1
|
Araujo S, Mabille D, Garcia AB, Caljon G. A breath of fresh air: impact of insect-borne protozoan parasites on the respiratory system. Trends Parasitol 2024; 40:717-730. [PMID: 39013660 DOI: 10.1016/j.pt.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
The protozoan parasites Plasmodium, Leishmania, and Trypanosoma are transmitted by hematophagous insects and cause severe diseases in humans. These infections pose a global threat, particularly in low-resource settings, and are increasingly extending beyond the current endemic regions. Tropism of parasites is crucial for their development, and recent studies have revealed colonization of noncanonical tissues, aiding their survival and immune evasion. Despite receiving limited attention, cumulative evidence discloses the respiratory system as a significant interface for host-pathogen interactions, influencing the course of (co)infection and disease onset. Due to its pathophysiological and clinical implications, we emphasize that further research is needed to better understand the involvement of the respiratory system and its potential to improve prevention, diagnosis, treatment, and interruption of the chain of transmission.
Collapse
Affiliation(s)
- Sergio Araujo
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Alvaro Baeza Garcia
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
2
|
Nhat PTH, Van Hao N, Tho PV, Kerdegari H, Pisani L, Thu LNM, Phuong LT, Duong HTH, Thuy DB, McBride A, Xochicale M, Schultz MJ, Razavi R, King AP, Thwaites L, Van Vinh Chau N, Yacoub S, Gomez A. Clinical benefit of AI-assisted lung ultrasound in a resource-limited intensive care unit. Crit Care 2023; 27:257. [PMID: 37393330 PMCID: PMC10314555 DOI: 10.1186/s13054-023-04548-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Interpreting point-of-care lung ultrasound (LUS) images from intensive care unit (ICU) patients can be challenging, especially in low- and middle- income countries (LMICs) where there is limited training available. Despite recent advances in the use of Artificial Intelligence (AI) to automate many ultrasound imaging analysis tasks, no AI-enabled LUS solutions have been proven to be clinically useful in ICUs, and specifically in LMICs. Therefore, we developed an AI solution that assists LUS practitioners and assessed its usefulness in a low resource ICU. METHODS This was a three-phase prospective study. In the first phase, the performance of four different clinical user groups in interpreting LUS clips was assessed. In the second phase, the performance of 57 non-expert clinicians with and without the aid of a bespoke AI tool for LUS interpretation was assessed in retrospective offline clips. In the third phase, we conducted a prospective study in the ICU where 14 clinicians were asked to carry out LUS examinations in 7 patients with and without our AI tool and we interviewed the clinicians regarding the usability of the AI tool. RESULTS The average accuracy of beginners' LUS interpretation was 68.7% [95% CI 66.8-70.7%] compared to 72.2% [95% CI 70.0-75.6%] in intermediate, and 73.4% [95% CI 62.2-87.8%] in advanced users. Experts had an average accuracy of 95.0% [95% CI 88.2-100.0%], which was significantly better than beginners, intermediate and advanced users (p < 0.001). When supported by our AI tool for interpreting retrospectively acquired clips, the non-expert clinicians improved their performance from an average of 68.9% [95% CI 65.6-73.9%] to 82.9% [95% CI 79.1-86.7%], (p < 0.001). In prospective real-time testing, non-expert clinicians improved their baseline performance from 68.1% [95% CI 57.9-78.2%] to 93.4% [95% CI 89.0-97.8%], (p < 0.001) when using our AI tool. The time-to-interpret clips improved from a median of 12.1 s (IQR 8.5-20.6) to 5.0 s (IQR 3.5-8.8), (p < 0.001) and clinicians' median confidence level improved from 3 out of 4 to 4 out of 4 when using our AI tool. CONCLUSIONS AI-assisted LUS can help non-expert clinicians in an LMIC ICU improve their performance in interpreting LUS features more accurately, more quickly and more confidently.
Collapse
Affiliation(s)
- Phung Tran Huy Nhat
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK.
| | - Nguyen Van Hao
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Hospital of Tropical Diseases, Ho Chi Minh City, Vietnam
- University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Phan Vinh Tho
- Hospital of Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Hamideh Kerdegari
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK
| | - Luigi Pisani
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | | | - Le Thanh Phuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Angela McBride
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Miguel Xochicale
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK
| | - Marcus J Schultz
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Reza Razavi
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK
| | - Andrew P King
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK
| | - Louise Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Alberto Gomez
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK
| |
Collapse
|
3
|
Hoffmeister B. Respiratory Distress Complicating Falciparum Malaria Imported to Berlin, Germany: Incidence, Burden, and Risk Factors. Microorganisms 2023; 11:1579. [PMID: 37375081 DOI: 10.3390/microorganisms11061579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
While European healthcare systems face resource shortages as a consequence of the coronavirus pandemic, numbers of imported falciparum malaria cases increased again with re-intensifying international travel. The aim of the study was to identify malaria-specific complications associated with a prolonged intensive care unit (ICU) length of stay (ICU-LOS) in the pre-COVID-19 era and to determine targets for their prevention. This retrospective observational investigation included all the cases treated from 2001 to 2015 at the Charité University Hospital, Berlin. The association of malaria-specific complications with the ICU-LOS was assessed using a multivariate Cox proportional hazard regression. The risk factors for the individual complications were determined using a multivariate Bayesian logistic regression. Among the 536 included cases, 68 (12.7%) required intensive care and 55 (10.3%) suffered from severe malaria (SM). The median ICU-LOS was 61 h (IQR 38-91 h). Respiratory distress, which occurred in 11 individuals (2.1% of the total cases, 16.2% of the ICU patients, and 20% of the SM cases), was the only complication independently associated with ICU-LOS (adjusted hazard ratio for ICU discharge by 61 h 0.24, 95% confidence interval, 95%CI, 0.08-0.75). Shock (adjusted odds ratio, aOR, 11.5; 95%CI, 1.5-113.3), co-infections (aOR 7.5, 95%CI 1.2-62.8), and each mL/kg/h fluid intake in the first 24 treatment hours (aOR 2.2, 95%CI 1.1-5.1) were the independent risk factors for its development. Respiratory distress is not rare in severe imported falciparum malaria, and it is associated with a substantial burden. Cautious fluid management, including in shocked individuals, and the control of co-infections may help prevent its development and thereby reduce the ICU-LOS.
Collapse
Affiliation(s)
- Bodo Hoffmeister
- Department of Pulmonary Medicine and Infectious Diseases, Vivantes-Klinikum Neukölln, 12351 Berlin, Germany
| |
Collapse
|
4
|
Azmi WA, Rizki AFM, Djuardi Y, Artika IM, Siregar JE. Molecular insights into artemisinin resistance in Plasmodium falciparum: An updated review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105460. [PMID: 37269964 DOI: 10.1016/j.meegid.2023.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Malaria still poses a major burden on human health around the world, especially in endemic areas. Plasmodium resistance to several antimalarial drugs has been one of the major hindrances in control of malaria. Thus, the World Health Organization recommended artemisinin-based combination therapy (ACT) as a front-line treatment for malaria. The emergence of parasites resistant to artemisinin, along with resistant to ACT partner drugs, has led to ACT treatment failure. The artemisinin resistance is mostly related to the mutations in the propeller domain of the kelch13 (k13) gene that encodes protein Kelch13 (K13). The K13 protein has an important role in parasite reaction to oxidative stress. The most widely spread mutation in K13, with the highest degree of resistance, is a C580Y mutation. Other mutations, which are already identified as markers of artemisinin resistance, are R539T, I543T, and Y493H. The objective of this review is to provide current molecular insights into artemisinin resistance in Plasmodium falciparum. The trending use of artemisinin beyond its antimalarial effect is described. Immediate challenges and future research directions are discussed. Better understanding of the molecular mechanisms underlying artemisinin resistance will accelerate implementation of scientific findings to solve problems with malarial infection.
Collapse
Affiliation(s)
- Wihda Aisarul Azmi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Andita Fitri Mutiara Rizki
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - I Made Artika
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
5
|
Wick KD, Aggarwal NR, Curley MAQ, Fowler AA, Jaber S, Kostrubiec M, Lassau N, Laterre PF, Lebreton G, Levitt JE, Mebazaa A, Rubin E, Sinha P, Ware LB, Matthay MA. Opportunities for improved clinical trial designs in acute respiratory distress syndrome. THE LANCET. RESPIRATORY MEDICINE 2022; 10:916-924. [PMID: 36057279 DOI: 10.1016/s2213-2600(22)00294-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
The acute respiratory distress syndrome (ARDS) is a common critical illness syndrome with high morbidity and mortality. There are no proven pharmacological therapies for ARDS. The current definition of ARDS is based on shared clinical characteristics but does not capture the heterogeneity in clinical risk factors, imaging characteristics, physiology, timing of onset and trajectory, and biology of the syndrome. There is increasing interest within the ARDS clinical trialist community to design clinical trials that reduce heterogeneity in the trial population. This effort must be balanced with ongoing work to craft an inclusive, global definition of ARDS, with important implications for trial design. Ultimately, the two aims-to design trials that are applicable to the diverse global ARDS population while also advancing opportunities to identify targetable traits-should coexist. In this Personal View, we recommend two primary strategies to improve future ARDS trials: the development of new methods to target treatable traits in clinical trial populations, and improvements in the representativeness of ARDS trials, with the inclusion of global populations. We emphasise that these two strategies are complementary. We also discuss how a proposed expansion of the definition of ARDS could affect the future of clinical trials.
Collapse
Affiliation(s)
- Katherine D Wick
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Neil R Aggarwal
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado, Aurora, CO, USA; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martha A Q Curley
- Department of Family and Community Health, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Alpha A Fowler
- Division of Pulmonary Disease and Critical Care, Virginia Commonwealth University, Richmond, VA, USA
| | - Samir Jaber
- University Hospital, CHU de Montpellier Hôpital Saint Eloi, Intensive Care Unit and Transplantation, Department of Anesthesiology DAR B, Montpellier, France
| | - Maciej Kostrubiec
- Department of Internal Medicine and Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Nathalie Lassau
- Department of Imaging, Gustave Roussy, Université Paris Saclay, Villejuif, France; Biomaps, UMR1281 INSERM, CEA, CNRS, Université Paris Saclay, Villejuif, France
| | - Pierre François Laterre
- Intensive Care Medicine, Saint-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Guillaume Lebreton
- Institute of Cardiometabolism and Nutrition, Inserm, UMRS 1166-ICAN, Sorbonne University, Paris, France; Cardiac Surgery Service, Institute of Cardiology, AP-HP, Sorbonne University, Paris, France
| | - Joseph E Levitt
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Alexandre Mebazaa
- Department of Anesthesiology and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals, Paris, France
| | | | - Pratik Sinha
- Department of Anesthesiology, Washington University in St Louis, St Louis, MO, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA; Departments of Medicine and Anesthesia, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Wick KD, McAuley DF, Levitt JE, Beitler JR, Annane D, Riviello ED, Calfee CS, Matthay MA. Promises and challenges of personalized medicine to guide ARDS therapy. Crit Care 2021; 25:404. [PMID: 34814925 PMCID: PMC8609268 DOI: 10.1186/s13054-021-03822-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023] Open
Abstract
Identifying new effective treatments for the acute respiratory distress syndrome (ARDS), including COVID-19 ARDS, remains a challenge. The field of ARDS investigation is moving increasingly toward innovative approaches such as the personalization of therapy to biological and clinical sub-phenotypes. Additionally, there is growing recognition of the importance of the global context to identify effective ARDS treatments. This review highlights emerging opportunities and continued challenges for personalizing therapy for ARDS, from identifying treatable traits to innovative clinical trial design and recognition of patient-level factors as the field of critical care investigation moves forward into the twenty-first century.
Collapse
Affiliation(s)
- Katherine D Wick
- Cardiovascular Research Institute, University of California San Francisco, 513 Parnassus Avenue, HSE 760, San Francisco, CA, 94143, USA.
| | - Daniel F McAuley
- Belfast Health and Social Care Trust, Royal Victoria Hospital and Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Joseph E Levitt
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Jeremy R Beitler
- Center for Acute Respiratory Failure and Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University, New York, NY, USA
| | - Djillali Annane
- Department of Intensive Care, FHU SEPSIS, and RHU RECORDS, Hôpital Raymond Poincaré (APHP), Garches, France
- Laboratory of Infection & Inflammation, School of Medicine Simone Veil, INSERM, University Versailles Saint Quentin, University Paris Saclay, Garches, France
| | - Elisabeth D Riviello
- Harvard Medical School and Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Carolyn S Calfee
- Cardiovascular Research Institute, University of California San Francisco, 513 Parnassus Avenue, HSE 760, San Francisco, CA, 94143, USA
- Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA, USA
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California San Francisco, 513 Parnassus Avenue, HSE 760, San Francisco, CA, 94143, USA
- Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Serrano D, Santos-Reis A, Silva C, Dias A, Dias B, Toscano C, Conceição C, Baptista-Fernandes T, Nogueira F. Imported Malaria in Portugal: Prevalence of Polymorphisms in the Anti-Malarial Drug Resistance Genes pfmdr1 and pfk13. Microorganisms 2021; 9:microorganisms9102045. [PMID: 34683365 PMCID: PMC8538333 DOI: 10.3390/microorganisms9102045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 02/04/2023] Open
Abstract
Malaria is one of the ‘big three’ killer infectious diseases, alongside tuberculosis and HIV. In non-endemic areas, malaria may occur in travelers who have recently been to or visited endemic regions. The number of imported malaria cases in Portugal has increased in recent years, mostly due to the close relationship with the community of Portuguese language countries. Samples were collected from malaria-infected patients attending Centro Hospitalar Lisboa Ocidental (CHLO) or the outpatient clinic of Instituto de Higiene e Medicina Tropical (IHMT-NOVA) between March 2014 and May 2021. Molecular characterization of Plasmodium falciparum pfk13 and pfmdr1 genes was performed. We analyzed 232 imported malaria cases. The majority (68.53%) of the patients came from Angola and only three patients travelled to a non-African country; one to Brazil and two to Indonesia. P. falciparum was diagnosed in 81.47% of the cases, P. malariae in 7.33%, P. ovale 6.47% and 1.72% carried P. vivax. No mutations were detected in pfk13. Regarding pfmdr1, the wild-type haplotype (N86/Y184/D1246) was also the most prevalent (64.71%) and N86/184F/D1246 was detected in 26.47% of the cases. The typical imported malaria case was middle-aged male, traveling from Angola, infected with P. falciparum carrying wild type pfmdr1 and pfk13. Our study highlights the need for constant surveillance of malaria parasites imported into Portugal as an important pillar of public health.
Collapse
Affiliation(s)
- Debora Serrano
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Ana Santos-Reis
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Clemente Silva
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Ana Dias
- Laboratório de Microbiologia Clínica e Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental (CHLO), Rua da Junqueira 126, 1349-019 Lisboa, Portugal; (A.D.); (C.T.); (T.B.-F.)
| | - Brigite Dias
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Cristina Toscano
- Laboratório de Microbiologia Clínica e Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental (CHLO), Rua da Junqueira 126, 1349-019 Lisboa, Portugal; (A.D.); (C.T.); (T.B.-F.)
| | - Cláudia Conceição
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Teresa Baptista-Fernandes
- Laboratório de Microbiologia Clínica e Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental (CHLO), Rua da Junqueira 126, 1349-019 Lisboa, Portugal; (A.D.); (C.T.); (T.B.-F.)
| | - Fatima Nogueira
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
- Correspondence: ; Tel.: +351-213652600
| |
Collapse
|
8
|
Factors Associated with Prolonged Hospital Length of Stay in Adults with Imported Falciparum Malaria-An Observational Study from a Tertiary Care University Hospital in Berlin, Germany. Microorganisms 2021; 9:microorganisms9091941. [PMID: 34576836 PMCID: PMC8466442 DOI: 10.3390/microorganisms9091941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Outcome of falciparum malaria is largely influenced by the standard of care provided, which in turn depends on the available medical resources. Worldwide, the COVID-19 pandemic has had a major impact on the availability of these resources, even in resource-rich healthcare systems such as Germany's. The present study aimed to determine the under-explored factors associated with hospital length of stay (LOS) in imported falciparum malaria to identify potential targets for improving management. This retrospective observational study used multivariate Cox proportional hazard regression with time to discharge as an endpoint for adults hospitalized between 2001 and 2015 with imported falciparum malaria in the Charité University Hospital, Berlin. The median LOS of the 535 cases enrolled was 3 days (inter-quartile range, IQR, 3-4 days). The likelihood of being discharged by day 3 strongly decreased with severe malaria (hazard ratio, HR, 0.274; 95% Confidence interval, 95%CI: 0.190-0.396) and by 40% with each additional presenting complication (HR, 0.595; 95%CI: 0.510-0.694). The 55 (10.3%) severe cases required a median LOS of 7 days (IQR, 5-12 days). In multivariate analysis, occurrence of shock (adjusted HR, aHR, 0.438; 95%CI 0.220-0.873), acute pulmonary oedema or acute respiratory distress syndrome (aHR, 0.450; 95%CI: 0.223-0.874), and the need for renal replacement therapy (aHR, 0.170; 95%CI: 0.063-0.461) were independently associated with LOS. All patients survived to discharge. This study illustrates that favourable outcomes can be achieved with high-standard care in imported falciparum malaria. Early recognition of disease severity together with targeted supportive care can lead to avoidance of manifest organ failure, thereby potentially decreasing LOS and alleviating pressure on bed capacities.
Collapse
|
9
|
Dhangadamajhi G, Singh S. Malaria link of hypertension: a hidden syndicate of angiotensin II, bradykinin and sphingosine 1-phosphate. Hum Cell 2021; 34:734-744. [PMID: 33683655 DOI: 10.1007/s13577-021-00513-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 01/22/2023]
Abstract
In malaria-endemic countries, the burden of hypertension is on the rise. Although malaria and hypertension seem to have no direct link, several studies in recent years support their possible link. Three bioactive molecules such as angiotensin II (Ang II), bradykinin (BK) and sphingosine 1-phosphate (S1P) are crucial in regulating blood pressure. While the increased level of Ang II and S1P are responsible for inducing hypertension, BK is arthero-protective and anti-hypertensive. Therefore, in the present review, based on available literatures we highlight the present knowledge on the production and bioavailability of these molecules, the mechanism of their regulation of hypertension, and patho-physiological role in malaria. Further, a possible link between malaria and hypertension is hypothesized through various arguments based on experimental evidence. Understanding of their mechanisms of blood pressure regulation during malaria infection may open up avenues for drug therapeutics and management of malaria in co-morbidity with hypertension.
Collapse
Affiliation(s)
- Gunanidhi Dhangadamajhi
- Department of Biotechnology, Maharaja Sriramchandra Bhanjadeo University, Takatpur, Baripada, Odisha, 75003, India.
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|