKEs [NK Enhancement Strategy]) retaining bound HIV-specific BNAbs represents a novel autologous primary NK cell immunotherapy strategy against HIV through targeted ADCC.
Collapse
Affiliation(s)
- Costin Tomescu
- HIV Immunopathogenesis Laboratory, BEAT-HIV Delaney Collaboratory, Wistar Institute, Philadelphia, PA, United States
| | - Adiana Ochoa-Ortiz
- HIV Immunopathogenesis Laboratory, BEAT-HIV Delaney Collaboratory, Wistar Institute, Philadelphia, PA, United States
| | - Lily D Lu
- Molecular Screening and Protein Expression Facility, Wistar Institute, Philadelphia, PA, United States
| | - Hong Kong
- Center for Cellular Immunotherapies, BEAT-HIV Delaney Collaboratory, Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - James L Riley
- Center for Cellular Immunotherapies, BEAT-HIV Delaney Collaboratory, Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Luis J Montaner
- HIV Immunopathogenesis Laboratory, BEAT-HIV Delaney Collaboratory, Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
4
|
Rogers GL, Huang C, Mathur A, Huang X, Chen HY, Stanten K, Morales H, Chang CH, Kezirian EJ, Cannon PM. Reprogramming human B cells with custom heavy-chain antibodies. Nat Biomed Eng 2024; 8:1700-1714. [PMID: 39039240 DOI: 10.1038/s41551-024-01240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024]
Abstract
The immunoglobulin locus of B cells can be reprogrammed by genome editing to produce custom or non-natural antibodies that are not induced by immunization. However, current strategies for antibody reprogramming require complex expression cassettes and do not allow for customization of the constant region of the antibody. Here we show that human B cells can be edited at the immunoglobulin heavy-chain locus to express heavy-chain-only antibodies that support alterations to both the fragment crystallizable domain and the antigen-binding domain, which can be based on both antibody and non-antibody components. Using the envelope protein (Env) from the human immunodeficiency virus as a model antigen, we show that B cells edited to express heavy-chain antibodies to Env support the regulated expression of B cell receptors and antibodies through alternative splicing and that the cells respond to the Env antigen in a tonsil organoid model of immunization. This strategy allows for the reprogramming of human B cells to retain the potential for in vivo amplification while producing molecules with flexibility of composition beyond that of standard antibodies.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Chun Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Atishay Mathur
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Xiaoli Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kalya Stanten
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Heidy Morales
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Chan-Hua Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Eric J Kezirian
- Department of Otolaryngology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Dankwa S, Kosman C, Dennis M, Giorgi EE, Vuong K, Pahountis I, Garza A, Binuya C, McCarthy J, Mayer BT, Ngo JT, Enemuo CA, Carnathan DG, Stanfield-Oakley S, Berendam SJ, Weinbaum C, Engelman K, Magnani DM, Chan C, Ferrari G, Silvestri G, Amara RR, Chahroudi A, Permar SR, Fouda GG, Goswami R. A novel HIV triple broadly neutralizing antibody (bNAb) combination-based passive immunization of infant rhesus macaques achieves durable protective plasma neutralization levels and mediates anti-viral effector functions. PLoS One 2024; 19:e0312411. [PMID: 39527587 PMCID: PMC11554116 DOI: 10.1371/journal.pone.0312411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
To eliminate vertical HIV transmission and achieve therapy-free viral suppression among children living with HIV, novel strategies beyond antiretroviral therapy (ART) are necessary. Our group previously identified a triple broadly neutralizing antibody (bNAb) combination comprising of 3BNC117, PGDM1400 and PGT151 that mediates robust in vitro neutralization and non-neutralizing effector functions against a cross-clade panel of simian human immunodeficiency viruses (SHIVs). In this study, we evaluated the safety, pharmacokinetics, and antiviral potency of this bNAb combination in infant rhesus macaques (RMs). We demonstrate that subcutaneous infusion of the triple bNAb regimen was well tolerated in pediatric monkeys and resulted in durable systemic and mucosal distribution. Plasma obtained from passively-immunized RMs demonstrated potent HIV-neutralizing and Fc-mediated antiviral effector functions. Finally, using the predicted serum neutralization 80% inhibitory dilution titer (PT80) biomarker threshold of >200, which was recently identified as a surrogate endpoint for evaluation of the preventative efficacy of bNAbs against mucosal viral acquisition in human clinical trials, we demonstrated that our regimen has PT80>200 against a large panel of plasma and breast milk-derived HIV strains and cross-clade SHIV variants. This data will guide the development of combination bNAbs for eliminating vertical HIV transmission and for achieving ART-free viral suppression among children living with HIV.
Collapse
Affiliation(s)
- Sedem Dankwa
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
| | - Christina Kosman
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
| | - Maria Dennis
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
| | - Elena E. Giorgi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Kenneth Vuong
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
| | - Ioanna Pahountis
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
| | - Ashley Garza
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States of America
| | - Christian Binuya
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
| | - Janice McCarthy
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States of America
- Center for Human Systems Immunology, Duke University, Durham, NC, United States of America
| | - Bryan T. Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Julia T. Ngo
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Chiamaka A. Enemuo
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Diane G. Carnathan
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Sherry Stanfield-Oakley
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States of America
| | - Stella J. Berendam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States of America
| | - Carolyn Weinbaum
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
| | - Kathleen Engelman
- Department of Medicine, UMass Chan Medical School, Worcester, MA, United States of America
| | - Diogo M. Magnani
- Department of Medicine, UMass Chan Medical School, Worcester, MA, United States of America
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States of America
- Center for Human Systems Immunology, Duke University, Durham, NC, United States of America
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States of America
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Rama R. Amara
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States of America
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, New York, NY, United States of America
| | - Genevieve G. Fouda
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, New York, NY, United States of America
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, New York, NY, United States of America
| |
Collapse
|
6
|
Chaix ML, Terracol L, Nere ML, Stefic K, Lascoux-Combe C, Manda V, Sellier P, Maylin S, Molina JM, Liegeon G, Delaugerre C, Salmona M. Susceptibility to lenacapavir, fostemsavir and broadly neutralizing antibodies in French primary HIV-1 infected patients in 2020-2023. J Med Virol 2024; 96:e29948. [PMID: 39363782 DOI: 10.1002/jmv.29948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Surveillance studies of Transmitted Drug Resistance (TDR) are crucial in tracking the evolution of HIV epidemiology. Our aim was to investigate TDR to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), integrase inhibitors (INIs), as well as to new drugs: lenacapavir, fostemsavir. Predictive sensitivity was evaluated for maraviroc and broadly neutralizing antibodies (bNAbs) (zinlirvimab and teropavimab). Between 2020 and 2023, 85 people with HIV (PWH) were diagnosed with primary HIV-1 infection (PHI). Pol and env sequences were analyzed and TDR was characterized according to the French ANRS algorithm. The genotypic-based prediction of bNAbs sensitivity was based on HIV env amino acid signatures I108, I201, F353 for teropavimab and N325, N332, H330 for zinlirvimab. TDR to NRTIs, NNRTIs, PIs and INIs was evidenced in 8.2%, 12.9%, 4.7%, and 5.9% strains, respectively. Ten viruses were CXCR4/dual mix. All viruses were susceptible to lenacapavir (100%) and 52% harbored resistance to fostemsavir. The genotypic profile was associated with a predictive positive value (PPV) > 83% of susceptibility to both teropavimab and zinlirvimab for 23 viruses (31%), while 22 (29%) had a PPV between 62% and 75%, suggesting reduced susceptibility to both bNAbs as soon as primary infection. The surveillance of TDR evidenced at the time of PHI is important with regard to new strategies for HIV patients with virological failure and global implementation of PrEP using NRTI, INI such as recently approved injectable cabotegravir, and future long-acting drugs such as lenacapavir and bNAbs.
Collapse
Affiliation(s)
- Marie-Laure Chaix
- Laboratoire de virologie, Hôpital Saint-Louis, APHP, Paris, France
- INSERM, U944, Université Paris Cité, Paris, France
| | - Laura Terracol
- Laboratoire de virologie, Hôpital Saint-Louis, APHP, Paris, France
| | - Marie-Laure Nere
- Laboratoire de virologie, Hôpital Saint-Louis, APHP, Paris, France
| | - Karl Stefic
- INSERM, U1259, Université de Tours, Tours, France
- Laboratoire de Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Caroline Lascoux-Combe
- Department of Maladies Infectieuses, Hôpital Saint-Louis-Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Victoria Manda
- Department of Maladies Infectieuses, Hôpital Saint-Louis-Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Pierre Sellier
- Department of Maladies Infectieuses, Hôpital Saint-Louis-Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Sarah Maylin
- Laboratoire de virologie, Hôpital Saint-Louis, APHP, Paris, France
| | - Jean-Michel Molina
- INSERM, U944, Université Paris Cité, Paris, France
- Department of Maladies Infectieuses, Hôpital Saint-Louis-Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Geoffroy Liegeon
- Department of Maladies Infectieuses, Hôpital Saint-Louis-Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Constance Delaugerre
- Laboratoire de virologie, Hôpital Saint-Louis, APHP, Paris, France
- INSERM, U944, Université Paris Cité, Paris, France
| | - Maud Salmona
- Laboratoire de virologie, Hôpital Saint-Louis, APHP, Paris, France
- INSERM, U976 Team INSIGHT, Université Paris Cité, Paris, France
| |
Collapse
|
7
|
Becerra JC, Hitchcock L, Vu K, Gach JS. Neutralizing the threat: harnessing broadly neutralizing antibodies against HIV-1 for treatment and prevention. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:207-220. [PMID: 38975023 PMCID: PMC11224682 DOI: 10.15698/mic2024.07.826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024]
Abstract
Broadly neutralizing antibodies (bnAbs) targeting the human immunodeficiency virus-1 (HIV-1) have played a crucial role in elucidating and characterizing neutralization-sensitive sites on the HIV-1 envelope spike and in informing vaccine development. Continual advancements in identifying more potent bnAbs, along with their capacity to trigger antibody-mediated effector functions, coupled with modifications to extend their half-life, position them as promising candidates for both HIV-1 treatment and prevention. While current pharmacological interventions have made significant progress in managing HIV-1 infection and enhancing quality of life, no definitive cure or vaccines have been developed thus far. Standard treatments involve daily oral anti-retroviral therapy, which, despite its efficacy, can lead to notable long-term side effects. Recent clinical trial data have demonstrated encouraging therapeutic and preventive potential for bnAb therapies in both HIV-1-infected individuals and those without the infection. This review provides an overview of the advancements in HIV-1-specific bnAbs and discusses the insights gathered from recent clinical trials regarding their application in treating and preventing HIV-1 infection.
Collapse
Affiliation(s)
- Juan C Becerra
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Lauren Hitchcock
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Khoa Vu
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Johannes S Gach
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| |
Collapse
|
8
|
Mahomed S. Broadly neutralizing antibodies for HIV prevention: a comprehensive review and future perspectives. Clin Microbiol Rev 2024; 37:e0015222. [PMID: 38687039 PMCID: PMC11324036 DOI: 10.1128/cmr.00152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
SUMMARYThe human immunodeficiency virus (HIV) epidemic remains a formidable global health concern, with 39 million people living with the virus and 1.3 million new infections reported in 2022. Despite anti-retroviral therapy's effectiveness in pre-exposure prophylaxis, its global adoption is limited. Broadly neutralizing antibodies (bNAbs) offer an alternative strategy for HIV prevention through passive immunization. Historically, passive immunization has been efficacious in the treatment of various diseases ranging from oncology to infectious diseases. Early clinical trials suggest bNAbs are safe, tolerable, and capable of reducing HIV RNA levels. Although challenges such as bNAb resistance have been noted in phase I trials, ongoing research aims to assess the additive or synergistic benefits of combining multiple bNAbs. Researchers are exploring bispecific and trispecific antibodies, and fragment crystallizable region modifications to augment antibody efficacy and half-life. Moreover, the potential of other antibody isotypes like IgG3 and IgA is under investigation. While promising, the application of bNAbs faces economic and logistical barriers. High manufacturing costs, particularly in resource-limited settings, and logistical challenges like cold-chain requirements pose obstacles. Preliminary studies suggest cost-effectiveness, although this is contingent on various factors like efficacy and distribution. Technological advancements and strategic partnerships may mitigate some challenges, but issues like molecular aggregation remain. The World Health Organization has provided preferred product characteristics for bNAbs, focusing on optimizing their efficacy, safety, and accessibility. The integration of bNAbs in HIV prophylaxis necessitates a multi-faceted approach, considering economic, logistical, and scientific variables. This review comprehensively covers the historical context, current advancements, and future avenues of bNAbs in HIV prevention.
Collapse
Affiliation(s)
- Sharana Mahomed
- Centre for the AIDS
Programme of Research in South Africa (CAPRISA), Doris Duke Medical
Research Institute, Nelson R Mandela School of Medicine, University of
KwaZulu-Natal, Durban,
South Africa
| |
Collapse
|
9
|
Thavarajah JJ, Hønge BL, Wejse CM. The Use of Broadly Neutralizing Antibodies (bNAbs) in HIV-1 Treatment and Prevention. Viruses 2024; 16:911. [PMID: 38932203 PMCID: PMC11209272 DOI: 10.3390/v16060911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Although antiretroviral therapy (ART) effectively halts disease progression in HIV infection, the complete eradication of the virus remains elusive. Additionally, challenges such as long-term ART toxicity, drug resistance, and the demanding regimen of daily and lifelong adherence required by ART highlight the imperative need for alternative therapeutic and preventative approaches. In recent years, broadly neutralizing antibodies (bNAbs) have emerged as promising candidates, offering potential for therapeutic, preventative, and possibly curative interventions against HIV infection. OBJECTIVE This review aims to provide a comprehensive overview of the current state of knowledge regarding the passive immunization of bNAbs in HIV-1-infected individuals. MAIN FINDINGS Recent findings from clinical trials have highlighted the potential of bNAbs in the treatment, prevention, and quest for an HIV-1 cure. While monotherapy with a single bNAb is insufficient in maintaining viral suppression and preventing viral escape, ultimately leading to viral rebound, combination therapy with potent, non-overlapping epitope-targeting bNAbs have demonstrated prolonged viral suppression and delayed time to rebound by effectively restricting the emergence of escape mutations, albeit largely in individuals with bNAb-sensitive strains. Additionally, passive immunization with bNAb has provided a "proof of concept" for antibody-mediated prevention against HIV-1 acquisition, although complete prevention has not been obtained. Therefore, further research on the use of bNAbs in HIV-1 treatment and prevention remains imperative.
Collapse
Affiliation(s)
- Jannifer Jasmin Thavarajah
- Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
| | - Bo Langhoff Hønge
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
| | - Christian Morberg Wejse
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
- GloHAU, Center of Global Health, Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Walsh SR, Gay CL, Karuna ST, Hyrien O, Skalland T, Mayer KH, Sobieszczyk ME, Baden LR, Goepfert PA, del Rio C, Pantaleo G, Andrew P, Karg C, He Z, Lu H, Paez CA, Baumblatt JAG, Polakowski LL, Chege W, Anderson MA, Janto S, Han X, Huang Y, Dumond J, Ackerman ME, McDermott AB, Flach B, Piwowar-Manning E, Seaton K, Tomaras GD, Montefiori DC, Gama L, Mascola JR. Safety and pharmacokinetics of VRC07-523LS administered via different routes and doses (HVTN 127/HPTN 087): A Phase I randomized clinical trial. PLoS Med 2024; 21:e1004329. [PMID: 38913710 PMCID: PMC11251612 DOI: 10.1371/journal.pmed.1004329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/16/2024] [Accepted: 04/23/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Broadly neutralizing antibodies (bnAbs) are a promising approach for HIV-1 prevention. In the Antibody Mediated Prevention (AMP) trials, a CD4-binding site targeting bnAb, VRC01, administered intravenously (IV), demonstrated 75% prevention efficacy against highly neutralization-sensitive viruses but was ineffective against less sensitive viruses. VRC07-523LS is a next-generation bnAb targeting the CD4-binding site and was engineered for increased neutralization breadth and half-life. We conducted a multicenter, randomized, partially blinded Phase I clinical trial to evaluate the safety and serum concentrations of VRC07-523LS, administered in multiple doses and routes to healthy adults without HIV. METHODS AND FINDINGS Participants were recruited between 2 February 2018 and 9 October 2018. A total of 124 participants were randomized to receive 5 VRC07-523LS administrations via IV (T1: 2.5 mg/kg, T2: 5 mg/kg, T3: 20 mg/kg), subcutaneous (SC) (T4: 2.5 mg/kg, T5: 5 mg/kg), or intramuscular (IM) (T6: 2.5 mg/kg or P6: placebo) routes at 4-month intervals. Participants and site staff were blinded to VRC07-523LS versus placebo for the IM group, while all other doses and routes were open-label. Safety data were collected for 144 weeks following the first administration. VRC07-523LS serum concentrations were measured by ELISA through Day 112 in all participants and by binding antibody multiplex assay (BAMA) thereafter in 60 participants (10 per treatment group) through Day 784. Compartmental population pharmacokinetic (PK) analyses were conducted to evaluate the VRC07-523LS serum PK. Neutralization activity was measured in a TZM-bl assay and antidrug antibodies (ADAs) were assayed using a tiered bridging assay testing strategy. Injections and infusions were well tolerated, with mild pain or tenderness reported commonly in the SC and IM groups, and mild to moderate erythema or induration reported commonly in the SC groups. Infusion reactions were reported in 3 of 20 participants in the 20 mg/kg IV group. Peak geometric mean (GM) concentrations (95% confidence intervals [95% CIs]) following the first administration were 29.0 μg/mL (25.2, 33.4), 58.5 μg/mL (49.4, 69.3), and 257.2 μg/mL (127.5, 518.9) in T1-T3 with IV dosing; 10.8 μg/mL (8.8, 13.3) and 22.8 μg/mL (20.1, 25.9) in T4-T5 with SC dosing; and 16.4 μg/mL (14.7, 18.2) in T6 with IM dosing. Trough GM (95% CIs) concentrations immediately prior to the second administration were 3.4 μg/mL (2.5, 4.6), 6.5 μg/mL (5.6, 7.5), and 27.2 μg/mL (23.9, 31.0) with IV dosing; 0.97 μg/mL (0.65, 1.4) and 3.1 μg/mL (2.2, 4.3) with SC dosing, and 2.6 μg/mL (2.05, 3.31) with IM dosing. Peak VRC07-523LS serum concentrations increased linearly with the administered dose. At a given dose, peak and trough concentrations, as well as serum neutralization titers, were highest in the IV groups, reflecting the lower bioavailability following SC and IM administration. A single participant was found to have low titer ADA at a lone time point. VRC07-523LS has an estimated mean half-life of 42 days across all doses and routes (95% CI: 40.5, 43.5), over twice as long as VRC01 (15 days). CONCLUSIONS VRC07-523LS was safe and well tolerated across a range of doses and routes and is a promising long-acting bnAb for inclusion in HIV-1 prevention regimens. TRIAL REGISTRATION ClinicalTrials.gov/ NCT03387150 (posted on 21 December 2017).
Collapse
Affiliation(s)
- Stephen R. Walsh
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cynthia L. Gay
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Shelly T. Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Timothy Skalland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Kenneth H. Mayer
- Harvard Medical School, Boston, Massachusetts, United States of America
- Fenway Institute, Boston, Massachusetts, United States of America
| | - Magdalena E. Sobieszczyk
- Division of Infectious Diseases, Columbia University, New York, New York, United States of America
| | - Lindsey R. Baden
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paul A. Goepfert
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Carlos del Rio
- Emory University School of Medicine and Ponce de Leon Center of the Grady Health System, Atlanta, Georgia, United States of America
| | | | - Philip Andrew
- FHI 360, Durham, North Carolina, United States of America
| | - Carissa Karg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Zonglin He
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Huiyin Lu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Carmen A. Paez
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Jane A. G. Baumblatt
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Laura L. Polakowski
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Wairimu Chege
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Maija A. Anderson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Sophie Janto
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Xue Han
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Julie Dumond
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Adrian B. McDermott
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Britta Flach
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | | | - Kelly Seaton
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Lucio Gama
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | | |
Collapse
|
11
|
Weiner JA, Natarajan H, McIntosh CJ, Yang ES, Choe M, Papia CL, Axelrod KS, Kovacikova G, Pegu A, Ackerman ME. Selection of positive controls and their impact on anti-drug antibody assay performance. J Immunol Methods 2024; 528:113657. [PMID: 38479453 DOI: 10.1016/j.jim.2024.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
Development of assays to reliably identify and characterize anti-drug antibodies (ADAs) depends on positive control anti-idiotype (anti-id) reagents, which are used to demonstrate that the standards recommended by regulatory authorities are met. This work employs a set of therapeutic antibodies under clinical development and their corresponding anti-ids to investigate how different positive control reagent properties impact ADA assay development. Positive controls exhibited different response profiles and apparent assay analytical sensitivity values depending on assay format. Neither anti-id affinity for drug, nor sensitivity in direct immunoassays related to sensitivity in ADA assays. Anti-ids were differentially able to detect damage to drug conjugates used in bridging assays and were differentially drug tolerant. These parameters also failed to relate to assay sensitivity, further complicating selection of anti-ids for use in ADA assay development based on functional characteristics. Given this variability among anti-ids, alternative controls that could be employed across multiple antibody drugs were investigated as a more uniform means to define ADA detection sensitivity across drug products and assay protocols, which could help better relate assay results to clinical risks of ADA responses. Overall, this study highlights the importance of positive control selection to reliable detection and clinical interpretation of the presence and magnitude of ADA responses.
Collapse
Affiliation(s)
- Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, NH, USA
| | - Calum J McIntosh
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cassidy L Papia
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | | | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
12
|
Mayer BT, Zhang L, deCamp AC, Yu C, Sato A, Angier H, Seaton KE, Yates N, Ledgerwood JE, Mayer K, Caskey M, Nussenzweig M, Stephenson K, Julg B, Barouch DH, Sobieszczyk ME, Edupuganti S, Kelley CF, McElrath MJ, Gelderblom HC, Pensiero M, McDermott A, Gama L, Koup RA, Gilbert PB, Cohen MS, Corey L, Hyrien O, Tomaras GD, Huang Y. Impact of LS Mutation on Pharmacokinetics of Preventive HIV Broadly Neutralizing Monoclonal Antibodies: A Cross-Protocol Analysis of 16 Clinical Trials in People without HIV. Pharmaceutics 2024; 16:594. [PMID: 38794258 PMCID: PMC11125931 DOI: 10.3390/pharmaceutics16050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
Monoclonal antibodies are commonly engineered with an introduction of Met428Leu and Asn434Ser, known as the LS mutation, in the fragment crystallizable region to improve pharmacokinetic profiles. The LS mutation delays antibody clearance by enhancing binding affinity to the neonatal fragment crystallizable receptor found on endothelial cells. To characterize the LS mutation for monoclonal antibodies targeting HIV, we compared pharmacokinetic parameters between parental versus LS variants for five pairs of anti-HIV immunoglobin G1 monoclonal antibodies (VRC01/LS/VRC07-523LS, 3BNC117/LS, PGDM1400/LS PGT121/LS, 10-1074/LS), analyzing data from 16 clinical trials of 583 participants without HIV. We described serum concentrations of these monoclonal antibodies following intravenous or subcutaneous administration by an open two-compartment disposition, with first-order elimination from the central compartment using non-linear mixed effects pharmacokinetic models. We compared estimated pharmacokinetic parameters using the targeted maximum likelihood estimation method, accounting for participant differences. We observed lower clearance rate, central volume, and peripheral volume of distribution for all LS variants compared to parental monoclonal antibodies. LS monoclonal antibodies showed several improvements in pharmacokinetic parameters, including increases in the elimination half-life by 2.7- to 4.1-fold, the dose-normalized area-under-the-curve by 4.1- to 9.5-fold, and the predicted concentration at 4 weeks post-administration by 3.4- to 7.6-fold. Results suggest a favorable pharmacokinetic profile of LS variants regardless of HIV epitope specificity. Insights support lower dosages and/or less frequent dosing of LS variants to achieve similar levels of antibody exposure in future clinical applications.
Collapse
Affiliation(s)
- Bryan T. Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (L.Z.); (A.C.d.); (C.Y.); (A.S.); (H.A.); (M.J.M.); (H.C.G.); (P.B.G.); (L.C.); (O.H.)
| | - Lily Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (L.Z.); (A.C.d.); (C.Y.); (A.S.); (H.A.); (M.J.M.); (H.C.G.); (P.B.G.); (L.C.); (O.H.)
| | - Allan C. deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (L.Z.); (A.C.d.); (C.Y.); (A.S.); (H.A.); (M.J.M.); (H.C.G.); (P.B.G.); (L.C.); (O.H.)
| | - Chenchen Yu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (L.Z.); (A.C.d.); (C.Y.); (A.S.); (H.A.); (M.J.M.); (H.C.G.); (P.B.G.); (L.C.); (O.H.)
| | - Alicia Sato
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (L.Z.); (A.C.d.); (C.Y.); (A.S.); (H.A.); (M.J.M.); (H.C.G.); (P.B.G.); (L.C.); (O.H.)
| | - Heather Angier
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (L.Z.); (A.C.d.); (C.Y.); (A.S.); (H.A.); (M.J.M.); (H.C.G.); (P.B.G.); (L.C.); (O.H.)
| | - Kelly E. Seaton
- Duke University Medical Center, Durham, NC 27705, USA; (K.E.S.); (N.Y.); (G.D.T.)
| | - Nicole Yates
- Duke University Medical Center, Durham, NC 27705, USA; (K.E.S.); (N.Y.); (G.D.T.)
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA (M.P.); (A.M.); (L.G.); (R.A.K.)
| | | | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; (M.C.); (M.N.)
| | - Michel Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; (M.C.); (M.N.)
| | - Kathryn Stephenson
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA; (K.S.); (B.J.)
| | - Boris Julg
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA; (K.S.); (B.J.)
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
| | | | - Srilatha Edupuganti
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.E.); (C.F.K.)
| | - Colleen F. Kelley
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.E.); (C.F.K.)
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (L.Z.); (A.C.d.); (C.Y.); (A.S.); (H.A.); (M.J.M.); (H.C.G.); (P.B.G.); (L.C.); (O.H.)
| | - Huub C. Gelderblom
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (L.Z.); (A.C.d.); (C.Y.); (A.S.); (H.A.); (M.J.M.); (H.C.G.); (P.B.G.); (L.C.); (O.H.)
| | - Michael Pensiero
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA (M.P.); (A.M.); (L.G.); (R.A.K.)
| | - Adrian McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA (M.P.); (A.M.); (L.G.); (R.A.K.)
| | - Lucio Gama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA (M.P.); (A.M.); (L.G.); (R.A.K.)
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA (M.P.); (A.M.); (L.G.); (R.A.K.)
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (L.Z.); (A.C.d.); (C.Y.); (A.S.); (H.A.); (M.J.M.); (H.C.G.); (P.B.G.); (L.C.); (O.H.)
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Myron S. Cohen
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (L.Z.); (A.C.d.); (C.Y.); (A.S.); (H.A.); (M.J.M.); (H.C.G.); (P.B.G.); (L.C.); (O.H.)
- Departments of Medicine and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (L.Z.); (A.C.d.); (C.Y.); (A.S.); (H.A.); (M.J.M.); (H.C.G.); (P.B.G.); (L.C.); (O.H.)
| | - Georgia D. Tomaras
- Duke University Medical Center, Durham, NC 27705, USA; (K.E.S.); (N.Y.); (G.D.T.)
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (L.Z.); (A.C.d.); (C.Y.); (A.S.); (H.A.); (M.J.M.); (H.C.G.); (P.B.G.); (L.C.); (O.H.)
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Eron JJ, Little SJ, Crofoot G, Cook P, Ruane PJ, Jayaweera D, VanderVeen LA, DeJesus E, Zheng Y, Mills A, Huang H, Waldman SE, Ramgopal M, Gorgos L, Collins SE, Baeten JM, Caskey M. Safety of teropavimab and zinlirvimab with lenacapavir once every 6 months for HIV treatment: a phase 1b, randomised, proof-of-concept study. Lancet HIV 2024; 11:e146-e155. [PMID: 38307098 DOI: 10.1016/s2352-3018(23)00293-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 02/04/2024]
Abstract
BACKGROUND Long-acting treatment for HIV has potential to improve adherence, provide durable viral suppression, and have long-term individual and public health benefits. We evaluated treatment with two antibodies that broadly and potently neutralise HIV (broadly neutralising antibodies; bNAbs), combined with lenacapavir, a long-acting capsid inhibitor, as a long-acting regimen. METHODS This ongoing, randomised, blind, phase 1b proof-of-concept study conducted at 11 HIV treatment centres in the USA included adults with a plasma HIV-1 RNA concentration below 50 copies per mL who had at least 18 months on oral antiretroviral therapy (ART), CD4 counts of at least 500 cells per μL, and protocol-defined susceptibility to bNAbs teropavimab (3BNC117-LS) and zinlirvimab (10-1074-LS). Participants stopped oral ART and were randomly assigned (1:1) to one dose of 927 mg subcutaneous lenacapavir plus an oral loading dose, 30 mg/kg intravenous teropavimab, and 10 mg/kg or 30 mg/kg intravenous zinlirvimab on day 1. Investigational site personnel and participants were masked to treatment assignment throughout the randomised period. The primary endpoint was incidence of serious adverse events until week 26 in all randomly assigned participants who received one dose or more of any study drug. This study is registered with ClinicalTrials.gov, NCT04811040. FINDINGS Between June 29 and Dec 8, 2021, 21 participants were randomly assigned, ten in each group received the complete study regimen and one withdrew before completing the regimen on day 1. 18 (86%) of 21 participants were male; participants ranged in age from 25 years to 61 years and had a median CD4 cell count of 909 (IQR 687-1270) cells per μL at study entry. No serious adverse events occurred. Two grade 3 adverse events occurred (lenacapavir injection-site erythaema and injection-site cellulitis), which had both resolved. The most common adverse events were symptoms of injection-site reactions, reported in 17 (85%) of 20 participants who received subcutaneous lenacapavir; 12 (60%) of 20 were grade 1. One (10%; 95% CI 0-45) participant had viral rebound (confirmed HIV-1 RNA concentration of ≥50 copies per mL) in the zinlirvimab 10 mg/kg group, which was resuppressed on ART, and one participant in the zinlirvimab 30 mg/kg group withdrew at week 12 with HIV RNA <50 copies per mL. INTERPRETATION Lenacapavir with teropavimab and zinlirvimab 10 mg/kg or 30 mg/kg was generally well tolerated with no serious adverse events. HIV-1 suppression for at least 26 weeks is feasible with this regimen at either zinlirvimab dose in selected people with HIV-1. FUNDING Gilead Sciences.
Collapse
Affiliation(s)
- Joseph J Eron
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Susan J Little
- Division of Infectious Diseases, University of California, San Diego, CA, USA
| | | | - Paul Cook
- Division of Infectious Diseases, East Carolina University, Greenville, NC, USA
| | | | - Dushyantha Jayaweera
- Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | - Yanan Zheng
- Clinical Pharmacology, Gilead Sciences, Foster City, CA, USA
| | | | - Hailin Huang
- Biostatistics, Gilead Sciences, Foster City, CA, USA
| | - Sarah E Waldman
- Division of Infectious Diseases, University of California, Davis, Sacramento, CA, USA
| | - Moti Ramgopal
- Midway Immunology and Research Center, Fort Pierce, FL, USA
| | | | - Sean E Collins
- Clinical Development, Gilead Sciences, Foster City, CA, USA.
| | - Jared M Baeten
- Clinical Development, Gilead Sciences, Foster City, CA, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY, USA
| |
Collapse
|
14
|
Schriek AI, Aldon YLT, van Gils MJ, de Taeye SW. Next-generation bNAbs for HIV-1 cure strategies. Antiviral Res 2024; 222:105788. [PMID: 38158130 DOI: 10.1016/j.antiviral.2023.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Despite the ability to suppress viral replication using anti-retroviral therapy (ART), HIV-1 remains a global public health problem. Curative strategies for HIV-1 have to target and eradicate latently infected cells across the body, i.e. the viral reservoir. Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) have the capacity to neutralize virions and bind to infected cells to initiate elimination of these cells. To improve the efficacy of bNAbs in terms of viral suppression and viral reservoir eradication, next generation antibodies (Abs) are being developed that address the current limitations of Ab treatment efficacy; (1) low antigen (Env) density on (reactivated) HIV-1 infected cells, (2) high viral genetic diversity, (3) exhaustion of immune cells and (4) short half-life of Abs. In this review we summarize and discuss preclinical and clinical studies in which anti-HIV-1 Abs demonstrated potent viral control, and describe the development of engineered Abs that could address the limitations described above. Next generation Abs with optimized effector function, avidity, effector cell recruitment and immune cell activation have the potential to contribute to an HIV-1 cure or durable control.
Collapse
Affiliation(s)
- A I Schriek
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Y L T Aldon
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - M J van Gils
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - S W de Taeye
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Walsh SR, Gay CL, Karuna ST, Hyrien O, Skalland T, Mayer KH, Sobieszczyk ME, Baden LR, Goepfert PA, Del Rio C, Pantaleo G, Andrew P, Karg C, He Z, Lu H, Paez CA, Baumblatt JAG, Polakowski LL, Chege W, Janto S, Han X, Huang Y, Dumond J, Ackerman ME, McDermott AB, Flach B, Piwowar-Manning E, Seaton K, Tomaras GD, Montefiori DC, Gama L, Mascola JR. A Randomised Clinical Trial of the Safety and Pharmacokinetics of VRC07-523LS Administered via Different Routes and Doses (HVTN 127/HPTN 087). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.10.23299799. [PMID: 38260276 PMCID: PMC10802646 DOI: 10.1101/2024.01.10.23299799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Broadly neutralizing antibodies (bnAbs) are a promising approach for HIV-1 prevention. In the only bnAb HIV prevention efficacy studies to date, the Antibody Mediated Prevention (AMP) trials, a CD4-binding site targeting bnAb, VRC01, administered intravenously (IV), demonstrated 75% prevention efficacy against highly neutralization-sensitive viruses but was ineffective against less sensitive viruses. Greater efficacy is required before passively administered bnAbs become a viable option for HIV prevention; furthermore subcutaneous (SC) or intramuscular (IM) administration may be preferred. VRC07-523LS is a next-generation bnAb targeting the CD4-binding site and was engineered for increased neutralization breadth and half-life. Methods Participants were recruited between 02 February 2018 and 09 October 2018. 124 healthy participants without HIV were randomized to receive five VRC07-523LS administrations via IV (T1: 2.5 mg/kg, T2: 5 mg/kg, T3: 20 mg/kg), SC (T4: 2.5 mg/kg, T5: 5 mg/kg) or IM (T6: 2.5 mg/kg or P6: placebo) routes at four-month intervals. Safety data were collected for 144 weeks following the first administration. VRC07-523LS serum concentrations were measured by ELISA after the first dose through Day 112 in all participants and by binding antibody multiplex assay (BAMA) thereafter in 60 participants (10 per treatment group) through Day 784. Compartmental population pharmacokinetic (PK) analyses were conducted to evaluate the VRC07-523LS serum pharmacokinetics. Neutralization activity was measured in a TZM-bl assay and anti-drug antibodies (ADA) were assayed using a tiered bridging assay testing strategy. Results Injections were well-tolerated, with mild pain or tenderness reported commonly in the SC and IM groups, and mild to moderate erythema or induration reported commonly in the SC groups. Infusions were generally well-tolerated, with infusion reactions reported in 3 of 20 participants in the 20 mg/kg IV group. Peak geometric mean (GM) concentrations (95% confidence intervals) following the first administration were 29.0 μg/mL (25.2, 33.4), 58.5 μg/mL (49.4, 69.3), and 257.2 μg/mL (127.5, 518.9) in T1-T3 with IV dosing; 10.8 μg/mL (8.8, 13.3) and 22.8 μg/mL (20.1, 25.9) in T4-T5 with SC dosing; and 16.4 μg/mL (14.7, 18.2) in T6 with IM dosing. Trough GM concentrations immediately prior to the second administration were 3.4 μg/mL (2.5, 4.6), 6.5 μg/mL (5.6, 7.5), and 27.2 μg/mL (23.9, 31.0) with IV dosing; 0.97 μg/mL (0.65, 1.4) and 3.1 μg/mL (2.2, 4.3) with SC dosing, and 2.6 μg/mL (2.05, 3.31) with IM dosing. Peak VRC07-523LS serum concentrations increased linearly with the administered dose. At a given dose, peak and trough concentrations, as well as serum neutralization titres, were highest in the IV groups, reflecting the lower bioavailability following SC and IM administration. A single participant was found to have low titre ADA at a lone timepoint. VRC07-523LS has an estimated mean half-life of 42 days (95% CI: 40.5, 43.5), approximately twice as long as VRC01. Conclusions VRC07-523LS was safe and well-tolerated across a range of doses and routes and is a promising long-acting bnAb for inclusion in HIV-1 prevention regimens.
Collapse
|
16
|
Dohadwala S, Geib MT, Politch JA, Anderson DJ. Innovations in monoclonal antibody-based multipurpose prevention technology (MPT) for the prevention of sexually transmitted infections and unintended pregnancy. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 5:1337479. [PMID: 38264184 PMCID: PMC10803587 DOI: 10.3389/frph.2023.1337479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Monoclonal antibodies (mAbs) are currently being produced for a number of clinical applications including contraception and the prevention of sexually transmitted infections (STIs). Combinations of contraceptive and anti-STI mAbs, including antibodies against HIV-1 and HSV-2, provide a powerful and flexible approach for highly potent and specific multipurpose prevention technology (MPT) products with desirable efficacy, safety and pharmacokinetic profiles. MAbs can be administered systemically by injection, or mucosally via topical products (e.g., films, gels, rings) which can be tailored for vaginal, penile or rectal administration to address the needs of different populations. The MPT field has faced challenges with safety, efficacy, production and cost. Here, we review the state-of-the-art of mAb MPTs that tackle these challenges with innovative strategies in mAb engineering, manufacturing, and delivery that could usher in a new generation of safe, efficacious, cost-effective, and scalable mAb MPTs.
Collapse
Affiliation(s)
- Sarah Dohadwala
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Matthew T. Geib
- Department of Material Science and Engineering, Boston University, Boston, MA, United States
| | - Joseph A. Politch
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Deborah J. Anderson
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
17
|
Paneerselvam N, Khan A, Lawson BR. Broadly neutralizing antibodies targeting HIV: Progress and challenges. Clin Immunol 2023; 257:109809. [PMID: 37852345 PMCID: PMC10872707 DOI: 10.1016/j.clim.2023.109809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Anti-HIV broadly neutralizing antibodies (bNAbs) offer a novel approach to treating, preventing, or curing HIV. Pre-clinical models and clinical trials involving the passive transfer of bNAbs have demonstrated that they can control viremia and potentially serve as alternatives or complement antiretroviral therapy (ART). However, antibody decay, persistent latent reservoirs, and resistance impede bNAb treatment. This review discusses recent advancements and obstacles in applying bNAbs and proposes strategies to enhance their therapeutic potential. These strategies include multi-epitope targeting, antibody half-life extension, combining with current and newer antiretrovirals, and sustained antibody secretion.
Collapse
Affiliation(s)
| | - Amber Khan
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA
| | - Brian R Lawson
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA.
| |
Collapse
|
18
|
Rivera CG, Zeuli JD, Smith BL, Johnson TM, Bhatia R, Otto AO, Temesgen Z. HIV Pre-Exposure Prophylaxis: New and Upcoming Drugs to Address the HIV Epidemic. Drugs 2023; 83:1677-1698. [PMID: 38079092 DOI: 10.1007/s40265-023-01963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 12/20/2023]
Abstract
Human immunodeficiency virus (HIV) pre-exposure prophylaxis (PrEP) provides a critical intervention toward ending the HIV epidemic and protecting people with reasons to utilize PrEP. PrEP options continue to expand as new administration modalities offer the potential to tailor PrEP use for individual success. We have provided the evidence for new and emerging antiretroviral agents for PrEP (cabotegravir, lenacapavir, dapivirine, and broadly neutralizing antibodies), divided into pharmacology, animal model, and human data, accompanied by a summary and suggested place in therapy. Cabotegravir is a US Food and Drug Administration (FDA)-approved intramuscular injection given every 2 months with a strong body of evidence demonstrating efficacy for HIV PrEP, lenacapavir administered subcutaneously every 6 months is currently under investigation for HIV PrEP, dapivirine vaginal ring is an available PrEP option for women in certain areas of Africa, and broadly neutralizing monoclonal antibodies have been challenged in demonstrating efficacy in phase 1-2 study for HIV PrEP to date. Clinical literature for individual agents is discussed with data from major studies summarized in tables. This review provides a detailed overview of recently available and premier candidate PrEP drugs.
Collapse
Affiliation(s)
- Christina G Rivera
- Section of Infectious Diseases, HIV Program, Mayo Clinic, Rochester, MN, USA
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - John D Zeuli
- Section of Infectious Diseases, HIV Program, Mayo Clinic, Rochester, MN, USA
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - Bradley L Smith
- Department of Pharmacy, Grady Health System, Atlanta, GA, USA
| | - Tanner M Johnson
- Section of Infectious Diseases, HIV Program, Mayo Clinic, Rochester, MN, USA
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - Ramona Bhatia
- Division of Infectious Diseases, Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Ashley O Otto
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - Zelalem Temesgen
- Section of Infectious Diseases, HIV Program, Mayo Clinic, Rochester, MN, USA.
- Section of Infectious Diseases, Mayo Clinic and Foundation, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
19
|
Gunst JD, Højen JF, Pahus MH, Rosás-Umbert M, Stiksrud B, McMahon JH, Denton PW, Nielsen H, Johansen IS, Benfield T, Leth S, Gerstoft J, Østergaard L, Schleimann MH, Olesen R, Støvring H, Vibholm L, Weis N, Dyrhol-Riise AM, Pedersen KBH, Lau JSY, Copertino DC, Linden N, Huynh TT, Ramos V, Jones RB, Lewin SR, Tolstrup M, Rasmussen TA, Nussenzweig MC, Caskey M, Reikvam DH, Søgaard OS. Impact of a TLR9 agonist and broadly neutralizing antibodies on HIV-1 persistence: the randomized phase 2a TITAN trial. Nat Med 2023; 29:2547-2558. [PMID: 37696935 PMCID: PMC10579101 DOI: 10.1038/s41591-023-02547-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
Inducing antiretroviral therapy (ART)-free virological control is a critical step toward a human immunodeficiency virus type 1 (HIV-1) cure. In this phase 2a, placebo-controlled, double-blinded trial, 43 people (85% males) with HIV-1 on ART were randomized to (1) placebo/placebo, (2) lefitolimod (TLR9 agonist)/placebo, (3) placebo/broadly neutralizing anti-HIV-1 antibodies (bNAbs) or (4) lefitolimod/bNAb. ART interruption (ATI) started at week 3. Lefitolimod was administered once weekly for the first 8 weeks, and bNAbs were administered twice, 1 d before and 3 weeks after ATI. The primary endpoint was time to loss of virologic control after ATI. The median delay in time to loss of virologic control compared to the placebo/placebo group was 0.5 weeks (P = 0.49), 12.5 weeks (P = 0.003) and 9.5 weeks (P = 0.004) in the lefitolimod/placebo, placebo/bNAb and lefitolimod/bNAb groups, respectively. Among secondary endpoints, viral doubling time was slower for bNAb groups compared to non-bNAb groups, and the interventions were overall safe. We observed no added benefit of lefitolimod. Despite subtherapeutic plasma bNAb levels, 36% (4/11) in the placebo/bNAb group compared to 0% (0/10) in the placebo/placebo group maintained virologic control after the 25-week ATI. Although immunotherapy with lefitolimod did not lead to ART-free HIV-1 control, bNAbs may be important components in future HIV-1 curative strategies. ClinicalTrials.gov identifier: NCT03837756 .
Collapse
Affiliation(s)
- Jesper D Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper F Højen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Marie H Pahus
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Miriam Rosás-Umbert
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte Stiksrud
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - James H McMahon
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
| | - Paul W Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Leth
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Internal Medicine, Gødstrup Hospital, Gødstrup, Denmark
| | - Jan Gerstoft
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Mariane H Schleimann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Støvring
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Line Vibholm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne M Dyrhol-Riise
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Karen B H Pedersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jillian S Y Lau
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Dennis C Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Noemi Linden
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Tan T Huynh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas A Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Dag Henrik Reikvam
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
20
|
Sobieszczyk ME, Mannheimer S, Paez CA, Yu C, Gamble T, Theodore DA, Chege W, Yacovone M, Hanscom B, Heptinstall J, Seaton KE, Zhang L, Miner MD, Eaton A, Weiner JA, Mayer K, Kalams S, Stephenson K, Julg B, Caskey M, Nussenzweig M, Gama L, Barouch DH, Ackerman ME, Tomaras GD, Huang Y, Montefiori D. Safety, tolerability, pharmacokinetics, and immunological activity of dual-combinations and triple-combinations of anti-HIV monoclonal antibodies PGT121, PGDM1400, 10-1074, and VRC07-523LS administered intravenously to HIV-uninfected adults: a phase 1 randomised trial. Lancet HIV 2023; 10:e653-e662. [PMID: 37802566 PMCID: PMC10629933 DOI: 10.1016/s2352-3018(23)00140-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/16/2023] [Accepted: 06/09/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Preclinical and clinical studies suggest that combinations of broadly neutralising antibodies (bnAbs) targeting different HIV envelope epitopes might be required for sufficient prevention of infection. We aimed to evaluate the dual and triple anti-HIV bnAb combinations of PGDM1400 (V2 Apex), PGT121 (V3 glycan), 10-1074 (V3 glycan), and VRC07-523LS (CD4 binding site). METHODS In this phase 1 trial (HVTN 130/HPTN 089), adults without HIV were randomly assigned (1:1:1) to three dual-bnAb treatment groups simultaneously, or the triple-bnAb group, receiving 20 mg/kg of each antibody administered intravenously at four centres in the USA. Participants received a single dose of PGT121 + VRC07-523LS (treatment one; n=6), PGDM1400 + VRC07-523LS (treatment two; n=6), or 10-1074 + VRC07-523LS (treatment three; n=6), and two doses of PGDM1400 + PGT121 + VRC07-523LS (treatment four; n=9). Primary outcomes were safety, pharmacokinetics, and neutralising activity. Safety was determined by monitoring for 60 min after infusions and throughout the study by collecting laboratory assessments (ie, blood count, chemistry, urinalysis, and HIV), and solicited and unsolicited adverse events (via case report forms and participant diaries). Serum concentrations of each bnAb were measured by binding antibody assays on days 0, 3, 6, 14, 28, 56, 112, 168, 224, 280, and 336, and by serum neutralisation titres against Env-pseudotyped viruses on days 0, 3, 28, 56, and 112. Pharmacokinetic parameters were estimated by use of two-compartment population pharmacokinetic models; combination bnAb neutralisation titres were directly measured and assessed with different interaction models. This trial is registered with ClinicalTrials.gov, NCT03928821, and has been completed. FINDINGS 27 participants were enrolled from July 31, to Dec 20, 2019. The median age was 26 years (range 19-50), 16 (58%) of 27 participants were assigned female sex at birth, and 24 (89%) participants were non-Hispanic White. Infusions were safe and well tolerated. There were no statistically significant differences in pharmacokinetic patterns between the dual and triple combinations of PGT121, PGDM1400, and VRC07-523LS. The median estimated elimination half-lives of PGT121, PGDM1400, 10-1074, and VRC07-523LS were 32·2, 25·4, 27·5, and 52·9 days, respectively. Neutralisation coverage against a panel of 12 viruses was greater in the triple-bnAb versus dual-bnAb groups: area under the magnitude-breadth curve at day 28 was 3·1, 2·9, 3·0, and 3·4 for treatments one to four, respectively. The Bliss-Hill multiplicative interaction model, which assumes complementary neutralisation with no antagonism or synergism among the bnAbs, best described combination bnAb titres in the dual-bnAb and triple-bnAb groups. INTERPRETATION No pharmacokinetic interactions among the bnAbs and no loss of complementary neutralisation were observed in the dual and triple combinations. This study lays the foundation for designing future combination bnAb HIV prevention efficacy trials. FUNDING US National Institute of Allergy and Infectious Diseases, US National Institute on Drug Abuse, US National Institute of Mental Health, and the Eunice Kennedy Shriver National Institute of Child Health and Human Development.
Collapse
Affiliation(s)
| | - Sharon Mannheimer
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Carmen A Paez
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Chenchen Yu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | - Wairimu Chege
- National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Margaret Yacovone
- National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Brett Hanscom
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | - Lily Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Maurine D Miner
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Amanda Eaton
- Duke University School of Medicine, Durham, NC, USA
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | - Spyros Kalams
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Boris Julg
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | | | - Lucio Gama
- Vaccine Research Center, National Institute of Health, Bethesda, MD, USA
| | - Dan H Barouch
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | | | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | |
Collapse
|
21
|
Shapiro RL, Ajibola G, Maswabi K, Hughes M, Nelson BS, Niesar A, Holme MP, Powis KM, Sakoi M, Batlang O, Moyo S, Mohammed T, Maphorisa C, Bennett K, Hu Z, Giguel F, Reeves JD, Reeves MA, Gao C, Yu X, Ackerman ME, McDermott A, Cooper M, Caskey M, Gama L, Jean-Philippe P, Yin DE, Capparelli EV, Lockman S, Makhema J, Kuritzkes DR, Lichterfeld M. Broadly neutralizing antibody treatment maintained HIV suppression in children with favorable reservoir characteristics in Botswana. Sci Transl Med 2023; 15:eadh0004. [PMID: 37406137 PMCID: PMC10683791 DOI: 10.1126/scitranslmed.adh0004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 07/07/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) may provide an alternative to standard antiretroviral treatment (ART) for controlling HIV-1 replication and may have immunotherapeutic effects against HIV-1 reservoirs. We conducted a prospective clinical trial with two HIV-1 bNAbs (VRC01LS and 10-1074) in children (n = 25) who had previously initiated small-molecule ART treatment before 7 days of age and who continued treatment for at least 96 weeks. Both bNAbs were dosed intravenously every 4 weeks, overlapping with ART for at least 8 weeks and then continued for up to 24 weeks or until detectable viremia of HIV-1 RNA rose above 400 copies per milliliter in the absence of ART. Eleven (44%) children maintained HIV-1 RNA below 400 copies per milliliter through 24 weeks of bNAb-only treatment; 14 (56%) had detectable viremia above 400 copies per milliliter at a median of 4 weeks. Archived HIV-1 provirus susceptible to 10-1074, lower birth HIV-1 DNA reservoir in peripheral blood mononuclear cells, sustained viral suppression throughout early life, and combined negative qualitative HIV-1 DNA polymerase chain reaction and negative HIV-1 serology at entry were associated with maintaining suppression on bNAbs alone. This proof-of-concept study suggests that bNAbs may represent a promising treatment modality for infants and children living with HIV-1. Future studies using newer bNAb combinations with greater breadth and potency are warranted.
Collapse
Affiliation(s)
- Roger L. Shapiro
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Botswana Harvard Health Partnership; Gaborone, Botswana
| | | | | | - Michael Hughes
- Department of Biostatistics, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
| | - Bryan S. Nelson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
| | - Aischa Niesar
- Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
| | - Molly Pretorius Holme
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
| | - Kathleen M. Powis
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Botswana Harvard Health Partnership; Gaborone, Botswana
- Departments of Internal Medicine and Pediatrics, Massachusetts General Hospital; Boston, MA 02114, USA
| | - Maureen Sakoi
- Botswana Harvard Health Partnership; Gaborone, Botswana
| | | | - Sikhulile Moyo
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Botswana Harvard Health Partnership; Gaborone, Botswana
| | | | | | - Kara Bennett
- Bennett Statistical Consulting, Inc.; Ballston Lake, NY 12019, USA
| | - Zixin Hu
- Division of Infectious Diseases, Brigham and Women’s Hospital; Boston, MA 02115, USA
| | - Francoise Giguel
- Division of Infectious Diseases, Brigham and Women’s Hospital; Boston, MA 02115, USA
| | | | - Michael A. Reeves
- Labcorp-Monogram Biosciences, Inc.; South San Francisco, CA 94080, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
| | - Xu Yu
- Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
| | | | | | - Marlene Cooper
- Frontier Science and Technology Research Foundation, Inc.; Amherst, NY 14226, USA
| | | | - Lucio Gama
- Vaccine Research Center; Bethesda, MD 20892, USA
| | - Patrick Jean-Philippe
- National Institute of Allergy and Infectious Diseases, National Institutes of Health; Rockville, MD 20892, USA
| | - Dwight E. Yin
- National Institute of Allergy and Infectious Diseases, National Institutes of Health; Rockville, MD 20892, USA
| | - Edmund V. Capparelli
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92037, USA
| | - Shahin Lockman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Botswana Harvard Health Partnership; Gaborone, Botswana
- Division of Infectious Diseases, Brigham and Women’s Hospital; Boston, MA 02115, USA
| | - Joseph Makhema
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Botswana Harvard Health Partnership; Gaborone, Botswana
| | - Daniel R. Kuritzkes
- Division of Infectious Diseases, Brigham and Women’s Hospital; Boston, MA 02115, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital; Boston, MA 02115, USA
| |
Collapse
|
22
|
Pihlstrom N, Bournazos S. Engineering strategies of Anti-HIV antibody therapeutics in clinical development. Curr Opin HIV AIDS 2023; 18:184-190. [PMID: 37144557 PMCID: PMC10247531 DOI: 10.1097/coh.0000000000000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW Anti-human immunodeficiency virus (HIV) antibody-based therapeutics offer an alternative treatment option to current antiretroviral drugs. This review aims to provide an overview of the Fc- and Fab-engineering strategies that have been developed to optimize broadly neutralizing antibodies and discuss recent findings from preclinical and clinical studies. RECENT FINDINGS Multispecific antibodies, including bispecific and trispecific antibodies, DART molecules, and BiTEs, as well as Fc-optimized antibodies, have emerged as promising therapeutic candidates for the treatment of HIV. These engineered antibodies engage multiple epitopes on the HIV envelope protein and human receptors, resulting in increased potency and breadth of activity. Additionally, Fc-enhanced antibodies have demonstrated extended half-life and improved effector function. SUMMARY The development of Fc and Fab-engineered antibodies for the treatment of HIV continues to show promising progress. These novel therapies have the potential to overcome the limitations of current antiretroviral pharmacologic agents by more effectively suppressing viral load and targeting latent reservoirs in individuals living with HIV. Further studies are needed to fully understand the safety and efficacy of these therapies, but the growing body of evidence supports their potential as a new class of therapeutics for the treatment of HIV.
Collapse
Affiliation(s)
- Nicole Pihlstrom
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
23
|
Seaton KE, Huang Y, Karuna S, Heptinstall JR, Brackett C, Chiong K, Zhang L, Yates NL, Sampson M, Rudnicki E, Juraska M, deCamp AC, Edlefsen PT, Mullins JI, Williamson C, Rossenkhan R, Giorgi EE, Kenny A, Angier H, Randhawa A, Weiner JA, Rojas M, Sarzotti-Kelsoe M, Zhang L, Sawant S, Ackerman ME, McDermott AB, Mascola JR, Hural J, McElrath MJ, Andrew P, Hidalgo JA, Clark J, Laher F, Orrell C, Frank I, Gonzales P, Edupuganti S, Mgodi N, Corey L, Morris L, Montefiori D, Cohen MS, Gilbert PB, Tomaras GD. Pharmacokinetic serum concentrations of VRC01 correlate with prevention of HIV-1 acquisition. EBioMedicine 2023; 93:104590. [PMID: 37300931 PMCID: PMC10363420 DOI: 10.1016/j.ebiom.2023.104590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND The phase 2b proof-of-concept Antibody Mediated Prevention (AMP) trials showed that VRC01, an anti-HIV-1 broadly neutralising antibody (bnAb), prevented acquisition of HIV-1 sensitive to VRC01. To inform future study design and dosing regimen selection of candidate bnAbs, we investigated the association of VRC01 serum concentration with HIV-1 acquisition using AMP trial data. METHODS The case-control sample included 107 VRC01 recipients who acquired HIV-1 and 82 VRC01 recipients who remained without HIV-1 during the study. We measured VRC01 serum concentrations with a qualified pharmacokinetic (PK) Binding Antibody Multiplex Assay. We employed nonlinear mixed effects PK modelling to estimate daily-grid VRC01 concentrations. Cox regression models were used to assess the association of VRC01 concentration at exposure and baseline body weight, with the hazard of HIV-1 acquisition and prevention efficacy as a function of VRC01 concentration. We also compared fixed dosing vs. body weight-based dosing via simulations. FINDINGS Estimated VRC01 concentrations in VRC01 recipients without HIV-1 were higher than those in VRC01 recipients who acquired HIV-1. Body weight was inversely associated with HIV-1 acquisition among both placebo and VRC01 recipients but did not modify the prevention efficacy of VRC01. VRC01 concentration was inversely correlated with HIV-1 acquisition, and positively correlated with prevention efficacy of VRC01. Simulation studies suggest that fixed dosing may be comparable to weight-based dosing in overall predicted prevention efficacy. INTERPRETATION These findings suggest that bnAb serum concentration may be a useful marker for dosing regimen selection, and operationally efficient fixed dosing regimens could be considered for future trials of HIV-1 bnAbs. FUNDING Was provided by the National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIAID) (UM1 AI068614, to the HIV Vaccine Trials Network [HVTN]; UM1 AI068635, to the HVTN Statistical Data and Management Center [SDMC], Fred Hutchinson Cancer Center [FHCC]; 2R37 054165 to the FHCC; UM1 AI068618, to HVTN Laboratory Center, FHCC; UM1 AI068619, to the HPTN Leadership and Operations Center; UM1 AI068613, to the HIV Prevention Trials Network [HPTN] Laboratory Center; UM1 AI068617, to the HPTN SDMC; and P30 AI027757, to the Center for AIDS Research, Duke University (AI P30 AI064518) and University of Washington (P30 AI027757) Centers for AIDS Research; R37AI054165 from NIAID to the FHCC; and OPP1032144 CA-VIMC Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Kelly E Seaton
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA.
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA; Department of Global Health, University of Washington, Seattle, WA, 98195, USA.
| | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jack R Heptinstall
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Caroline Brackett
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Kelvin Chiong
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Lily Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Nicole L Yates
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Mark Sampson
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Erika Rudnicki
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Michal Juraska
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Paul T Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - James I Mullins
- Department of Global Health, University of Washington, Seattle, WA, 98195, USA; Departments of Microbiology and Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Disease & Molecular Medicine, University of Cape Town and National Health Laboratory Service, South Africa
| | - Raabya Rossenkhan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Elena E Giorgi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Avi Kenny
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Heather Angier
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - April Randhawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Michelle Rojas
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Marcella Sarzotti-Kelsoe
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Lu Zhang
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Sheetal Sawant
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | | | | | | | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - M Julianna McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | | | | | - Jesse Clark
- Department of Medicine, Division of Infectious Disease and Department of Family Medicine in the David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Fatima Laher
- Perinatal HIV Research Unit (PHRU), Wits Health Consortium, Soweto, Johannesburg, South Africa
| | - Catherine Orrell
- Desmond Tutu Health Foundation, University of Cape Town (Institute of Infectious Disease and Molecular Medicine, and Department of Medicine), Observatory, 7925, Cape Town, South Africa
| | - Ian Frank
- Penn Center for AIDS Research, Infectious Disease Division, University of Pennsylvania, 3400 Civic Center Boulevard Building 421, Philadelphia, PA, 19104, USA
| | - Pedro Gonzales
- Asociacion Civil Impacta Salud y Educación, San Miguel Clinical Research Center, Lima, Peru
| | - Srilatha Edupuganti
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Nyaradzo Mgodi
- University of Zimbabwe-University of California San Francisco (UZ-UCSF) Collaborative Research Programme, Harare, Zimbabwe, South Africa
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA; Departments of Medicine and Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA; Division of Medical Virology, University of Cape Town, Anzio Road, Observatory, 7925, Cape Town, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, 2192, South Africa; Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa; Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - David Montefiori
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Myron S Cohen
- Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA; Departments of Microbiology and Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Georgia D Tomaras
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA.
| |
Collapse
|
24
|
Frattari GS, Caskey M, Søgaard OS. Broadly neutralizing antibodies for HIV treatment and cure approaches. Curr Opin HIV AIDS 2023; 18:157-163. [PMID: 37144579 DOI: 10.1097/coh.0000000000000802] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW In recent years, clinical trials have explored broadly neutralizing antibodies (bNAbs) as treatment and cure of HIV. Here, we summarize the current knowledge, review the latest clinical studies, and reflect on the potential role of bNAbs in future applications in HIV treatment and cure strategies. RECENT FINDINGS In most individuals who switch from standard antiretroviral therapy to bNAb treatment, combinations of at least two bNAbs effectively suppress viremia. However, sensitivity of archived proviruses to bNAb neutralization and maintaining adequate bNAb plasma levels are key determinants of the therapeutic effect. Combinations of bNAbs with injectable small-molecule antiretrovirals are being developed as long-acting treatment regimens that may require as little as two annual administrations to maintain virological suppression. Further, interventions that combine bNAbs with immune modulators or therapeutic vaccines are under investigation as HIV curative strategies. Interestingly, administration of bNAbs during the early or viremic stage of infection appears to enhance host immune responses against HIV. SUMMARY While accurately predicting archived resistant mutations has been a significant challenge for bNAb-based treatments, combinations of potent bNAbs against nonoverlapping epitopes may help overcome this issue. As a result, multiple long-acting HIV treatment and cure strategies involving bNAbs are now being investigated.
Collapse
Affiliation(s)
- Giacomo Schmidt Frattari
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Mahomed S, Garrett N, Capparelli EV, Osman F, Mkhize NN, Harkoo I, Gengiah TN, Mansoor LE, Baxter C, Archary D, Yende-Zuma N, Samsunder N, Carlton K, Narpala S, McDermott AB, Doria-Rose NA, Moore PL, Morris L, Abdool Karim Q, Mascola JR, Abdool Karim SS. Safety and pharmacokinetics of escalating doses of neutralising monoclonal antibody CAP256V2LS administered with and without VRC07-523LS in HIV-negative women in South Africa (CAPRISA 012B): a phase 1, dose-escalation, randomised controlled trial. THE LANCET HIV 2023; 10:e230-e243. [PMID: 37001964 DOI: 10.1016/s2352-3018(23)00003-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 03/30/2023]
Abstract
BACKGROUND Young women in sub-Saharan Africa continue to bear a high burden of HIV infection. Combination anti-HIV monoclonal antibodies are a potential HIV prevention technology that could overcome adherence challenges of daily oral pre-exposure prophylaxis. In this phase 1 clinical trial we aimed to determine the safety and pharmacokinetic profile of the broadly neutralising monoclonal antibody CAP256V2LS. METHODS CAPRISA 012B, a first-in-human dose-escalation phase 1 trial evaluated the safety, pharmacokinetics, and neutralisation activity of CAP256V2LS alone and in combination with VRC07-523LS in young HIV-negative women in Durban, South Africa. Groups 1 and 2 were open label with CAP256V2LS administered at 5 mg/kg and 10 mg/kg intravenously and 5 mg/kg, 10 mg/kg, and 20 mg/kg subcutaneously. In group 3, participants were randomly allocated to receive a combination of CAP256V2LS and VRC07-523LS at 10 mg/kg and 20 mg/kg subcutaneously comixed with ENHANZE, a recombinant human hyaluronidase. Once safety was established in the first three participants, dose escalation took place sequentially following review of safety data. Primary endpoints were the proportion of participants with mild, moderate, and severe reactogenicity or adverse events, graded as per the Division of AIDS toxicity grading. The trial is registered on the Pan African Clinical Trial Registry, PACTR202003767867253, and is recruiting. FINDINGS From July 13, 2020, to Jan 13, 2021, 42 HIV-negative women, aged 18-45 years, were enrolled. All 42 participants, eight with intravenous and 34 with subcutaneous administration, completed the trial. There were no serious adverse events or dose-limiting toxicities. Most commonly reported symptoms following intravenous administration were headaches in seven (88%) and nausea in four (50%) participants. Commonly reported symptoms following subcutaneous administration were headache in 31 (91%), chills in 25 (74%), and malaise or fatigue in 19 (56%) participants. Adverse events included transient lymphocytopenia in eight (19%), proteinuria in nine (21%), elevated aspartate aminotransferase in ten (24%), and alanine aminotransferase in five (12%) participants. INTERPRETATION CAP256V2LS administered alone and in combination with VRC07-523LS was safe with favourable pharmacokinetics and neutralisation activity, supporting further assessment in larger clinical studies. FUNDING European and Developing Countries Clinical Trials Partnership, South African Medical Research Council, and South African Department of Science and Innovation.
Collapse
Affiliation(s)
- Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa; Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | | | - Farzana Osman
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Nonhlanhla N Mkhize
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; South African Medical Research Council, Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ishana Harkoo
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Tanuja N Gengiah
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Leila E Mansoor
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Cheryl Baxter
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa; Centre for Epidemic Response and Innovation, School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Nonhlanhla Yende-Zuma
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Natasha Samsunder
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Kevin Carlton
- Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandeep Narpala
- Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Penny L Moore
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa; National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; South African Medical Research Council, Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lynn Morris
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa; National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; South African Medical Research Council, Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa; Department of Epidemiology, Columbia University, New York, NY, USA
| | - John R Mascola
- Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa; Department of Epidemiology, Columbia University, New York, NY, USA
| |
Collapse
|
26
|
Houser KV, Happe M, Bean R, Coates EE. Vaccines. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
27
|
Lovelace SE, Helmold Hait S, Yang ES, Fox ML, Liu C, Choe M, Chen X, McCarthy E, Todd JP, Woodward RA, Koup RA, Mascola JR, Pegu A. Anti-viral efficacy of a next-generation CD4-binding site bNAb in SHIV-infected animals in the absence of anti-drug antibody responses. iScience 2022; 25:105067. [PMID: 36157588 PMCID: PMC9490026 DOI: 10.1016/j.isci.2022.105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV-1 are promising immunotherapeutic agents for treatment of HIV-1 infection. bNAbs can be administered to SHIV-infected rhesus macaques to assess their anti-viral efficacy; however, their delivery into macaques often leads to rapid formation of anti-drug antibody (ADA) responses limiting such assessment. Here, we depleted B cells in five SHIV-infected rhesus macaques by pretreatment with a depleting anti-CD20 antibody prior to bNAb infusions to reduce ADA. Peripheral B cells were depleted following anti-CD20 infusions and remained depleted for at least 9 weeks after the 1st anti-CD20 infusion. Plasma viremia dropped by more than 100-fold in viremic animals after the initial bNAb treatment. No significant humoral ADA responses were detected for as long as B cells remained depleted. Our results indicate that transient B cell depletion successfully inhibited emergence of ADA and improved the assessment of anti-viral efficacy of a bNAb in a SHIV-infected rhesus macaque model. Highly potent CD4bs bNAb reduces viremia up to 4 log10 in SHIV-infected animals Sustained B cell depletion prevents development of ADA responses Lack of ADA enables multiple bNAb infusions over 12 weeks
Collapse
Affiliation(s)
- Sarah E Lovelace
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sabrina Helmold Hait
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Madison L Fox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ruth A Woodward
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Agrahari V, Anderson SM, Peet MM, Wong AP, Singh ON, Doncel GF, Clark MR. Long-acting HIV Pre-exposure Prophylaxis (PrEP) approaches: Recent advances, emerging technologies and development challenges. Expert Opin Drug Deliv 2022; 19:1365-1380. [PMID: 36252277 PMCID: PMC9639748 DOI: 10.1080/17425247.2022.2135699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Introduction: Poor or inconsistent adherence to daily oral pre-exposure prophylaxis (PrEP) has emerged as a key barrier to effective HIV prevention. The advent of potent long-acting (LA) antiretrovirals (ARVs) in conjunction with advances in controlled release technologies has enabled LA ARV drug delivery systems (DDS) capable of providing extended dosing intervals and overcome the challenge of suboptimal drug adherence with daily oral dosing. Areas covered: This review discusses the current state of the LA PrEP field, recent advances, and emerging technologies, including ARV prodrug modifications and new DDS. Technological challenges, knowledge gaps, preclinical testing considerations, and future directions important in the context of clinical translation and implementation of LA HIV PrEP are discussed. Expert opinion: The HIV prevention field is evolving faster than ever and the bar for developing next-generation LA HIV prevention options continues to rise. The requirements for viable LA PrEP products to be implemented in resource-limited settings are challenging, necessitating proactive consideration and product modifications during the design and testing of promising new candidates. If successfully translated, next-generation LA PrEP that are safe, affordable, highly effective, and accepted by both end-users and key stakeholders will offer significant potential to curb the HIV pandemic.
Collapse
Affiliation(s)
- Vivek Agrahari
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | | - Andrew P. Wong
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Onkar N. Singh
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | |
Collapse
|
29
|
Capparelli EV, Ajibola G, Maswabi K, Holme MP, Bennett K, Powis KM, Moyo S, Mohammed T, Maphorisa C, Hughes MD, Seaton KE, Tomaras GD, Mosher S, Taylor A, O'Connell S, Narpala S, Mcdermott A, Caskey M, Gama L, Lockman S, Jean-Philippe P, Makhema J, Kuritzkes DR, Lichterfeld M, Shapiro RL. Safety and Pharmacokinetics of Intravenous 10-1074 and VRC01LS in Young Children. J Acquir Immune Defic Syndr 2022; 91:182-188. [PMID: 36094485 PMCID: PMC10224771 DOI: 10.1097/qai.0000000000003033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/26/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Broadly neutralizing monoclonal antibodies (bNAbs) suppress HIV-1 RNA and may deplete residual viral reservoirs. We evaluated the safety and pharmacokinetics (PK) of dual intravenous VRC01LS and 10-1074 in very early-treated children with HIV-1 on suppressive antiretroviral treatment (ART). SETTING Botswana. METHODS Children with HIV-1 (median age 3.1 years) on ART from <7 days old were enrolled. In phase A, 6 children received 10-1074 (30 mg/kg at day 0, 28, and 56) and 6 children received VRC01LS (30 mg/kg at day 0, 10 mg/kg at days 28 and 56) by intravenous infusion. In phase B, 6 children received the 2 bNAbs combined (with higher VRC01LS maintenance dose, 15 mg/kg) every 4 weeks for 32 weeks with PK evaluations over 8 weeks. Population PK models were developed to predict steady-state concentrations. RESULTS BNAb infusions were well tolerated. There were no infusion reactions nor any bNAb-related grade 3 or 4 events. The median (range) first dose Cmax and trough (day 28) combined from both phases were 1405 (876-1999) μg/mL and 133 (84-319) μg/mL for 10-1074 and 776 (559-846) μg/mL and 230 (158-294) μg/mL for VRC01LS. No large differences in bNAb clearances were observed when given in combination. The estimated VRC01LS half-life was shorter than in adults. Predicted steady-state troughs [median (90% prediction interval)] were 261 (95-565) and 266 (191-366) μg/mL for 10-1074 and VRC01LS, respectively, when given in combination. CONCLUSIONS 10-1074 and VRC01LS were safe and well-tolerated among children receiving ART. Troughs exceeded minimal targets with every 4-week administration of 10-1074 at 30 mg/kg and VRC01LS at 15 mg/kg.
Collapse
Affiliation(s)
| | | | - Kenneth Maswabi
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Molly P Holme
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Kara Bennett
- Bennett Statistical Consulting Inc, Ballston Lake, NY
| | - Kathleen M Powis
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
- Departments of Internal Medicine and Pediatrics, Massachusetts General Hospital, Boston, MA
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | | | | | - Michael D Hughes
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Kelly E Seaton
- Center for Human Systems Immunology, Duke University School of Medicine, Department of Surgery, Durham, NC
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Duke University School of Medicine, Department of Surgery, Durham, NC
| | - Shad Mosher
- Center for Human Systems Immunology, Duke University School of Medicine, Department of Surgery, Durham, NC
| | | | | | | | | | - Marina Caskey
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY
| | | | - Shahin Lockman
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA
| | - Patrick Jean-Philippe
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Joseph Makhema
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA; and
| | | | - Roger L Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
30
|
Gilbert PB, Huang Y, deCamp AC, Karuna S, Zhang Y, Magaret CA, Giorgi EE, Korber B, Edlefsen PT, Rossenkhan R, Juraska M, Rudnicki E, Kochar N, Huang Y, Carpp LN, Barouch DH, Mkhize NN, Hermanus T, Kgagudi P, Bekker V, Kaldine H, Mapengo RE, Eaton A, Domin E, West C, Feng W, Tang H, Seaton KE, Heptinstall J, Brackett C, Chiong K, Tomaras GD, Andrew P, Mayer BT, Reeves DB, Sobieszczyk ME, Garrett N, Sanchez J, Gay C, Makhema J, Williamson C, Mullins JI, Hural J, Cohen MS, Corey L, Montefiori DC, Morris L. Neutralization titer biomarker for antibody-mediated prevention of HIV-1 acquisition. Nat Med 2022; 28:1924-1932. [PMID: 35995954 PMCID: PMC9499869 DOI: 10.1038/s41591-022-01953-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/14/2022] [Indexed: 01/28/2023]
Abstract
The Antibody Mediated Prevention trials showed that the broadly neutralizing antibody (bnAb) VRC01 prevented acquisition of human immunodeficiency virus-1 (HIV-1) sensitive to VRC01. Using AMP trial data, here we show that the predicted serum neutralization 80% inhibitory dilution titer (PT80) biomarker-which quantifies the neutralization potency of antibodies in an individual's serum against an HIV-1 isolate-can be used to predict HIV-1 prevention efficacy. Similar to the results of nonhuman primate studies, an average PT80 of 200 (meaning a bnAb concentration 200-fold higher than that required to reduce infection by 80% in vitro) against a population of probable exposing viruses was estimated to be required for 90% prevention efficacy against acquisition of these viruses. Based on this result, we suggest that the goal of sustained PT80 <200 against 90% of circulating viruses can be achieved by promising bnAb regimens engineered for long half-lives. We propose the PT80 biomarker as a surrogate endpoint for evaluatinon of bnAb regimens, and as a tool for benchmarking candidate bnAb-inducing vaccines.
Collapse
Affiliation(s)
- Peter B. Gilbert
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Biostatistics, University of Washington, Seattle, WA USA
| | - Yunda Huang
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Global Health, University of Washington, Seattle, WA USA
| | - Allan C. deCamp
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Shelly Karuna
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Yuanyuan Zhang
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Craig A. Magaret
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Elena E. Giorgi
- grid.148313.c0000 0004 0428 3079Los Alamos National Laboratory, Los Alamos, NM USA ,grid.270240.30000 0001 2180 1622Present Address: Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Bette Korber
- grid.148313.c0000 0004 0428 3079Los Alamos National Laboratory, Los Alamos, NM USA
| | - Paul T. Edlefsen
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Raabya Rossenkhan
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Michal Juraska
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Erika Rudnicki
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Nidhi Kochar
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Ying Huang
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Lindsay N. Carpp
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Dan H. Barouch
- grid.239395.70000 0000 9011 8547Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA USA ,grid.32224.350000 0004 0386 9924Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA USA
| | - Nonhlanhla N. Mkhize
- grid.416657.70000 0004 0630 4574National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa ,grid.11951.3d0000 0004 1937 1135Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tandile Hermanus
- grid.416657.70000 0004 0630 4574National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa ,grid.11951.3d0000 0004 1937 1135Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Prudence Kgagudi
- grid.416657.70000 0004 0630 4574National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa ,grid.11951.3d0000 0004 1937 1135Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Valerie Bekker
- grid.416657.70000 0004 0630 4574National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa ,grid.11951.3d0000 0004 1937 1135Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa ,grid.26009.3d0000 0004 1936 7961Present Address: Duke Center for Human Systems Immunology, Duke University Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC USA
| | - Haajira Kaldine
- grid.416657.70000 0004 0630 4574National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa ,grid.11951.3d0000 0004 1937 1135Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rutendo E. Mapengo
- grid.416657.70000 0004 0630 4574National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa ,grid.11951.3d0000 0004 1937 1135Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amanda Eaton
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC USA
| | - Elize Domin
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC USA
| | - Carley West
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC USA
| | - Wenhong Feng
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC USA
| | - Haili Tang
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC USA
| | - Kelly E. Seaton
- grid.26009.3d0000 0004 1936 7961Duke University Departments of Surgery, Immunology, Molecular Genetics and Micobiology, Duke Center for Human Systems Immunology, Durham, NC USA
| | - Jack Heptinstall
- grid.26009.3d0000 0004 1936 7961Duke University Departments of Surgery, Immunology, Molecular Genetics and Micobiology, Duke Center for Human Systems Immunology, Durham, NC USA
| | - Caroline Brackett
- grid.26009.3d0000 0004 1936 7961Duke University Departments of Surgery, Immunology, Molecular Genetics and Micobiology, Duke Center for Human Systems Immunology, Durham, NC USA
| | - Kelvin Chiong
- grid.26009.3d0000 0004 1936 7961Duke University Departments of Surgery, Immunology, Molecular Genetics and Micobiology, Duke Center for Human Systems Immunology, Durham, NC USA
| | - Georgia D. Tomaras
- grid.26009.3d0000 0004 1936 7961Duke University Departments of Surgery, Immunology, Molecular Genetics and Micobiology, Duke Center for Human Systems Immunology, Durham, NC USA
| | - Philip Andrew
- grid.245835.d0000 0001 0300 5112Family Health International, Durham, NC USA
| | - Bryan T. Mayer
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Daniel B. Reeves
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Magdalena E. Sobieszczyk
- grid.21729.3f0000000419368729Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY USA
| | - Nigel Garrett
- grid.16463.360000 0001 0723 4123Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa ,grid.16463.360000 0001 0723 4123Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Jorge Sanchez
- grid.10800.390000 0001 2107 4576Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Cynthia Gay
- grid.10698.360000000122483208Division of Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Joseph Makhema
- Botswana-Harvard AIDS Initiative Partnership for HIV Research and Education, Gaborone, Botswana ,grid.239395.70000 0000 9011 8547Division of Infectious Disease, Beth Israel Deaconess Medical Center, Boston, MA USA
| | - Carolyn Williamson
- grid.7836.a0000 0004 1937 1151Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - James I. Mullins
- grid.34477.330000000122986657Department of Global Health, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Department of Microbiology, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Department of Medicine, University of Washington, Seattle, WA USA
| | - John Hural
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Myron S. Cohen
- grid.10698.360000000122483208Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Lawrence Corey
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Medicine, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Department of Laboratory Medicine, University of Washington, Seattle, WA USA
| | - David C. Montefiori
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC USA
| | - Lynn Morris
- grid.416657.70000 0004 0630 4574National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa ,grid.11951.3d0000 0004 1937 1135Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa ,grid.16463.360000 0001 0723 4123Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
31
|
In vivo engineered B cells secrete high titers of broadly neutralizing anti-HIV antibodies in mice. Nat Biotechnol 2022; 40:1241-1249. [PMID: 35681059 PMCID: PMC7613293 DOI: 10.1038/s41587-022-01328-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/22/2022] [Indexed: 12/13/2022]
Abstract
Transplantation of B cells engineered ex vivo to secrete broadly neutralizing antibodies (bNAbs) has shown efficacy in disease models. However, clinical translation of this approach would require specialized medical centers, technically demanding protocols and major histocompatibility complex compatibility of donor cells and recipients. Here we report in vivo B cell engineering using two adeno-associated viral vectors, with one coding for Staphylococcus aureus Cas9 (saCas9) and the other for 3BNC117, an anti-HIV bNAb. After intravenously injecting the vectors into mice, we observe successful editing of B cells leading to memory retention and bNAb secretion at neutralizing titers of up to 6.8 µg ml-1. We observed minimal clustered regularly interspaced palindromic repeats (CRISPR)-Cas9 off-target cleavage as detected by unbiased CHANGE-sequencing analysis, whereas on-target cleavage in undesired tissues is reduced by expressing saCas9 from a B cell-specific promoter. In vivo B cell engineering to express therapeutic antibodies is a safe, potent and scalable method, which may be applicable not only to infectious diseases but also in the treatment of noncommunicable conditions, such as cancer and autoimmune disease.
Collapse
|
32
|
Broadly neutralizing antibodies against HIV-1 and concepts for application. Curr Opin Virol 2022; 54:101211. [DOI: 10.1016/j.coviro.2022.101211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 12/21/2022]
|
33
|
Tyrosine O-sulfation proteoforms affect HIV-1 monoclonal antibody potency. Sci Rep 2022; 12:8433. [PMID: 35589938 PMCID: PMC9120178 DOI: 10.1038/s41598-022-12423-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/05/2022] [Indexed: 11/08/2022] Open
Abstract
CAP256V2LS, a broadly neutralizing monoclonal antibody (bNAb), is being pursued as a promising drug for HIV-1 prevention. The total level of tyrosine-O-sulfation, a post-translational modification, was known to play a key role for antibody biological activity. More importantly, here wedescribe for the first time the significance of the tyrosine-O-sulfation proteoforms. We developed a hydrophobic interaction chromatography (HIC) method to separate and quantify different sulfation proteoforms, which led to the direct functionality assessment of tyrosine-sulfated species. The fully sulfated (4-SO3) proteoform demonstrated the highest in vitro relative antigen binding potency and neutralization efficiency against a panel of HIV-1 viruses. Interestingly, highly variable levels of 4-SO3 were produced by different clonal CHO cell lines, which helped the bNAb process development towards production of a highly potent CAP256V2LS clinical product with high 4-SO3 proteoform. This study presents powerful insight for any biotherapeutic protein development where sulfation may play an important role in product efficacy.
Collapse
|
34
|
Gruell H, Gunst JD, Cohen YZ, Pahus MH, Malin JJ, Platten M, Millard KG, Tolstrup M, Jones RB, Conce Alberto WD, Lorenzi JCC, Oliveira TY, Kümmerle T, Suárez I, Unson-O'Brien C, Nogueira L, Olesen R, Østergaard L, Nielsen H, Lehmann C, Nussenzweig MC, Fätkenheuer G, Klein F, Caskey M, Søgaard OS. Effect of 3BNC117 and romidepsin on the HIV-1 reservoir in people taking suppressive antiretroviral therapy (ROADMAP): a randomised, open-label, phase 2A trial. THE LANCET. MICROBE 2022; 3:e203-e214. [PMID: 35544074 DOI: 10.1016/s2666-5247(21)00239-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The administration of broadly neutralising anti-HIV-1 antibodies before latency reversal could facilitate elimination of HIV-1-infected CD4 T cells. We tested this concept by combining the broadly neutralising antibody 3BNC117 in combination with the latency-reversing agent romidepsin in people with HIV-1 who were taking suppressive antiretroviral therapy (ART). METHODS We did a randomised, open-label, phase 2A trial at three university hospital centres in Denmark, Germany, and the USA. Eligible participants were virologically suppressed adults aged 18-65 years who were infected with HIV-1 and on ART for at least 18 months, with plasma HIV-1 RNA concentrations of less than 50 copies per mL for at least 12 months, and a CD4 T-cell count of greater than 500 cells per μL. Participants were randomly assigned (1:1) to receive 3BNC117 plus romidepsin or romidepsin alone in two cycles. All participants received intravenous infusions of romidepsin (5 mg/m2 given over 120 min) at weeks 0, 1, and 2 (treatment cycle 1) and weeks 8, 9, and 10 (treatment cycle 2). Those in the 3BNC117 plus romidepsin group received an intravenous infusion of 3BNC117 (30 mg/kg given over 60 min) 2 days before each treatment cycle. An analytic treatment interruption (ATI) of ART was done at week 24 in both groups. Our primary endpoint was time to viral rebound during analytic treatment interruption, which was assessed in all participants who completed both treatment cycles and ATI. We used a log-rank test to compare time to viral rebound during analytic treatment interruption between the two groups. This trial is registered with ClinicalTrials.gov, NCT02850016. It is closed to new participants, and all follow-up is complete. FINDINGS Between March 20, 2017, and Aug 14, 2018, 22 people were enrolled and randomly assigned, 11 to the 3BNC117 plus romidepsin group and 11 to the romidepsin group. 19 participants completed both treatment cycles and the ATI: 11 in the 3BNC117 plus romidepsin group and 8 in the romidepsin group. The median time to viral rebound during ATI was 18 days (IQR 14-28) in the 3BNC117 plus romidepsin group and 28 days (21-35) in the romidepsin group B (p=0·0016). Although this difference was significant, prolongation of time to viral rebound was not clinically meaningful in either group. All participants in both groups reported adverse events, but overall the combination of 3BNC117 and romidepsin was safe. Two severe adverse events were observed in the romidepsin group during 48 weeks of follow-up, one of which-increased direct bilirubin-was judged to be related to treatment. INTERPRETATION The combination of 3BNC117 and romidepsin was safe but did not delay viral rebound during analytic treatment interruptions in individuals on long-term ART. The results of our trial could serve as a benchmark for further optimisation of HIV-1 curative strategies among people with HIV-1 who are taking suppressive ART. FUNDING amfAR, German Center for Infection Research.
Collapse
Affiliation(s)
- Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Center for Infection Research (DZIF) Bonn-Cologne, Cologne, Germany
| | - Jesper D Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Yehuda Z Cohen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Marie H Pahus
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jakob J Malin
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Platten
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Wisplinghoff Laboratories, Cologne, Germany
| | - Katrina G Millard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Winnifer D Conce Alberto
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Tim Kümmerle
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Praxis am Ebertplatz, Cologne, Germany
| | - Isabelle Suárez
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Center for Infection Research (DZIF) Bonn-Cologne, Cologne, Germany
| | | | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Clara Lehmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Center for Infection Research (DZIF) Bonn-Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Center for Infection Research (DZIF) Bonn-Cologne, Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Center for Infection Research (DZIF) Bonn-Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
35
|
Pegu A, Xu L, DeMouth ME, Fabozzi G, March K, Almasri CG, Cully MD, Wang K, Yang ES, Dias J, Fennessey CM, Hataye J, Wei RR, Rao E, Casazza JP, Promsote W, Asokan M, McKee K, Schmidt SD, Chen X, Liu C, Shi W, Geng H, Foulds KE, Kao SF, Noe A, Li H, Shaw GM, Zhou T, Petrovas C, Todd JP, Keele BF, Lifson JD, Doria-Rose N, Koup RA, Yang ZY, Nabel GJ, Mascola JR. Potent anti-viral activity of a trispecific HIV neutralizing antibody in SHIV-infected monkeys. Cell Rep 2022; 38:110199. [PMID: 34986348 PMCID: PMC8767641 DOI: 10.1016/j.celrep.2021.110199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/20/2021] [Accepted: 12/10/2021] [Indexed: 01/07/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) represent an alternative to drug therapy for the treatment of HIV-1 infection. Immunotherapy with single bNAbs often leads to emergence of escape variants, suggesting a potential benefit of combination bNAb therapy. Here, a trispecific bNAb reduces viremia 100- to 1000-fold in viremic SHIV-infected macaques. After treatment discontinuation, viremia rebounds transiently and returns to low levels, through CD8-mediated immune control. These viruses remain sensitive to the trispecific antibody, despite loss of sensitivity to one of the parental bNAbs. Similarly, the trispecific bNAb suppresses the emergence of resistance in viruses derived from HIV-1-infected subjects, in contrast to parental bNAbs. Trispecific HIV-1 neutralizing antibodies, therefore, mediate potent antiviral activity in vivo and may minimize the potential for immune escape.
Collapse
Affiliation(s)
- Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ling Xu
- Sanofi, 640 Memorial Dr., Cambridge MA, USA
| | - Megan E. DeMouth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Giulia Fabozzi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kylie March
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Cassandra G. Almasri
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michelle D. Cully
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Joana Dias
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jason Hataye
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Ercole Rao
- Sanofi, 640 Memorial Dr., Cambridge MA, USA
| | - Joseph P. Casazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wanwisa Promsote
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stephen D. Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Shing-Fen Kao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Amy Noe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Gary J. Nabel
- Sanofi, 640 Memorial Dr., Cambridge MA, USA,To whom correspondence should be addressed: G.J.N: , phone: 857-233-9936; J.R.M. ; 301-496-1852
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA,Lead contact,To whom correspondence should be addressed: G.J.N: , phone: 857-233-9936; J.R.M. ; 301-496-1852
| |
Collapse
|
36
|
Lee WS, Reynaldi A, Amarasena T, Davenport MP, Parsons MS, Kent SJ. Anti-Drug Antibodies in Pigtailed Macaques Receiving HIV Broadly Neutralising Antibody PGT121. Front Immunol 2021; 12:749891. [PMID: 34867979 PMCID: PMC8636046 DOI: 10.3389/fimmu.2021.749891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
Broadly neutralising antibodies (bNAbs) may play an important role in future strategies for HIV control. The development of anti-drug antibody (ADA) responses can reduce the efficacy of passively transferred bNAbs but the impact of ADA is imperfectly understood. We previously showed that therapeutic administration of the anti-HIV bNAb PGT121 (either WT or LALA version) controlled viraemia in pigtailed macaques with ongoing SHIV infection. We now report on 23 macaques that had multiple treatments with PGT121. We found that an increasing number of intravenous doses of PGT121 or human IgG1 isotype control antibodies (2-4 doses) results in anti-PGT121 ADA induction and low plasma concentrations of PGT121. ADA was associated with poor or absent suppression of SHIV viremia. Notably, ADA within macaque plasma recognised another human bNAb 10E8 but did not bind to the variable domains of PGT121, suggesting that ADA were primarily directed against the constant regions of the human antibodies. These findings have implications for the development of preclinical studies examining multiple infusions of human bNAbs.
Collapse
Affiliation(s)
- Wen Shi Lee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Matthew S Parsons
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Stephen J Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
37
|
August A, Attarwala HZ, Himansu S, Kalidindi S, Lu S, Pajon R, Han S, Lecerf JM, Tomassini JE, Hard M, Ptaszek LM, Crowe JE, Zaks T. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nat Med 2021; 27:2224-2233. [PMID: 34887572 PMCID: PMC8674127 DOI: 10.1038/s41591-021-01573-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Chikungunya virus (CHIKV) infection causes acute disease characterized by fever, rash and arthralgia, which progresses to severe and chronic arthritis in up to 50% of patients. Moreover, CHIKV infection can be fatal in infants or immunocompromised individuals and has no approved therapy or prevention. This phase 1, first-in-human, randomized, placebo-controlled, proof-of-concept trial conducted from January 2019 to June 2020 evaluated the safety and pharmacology of mRNA-1944, a lipid nanoparticle-encapsulated messenger RNA encoding the heavy and light chains of a CHIKV-specific monoclonal neutralizing antibody, CHKV-24 ( NCT03829384 ). The primary outcome was to evaluate the safety and tolerability of escalating doses of mRNA-1944 administered via intravenous infusion in healthy participants aged 18-50 years. The secondary objectives included determination of the pharmacokinetics of mRNA encoding for CHKV-24 immunoglobulin heavy and light chains and ionizable amino lipid component and the pharmacodynamics of mRNA-1944 as assessed by serum concentrations of mRNA encoding for CHKV-24 immunoglobulin G (IgG), plasma concentrations of ionizable amino lipid and serum concentrations of CHKV-24 IgG. Here we report the results of a prespecified interim analysis of 38 healthy participants who received intravenous single doses of mRNA-1944 or placebo at 0.1, 0.3 and 0.6 mg kg-1, or two weekly doses at 0.3 mg kg-1. At 12, 24 and 48 h after single infusions, dose-dependent levels of CHKV-24 IgG with neutralizing activity were observed at titers predicted to be therapeutically relevant concentrations (≥1 µg ml-1) across doses that persisted for ≥16 weeks at 0.3 and 0.6 mg kg-1 (mean t1/2 approximately 69 d). A second 0.3 mg kg-1 dose 1 week after the first increased CHKV-24 IgG levels 1.8-fold. Adverse effects were mild to moderate in severity, did not worsen with a second mRNA-1944 dose and none were serious. To our knowledge, mRNA-1944 is the first mRNA-encoded monoclonal antibody showing in vivo expression and detectable ex vivo neutralizing activity in a clinical trial and may offer a treatment option for CHIKV infection. Further evaluation of the potential therapeutic use of mRNA-1944 in clinical trials for the treatment of CHIKV infection is warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu Han
- Moderna, Inc., Cambridge, MA, USA
| | | | | | | | | | - James E Crowe
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tal Zaks
- Moderna, Inc., Cambridge, MA, USA
| |
Collapse
|
38
|
Hvilsom CT, Søgaard OS. TLR-Agonist Mediated Enhancement of Antibody-Dependent Effector Functions as Strategy For an HIV-1 Cure. Front Immunol 2021; 12:704617. [PMID: 34630386 PMCID: PMC8495198 DOI: 10.3389/fimmu.2021.704617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background The current treatment for HIV-1 is based on blocking various stages in the viral replication cycle using combination antiretroviral therapy (ART). Even though ART effectively controls the infection, it is not curative, and patients must therefore continue treatment life-long. Aim Here we review recent literature investigating the single or combined effect of toll-like receptor (TLR) agonists and broadly neutralizing antibodies (bNAbs) with the objective to evaluate the evidence for this combination as a means towards an HIV-1 cure. Results Multiple preclinical studies found significantly enhanced killing of HIV-1 infected cells by TLR agonist-induced innate immune activation or by Fc-mediated effector functions following bNAb administration. However, monotherapy with either agent did not lead to sustained HIV-1 remission in clinical trials among individuals on long-term ART. Notably, findings in non-human primates suggest that a combination of TLR agonists and bNAbs may be able to induce long-term remission after ART cessation and this approach is currently being further investigated in clinical trials. Conclusion Preclinical findings show beneficial effects of either TLR agonist or bNAb administration for enhancing the elimination of HIV-1 infected cells. Further, TLR agonist-mediated stimulation of innate effector functions in combination with bNAbs may enhance antibody-dependent cellular cytotoxicity and non-human primate studies have shown promising results for this combination strategy. Factors such as immune exhaustion, proviral bNAb sensitivity and time of intervention might impact the clinical success.
Collapse
Affiliation(s)
| | - Ole Schmeltz Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Disease, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
39
|
Niu M, Wong YC, Wang H, Li X, Chan CY, Zhang Q, Ling L, Cheng L, Wang R, Du Y, Yim LY, Jin X, Zhang H, Zhang L, Chen Z. Tandem bispecific antibody prevents pathogenic SHIV SF162P3CN infection and disease progression. Cell Rep 2021; 36:109611. [PMID: 34433029 DOI: 10.1016/j.celrep.2021.109611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/16/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
Although progress has been made on constructing potent bi-specific broadly neutralizing antibody (bi-bNAb), few bi-bNAbs have been evaluated against HIV-1/AIDS in non-human primates (NHPs). Here, we report the efficacy of a tandem bi-bNAb, namely BiIA-SG, in Chinese-origin rhesus macaques (CRM) against the CRM-adapted R5-tropic pathogenic SHIVSF162P3CN challenge. Pre-exposure BiIA-SG injection prevents productive viral infection in 6 of 6 CRMs with unmeasurable proviral load, T cell responses, and seroconversion. Single BiIA-SG injection, at day 1 or 3 post viral challenge, significantly reduces peak viremia, achieves undetectable setpoint viremia in 8 of 13 CRMs, and delays disease progression for years in treated CRMs. In contrast, 6 of 8 untreated CRMs develop simian AIDS within 2 years. BiIA-SG-induced long-term protection is associated with CD8+ T cells as determined by anti-CD8β antibody depletion experiments. Our findings provide a proof-of-concept that bi-bNAb treatment elicits T cell immunity in NHPs, which warrant the clinical development of BiIA-SG for HIV-1 prevention and immunotherapy.
Collapse
Affiliation(s)
- Mengyue Niu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yik Chun Wong
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Hui Wang
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Xin Li
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China; Department of Veterinary Medicine, Foshan University, Foshan, People's Repubic of China
| | - Chun Yin Chan
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Qi Zhang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Lijun Ling
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Lin Cheng
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Ruoke Wang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Yanhua Du
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Lok Yan Yim
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Xia Jin
- Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Haoji Zhang
- Department of Veterinary Medicine, Foshan University, Foshan, People's Repubic of China
| | - Linqi Zhang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China; HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW There has been significant development of long-acting injectable therapy for the management of HIV in recent years that has the potential to revolutionise HIV care as we know it. This review summarises the data and outlines the potential challenges in the field of long-acting antiretroviral therapy (ART). RECENT FINDINGS In recent years, monthly and two monthly long-acting injectable ART in the form of cabotegravir and rilpivirine has shown safety and efficacy in large-scale phase 3 randomised control trials. Also, agents with novel mechanisms of action, such as Lenacapavir, have been tested in early-phase studies and are currently being tested in phase 2-3 clinical trials; if successful, this may allow six-monthly dosing schedules. SUMMARY However, despite evidence that suggests that these therapies are efficacious and acceptable to patients, the challenge of integrating these agents into our current healthcare infrastructure and making these novel agents cost-effective and available to the populations most likely to benefit remains. The next frontier for long-acting therapy will be to introduce these agents in a real-world setting ensuring that the groups most in need of long-acting therapy are not left behind.
Collapse
|
41
|
Garber DA, Guenthner P, Mitchell J, Ellis S, Gazumyan A, Nason M, Seaman MS, McNicholl JM, Nussenzweig MC, Heneine W. Broadly neutralizing antibody-mediated protection of macaques against repeated intravenous exposures to simian-human immunodeficiency virus. AIDS 2021; 35:1567-1574. [PMID: 33966028 DOI: 10.1097/qad.0000000000002934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The opioid epidemic has increased parentally acquired HIV infection. To inform the development of a long-acting prevention strategy, we evaluated the protective efficacy of broadly neutralizing antibodies (bNAbs) against intravenous simian-human immunodeficiency virus (SHIV) infection in macaques. DESIGN Five cynomolgus macaques were injected once subcutaneously with 10-1074 and 3BNC117 (10 mg each kg-1) and were repeatedly challenged intravenously once weekly with SHIVAD8-EO (130 TCID50), until infection was confirmed via plasma viral load assay. Two control macaques, which received no antibody, were challenged identically. METHODS Plasma viremia was monitored via RT-qPCR assay. bNAb concentrations were determined longitudinally in plasma samples via TZM-bl neutralization assays using virions pseudotyped with 10-1074-sensitive (X2088_c9) or 3BNC117-sensitive (Q769.d22) HIV envelope proteins. RESULTS Passively immunized macaques were protected against a median of five weekly intravenous SHIV challenges, as compared to untreated controls, which were infected following a single challenge. Of the two bNAbs, 10-1074 exhibited relatively longer persistence in vivo. The median plasma level of 10-1074 at SHIV breakthrough was 1.1 μg ml-1 (range: 0.6-1.6 μg ml-1), whereas 3BNC117 was undetectable. Probit modeling estimated that 6.6 μg ml-1 of 10-1074 in plasma corresponded to a 99% reduction in per-challenge infection probability, as compared to controls. CONCLUSIONS Significant protection against repeated intravenous SHIV challenges was observed following administration of 10-1074 and 3BNC117 and was due primarily to 10-1074. Our findings extend preclinical studies of bNAb-mediated protection against mucosal SHIV acquisition and support the possibility that intermittent subcutaneous injections of 10-1074 could serve as long-acting preexposure prophylaxis for persons who inject drugs.
Collapse
Affiliation(s)
- David A Garber
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Patricia Guenthner
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - James Mitchell
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Shanon Ellis
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Martha Nason
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Janet M McNicholl
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Walid Heneine
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
42
|
Walsh SR, Seaman MS. Broadly Neutralizing Antibodies for HIV-1 Prevention. Front Immunol 2021; 12:712122. [PMID: 34354713 PMCID: PMC8329589 DOI: 10.3389/fimmu.2021.712122] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/12/2023] Open
Abstract
Given the absence of an effective vaccine for protection against HIV-1 infection, passive immunization strategies that utilize potent broadly neutralizing antibodies (bnAbs) to block acquisition of HIV-1 are being rigorously pursued in the clinical setting. bnAbs have demonstrated robust protection in preclinical animal models, and several leading bnAb candidates have shown favorable safety and pharmacokinetic profiles when tested individually or in combinations in early phase human clinical trials. Furthermore, passive administration of bnAbs in HIV-1 infected individuals has resulted in prolonged suppression of viral rebound following interruption of combination antiretroviral therapy, and robust antiviral activity when administered to viremic individuals. Recent results from the first efficacy trials testing repeated intravenous administrations of the anti-CD4 binding site bnAb VRC01 have demonstrated positive proof of concept that bnAb passive immunization can confer protection against HIV-1 infection in humans, but have also highlighted the considerable barriers that remain for such strategies to effectively contribute to control of the epidemic. In this review, we discuss the current status of clinical studies evaluating bnAbs for HIV-1 prevention, highlight lessons learned from the recent Antibody Mediated Prevention (AMP) efficacy trials, and provide an overview of strategies being employed to improve the breadth, potency, and durability of antiviral protection.
Collapse
Affiliation(s)
- Stephen R Walsh
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
Hsu DC, Mellors JW, Vasan S. Can Broadly Neutralizing HIV-1 Antibodies Help Achieve an ART-Free Remission? Front Immunol 2021; 12:710044. [PMID: 34322136 PMCID: PMC8311790 DOI: 10.3389/fimmu.2021.710044] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
Many broadly neutralizing antibodies (bnAbs) targeting the HIV-1 envelope glycoprotein are being assessed in clinical trials as strategies for HIV-1 prevention, treatment, and antiretroviral-free remission. BnAbs can neutralize HIV-1 and target infected cells for elimination. Concerns about HIV-1 resistance to single bnAbs have led to studies of bnAb combinations with non-overlapping resistance profiles. This review focuses on the potential for bnAbs to induce HIV-1 remission, either alone or in combination with latency reversing agents, therapeutic vaccines or other novel therapeutics. Key topics include preliminary activity of bnAbs in preclinical models and in human studies of HIV-1 remission, clinical trial designs, and antibody design strategies to optimize pharmacokinetics, coverage of rebound-competent virus, and enhancement of cellular immune functions.
Collapse
Affiliation(s)
- Denise C Hsu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| |
Collapse
|
44
|
Effective high-throughput isolation of fully human antibodies targeting infectious pathogens. Nat Protoc 2021; 16:3639-3671. [PMID: 34035500 DOI: 10.1038/s41596-021-00554-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 02/04/2023]
Abstract
As exemplified by the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, there is a strong demand for rapid high-throughput isolation pipelines to identify potent neutralizing antibodies for prevention and therapy of infectious diseases. However, despite substantial progress and extensive efforts, the identification and production of antigen-specific antibodies remains labor- and cost-intensive. We have advanced existing concepts to develop a highly efficient high-throughput protocol with proven application for the isolation of potent antigen-specific antibodies against human immunodeficiency virus 1, hepatitis C virus, human cytomegalovirus, Middle East respiratory syndrome coronavirus, SARS-CoV-2 and Ebola virus. It is based on computationally optimized multiplex primer sets (openPrimeR), which guarantee high coverage of even highly mutated immunoglobulin gene segments as well as on optimized antibody cloning and production strategies. Here, we provide the detailed protocol, which covers all critical steps from sample collection to antibody production within 12-14 d.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Several anti-HIV-1 broadly neutralizing antibodies (bNAbs) with exceptional breadth and potency, and targeting different HIV-1 envelope epitopes have entered clinical trials. bNAbs are being evaluated for their potential as long-acting alternatives to antiretrovirals in HIV-1 prevention and therapy, and for potential role in strategies aiming at long-term viral remission. Here, we discuss recent findings from bNAb clinical studies. RECENT FINDINGS bNAbs targeting distinct HIV-1 envelope epitopes have shown, in general, favorable safety profiles, and engineered bNAb variants have demonstrated improved pharmacokinetics. Single bNAb infusions transiently decreased viremia with subsequent selection of escape variants, while a combination of two bNAbs successfully maintained viral suppression in individuals harboring antibody-sensitive viruses after antiretroviral therapy (ART) was discontinued. Studies in animal models suggest that bNAbs can modulate immune responses and potentially interfere with the establishment or composition of the latent reservoir, and ongoing clinical studies aim to assess potential bNAb-mediated effects on HIV-1 persistence and host immune responses. SUMMARY Early clinical studies support additional evaluation of bNAbs. Antibodies may offer advantages over standard ART for HIV-1 prevention and therapy, and as components of immunologic strategies to achieve sustained virologic control. The evaluation of engineered bNAbs with multispecificity, extended half-lives and increased potency, as well as alternative bNAb-delivery systems are being pursued.
Collapse
|
46
|
Spencer DA, Shapiro MB, Haigwood NL, Hessell AJ. Advancing HIV Broadly Neutralizing Antibodies: From Discovery to the Clinic. Front Public Health 2021; 9:690017. [PMID: 34123998 PMCID: PMC8187619 DOI: 10.3389/fpubh.2021.690017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Despite substantial progress in confronting the global HIV-1 epidemic since its inception in the 1980s, better approaches for both treatment and prevention will be necessary to end the epidemic and remain a top public health priority. Antiretroviral therapy (ART) has been effective in extending lives, but at a cost of lifelong adherence to treatment. Broadly neutralizing antibodies (bNAbs) are directed to conserved regions of the HIV-1 envelope glycoprotein trimer (Env) and can block infection if present at the time of viral exposure. The therapeutic application of bNAbs holds great promise, and progress is being made toward their development for widespread clinical use. Compared to the current standard of care of small molecule-based ART, bNAbs offer: (1) reduced toxicity; (2) the advantages of extended half-lives that would bypass daily dosing requirements; and (3) the potential to incorporate a wider immune response through Fc signaling. Recent advances in discovery technology can enable system-wide mining of the immunoglobulin repertoire and will continue to accelerate isolation of next generation potent bNAbs. Passive transfer studies in pre-clinical models and clinical trials have demonstrated the utility of bNAbs in blocking or limiting transmission and achieving viral suppression. These studies have helped to define the window of opportunity for optimal intervention to achieve viral clearance, either using bNAbs alone or in combination with ART. None of these advances with bNAbs would be possible without technological advancements and expanding the cohorts of donor participation. Together these elements fueled the remarkable growth in bNAb development. Here, we review the development of bNAbs as therapies for HIV-1, exploring advances in discovery, insights from animal models and early clinical trials, and innovations to optimize their clinical potential through efforts to extend half-life, maximize the contribution of Fc effector functions, preclude escape through multiepitope targeting, and the potential for sustained delivery.
Collapse
Affiliation(s)
- David A. Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Mariya B. Shapiro
- Molecular Microbiology & Immunology Department, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Nancy L. Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
- Molecular Microbiology & Immunology Department, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Ann J. Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| |
Collapse
|
47
|
Lai YT. Small Molecule HIV-1 Attachment Inhibitors: Discovery, Mode of Action and Structural Basis of Inhibition. Viruses 2021; 13:v13050843. [PMID: 34066522 PMCID: PMC8148533 DOI: 10.3390/v13050843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Viral entry into host cells is a critical step in the viral life cycle. HIV-1 entry is mediated by the sole surface envelope glycoprotein Env and is initiated by the interaction between Env and the host receptor CD4. This interaction, referred to as the attachment step, has long been considered an attractive target for inhibitor discovery and development. Fostemsavir, recently approved by the FDA, represents the first-in-class drug in the attachment inhibitor class. This review focuses on the discovery of temsavir (the active compound of fostemsavir) and analogs, mechanistic studies that elucidated the mode of action, and structural studies that revealed atomic details of the interaction between HIV-1 Env and attachment inhibitors. Challenges associated with emerging resistance mutations to the attachment inhibitors and the development of next-generation attachment inhibitors are also highlighted.
Collapse
Affiliation(s)
- Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Abeynaike S, Paust S. Humanized Mice for the Evaluation of Novel HIV-1 Therapies. Front Immunol 2021; 12:636775. [PMID: 33868262 PMCID: PMC8047330 DOI: 10.3389/fimmu.2021.636775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
With the discovery of antiretroviral therapy, HIV-1 infection has transitioned into a manageable but chronic illness, which requires lifelong treatment. Nevertheless, complete eradication of the virus has still eluded us. This is partly due to the virus’s ability to remain in a dormant state in tissue reservoirs, ‘hidden’ from the host’s immune system. Also, the high mutation rate of HIV-1 results in escape mutations in response to many therapeutics. Regardless, the development of novel cures for HIV-1 continues to move forward with a range of approaches from immunotherapy to gene editing. However, to evaluate in vivo pathogenesis and the efficacy and safety of therapeutic approaches, a suitable animal model is necessary. To this end, the humanized mouse was developed by McCune in 1988 and has continued to be improved on over the past 30 years. Here, we review the variety of humanized mouse models that have been utilized through the years and describe their specific contribution in translating HIV-1 cure strategies to the clinic.
Collapse
Affiliation(s)
- Shawn Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
49
|
León SR. A radiolabeled mAb 3BNC117 with copper-64: First round in favor for studying clearance of HIV reservoirs. EBioMedicine 2021; 66:103282. [PMID: 33752124 PMCID: PMC7985269 DOI: 10.1016/j.ebiom.2021.103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Segundo R León
- School of Medical Technology, Faculty of Health Sciences, San Juan Bautista Private University, Lima, Peru Av. Juan A. Lavalle 302-304, Lima 9, Peru.
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW There has been significant development of long-acting injectable therapy for the management of HIV in recent years that has the potential to revolutionise HIV care as we know it. This review summarises the data and outlines the potential challenges in the field of long-acting antiretroviral therapy (ART). RECENT FINDINGS In recent years, monthly and two monthly long-acting injectable ART in the form of cabotegravir and rilpivirine has shown safety and efficacy in large-scale phase 3 randomised control trials. Also, agents with novel mechanisms of action, such as Lenacapavir, have been tested in early-phase studies and are currently being tested in phase 2-3 clinical trials; if successful, this may allow six-monthly dosing schedules. SUMMARY However, despite evidence that suggests that these therapies are efficacious and acceptable to patients, the challenge of integrating these agents into our current healthcare infrastructure and making these novel agents cost-effective and available to the populations most likely to benefit remains. The next frontier for long-acting therapy will be to introduce these agents in a real-world setting ensuring that the groups most in need of long-acting therapy are not left behind.
Collapse
Affiliation(s)
- John Thornhill
- Department of Infection & Immunity, The Royal London Hospital, Bart Health NHS Trust
- Department of Immunobiology, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Chloe Orkin
- Department of Infection & Immunity, The Royal London Hospital, Bart Health NHS Trust
- Department of Immunobiology, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|