1
|
Wang W, Wang Y, Gao L. Stem Cells Treatment for Subarachnoid Hemorrhage. Neurologist 2024:00127893-990000000-00158. [PMID: 39450602 DOI: 10.1097/nrl.0000000000000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) refers to bleeding in the subarachnoid space, which is a serious neurologic emergency. However, the treatment effects of SAH are limited. In recent years, stem cell (SC) therapy has gradually become a very promising therapeutic method and advanced scientific research area for SAH. REVIEW SUMMARY The SCs used for SAH treatment are mainly bone marrow mesenchymal stem cells (BMSCs), umbilical cord mesenchymal stem cells (hUC-MSCs), dental pulp stem cells (DPSCs), neural stem cells (NSCs)/neural progenitor cell (NPC), and endothelial progenitor cell (EPC). The mechanisms mainly included differentiation and migration of SCs for tissue repair; alleviating neuronal apoptosis; anti-inflammatory effects; and blood-brain barrier (BBB) protection. The dosage of SCs was generally 106 orders of magnitude. The administration methods included intravenous injection, nasal, occipital foramen magnum, and intraventricular administration. The administration time is generally 1 hour after SAH modeling, but it may be as late as 24 hours or 6 days. Existing studies have confirmed the neuroprotective effect of SCs in the treatment of SAH. CONCLUSIONS SC has great potential application value in SAH treatment, a few case reports have provided support for this. However, the relevant research is still insufficient and there is still a lack of clinical research on the SC treatment for SAH to further evaluate the effectiveness and safety before it can go from experiment to clinical application.
Collapse
Affiliation(s)
| | | | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Abdelazim H, Barnes A, Stupin J, Hasson R, Muñoz-Ballester C, Young KL, Robel S, Smyth JW, Lamouille S, Chappell JC. Optimized Enrichment of Murine Blood-Brain Barrier Vessels with a Critical Focus on Network Hierarchy in Post-Collection Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613898. [PMID: 39345630 PMCID: PMC11429916 DOI: 10.1101/2024.09.19.613898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cerebrovascular networks contain a unique region of interconnected capillaries known as the blood-brain barrier (BBB). Positioned between upstream arteries and downstream veins, these microvessels have unique structural features, such as the absence of vascular smooth muscle cells (vSMCs) and a relatively thin basement membrane, to facilitate highly efficient yet selective exchange between the circulation and the brain interstitium. This vital role in neurological health and function has garnered significant attention from the scientific community and inspired methodology for enriching BBB capillaries. Extensive characterization of the isolates from such protocols is essential for framing the results of follow-on experiments and analyses, providing the most accurate interpretation and assignment of BBB properties. Seeking to aid in these efforts, here we visually screened output samples using fluorescent labels and found considerable reduction of non-vascular cells following density gradient centrifugation (DGC) and subsequent filtration. Comparatively, this protocol enriched brain capillaries, though larger diameter vessels associated with vSMCs could not be fully excluded. Protein analysis further underscored the enrichment of vascular markers following DGC, with filtration preserving BBB-associated markers and reducing - though not fully removing - arterial/venous contributions. Transcriptional profiling followed similar trends of DGC plus filtration generating isolates with less non-vascular and non- capillary material included. Considering vascular network hierarchy inspired a more comprehensive assessment of the material yielded from brain microvasculature isolation protocols. This approach is important for providing an accurate representation of the cerebrovascular segments being used for data collection and assigning BBB properties specifically to capillaries relative to other regions of the brain vasculature. HIGHLIGHTS We optimized a protocol for the enrichment of murine capillaries using density gradient centrifugation and follow-on filtration.We offer an approach to analyzing post-collection cerebrovascular fragments and cells with respect to vascular network hierarchy.Assessing arterial and venous markers alongside those associated with the BBB provides a more comprehensive view of material collected.Enhanced insight into isolate composition is critical for a more accurate view of BBB biology relative to larger diameter cerebrovasculature. MOTIVATION The recent surge in studies investigating the cerebrovasculature, and the blood-brain barrier (BBB) in particular, has inspired a broad range of approaches to target and observe these specialized blood vessels within murine models. To capture transcriptional and molecular changes during a specific intervention or disease model, techniques have been developed to isolate brain capillary networks and collect their cellular constituents for downstream analysis. Here, we sought to highlight the benefits and cautions of isolating and enriching microvessels from murine brain tissue. Specifically, through rigorous assessment of the output material following application of specific protocols, we presented the benefits of specific approaches to reducing the inclusion of non-vascular cells and non-capillary vessel segments, verified by analysis of vascular-related proteins and transcripts. We also emphasized the levels of larger- caliber vessels (i.e. arteries/arterioles and veins/venules) that are collected alongside cerebral capillaries with each method. Distinguishing these vascular regions with greater precision is critical for attributing specific characteristics exclusively to the BBB where metabolic, ion, and waste exchange occurs. While the addition of larger vessels to molecular / transcriptional analyses or follow-on experiments may not be substantial for a given protocol, it is essential to gauge and report their level of inclusion, as their contributions may be inadvertently assigned to the BBB. Therefore, we present this optimized brain microvessel isolation protocol and associated evaluation methods to underscore the need for increased rigor in characterizing vascular regions that are collected and analyzed within a given study.
Collapse
|
3
|
Gu Z, Li S, Liu J, Zhang X, Pang C, Ding L, Cao C. Protection of blood-brain barrier by endothelial DAPK1 deletion after stroke. Biochem Biophys Res Commun 2024; 724:150216. [PMID: 38851140 DOI: 10.1016/j.bbrc.2024.150216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Death-associated protein kinase (DAPK) 1 is a critical mediator for neuronal cell death in cerebral ischemia, but its role in blood-brain barrier (BBB) disruption is incompletely understood. Here, we found that endothelial-specific deletion of Dapk1 using Tie2 Cre protected the brain of Dapk1fl/fl mice against middle cerebral artery occlusion (MCAO), characterized by mitigated Evans blue dye (EBD) extravasation, reduced infarct size and improved behavior. In vitro experiments also indicated that DAPK1 deletion inhibited oxygen-glucose deprivation (OGD)-induced tight junction alteration between cerebral endothelial cells (CECs). Mechanistically, we revealed that DAPK1-DAPK3 interaction activated cytosolic phospholipase A2 (cPLA2) in OGD-stimulated CECs. Our results thus suggest that inhibition of endothelial DAPK1 specifically prevents BBB damage after stroke.
Collapse
Affiliation(s)
- Zhijiang Gu
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Shaoxun Li
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Jiyu Liu
- Huaian Clinical College of Xuzhou Medical University, Huaian, 223300, China
| | - Xiaotian Zhang
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Cong Pang
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Lianshu Ding
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China.
| | - Changchun Cao
- Department of Pharmacy, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China; Huaian Clinical College of Xuzhou Medical University, Huaian, 223300, China.
| |
Collapse
|
4
|
Mulay AR, Hwang J, Kim DH. Microphysiological Blood-Brain Barrier Systems for Disease Modeling and Drug Development. Adv Healthc Mater 2024; 13:e2303180. [PMID: 38430211 PMCID: PMC11338747 DOI: 10.1002/adhm.202303180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The blood-brain barrier (BBB) is a highly controlled microenvironment that regulates the interactions between cerebral blood and brain tissue. Due to its selectivity, many therapeutics targeting various neurological disorders are not able to penetrate into brain tissue. Pre-clinical studies using animals and other in vitro platforms have not shown the ability to fully replicate the human BBB leading to the failure of a majority of therapeutics in clinical trials. However, recent innovations in vitro and ex vivo modeling called organs-on-chips have shown the potential to create more accurate disease models for improved drug development. These microfluidic platforms induce physiological stressors on cultured cells and are able to generate more physiologically accurate BBBs compared to previous in vitro models. In this review, different approaches to create BBBs-on-chips are explored alongside their application in modeling various neurological disorders and potential therapeutic efficacy. Additionally, organs-on-chips use in BBB drug delivery studies is discussed, and advances in linking brain organs-on-chips onto multiorgan platforms to mimic organ crosstalk are reviewed.
Collapse
Affiliation(s)
- Atharva R. Mulay
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Jihyun Hwang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Center for Microphysiological Systems, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, 21218
| |
Collapse
|
5
|
Jiang W, Wu Y, Pang A, Li P, Mei S. M1-type microglia-derived exosomes contribute to blood-brain barrier damage. Brain Res 2024; 1835:148919. [PMID: 38588846 DOI: 10.1016/j.brainres.2024.148919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND As a key substance for intercellular communication, exosomes could be a potential strategy for stroke treatment. Activated microglia disrupt the integrity of blood-brain barrier (BBB) to facilitate the stroke process. Hence, this study was designed to investigate the effect of microglia-derived exosomes on BBB cell model injury and to explore the underlying molecular mechanisms. METHODS M1 polarization of BV2 cells was induced with LPS and their derived exosomes were isolated. Astrocytes were cultured in primary culture and constructed with End3 cells as a BBB cell model. After co-culture with exosomes, the BBB cell model was examined for changes in TEER, permeability, and expression of BBB-related proteins (Claudin-1, Occludin, ZO-1 and JAM). Resting and M1-type BV2 cell-derived exosomes perform small RNA sequences and differentially expressed miRNAs (DE-miRNAs) are identified by bioinformatics. RESULTS M1-type BV2 cell-derived exosomes decreased End3 cell viability, and increased their apoptotic ratio. Moreover, M1 type BV2 cell-derived exosomes dramatically enhanced the permeability of BBB cell model, and diminished the TEER and BBB-related protein (Claudin-1, Occludin, ZO-1) expression. Notably, resting BV2 cell-derived exosomes had no effect on the integrity of BBB cell model. Sequencing results indicated that 71 DE-miRNAs were present in M1 BV2 cell-derived exosomes, and their targets mediated neurological development and signaling pathways such as MAPK and cAMP. RT-qPCR confirmed the differential expression of mmu-miR-125a-5p, mmu-miR-122b-3p, mmu-miR-139-3p, mmu-miR-330-3p, mmu-miR-3057-5p and mmu-miR-342-3p consistent with the small RNA sequence. Furthermore, Creb1, Jun, Mtor, Frk, Pabpc1 and Sdc1 are the most well-connected proteins in the PPI network. CONCLUSION M1-type microglia-derived exosomes contribute to the injury of BBB cell model, which has the involvement of miRNAs. Our findings provide new perspectives and potential mechanisms for future M1 microglia-derived exosomes as therapeutic targets in stroke.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming 650032, Yunnan, China; The Yunnan Province Clinical Research Center for Neurological Diseases, No.295 Xichang Road, Kunming 650032, Yunnan, China
| | - Yan Wu
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming 650032, Yunnan, China
| | - Ailan Pang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming 650032, Yunnan, China
| | - Peiyao Li
- Department of Pain Medicine, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming 650032, Yunnan, China
| | - Song Mei
- Department of Cardiac Surgery, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming 650032, Yunnan, China.
| |
Collapse
|
6
|
Floryanzia S, Lee S, Nance E. Isolation methods and characterization of primary rat neurovascular cells. J Biol Eng 2024; 18:39. [PMID: 38992711 PMCID: PMC11241874 DOI: 10.1186/s13036-024-00434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND There is significant interest in isolating cells of the blood-brain barrier (BBB) for use in in vitro screening of therapeutics and analyzing cell specific roles in neurovascular pathology. Primary brain cells play an advantageous role in BBB models; however, isolation procedures often do not produce cells at high enough yields for experiments. In addition, although numerous reports provide primary cell isolation methods, the field is lacking in documentation and detail of expected morphological changes that occur throughout culturing and there are minimal troubleshooting resources. Here, we present simplified, robust, and reproducible methodology for isolating astrocytes, pericytes, and endothelial cells, and demonstrate several morphological benchmarks for each cell type throughout the process and culture timeframe. We also analyze common considerations for developing neurovascular cell isolation procedures and recommend solutions for troubleshooting. RESULTS The presented methodology isolated astrocytes, pericytes, and endothelial cells and enabled cell attachment, maturation, and cell viability. We characterized milestones in cell maturation over 12 days in culture, a common timeline for applications of these cell types in BBB models. Phase contrast microscopy was used to show initial cell plating, attachment, and daily growth of isolated cells. Confocal microscopy images were analyzed to determine the identity of cell types and changes to cell morphology. Nuclear staining was also used to show the viability and proliferation of glial cells at four time points. Astrocyte branches became numerous and complex with increased culture time. Microglia, oligodendrocytes, and neurons were present in mixed glial cultures for 12 days, though the percentage of microglia and neurons expectedly decreased after passaging, with microglia demonstrating a less branched morphology. CONCLUSIONS Neurovascular cells can be isolated through our optimized protocols that minimize cell loss and encourage the adhesion and proliferation of isolated cells. By identifying timepoints of viable glia and neurons within an astrocyte-dominant mixed culture, these cells can be used to evaluate drug targeting, uptake studies, and response to pathological stimulus in the neurovascular unit.
Collapse
Affiliation(s)
- Sydney Floryanzia
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Seoyoung Lee
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Molecular Engineering and Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
7
|
Shen B, Yang L, Jia X, Kong D, Jing L, Gao Y, Gao S, Chen R, Chen F, Zhao C, Li Y, Tan R, Zhao X. Contribution of platelets to disruption of the blood-brain barrier during arterial baroreflex dysfunction. Microvasc Res 2024; 154:104681. [PMID: 38493885 DOI: 10.1016/j.mvr.2024.104681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Arterial baroreflex dysfunction, like many other central nervous system disorders, involves disruption of the blood-brain barrier, but what causes such disruption in ABR dysfunction is unclear. Here we explored the potential role of platelets in this disruption. METHODS ABR dysfunction was induced in rats using sinoaortic denervation, and the effects on integrity of the blood-brain barrier were explored based on leakage of Evans blue or FITC-dextran, while the effects on expression of CD40L in platelets and of key proteins in microvascular endothelial cells were explored using immunohistochemistry, western blotting and enzyme-linked immunosorbent assay. Similar experiments were carried out in rat brain microvascular endothelial cell line, which we exposed to platelets taken from rats with ABR dysfunction. RESULTS Sinoaortic denervation permeabilized the blood-brain barrier and downregulated zonula occludens-1 and occludin in rat brain, while upregulating expression of CD40L on the surface of platelets and stimulating platelet aggregation. Similar effects of permeabilization and downregulation were observed in healthy rats that received platelets from animals with ABR dysfunction, and in rat brain microvascular endothelial cells, but only in the presence of lipopolysaccharide. These effects were associated with activation of NF-κB signaling and upregulation of matrix metalloprotease-9. These effects of platelets from animals with ABR dysfunction were partially blocked by neutralizing antibody against CD40L or the platelet inhibitor clopidogrel. CONCLUSION During ABR dysfunction, platelets may disrupt the blood-brain barrier when CD40L on their surface activates NF-kB signaling within cerebral microvascular endothelial cells, leading to upregulation of matrix metalloprotease-9. Our findings imply that targeting CD40L may be effective against cerebral diseases involving ABR dysfunction.
Collapse
Affiliation(s)
- Bowen Shen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Lili Yang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Xiaoli Jia
- Department of Pharmacy, Liaocheng People's Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Liao'cheng 252000, China
| | - Deping Kong
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Lei Jing
- Department of Pharmacy, Dongping People's Hospital, Tai'an 271500, China
| | - Yongfeng Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Shan Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Ruimin Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Fengbao Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Chunyu Zhao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Yue Li
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Rui Tan
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.
| | - Xiaomin Zhao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.
| |
Collapse
|
8
|
Celentano C, Carotenuto L, Miceli F, Carleo G, Corrado B, Baroli G, Iervolino S, Vecchione R, Taglialatela M, Barrese V. Kv7 channel activation reduces brain endothelial cell permeability and prevents kainic acid-induced blood-brain barrier damage. Am J Physiol Cell Physiol 2024; 326:C893-C904. [PMID: 38284124 PMCID: PMC11193483 DOI: 10.1152/ajpcell.00709.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Ion channels in the blood-brain barrier (BBB) play a main role in controlling the interstitial fluid composition and cerebral blood flow, and their dysfunction contributes to the disruption of the BBB occurring in many neurological diseases such as epilepsy. In this study, using morphological and functional approaches, we evaluated the expression and role in the BBB of Kv7 channels, a family of voltage-gated potassium channels including five members (Kv7.1-5) that play a major role in the regulation of cell excitability and transmembrane flux of potassium ions. Immunofluorescence experiments showed that Kv7.1, Kv7.4, and Kv7.5 were expressed in rat brain microvessels (BMVs), as well as brain primary- and clonal (BEND-3) endothelial cells (ECs). Kv7.5 localized at the cell-to-cell junction sites, whereas Kv7.4 was also found in pericytes. The Kv7 activator retigabine increased transendothelial electrical resistance (TEER) in both primary ECs and BEND-3 cells; moreover, retigabine reduced paracellular dextran flux in BEND-3 cells. These effects were prevented by the selective Kv7 blocker XE-991. Exposure to retigabine also hyperpolarized cell membrane and increased tight junctions (TJs) integrity in BEND-3 cells. BMVs from rats treated with kainic acid (KA) showed a disruption of TJs and a selective reduction of Kv7.5 expression. In BEND-3 cells, retigabine prevented the increase of cell permeability and the reduction of TJs integrity induced by KA. Overall, these findings demonstrate that Kv7 channels are expressed in the BBB, where they modulate barrier properties both in physiological and pathological conditions.NEW & NOTEWORTHY This study describes for the first time the expression and the functional role of Kv7 potassium channels in the blood-brain barrier. We show that the opening of Kv7 channels reduces endothelial cell permeability both in physiological and pathological conditions via the hyperpolarization of cell membrane and the sealing of tight junctions. Therefore, activation of endothelial Kv7 channels might be a useful strategy to treat epilepsy and other neurological disorders characterized by blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Camilla Celentano
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Lidia Carotenuto
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Francesco Miceli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Giusy Carleo
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Brunella Corrado
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, Naples, Italy
| | - Giulia Baroli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Stefania Iervolino
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, Naples, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Lee J, Lee H, Shin M, Park S. Cerebral Cavernous Malformation (CCM)-like Vessel Lesion in the Aged ANKS1A-deficient Brain. Exp Neurobiol 2023; 32:441-452. [PMID: 38196138 PMCID: PMC10789174 DOI: 10.5607/en23032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
In this study, we show that ANKS1A is specifically expressed in the brain endothelial cells of adult mice. ANKS1A deficiency in adult mice does not affect the differentiation, growth, or patterning of the cerebrovascular system; however, its absence significantly impacts the cerebrovascular system of the aged brain. In aged ANKS1A knock-out (KO) brains, vessel lesions exhibiting cerebral cavernous malformations (CCMs) are observed. In addition, CCM-like lesions show localized peripheral blood leakage into the brain. The CCM-like lesions reveal immune cells infiltrating the parenchyma. The CCM-like lesions also contain significantly fewer astrocyte endfeets and tight junctions, indicating that the integrity of the BBB has been partially compromised. CCM-like lesions display increased fibronectin expression in blood vessels, which is also confirmed in cultured endothelial cells deficient for ANKS1A. Therefore, we hypothesize that ANKS1A may play a role in maintaining or stabilizing healthy blood vessels in the brain during aging.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Miram Shin
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
10
|
Lee J, Lee H, Lee H, Shin M, Shin MG, Seo J, Lee EJ, Park SA, Park S. ANKS1A regulates LDL receptor-related protein 1 (LRP1)-mediated cerebrovascular clearance in brain endothelial cells. Nat Commun 2023; 14:8463. [PMID: 38123547 PMCID: PMC10733300 DOI: 10.1038/s41467-023-44319-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Brain endothelial LDL receptor-related protein 1 (LRP1) is involved in the clearance of Aβ peptides across the blood-brain barrier (BBB). Here we show that endothelial deficiency of ankyrin repeat and SAM domain containing 1 A (ANKS1A) reduces both the cell surface levels of LRP1 and the Aβ clearance across the BBB. Association of ANKS1A with the NPXY motifs of LRP1 facilitates the transport of LRP1 from the endoplasmic reticulum toward the cell surface. ANKS1A deficiency in an Alzheimer's disease mouse model results in exacerbated Aβ pathology followed by cognitive impairments. These deficits are reversible by gene therapy with brain endothelial-specific ANKS1A. In addition, human induced pluripotent stem cell-derived BBBs (iBBBs) were generated from endothelial cells lacking ANKS1A or carrying the rs6930932 variant. Those iBBBs exhibit both reduced cell surface LRP1 and impaired Aβ clearance. Thus, our findings demonstrate that ANKS1A regulates LRP1-mediated Aβ clearance across the BBB.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Hyein Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Miram Shin
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Min-Gi Shin
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Sun Ah Park
- Lab for Neurodegenerative Dementia, Department of Anatomy, and Department of Neurology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea.
| |
Collapse
|
11
|
Lettieri A, Oleari R, van den Munkhof MH, van Battum EY, Verhagen MG, Tacconi C, Spreafico M, Paganoni AJJ, Azzarelli R, Andre' V, Amoruso F, Palazzolo L, Eberini I, Dunkel L, Howard SR, Fantin A, Pasterkamp RJ, Cariboni A. SEMA6A drives GnRH neuron-dependent puberty onset by tuning median eminence vascular permeability. Nat Commun 2023; 14:8097. [PMID: 38062045 PMCID: PMC10703890 DOI: 10.1038/s41467-023-43820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Innervation of the hypothalamic median eminence by Gonadotropin-Releasing Hormone (GnRH) neurons is vital to ensure puberty onset and successful reproduction. However, the molecular and cellular mechanisms underlying median eminence development and pubertal timing are incompletely understood. Here we show that Semaphorin-6A is strongly expressed by median eminence-resident oligodendrocytes positioned adjacent to GnRH neuron projections and fenestrated capillaries, and that Semaphorin-6A is required for GnRH neuron innervation and puberty onset. In vitro and in vivo experiments reveal an unexpected function for Semaphorin-6A, via its receptor Plexin-A2, in the control of median eminence vascular permeability to maintain neuroendocrine homeostasis. To support the significance of these findings in humans, we identify patients with delayed puberty carrying a novel pathogenic variant of SEMA6A. In all, our data reveal a role for Semaphorin-6A in regulating GnRH neuron patterning by tuning the median eminence vascular barrier and thereby controlling puberty onset.
Collapse
Affiliation(s)
- Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
- Department of Health Sciences, University of Milan, Via di Rudinì 8, 20142, Milano, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Marleen Hester van den Munkhof
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Eljo Yvette van Battum
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Marieke Geerte Verhagen
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
- VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
| | - Carlotta Tacconi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Spreafico
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | | | - Roberta Azzarelli
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Valentina Andre'
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Federica Amoruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Luca Palazzolo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Leo Dunkel
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sasha Rose Howard
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Paediatric Endocrinology, Barts Health NHS Trust, London, E1 1FR, UK
| | - Alessandro Fantin
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| | - Ronald Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
12
|
Yamauchi H, Hitomi T, Takata A. Evaluation of arsenic metabolism and tight junction injury after exposure to arsenite and monomethylarsonous acid using a rat in vitro blood-Brain barrier model. PLoS One 2023; 18:e0295154. [PMID: 38032905 PMCID: PMC10688625 DOI: 10.1371/journal.pone.0295154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Experimental verification of impairment to cognitive abilities and cognitive dysfunction resulting from inorganic arsenic (iAs) exposure in children and adults is challenging. This study aimed to elucidate the effects of arsenite (iAsIII; 1, 10 and 20 μM) or monomethylarsonous acid (MMAIII; 0.1, 1 and 2 μM) exposure on arsenic metabolism and tight junction (TJ) function in the blood-brain barrier (BBB) using a rat in vitro-BBB model. The results showed that a small percentage (~15%) of iAsIII was oxidized or methylated within the BBB, suggesting the persistence of toxicity as iAsIII. Approximately 65% of MMAIII was converted to low-toxicity monomethylarsonic acid and dimethylarsenic acid via oxidation and methylation. Therefore, it is estimated that MMAIII causes TJ injury to the BBB at approximately 35% of the unconverted level. TJ injury of BBB after iAsIII or MMAIII exposure could be significantly assessed from decreased expression of claudin-5 and decreased transepithelial electrical resistance values. TJ injury in BBB was found to be significantly affected by MMAIII than iAsIII. Relatedly, the penetration rate in the BBB by 24 h of exposure was higher for MMAIII (53.1% ± 2.72%) than for iAsIII (43.3% ± 0.71%) (p < 0.01). Exposure to iAsIII or MMAIII induced an antioxidant stress response, with concentration-dependent increases in the expression of nuclear factor-erythroid 2-related factor 2 in astrocytes and heme oxygenase-1 in a group of vascular endothelial cells and pericytes, respectively. This study found that TJ injury at the BBB is closely related to the chemical form and species of arsenic; we believe that elucidation of methylation in the brain is essential to verify the impairment of cognitive abilities and cognitive dysfunction caused by iAs exposure.
Collapse
Affiliation(s)
- Hiroshi Yamauchi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Toshiaki Hitomi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ayako Takata
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
13
|
You Z, Gao X, Kang X, Yang W, Xiong T, Li Y, Wei F, Zhuang Y, Zhang T, Sun Y, Shen H, Dai J. Microvascular endothelial cells derived from spinal cord promote spinal cord injury repair. Bioact Mater 2023; 29:36-49. [PMID: 37621772 PMCID: PMC10444976 DOI: 10.1016/j.bioactmat.2023.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 08/26/2023] Open
Abstract
Neural regeneration after spinal cord injury (SCI) closely relates to the microvascular endothelial cell (MEC)-mediated neurovascular unit formation. However, the effects of central nerve system-derived MECs on neovascularization and neurogenesis, and potential signaling involved therein, are unclear. Here, we established a primary spinal cord-derived MECs (SCMECs) isolation with high cell yield and purity to describe the differences with brain-derived MECs (BMECs) and their therapeutic effects on SCI. Transcriptomics and proteomics revealed differentially expressed genes and proteins in SCMECs were involved in angiogenesis, immunity, metabolism, and cell adhesion molecular signaling was the only signaling pathway enriched of top 10 in differentially expressed genes and proteins KEGG analysis. SCMECs and BMECs could be induced angiogenesis by different stiffness stimulation of PEG hydrogels with elastic modulus 50-1650 Pa for SCMECs and 50-300 Pa for BMECs, respectively. Moreover, SCMECs and BMECs promoted spinal cord or brain-derived NSC (SNSC/BNSC) proliferation, migration, and differentiation at different levels. At certain dose, SCMECs in combination with the NeuroRegen scaffold, showed higher effectiveness in the promotion of vascular reconstruction. The potential underlying mechanism of this phenomenon may through VEGF/AKT/eNOS- signaling pathway, and consequently accelerated neuronal regeneration and functional recovery of SCI rats compared to BMECs. Our findings suggested a promising role of SCMECs in restoring vascularization and neural regeneration.
Collapse
Affiliation(s)
- Zhifeng You
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xu Gao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xinyi Kang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Wen Yang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tiandi Xiong
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yue Li
- i-Lab, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Feng Wei
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Ting Zhang
- i-Lab, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yifu Sun
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - He Shen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
14
|
Hossein Geranmayeh M, Farokhi-Sisakht F, Sadigh-Eteghad S, Rahbarghazi R, Mahmoudi J, Farhoudi M. Simultaneous Pericytes and M2 Microglia Transplantation Improve Cognitive Function in Mice Model of mPFC Ischemia. Neuroscience 2023; 529:62-72. [PMID: 37591334 DOI: 10.1016/j.neuroscience.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
Cerebral ischemia is one of the major problems threatening global health. Many of the cerebral ischemia survivors would suffer from the physical and cognitive disabilities for their whole lifetime. Cell based-therapies have been introduced as a therapeutic approach for alleviating ischemia-enforced limitations. Photothrombotic stroke model was applied on the left medial prefrontal cortex (mPFC) of adult male BALB/c mice. Then, pericytes isolated from brain microvessels of adult male BALB/c mice, microglia isolated from brain cortices of the neonatal male BALB/c mice, and M2 phenotype shifted microglia by IL-4 treatment were used for transplantation into the injured area after 24 h of ischemia induction. The behavioural outcomes evaluated by social interaction and Barnes tests and the levels of growth associated protein (GAP)-43 and inflammatory cytokine interleukin (IL)-1 protein were assessed by western blotting 7 days after cell transplantation. Animals in both of the microglia + pericytes and microglia M2 + pericytes transplanted groups showed better performance in social memory as well as enhanced spatial learning and memory compared to ischemic controls. Also, improved escape latency was only observed in microglia M2 + pericytes (p < 0.01) group compared to ischemic controls. GAP-43 showed significant protein expression in microglia + pericytes and microglia M2 + pericytes groups compared to the control group. Conversely, IL-1 levels diminished in all of the pericytes microglia + pericytes, and microglia M2 + pericytes groups compared to the ischemic controls. Current study highlights efficiency of M2 microglia and pericytes combinatory transplantation therapeutic role on relieving ischemic stroke outcomes.
Collapse
Affiliation(s)
- Mohammad Hossein Geranmayeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Duan Q, Zhang Q, Nie K, Huang R, Yang J, He P, Tie Z, Huang H, Ma G, Zhang Y, Gao Y, Wang L. Myo1d promotes alpha-synuclein transfer from brain microvascular endothelial cells to pericytes through tunneling nanotubes. iScience 2023; 26:107458. [PMID: 37575183 PMCID: PMC10416064 DOI: 10.1016/j.isci.2023.107458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
α-Synuclein preformed fibrils (α-syn PFF) in the blood can cross the blood-brain barrier and invade the central nervous system. Our previous study proved that α-syn PFF can be taken up by brain microvascular endothelial cells (BMVECs). Here, we found that α-syn PFF spread from BMVECs to pericytes with the highest transmission efficiency. We observed abundant tunneling nanotubes (TNTs) connecting BMVECs and pericytes, and α-syn PFF transmitted through these TNTs. Furthermore, α-syn PFF accumulation in BMVECs did not promote TNT formation, but activated the molecular motor Myo1d. Inhibition of Myo1d prevented α-syn PFF transfer from BMVECs to pericytes and decreased the colocalization of Myo1d and F-actin in BMVECs. In summary, we are the first to demonstrate that α-syn PFF spread from BMVECs to pericytes through a mechanism involving TNTs and myosin. Targeting Myo1d may be a promising approach to prevent α-syn spreading from the blood to the brain.
Collapse
Affiliation(s)
- Qingrui Duan
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qingxi Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Kun Nie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Rui Huang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jianhua Yang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Peikun He
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zihui Tie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Haifeng Huang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Guixian Ma
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yuyuan Gao
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Lijuan Wang
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
16
|
Pyun J, Koay H, Runwal P, Mawal C, Bush AI, Pan Y, Donnelly PS, Short JL, Nicolazzo JA. Cu(ATSM) Increases P-Glycoprotein Expression and Function at the Blood-Brain Barrier in C57BL6/J Mice. Pharmaceutics 2023; 15:2084. [PMID: 37631298 PMCID: PMC10458578 DOI: 10.3390/pharmaceutics15082084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
P-glycoprotein (P-gp), expressed at the blood-brain barrier (BBB), is critical in preventing brain access to substrate drugs and effluxing amyloid beta (Aβ), a contributor to Alzheimer's disease (AD). Strategies to regulate P-gp expression therefore may impact central nervous system (CNS) drug delivery and brain Aβ levels. As we have demonstrated that the copper complex copper diacetyl bis(4-methyl-3-thiosemicarbazone) (Cu(ATSM)) increases P-gp expression and function in human brain endothelial cells, the present study assessed the impact of Cu(ATSM) on expression and function of P-gp in mouse brain endothelial cells (mBECs) and capillaries in vivo, as well as in peripheral organs. Isolated mBECs treated with Cu(ATSM) (100 nM for 24 h) exhibited a 1.6-fold increase in P-gp expression and a 20% reduction in accumulation of the P-gp substrate rhodamine 123. Oral administration of Cu(ATSM) (30 mg/kg/day) for 28 days led to a 1.5 & 1.3-fold increase in brain microvascular and hepatic expression of P-gp, respectively, and a 20% reduction in BBB transport of [3H]-digoxin. A metallomic analysis showed a 3.5 and 19.9-fold increase in Cu levels in brain microvessels and livers of Cu(ATSM)-treated mice. Our findings demonstrate that Cu(ATSM) increases P-gp expression and function at the BBB in vivo, with implications for CNS drug delivery and clearance of Aβ in AD.
Collapse
Affiliation(s)
- Jae Pyun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.P.); (P.R.)
| | - HuiJing Koay
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia (P.S.D.)
| | - Pranav Runwal
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.P.); (P.R.)
| | - Celeste Mawal
- Oxidation Biology Lab, Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; (C.M.); (A.I.B.)
| | - Ashley I. Bush
- Oxidation Biology Lab, Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; (C.M.); (A.I.B.)
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.P.); (P.R.)
| | - Paul S. Donnelly
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia (P.S.D.)
| | - Jennifer L. Short
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.P.); (P.R.)
| |
Collapse
|
17
|
Dong L, Cheng R, Ma X, Liang W, Hong Y, Li H, Zhou K, Du Y, Takahashi Y, Zhang X, Li XR, Ma JX. Regulation of Monocyte Activation by PPARα Through Interaction With the cGAS-STING Pathway. Diabetes 2023; 72:958-972. [PMID: 37058417 PMCID: PMC10281240 DOI: 10.2337/db22-0654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Monocyte activation plays an important role in diabetic complications such as diabetic retinopathy (DR). However, the regulation of monocyte activation in diabetes remains elusive. Fenofibrate, an agonist of peroxisome proliferator-activated receptor-α (PPARα), has shown robust therapeutic effects on DR in patients with type 2 diabetes. Here we found that PPARα levels were significantly downregulated in monocytes from patients with diabetes and animal models, correlating with monocyte activation. Fenofibrate attenuated monocyte activation in diabetes, while PPARα knockout alone induced monocyte activation. Furthermore, monocyte-specific PPARα overexpression ameliorated, while monocyte-specific PPARα knockout aggravated monocyte activation in diabetes. PPARα knockout impaired mitochondrial function while also increasing glycolysis in monocytes. PPARα knockout increased cytosolic mitochondrial DNA release and activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in monocytes under diabetic conditions. STING knockout or STING inhibitor attenuated monocyte activation induced by diabetes or by PPARα knockout. These observations suggest that PPARα negatively regulates monocyte activation through metabolic reprogramming and interaction with the cGAS-STING pathway.
Collapse
Affiliation(s)
- Lijie Dong
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Xiang Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Wentao Liang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yaru Hong
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
| | - Hui Li
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
| | - Kelu Zhou
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yanhong Du
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yusuke Takahashi
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Xiaomin Zhang
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
| | - Xiao-rong Li
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
| | - Jian-xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
18
|
Samuels JD, Lotstein ML, Lehmann ML, Elkahloun AG, Banerjee S, Herkenham M. Chronic social defeat alters brain vascular-associated cell gene expression patterns leading to vascular dysfunction and immune system activation. J Neuroinflammation 2023; 20:154. [PMID: 37380974 DOI: 10.1186/s12974-023-02827-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023] Open
Abstract
Brain vascular integrity is critical for brain health, and its disruption is implicated in many brain pathologies, including psychiatric disorders. Brain-vascular barriers are a complex cellular landscape composed of endothelial, glial, mural, and immune cells. Yet currently, little is known about these brain vascular-associated cells (BVACs) in health and disease. Previously, we demonstrated that 14 days of chronic social defeat (CSD), a mouse paradigm that produces anxiety and depressive-like behaviors, causes cerebrovascular damage in the form of scattered microbleeds. Here, we developed a technique to isolate barrier-related cells from the mouse brain and subjected the isolated cells to single-cell RNA sequencing. Using this isolation technique, we found an enrichment in BVAC populations, including distinct subsets of endothelial and microglial cells. In CSD compared to non-stress, home-cage control, differential gene expression patterns disclosed biological pathways involving vascular dysfunction, vascular healing, and immune system activation. Overall, our work demonstrates a unique technique to study BVAC populations from fresh brain tissue and suggests that neurovascular dysfunction is a key driver of psychosocial stress-induced brain pathology.
Collapse
Affiliation(s)
- Joshua D Samuels
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
- Neuroscience Graduate Program, Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, 409 Lane Road, MR-4 6154, Charlottesville, VA, 22908, USA.
| | - Madison L Lotstein
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael L Lehmann
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abdel G Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Subhadra Banerjee
- Flow Cytometry Core, Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Miles Herkenham
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
19
|
Su Y, Huang Y, Kou Q, Lu L, Jiang H, Li X, Gui R, Huang R, Huang X, Ma J, Li J, Nie X. Study on the Role of an Erythrocyte Membrane-Coated Nanotheranostic System in Targeted Immune Regulation of Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301361. [PMID: 37075744 PMCID: PMC10288270 DOI: 10.1002/advs.202301361] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in the elderly population. Despite significant advances in studies of the pathobiology on AD, there is still no effective treatment. Here, an erythrocyte membrane-camouflaged nanodrug delivery system (TR-ZRA) modified with transferrin receptor aptamers that can be targeted across the blood-brain barrier to ameliorate AD immune environment is established. Based on metal-organic framework (Zn-CA), TR-ZRA is loaded with CD22shRNA plasmid to silence the abnormally high expression molecule CD22 in aging microglia. Most importantly, TR-ZRA can enhance the ability of microglia to phagocytose Aβ and alleviate complement activation, which can promote neuronal activity and decrease inflammation level in the AD brain. Moreover, TR-ZRA is also loaded with Aβ aptamers, which allow rapid and low-cost monitoring of Aβ plaques in vitro. After treatment with TR-ZRA, learning, and memory abilities are enhanced in AD mice. In conclusion, the biomimetic delivery nanosystem TR-ZRA in this study provides a promising strategy and novel immune targets for AD therapy.
Collapse
Affiliation(s)
- Yanrong Su
- Department of Laboratory MedicineThe Third Xiangya HospitalCentral South UniversityNo.138,Tongzipo Road,Yuelu DistrictChangshaHunan410013China
| | - Yufen Huang
- Department of Laboratory MedicineThe Third Xiangya HospitalCentral South UniversityNo.138,Tongzipo Road,Yuelu DistrictChangshaHunan410013China
| | - Qinjie Kou
- Department of Laboratory MedicineThe Third Xiangya HospitalCentral South UniversityNo.138,Tongzipo Road,Yuelu DistrictChangshaHunan410013China
| | - Lu Lu
- Department of Blood TransfusionThe Third Xiangya HospitalCentral South UniversityNo.138,Tongzipo Road,Yuelu DistrictChangshaHunan410013China
| | - Haiye Jiang
- Department of Laboratory MedicineThe Third Xiangya HospitalCentral South UniversityNo.138,Tongzipo Road,Yuelu DistrictChangshaHunan410013China
| | - Xisheng Li
- Department of Laboratory MedicineThe Third Xiangya HospitalCentral South UniversityNo.138,Tongzipo Road,Yuelu DistrictChangshaHunan410013China
| | - Rong Gui
- Department of Blood TransfusionThe Third Xiangya HospitalCentral South UniversityNo.138,Tongzipo Road,Yuelu DistrictChangshaHunan410013China
| | - Rong Huang
- Department of Blood TransfusionThe Third Xiangya HospitalCentral South UniversityNo.138,Tongzipo Road,Yuelu DistrictChangshaHunan410013China
| | - Xueyuan Huang
- Department of Blood TransfusionThe Third Xiangya HospitalCentral South UniversityNo.138,Tongzipo Road,Yuelu DistrictChangshaHunan410013China
| | - Jinqi Ma
- Department of Blood TransfusionThe Third Xiangya HospitalCentral South UniversityNo.138,Tongzipo Road,Yuelu DistrictChangshaHunan410013China
| | - Jian Li
- Department of Blood TransfusionThe Third Xiangya HospitalCentral South UniversityNo.138,Tongzipo Road,Yuelu DistrictChangshaHunan410013China
| | - Xinmin Nie
- Department of Laboratory MedicineThe Third Xiangya HospitalCentral South UniversityNo.138,Tongzipo Road,Yuelu DistrictChangshaHunan410013China
- Hunan Engineering Technology Research Center of Optoelectronic Health DetectionChangshaHunan410000China
| |
Collapse
|
20
|
Wang G, Sun Y, Yang Q, Dai D, Zhang L, Fan H, Zhang W, Dong J, Zhao P. Liensinine, a alkaloid from lotus plumule, mitigates lipopolysaccharide-induced sepsis-associated encephalopathy through modulation of nuclear factor erythroid 2-related factor-mediated inflammatory biomarkers and mitochondria apoptosis. Food Chem Toxicol 2023; 177:113813. [PMID: 37150347 DOI: 10.1016/j.fct.2023.113813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
The present study aims to investigate the role of liensinine in life-threatened sepsis-associated encephalopathy (SAE) mice and the underlying mechanism. Here, seventy-two mice were divided into six groups, including the control group, SAE group, liensinine-treated group, and three doses of liensinine-treated SAE groups. Lipopolysaccharide triggered cerebrum necrosis and disrupted the integrity and permeability of blood-brain barrier (BBB). While liensinine restored cerebrum structure and improved BBB integrity with upregulated tight junction proteins, decreased evans blue leakage and fibrinogen expression with decreased matrix metalloproteinases 2/9 in serum, thereby reducing BBB permeability. Moreover, lipopolysaccharide triggered cerebrum oxidative stress and inflammation, whereas liensinine enhanced antioxidant enzymes activities and weakened malondialdehyde through nuclear factor erythroid 2-related factor. Meanwhile, liensinine inhibited inflammation by activating inducible nitric oxide synthase. Tunel staining combined with transmission electron microscope indicated that lipopolysaccharide induced cerebrum apoptosis, whereas liensinine blocked apoptosis through decreasing B-cell lymphoma-2 associated X (Bax) expression and cytochrome C (Cyto-c) release, increasing B-cell lymphoma-2 (Bcl-2) expression, blocking apoptosome assembly, inhibiting caspase-3 activation, thereby suppressing intrinsic mitochondria apoptosis. Recovering of inflammatory homeostasis and inhibition of mitochondria apoptosis by liensinine ultimately restored cognitive function in SAE mice. Altogether, liensinine attenuated lipopolysaccharide-induced SAE via modulation of Nrf2-mediated inflammatory biomarkers and mitochondria apoptosis.
Collapse
Affiliation(s)
- Guanglu Wang
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yong Sun
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Qiankun Yang
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Dapeng Dai
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Le Zhang
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Hui Fan
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wei Zhang
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Panpan Zhao
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China.
| |
Collapse
|
21
|
Mardi N, Salahpour-Anarjan F, Nemati M, Shahsavari Baher N, Rahbarghazi R, Zarebkohan A. Exosomes; multifaceted nanoplatform for targeting brain cancers. Cancer Lett 2023; 557:216077. [PMID: 36731592 DOI: 10.1016/j.canlet.2023.216077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
At the moment, anaplastic changes within the brain are challenging due to the complexity of neural tissue, leading to the inefficiency of therapeutic protocols. The existence of a cellular interface, namely the blood-brain barrier (BBB), restricts the entry of several macromolecules and therapeutic agents into the brain. To date, several nano-based platforms have been used in laboratory settings and in vivo conditions to overcome the barrier properties of BBB. Exosomes (Exos) are one-of-a-kind of extracellular vesicles with specific cargo to modulate cell bioactivities in a paracrine manner. Regarding unique physicochemical properties and easy access to various biofluids, Exos provide a favorable platform for drug delivery and therapeutic purposes. Emerging data have indicated that Exos enable brain penetration of selective cargos such as bioactive factors and chemotherapeutic compounds. Along with these statements, the application of smart delivery approaches can increase delivery efficiency and thus therapeutic outcomes. Here, we highlighted the recent advances in the application of Exos in the context of brain tumors.
Collapse
Affiliation(s)
- Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Salahpour-Anarjan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Nemati
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Shahsavari Baher
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Zhu YN, Gu XL, Wang LY, Guan N, Li CG. All-Trans Retinoic Acid Promotes M2 Macrophage Polarization in Vitro by Activating the p38MAPK/STAT6 Signaling Pathway. Immunol Invest 2023; 52:298-318. [PMID: 36731128 DOI: 10.1080/08820139.2023.2173077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND M2-type macrophages are inflammation-suppressing cells that are differentiated after induction by cytokines such as IL-4 or IL-13, which play an important regulatory role in inflammation and influence the regression of inflammation-related diseases. All-trans retinoic acid (ATRA) has an important role in suppressing immune-mediated inflammatory responses but the effect and underlying mechanism of ATRA on the polarization of M2 macrophages remains unclear. METHODS Macrophages were isolated from peritoneal wash fluid, and IL-4 (20 ng/mL) was used to construct a m2-type macrophage polarization model. The model was incubated with different concentrations of ATRA (15 µg/ml, 30 µg/ml, 45 µg/ml) for 24 h, and pretreated macrophages with p38MAPKα inhibitor SB202190 (20 μM). MTT, Trypan blue staining, Annexin V-PE/7-AAD staining, flow cytometry, real-time PCR and western blotting were used to investigate the effect and mechanism of ATRA on the polarization of M2 macrophages. RESULTS Compared with the IL-4 group, the proportion of F4/80+CD206+ M2-type macrophages was significantly higher in the ATRA group (P < 0.01). mRNA and protein expression levels of Arg-1, IL-10 and TGF-β1 were as significantly higher (P < 0.01) in the ATRA group as phosphorylation levels of STAT6 and p38MAPK (P < 0.01). After pretreatment with the addition of the inhibitor SB202190, M2-type macrophages proportion and their associated factors expression were significantly (P < 0.01) reduced, as compared with those in the ATRA group, but they were comparable (P > 0.05) with the IL-4 group. CONCLUSION The combination of ATRA and IL-4 activated the p38MAPK/STAT6-signaling pathway to promote polarization of M2 macrophages.
Collapse
Affiliation(s)
- Ya-Nan Zhu
- Department of Periodontics and Mucasa, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Xiao-Li Gu
- Department of Periodontics and Mucasa, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Lin-Yuan Wang
- Department of Periodontics and Mucasa, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Ning Guan
- Key Laboratory of Brain and Spinal Cord Injury Research, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Chen-Guang Li
- Key Laboratory of Brain and Spinal Cord Injury Research, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| |
Collapse
|
23
|
Bickel MA, Csik B, Gulej R, Ungvari A, Nyul-Toth A, Conley SM. Cell non-autonomous regulation of cerebrovascular aging processes by the somatotropic axis. Front Endocrinol (Lausanne) 2023; 14:1087053. [PMID: 36755922 PMCID: PMC9900125 DOI: 10.3389/fendo.2023.1087053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.
Collapse
Affiliation(s)
- Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Eötvös Lorand Research Network (ELKH), Szeged, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
24
|
Alvino VV, Mohammed KAK, Gu Y, Madeddu P. Approaches for the isolation and long-term expansion of pericytes from human and animal tissues. Front Cardiovasc Med 2023; 9:1095141. [PMID: 36704463 PMCID: PMC9873410 DOI: 10.3389/fcvm.2022.1095141] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Pericytes surround capillaries in every organ of the human body. They are also present around the vasa vasorum, the small blood vessels that supply the walls of larger arteries and veins. The clinical interest in pericytes is rapidly growing, with the recognition of their crucial roles in controlling vascular function and possible therapeutic applications in regenerative medicine. Nonetheless, discrepancies in methods used to define, isolate, and expand pericytes are common and may affect reproducibility. Separating pure pericyte preparations from the continuum of perivascular mesenchymal cells is challenging. Moreover, variations in functional behavior and antigenic phenotype in response to environmental stimuli make it difficult to formulate an unequivocal definition of bona fide pericytes. Very few attempts were made to develop pericytes as a clinical-grade product. Therefore, this review is devoted to appraising current methodologies' pros and cons and proposing standardization and harmonization improvements. We highlight the importance of developing upgraded protocols to create therapeutic pericyte products according to the regulatory guidelines for clinical manufacturing. Finally, we describe how integrating RNA-seq techniques with single-cell spatial analysis, and functional assays may help realize the full potential of pericytes in health, disease, and tissue repair.
Collapse
Affiliation(s)
| | - Khaled Abdelsattar Kassem Mohammed
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
- Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Yue Gu
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
25
|
Liang X, Fa W, Wang N, Peng Y, Liu C, Zhu M, Tian N, Wang Y, Han X, Qiu C, Hou T, Du Y. Exosomal miR-532-5p induced by long-term exercise rescues blood-brain barrier function in 5XFAD mice via downregulation of EPHA4. Aging Cell 2022; 22:e13748. [PMID: 36494892 PMCID: PMC9835579 DOI: 10.1111/acel.13748] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
The breakdown of the blood-brain barrier, which develops early in Alzheimer's disease (AD), contributes to cognitive impairment. Exercise not only reduces the risk factors for AD but also confers direct protection against cognitive decline. However, the exact molecular mechanisms remain elusive, particularly whether exercise can liberate the function of the blood-brain barrier. Here, we demonstrate that long-term exercise promotes the clearance of brain amyloid-β by improving the function of the blood-brain barrier in 5XFAD mice. Significantly, treating primary brain pericytes or endothelial cells with exosomes isolated from the brain of exercised 5XFAD mice improves cell proliferation and upregulates PDGFRβ, ZO-1, and claudin-5. Moreover, exosomes isolated from exercised mice exhibit significant changes in miR-532-5p. Administration or transfection of miR-532-5p to sedentary mice or primary brain pericytes and endothelial cells reproduces the improvement of blood-brain barrier function. Exosomal miR-532-5p targets EPHA4, and accordingly, expression of EphA4 is decreased in exercised mice and miR-532-5p overexpressed mice. A specific siRNA targeting EPHA4 recapitulates the effects on blood-brain barrier-associated cells observed in exercised 5XFAD mice. Overall, our findings suggest that exosomes released by the brain contain a specific miRNA that is altered by exercise and has an impact on blood-brain barrier function in AD.
Collapse
Affiliation(s)
- Xiaoyan Liang
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina
| | - Wenxin Fa
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Nan Wang
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina
| | - Yuanming Peng
- Department of Clinical LaboratoryThird Hospital of JinanShandongChina
| | - Cuicui Liu
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| | - Min Zhu
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| | - Na Tian
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| | - Yongxiang Wang
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| | - Xiaolei Han
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina
| | - Chengxuan Qiu
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska Institutet‐Stockholm UniversitySolnaSweden
| | - Tingting Hou
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| | - Yifeng Du
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| |
Collapse
|
26
|
Nicolicht-Amorim P, Delgado-Garcia LM, Nakamura TKE, Courbassier NR, Mosini AC, Porcionatto MA. Simple and efficient protocol to isolate and culture brain microvascular endothelial cells from newborn mice. Front Cell Neurosci 2022; 16:949412. [PMID: 36313615 PMCID: PMC9606660 DOI: 10.3389/fncel.2022.949412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/06/2022] [Indexed: 10/09/2023] Open
Abstract
The neurovascular unit (NVU) is a multicellular structure comprising of neurons, glial cells, and non-neural cells, and it is supported by a specialized extracellular matrix, the basal lamina. Astrocytes, brain microvascular endothelial cells (BMECs), pericytes, and smooth muscle cells constitute the blood-brain barrier (BBB). BMECs have a mesodermal origin and invade the nervous system early in neural tube development, forming the BBB anatomical core. BMECs are connected by adherent junction complexes composed of integral membrane and cytoplasmic proteins. In vivo and in vitro studies have shown that, given the proximity and relationship with neural cells, BMECs acquire a unique gene expression profile, proteome, and specific mechanical and physical properties compared to endothelial cells from the general vasculature. BMECs are fundamental in maintaining brain homeostasis by regulating transcellular and paracellular transport of fluids, molecules, and cells. Therefore, it is essential to gain in-depth knowledge of the dynamic cellular structure of the cells in the NVU and their interactions with health and disease. Here we describe a significantly improved and simplified protocol using C57BL/6 newborn mice at postnatal day 1 (PND1) to isolate, purify, and culture BMECs monolayers in two different substrates (glass coverslips and transwell culture inserts). In vitro characterization and validation of the BMEC primary culture monolayers seeded on glass or insert included light microscopy, immunolabeling, and gene expression profile. Transendothelial electrical resistance (TEER) measurement and diffusion test were used as functional assays for adherent junction complexes and integrity and permeability of BMECs monolayers. The protocol presented here for the isolation and culture of BMECs is more straightforward than previously published protocols and yields a high number of purified cells. Finally, we tested BMECs function using the oxygen-glucose deprivation (OGD) model of hypoxia. This protocol may be suitable as a bioscaffold for secondary cell seeding allowing the study and better understanding of the NVU.
Collapse
Affiliation(s)
- Priscila Nicolicht-Amorim
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lina M. Delgado-Garcia
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Natália Rodrigues Courbassier
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amanda Cristina Mosini
- Laboratory of Neurobiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marimelia A. Porcionatto
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Lye P, Bloise E, Imperio GE, Chitayat D, Matthews SG. Functional Expression of Multidrug-Resistance (MDR) Transporters in Developing Human Fetal Brain Endothelial Cells. Cells 2022; 11:2259. [PMID: 35883702 PMCID: PMC9323234 DOI: 10.3390/cells11142259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/20/2022] Open
Abstract
There is little information about the functional expression of the multidrug resistance (MDR) transporters P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) in the developing blood−brain barrier (BBB). We isolated and cultured primary human fetal brain endothelial cells (hfBECs) from early and mid-gestation brains and assessed P-gp/ABCB1 and BCRP/ABCG2 expression and function, as well as tube formation capability. Immunolocalization of the von Willebrand factor (marker of endothelial cells), zonula occludens-1 and claudin-5 (tight junctions) was detected in early and mid-gestation-derived hfBECs, which also formed capillary-like tube structures, confirming their BEC phenotype. P-gp and BCRP immunostaining was detected in capillary-like tubes and in the cytoplasm and nucleus of hfBECs. P-gp protein levels in the plasma membrane and nuclear protein fractions, as well as P-gp protein/ABCB1 mRNA and BCRP protein levels decreased (p < 0.05) in hfBECs, from early to mid-gestation. No differences in P-gp or BCRP activity in hfBECs were observed between the two age groups. The hfBECs from early and mid-gestation express functionally competent P-gp and BCRP drug transporters and may thus contribute to the BBB protective phenotype in the conceptus from early stages of pregnancy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP-Binding Cassette Transporters/metabolism
- Brain/metabolism
- Drug Resistance, Multiple
- Endothelial Cells/metabolism
- Female
- Humans
- Neoplasm Proteins/metabolism
- Pregnancy
Collapse
Affiliation(s)
- Phetcharawan Lye
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.L.); (E.B.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.L.); (E.B.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Guinever E. Imperio
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for SickKids, University Toronto, Toronto, ON M5G 1X8, Canada
| | - Stephen G. Matthews
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.L.); (E.B.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
28
|
Defective VWF secretion due to the expression of MYH9-RD E1841K mutant in endothelial cells disrupts hemostasis. Blood Adv 2022; 6:4537-4552. [PMID: 35764499 DOI: 10.1182/bloodadvances.2022008011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Mutations in MYH9, the gene encoding the heavy chain of non-muscle myosin IIa (NMII-A), cause MYH9-related disease (MYH9-RD) that is an autosomal-dominant thrombocytopenia with bleeding tendency. Previously, we showed that NMII-A in endothelial cells (ECs) is critical for hemostasis via regulating von Willebrand factor (VWF) release from Weibel-Palade bodies (WPBs). The aim of this study was to determine the role of the expression of MYH9 mutants in ECs in the pathogenesis of the MYH9-RD bleeding symptom. First, we expressed the 5 most common NMII-A mutants in ECs, and found that E1841K mutant-expressing ECs secreted less VWF than the controls in response to a cAMP signaling agonist. Then, we generated 2 knockin mouse lines, one with Myh9 E1841K in ECs and the other in megakaryocytes. Endothelium-specific E1841K mice exhibited impaired cAMP-induced VWF release and a prolonged bleeding time with normal platelets, while megakaryocyte-specific E1841K mice exhibited macrothrombocytopenia and a prolonged bleeding time with normal VWF release. Finally, we present mechanistic findings that E1841K mutation not only interferes with S1943 phosphorylation and impairs the peripheral distribution of Rab27a positive WPBs in ECs under quiescent condition, but also interferes with S1916 phosphorylation by disrupting the interaction with zyxin and CKIIα, and reduces actin framework formation around WPBs and subsequent VWF secretion under the stimulation by a cAMP agonist. Altogether, our results suggest that impaired cAMP-induced endothelial VWF secretion by E1841K mutant expression may contribute to the MYH9-RD bleeding phenotype.
Collapse
|
29
|
Farhoudi M, Sadigh-Eteghad S, Mahmoudi J, Farjami A, Farjami A, Mahmoudian M, Salatin S. The therapeutic benefits of intravenously administrated nanoparticles in stroke and age-related neurodegenerative diseases. Curr Pharm Des 2022; 28:1985-2000. [PMID: 35676838 DOI: 10.2174/1381612828666220608093639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
The mean global lifetime risk of neurological disorders such as stroke, Alzheimer's disease (AD), and Parkinson's disease (PD) has shown a large effect on economy and society.Researchersare stillstruggling to find effective drugs to treatneurological disordersand drug delivery through the blood-brain barrier (BBB) is a major challenge to be overcome. The BBB is a specialized multicellular barrier between the peripheral blood circulation and the neural tissue. Unique and selective features of the BBB allow it to tightly control brain homeostasis as well as the movement of ions and molecules. Failure in maintaining any of these substances causes BBB breakdown and subsequently enhances neuroinflammation and neurodegeneration.BBB disruption is evident in many neurologicalconditions.Nevertheless, the majority of currently available therapies have tremendous problems for drug delivery into the impaired brain. Nanoparticle (NP)-mediated drug delivery has been considered as a profound substitute to solve this problem. NPs are colloidal systems with a size range of 1-1000 nm whichcan encapsulate therapeutic payloads, improve drug passage across the BBB, and target specific brain areas in neurodegenerative/ischemic diseases. A wide variety of NPs has been displayed for the efficient brain delivery of therapeutics via intravenous administration, especially when their surfaces are coated with targeting moieties. Here, we discuss recent advances in the development of NP-based therapeutics for the treatment of stroke, PD, and AD as well as the factors affecting their efficacy after systemic administration.
Collapse
Affiliation(s)
- Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sara Salatin
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Gut bacterial isoamylamine promotes age-related cognitive dysfunction by promoting microglial cell death. Cell Host Microbe 2022; 30:944-960.e8. [PMID: 35654045 DOI: 10.1016/j.chom.2022.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
The intestinal microbiome releases a plethora of small molecules. Here, we show that the Ruminococcaceae metabolite isoamylamine (IAA) is enriched in aged mice and elderly people, whereas Ruminococcaceae phages, belonging to the Myoviridae family, are reduced. Young mice orally administered IAA show cognitive decline, whereas Myoviridae phage administration reduces IAA levels. Mechanistically, IAA promotes apoptosis of microglial cells by recruiting the transcriptional regulator p53 to the S100A8 promoter region. Specifically, IAA recognizes and binds the S100A8 promoter region to facilitate the unwinding of its self-complementary hairpin structure, thereby subsequently enabling p53 to access the S100A8 promoter and enhance S100A8 expression. Thus, our findings provide evidence that small molecules released from the gut microbiome can directly bind genomic DNA and act as transcriptional coregulators by recruiting transcription factors. These findings further unveil a molecular mechanism that connects gut metabolism to gene expression in the brain with implications for disease development.
Collapse
|
31
|
Tang L, Shi J, Yu M, Shan Y, Zhao J, Sheng M. Isolation and characterization of peritoneal microvascular pericytes. FEBS Open Bio 2022; 12:784-797. [PMID: 35226797 PMCID: PMC8972044 DOI: 10.1002/2211-5463.13386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
As a potential source of myofibroblasts, pericytes may play a role in human peritoneal fibrosis. The culture of primary vascular pericytes in animals has previously been reported, most of which are derived from cerebral and retinal microvasculature. Here, in the field of peritoneal dialysis, we describe a method to isolate and characterize mouse peritoneal microvascular pericytes. The mesenteric tissues of five mice were collected and digested by type II collagenase and type I DNase. After cell attachment, the culture fluid was replaced with pericyte‐conditioned medium. Pericytes with high purity (99.0%) could be isolated by enzymatic disaggregation combined with conditional culture and magnetic activated cell sorting. The primary cells were triangular or polygonal with protrusions, and confluent cell culture could be established in 3 days. The primary pericytes were positive for platelet‐derived growth factor receptor‐β, α‐smooth muscle actin, neuron‐glial antigen 2, and CD13. Moreover, they promoted formation of endothelial tubes, and pericyte–myofibroblast transition occurred after treatment with transforming growth factor‐β1. In summary, we describe here a reproducible isolation protocol for primary peritoneal pericytes, which may be a powerful tool for in vitro peritoneal fibrosis studies.
Collapse
Affiliation(s)
- Lei Tang
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China.,Renal Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Shi
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Manshu Yu
- Renal Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Renal Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Renal Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
32
|
Charoensaensuk V, Chen YC, Lin YH, Ou KL, Yang LY, Lu DY. Porphyromonas gingivalis Induces Proinflammatory Cytokine Expression Leading to Apoptotic Death through the Oxidative Stress/NF-κB Pathway in Brain Endothelial Cells. Cells 2021; 10:3033. [PMID: 34831265 PMCID: PMC8616253 DOI: 10.3390/cells10113033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Porphyromonas gingivalis, a periodontal pathogen, has been proposed to cause blood vessel injury leading to cerebrovascular diseases such as stroke. Brain endothelial cells compose the blood-brain barrier that protects homeostasis of the central nervous system. However, whether P. gingivalis causes the death of endothelial cells and the underlying mechanisms remain unclear. This study aimed to investigate the impact and regulatory mechanisms of P. gingivalis infection in brain endothelial cells. We used bEnd.3 cells and primary mouse endothelial cells to assess the effects of P. gingivalis on endothelial cells. Our results showed that infection with live P. gingivalis, unlike heat-killed P. gingivalis, triggers brain endothelial cell death by inducing cell apoptosis. Moreover, P. gingivalis infection increased intracellular reactive oxygen species (ROS) production, activated NF-κB, and up-regulated the expression of IL-1β and TNF-α. Furthermore, N-acetyl-L-cysteine (NAC), a most frequently used antioxidant, treatment significantly reduced P. gingivalis-induced cell apoptosis and brain endothelial cell death. The enhancement of ROS production, NF-κB p65 activation, and proinflammatory cytokine expression was also attenuated by NAC treatment. The impact of P. gingivalis on brain endothelial cells was also confirmed using adult primary mouse brain endothelial cells (MBECs). In summary, our results showed that P. gingivalis up-regulates IL-1β and TNF-α protein expression, which consequently causes cell death of brain endothelial cells through the ROS/NF-κB pathway. Our results, together with the results of previous case-control studies and epidemiologic reports, strongly support the hypothesis that periodontal infection increases the risk of developing cerebrovascular disease.
Collapse
Affiliation(s)
- Vichuda Charoensaensuk
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (V.C.); (Y.-H.L.)
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yun-Ho Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (V.C.); (Y.-H.L.)
| | - Keng-Liang Ou
- 3D Global Biotech Inc., New Taipei City 22175, Taiwan;
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung 40447, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
33
|
Dexmedetomidine inhibits endoplasmic reticulum stress to suppress pyroptosis of hypoxia/reoxygenation-induced intestinal epithelial cells via activating the SIRT1 expression. J Bioenerg Biomembr 2021; 53:655-664. [PMID: 34586578 DOI: 10.1007/s10863-021-09922-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023]
Abstract
Dexmedetomidine (Dex) can protect the intestine against ischemia/reperfusion (I/R)-induced injury. Sirtuin 1 (SIRT1) pathway, which could be activated by Dex, was reported to inhibit I/R injury. Pyroptosis plays an important role in intestinal diseases. We aimed to investigate whether Dex could attenuate pyroptosis of hypoxia/reoxygenation (H/R)-induced intestinal epithelial cells via activating SIRT1. The intestinal epithelial cell line IEC-6 with or without SIRT1 knockdown after H/R treatment was exposed to Dex, then cell viability, endoplasmic reticulum stress (ERS), apoptosis, pyroptosis, inflammatory cytokines production and SIRT1 expression were detected. Results showed that Dex treatment had no significant effect on IEC-6 cell viability but rescued the H/R-reduced cell viability. The expression of proteins involved in ERS including Grp78, Gadd153 and caspase 12 was enhanced upon H/R stimulation, but was reversely reduced by Dex. The cell apoptosis increased by H/R was also decreased by Dex. Additionally, Dex inhibited pyroptosis and inflammation, which were markedly promoted upon H/R stimulation. The expression of SIRT1, which was reduced after H/R treatment was also partially rescued by Dex. Finally, the above effects of Dex were all blocked by SIRT1 knockdown. In conclusion, Dex could inhibit H/R-induced intestinal epithelial cells ERS, apoptosis and pyroptosis via activating SIRT1 expression.
Collapse
|
34
|
Khezerlou E, Prajapati N, DeCoster MA. Negative Feedback Role of Astrocytes in Shaping Excitation in Brain Cell Co-cultures. Front Cell Neurosci 2021; 15:651509. [PMID: 34326721 PMCID: PMC8313828 DOI: 10.3389/fncel.2021.651509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Glial cells play an important role in maintaining neuronal homeostasis and may thus influence excitability in epileptogenesis. These cells in the brain have glutamate (Glu) transporters, which remove this neurotransmitter from the extracellular space. Lack of negative (-) feedback makes local neuronal circuits more excitable and potentially contributing to epileptogenic phenomena. In this study, the role of glial cells in providing (-) feedback is shown through different models of brain cells in culture imaged for intracellular calcium concentration [(Ca2+)i]. Moreover, here we study the individual cells by putting them in categories. Neuronal networks with high and low (-) feedback were established by using anti-mitotics to deplete glial cells. Separate stimuli with very low subthreshold concentrations of Glu (250-750 nM) were added to cultures to test if the order of stimulations matter in regard to calcium dynamics outcomes. Additionally, KCl and ATP were used to stimulate glial cells. We found that for cultures high in (-) feedback, order of the stimulus was not important in predicting cellular responses and because of the complexity of networks in low (-) feedback cultures the order of stimulus matters. As an additional method for analysis, comparison of high (-) feedback cultures, and pure astrocytes was also considered. Glial cells in pure astrocyte cultures tend to be larger in size than glial cells in high (-) feedback cultures. The potential effect of (-) feedback at the blood brain barrier (BBB) was also considered for the inflammatory responses of nitric oxide (NO) production and [Ca2+]i regulation using brain microvascular endothelial cells (BMVECs). The inflammatory and calcium signaling pathways both indicate the negative feedback role of astrocytes, poised between the BBB and structures deeper within the brain, where neuronal synapses are homeostatically maintained by glial uptake of neurotransmitters.
Collapse
Affiliation(s)
- Elnaz Khezerlou
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, United States
| | - Neela Prajapati
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, United States
| | - Mark A DeCoster
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, United States.,Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, United States
| |
Collapse
|
35
|
Thomsen MS, Humle N, Hede E, Moos T, Burkhart A, Thomsen LB. The blood-brain barrier studied in vitro across species. PLoS One 2021; 16:e0236770. [PMID: 33711041 PMCID: PMC7954348 DOI: 10.1371/journal.pone.0236770] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/24/2021] [Indexed: 11/23/2022] Open
Abstract
The blood-brain barrier (BBB) is formed by brain capillary endothelial cells (BECs) supported by pericytes and astrocytes. The BBB maintains homeostasis and protects the brain against toxic substances circulating in the blood, meaning that only a few drugs can pass the BBB. Thus, for drug screening, understanding cell interactions, and pathology, in vitro BBB models have been developed using BECs from various animal sources. When comparing models of different species, differences exist especially in regards to the transendothelial electrical resistance (TEER). Thus, we compared primary mice, rat, and porcine BECs (mBECs, rBECs, and pBECs) cultured in mono- and co-culture with astrocytes, to identify species-dependent differences that could explain the variations in TEER and aid to the selection of models for future BBB studies. The BBB models based on primary mBECs, rBECs, and pBECs were evaluated and compared in regards to major BBB characteristics. The barrier integrity was evaluated by the expression of tight junction proteins and measurements of TEER and apparent permeability (Papp). Additionally, the cell size, the functionality of the P-glycoprotein (P-gp) efflux transporter, and the expression of the transferrin receptor were evaluated and compared. Expression and organization of tight junction proteins were in all three species influenced by co-culturing, supporting the findings, that TEER increases after co-culturing with astrocytes. All models had functional polarised P-gp efflux transporters and expressed the transferrin receptor. The most interesting discovery was that even though the pBECs had higher TEER than rBECs and mBECs, the Papp did not show the same variation between species, which could be explained by a significantly larger cell size of pBECs. In conclusion, our results imply that the choice of species for a given BBB study should be defined from its purpose, instead of aiming to reach the highest TEER, as the models studied here revealed similar BBB properties.
Collapse
Affiliation(s)
- Maj Schneider Thomsen
- Department of Health Science and Technology, Neurobiology Research and Drug Delivery, Aalborg University, Aalborg, Denmark
| | - Nanna Humle
- Department of Health Science and Technology, Neurobiology Research and Drug Delivery, Aalborg University, Aalborg, Denmark
| | - Eva Hede
- Department of Health Science and Technology, Neurobiology Research and Drug Delivery, Aalborg University, Aalborg, Denmark
| | - Torben Moos
- Department of Health Science and Technology, Neurobiology Research and Drug Delivery, Aalborg University, Aalborg, Denmark
| | - Annette Burkhart
- Department of Health Science and Technology, Neurobiology Research and Drug Delivery, Aalborg University, Aalborg, Denmark
| | - Louiza Bohn Thomsen
- Department of Health Science and Technology, Neurobiology Research and Drug Delivery, Aalborg University, Aalborg, Denmark
| |
Collapse
|
36
|
Modiwala M, Jadav T, Sahu AK, Tekade RK, Sengupta P. A Critical Review on Advancement in Analytical Strategies for the Quantification of Clinically Relevant Biological Transporters. Crit Rev Anal Chem 2021; 52:1557-1571. [PMID: 33691566 DOI: 10.1080/10408347.2021.1891859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Success of a drug discovery program is highly dependent on rapid scientific advancement and periodic inclusion of sensitive and specific analytical techniques. Biological membrane transporters can significantly alter the bioavailability of a molecule in its actual site of action. Expression of transporter proteins responsible for drug transport is extremely low in the biological system. Therefore, proper scientific planning in selection of their quantitative analytical technique is essential. This article discusses critical advancement in the analytical strategies for quantification of clinically relevant biological transporters for the drugs. Article cross-talked key planning and execution strategies concerning analytical quantification of the transporters during drug discovery programs.
Collapse
Affiliation(s)
- Mustafa Modiwala
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
37
|
Faouzi A, Roullin VG. Think Big, Start Small: How Nanomedicine Could Alleviate the Burden of Rare CNS Diseases. Pharmaceuticals (Basel) 2021; 14:109. [PMID: 33573213 PMCID: PMC7912386 DOI: 10.3390/ph14020109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
The complexity and organization of the central nervous system (CNS) is widely modulated by the presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB), which both act as biochemical, dynamic obstacles impeding any type of undesirable exogenous exchanges. The disruption of these barriers is usually associated with the development of neuropathologies which can be the consequence of genetic disorders, local antigenic invasions, or autoimmune diseases. These disorders can take the shape of rare CNS-related diseases (other than Alzheimer's and Parkinson's) which a exhibit relatively low or moderate prevalence and could be part of a potential line of treatments from current nanotargeted therapies. Indeed, one of the most promising therapeutical alternatives in that field comes from the development of nanotechnologies which can be divided between drug delivery systems and diagnostic tools. Unfortunately, the number of studies dedicated to treating these rare diseases using nanotherapeutics is limited, which is mostly due to a lack of interest from industrial pharmaceutical companies. In the present review, we will provide an overview of some of these rare CNS diseases, discuss the physiopathology of these disorders, shed light on how nanotherapies could be of interest as a credible line of treatment, and finally address the major issues which can hinder the development of efficient therapies in that area.
Collapse
Affiliation(s)
- Abdelfattah Faouzi
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO 63131, USA;
| | - Valérie Gaëlle Roullin
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
38
|
Kakinuma Y. Characteristic Effects of the Cardiac Non-Neuronal Acetylcholine System Augmentation on Brain Functions. Int J Mol Sci 2021; 22:ijms22020545. [PMID: 33430415 PMCID: PMC7826949 DOI: 10.3390/ijms22020545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Since the discovery of non-neuronal acetylcholine in the heart, this specific system has drawn scientific interest from many research fields, including cardiology, immunology, and pharmacology. This system, acquired by cardiomyocytes independent of the parasympathetic nervous system of the autonomic nervous system, helps us to understand unsolved issues in cardiac physiology and to realize that the system may be more pivotal for cardiac homeostasis than expected. However, it has been shown that the effects of this system may not be restricted to the heart, but rather extended to cover extra-cardiac organs. To this end, this system intriguingly influences brain function, specifically potentiating blood brain barrier function. Although the results reported appear to be unusual, this novel characteristic can provide us with another research interest and therapeutic application mode for central nervous system diseases. In this review, we discuss our recent studies and raise the possibility of application of this system as an adjunctive therapeutic modality.
Collapse
Affiliation(s)
- Yoshihiko Kakinuma
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
39
|
Non-Human Primate Blood-Brain Barrier and In Vitro Brain Endothelium: From Transcriptome to the Establishment of a New Model. Pharmaceutics 2020; 12:pharmaceutics12100967. [PMID: 33066641 PMCID: PMC7602447 DOI: 10.3390/pharmaceutics12100967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
The non-human primate (NHP)-brain endothelium constitutes an essential alternative to human in the prediction of molecule trafficking across the blood–brain barrier (BBB). This study presents a comparison between the NHP transcriptome of freshly isolated brain microcapillaries and in vitro-selected brain endothelial cells (BECs), focusing on important BBB features, namely tight junctions, receptors mediating transcytosis (RMT), ABC and SLC transporters, given its relevance as an alternative model for the molecule trafficking prediction across the BBB and identification of new brain-specific transport mechanisms. In vitro BECs conserved most of the BBB key elements for barrier integrity and control of molecular trafficking. The function of RMT via the transferrin receptor (TFRC) was characterized in this NHP-BBB model, where both human transferrin and anti-hTFRC antibody showed increased apical-to-basolateral passage in comparison to control molecules. In parallel, eventual BBB-related regional differences were Investig.igated in seven-day in vitro-selected BECs from five brain structures: brainstem, cerebellum, cortex, hippocampus, and striatum. Our analysis retrieved few differences in the brain endothelium across brain regions, suggesting a rather homogeneous BBB function across the brain parenchyma. The presently established NHP-derived BBB model closely mimics the physiological BBB, thus representing a ready-to-use tool for assessment of the penetration of biotherapeutics into the human CNS.
Collapse
|