1
|
Yoshimoto S, Kudo A, Rotolo A, Foos K, Olenick L, Takagi S, Mason NJ. Validation of a PD-1/CD28 chimeric switch receptor to augment CAR-T function in dogs with spontaneous B cell lymphoma. iScience 2024; 27:110863. [PMID: 39314237 PMCID: PMC11418608 DOI: 10.1016/j.isci.2024.110863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/07/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved unprecedented clinical outcomes in patients with relapsed/refractory B cell leukemias; however, response rates in patients with large B cell lymphoma (LBCL) are less impressive. Expression of PD-1 on activated T cells and PD-L1 on malignant, stromal, and immune cells within the tumor microenvironment (TME) contribute to CAR-T exhaustion, hypofunction, and treatment failures. Here, a comparative approach is taken to develop a chimeric switch receptor (CSR) with potential to augment CAR-T persistence, function, and clinical efficacy in immune competent, pet dogs with spontaneous B cell lymphoma (BCL). We show that similar to human CAR-T cells, expression of a PD-1/CD28 CSR in canine CAR-T cells results in enhanced function against PD-L1+ targets and preserves central memory phenotype. We also demonstrate that these effects depend upon active CSR signaling. This work paves the way for in vivo studies in canine BCL patients to inform human trial design.
Collapse
Affiliation(s)
- Sho Yoshimoto
- Laboratory of Small Animal Surgery, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Ayano Kudo
- Laboratory of Small Animal Surgery, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Antonia Rotolo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kay Foos
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren Olenick
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Satoshi Takagi
- Laboratory of Small Animal Surgery, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Nicola J. Mason
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Lang HP, Osum KC, Friedenberg SG. A review of CD4 + T cell differentiation and diversity in dogs. Vet Immunol Immunopathol 2024; 275:110816. [PMID: 39173398 PMCID: PMC11421293 DOI: 10.1016/j.vetimm.2024.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
CD4+ T cells are an integral component of the adaptive immune response, carrying out many functions to combat a diverse range of pathogenic challenges. These cells exhibit remarkable plasticity, differentiating into specialized subsets such as T helper type 1 (TH1), TH2, TH9, TH17, TH22, regulatory T cells (Tregs), and follicular T helper (TFH) cells. Each subset is capable of addressing a distinct immunological need ranging from pathogen eradication to regulation of immune homeostasis. As the immune response subsides, CD4+ T cells rest down into long-lived memory phenotypes-including central memory (TCM), effector memory (TEM), resident memory (TRM), and terminally differentiated effector memory cells (TEMRA) that are localized to facilitate a swift and potent response upon antigen re-encounter. This capacity for long-term immunological memory and rapid reactivation upon secondary exposure highlights the role CD4+ T cells play in sustaining both adaptive defense mechanisms and maintenance. Decades of mouse, human, and to a lesser extent, pig T cell research has provided the framework for understanding the role of CD4+ T cells in immune responses, but these model systems do not always mimic each other. Although our understanding of pig immunology is not as extensive as mouse or human research, we have gained valuable insight by studying this model. More akin to pigs, our understanding of CD4+ T cells in dogs is much less complete. This disparity exists in part because canine immunologists depend on paradigms from mouse and human studies to characterize CD4+ T cells in dogs, with a fraction of available lineage-defining antibody markers. Despite this, every major CD4+ T cell subset has been described to some extent in dogs. These subsets have been studied in various contexts, including in vitro stimulation, homeostatic conditions, and across a range of disease states. Canine CD4+ T cells have been categorized according to lineage-defining characteristics, trafficking patterns, and what cytokines they produce upon stimulation. This review addresses our current understanding of canine CD4+ T cells from a comparative perspective by highlighting both the similarities and differences from mouse, human, and pig CD4+ T cell biology. We also discuss knowledge gaps in our current understanding of CD4+ T cells in dogs that could provide direction for future studies in the field.
Collapse
Affiliation(s)
- Haeree P Lang
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Kevin C Osum
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA.
| | - Steven G Friedenberg
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
3
|
Dell’Anno F, Giugliano R, Listorti V, Razzuoli E. A Review on Canine and Human Soft Tissue Sarcomas: New Insights on Prognosis Factors and Treatment Measures. Vet Sci 2024; 11:362. [PMID: 39195816 PMCID: PMC11358912 DOI: 10.3390/vetsci11080362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Soft tissue sarcomas (STSs) represent a diverse group of tumors arising from mesenchymal cells, affecting both humans and animals, including dogs. Although STSs represent a class of rare tumors, especially in humans, they pose significant clinical challenges due to their potential for local recurrence and distant metastasis. Dogs, as a model for human STSs, offer several advantages, including exposure to similar environmental risk factors, genetic diversity among breeds, and the spontaneous development of tumors. Furthermore, canine tumors closely mimic the heterogeneity and complexity of human tumors, making them valuable for research into disease progression and treatment effectiveness. Current treatment approaches for STSs in both dogs and humans primarily involve surgery, radiation therapy, and chemotherapy, with treatment decisions based on tumor characteristics and patient factors. However, the development of novel therapeutic strategies is essential, given the high failure rate of new drugs in clinical trials. To better design new tailored treatments, comprehension of the tumor microenvironment (TME) is fundamental, since it plays a crucial role in STS initiation and progression by modulating tumor behavior, promoting angiogenesis, and suppressing immune responses. Notably, TME features include cancer-associated fibroblasts (CAFs), extracellular matrix (ECM) alterations, and tumor-associated macrophages (TAMs) that, depending on their polarization state, can affect immune responses and thus the patient's prognosis. In this review, new therapeutical approaches based on immunotherapy will be deeply explored as potential treatment options for both dogs and humans with STSs. In conclusion, this review provides an overview of the current understanding of STSs in dogs and humans, emphasizing the importance of the TME and potential treatment strategies.
Collapse
Affiliation(s)
- Filippo Dell’Anno
- National Reference Center of Veterinary and comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (F.D.); (V.L.); (E.R.)
- Department of Public Health, Experimental and Forensic Medicine, Section of Biostatistics and Clinical Epidemiology, University of Pavia, 27100 Pavia, Italy
| | - Roberta Giugliano
- National Reference Center of Veterinary and comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (F.D.); (V.L.); (E.R.)
| | - Valeria Listorti
- National Reference Center of Veterinary and comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (F.D.); (V.L.); (E.R.)
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (F.D.); (V.L.); (E.R.)
| |
Collapse
|
4
|
Erich SA, Teske E. One Health: Therapies Targeting Genetic Variants in Human and Canine Histiocytic and Dendritic Cell Sarcomas. Vet Comp Oncol 2024. [PMID: 38867335 DOI: 10.1111/vco.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
The precise cause of HS/DCS is still unknown. The relatively low incidence in humans urges for an animal model with a high incidence to accelerate knowledge about genetics and optimal treatment of HS/DCS. Namely, until now, the therapies targeting genetic variants are still more experimental and sparsely used, while consensus is missing. In addition, the literature about variants and possible mutation-targeted therapies in humans and dogs consists mainly of case reports scattered throughout the literature. Therefore, an overview is provided of all currently known genetic variants in humans and dogs with HS/DCS and its subtypes, their possible mutation-targeted therapies, their efficacy, and a contemplation about the future. Several genetic variants have already been discovered in HS/DCS, of which many are shared between canine and human HS/DCS, but unique variants exist as well. Unfortunately, none of these already found variants seem to be specifically causal for HS/DCS, and the puzzle of its landscape of genetic variation is far from complete. The use of mutation-targeted therapies, including MAPK-/MEK-inhibitors and the future use of PTPN11-, CDK4/6- and PD-1-inhibitors, seems to be promising for these specific variants, but clearly, clinical trials are needed to determine optimal inhibitors and standardised protocols for all variants. It can be concluded that molecular analysis for variants and subsequent mutation-targeted therapy are an essential addition to cancer diagnostics and therapy. A joint effort of humans and dogs in research is urgently needed and will undoubtedly increase knowledge and survival of this devastating disease in dogs and humans.
Collapse
Affiliation(s)
- Suzanne Agnes Erich
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Erik Teske
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Kocikowski M, Dziubek K, Węgrzyn K, Hrabal V, Zavadil-Kokas F, Vojtesek B, Alfaro JA, Hupp T, Parys M. Comparative characterization of two monoclonal antibodies targeting canine PD-1. Front Immunol 2024; 15:1382576. [PMID: 38779661 PMCID: PMC11110041 DOI: 10.3389/fimmu.2024.1382576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 05/25/2024] Open
Abstract
Monoclonal antibodies targeting immune checkpoints have revolutionized oncology. Yet, the effectiveness of these treatments varies significantly among patients, and they are associated with unexpected adverse events, including hyperprogression. The murine research model used in drug development fails to recapitulate both the functional human immune system and the population heterogeneity. Hence, a novel model is urgently needed to study the consequences of immune checkpoint blockade. Dogs appear to be uniquely suited for this role. Approximately 1 in 4 companion dogs dies from cancer, yet no antibodies are commercially available for use in veterinary oncology. Here we characterize two novel antibodies that bind canine PD-1 with sub-nanomolar affinity as measured by SPR. Both antibodies block the clinically crucial PD-1/PD-L1 interaction in a competitive ELISA assay. Additionally, the antibodies were tested with a broad range of assays including Western Blot, ELISA, flow cytometry, immunofluorescence and immunohistochemistry. The antibodies appear to bind two distinct epitopes as predicted by molecular modeling and peptide phage display. Our study provides new tools for canine oncology research and a potential veterinary therapeutic.
Collapse
Affiliation(s)
- Mikolaj Kocikowski
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Katarzyna Węgrzyn
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Vaclav Hrabal
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Javier Antonio Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Institute of Genetic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Maciej Parys
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
6
|
Bae MK, Ko YU, Seung BJ, Sur JH, Choe NH. PD-L1 mRNA and protein expression in canine mammary carcinomas: Correlation with histopathological grade and molecular markers. Vet Pathol 2024; 61:402-409. [PMID: 38281145 DOI: 10.1177/03009858241226621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Programmed death ligand 1 (PD-L1) is an immune checkpoint molecule that plays a crucial role in regulating antitumor immune responses. Canine mammary carcinomas (CMCs) are common tumors of dogs. Despite extensive studies on the heterogeneity of CMCs, there is still a lack of effective precision therapies for the treatment of CMCs. In this study, we aimed to investigate the correlation between PD-L1 mRNA and protein expression in CMCs and explore its association with histopathological grade and molecular markers, including the estrogen receptor, epidermal growth factor receptor 2, and cytokeratin 5/6 (CK5/6). Formalin-fixed paraffin-embedded samples were evaluated for PD-L1 mRNA expression using RNA in situ hybridization and PD-L1 protein expression using immunohistochemistry. We observed no substantial correlation between PD-L1 mRNA and protein expression in CMCs; however, PD-L1 mRNA levels were significantly higher in grade 3 than in grade 1 tumors (P = .001). In addition, we observed a positive correlation between PD-L1 protein expression and CK5/6 expression in CMCs (P = .032). These findings suggest that PD-L1 expression in CMCs is heterogeneous and may be regulated post-transcriptionally. Further studies are needed to explore the prognostic and therapeutic implications of PD-L1 expression in different molecular subtypes of CMCs and their potential as predictive biomarkers for immunotherapy.
Collapse
Affiliation(s)
| | | | - Byung-Joon Seung
- Konkuk University, Seoul, Korea
- University of Illinois Urbana-Champaign, Urbana, IL
| | - Jung-Hyang Sur
- Konkuk University, Seoul, Korea
- Komipharm International Co., Ltd., Siheung-si, Korea
| | | |
Collapse
|
7
|
Muscatello LV, Gobbo F, Avallone G, Innao M, Benazzi C, D'Annunzio G, Romaniello D, Orioles M, Lauriola M, Sarli G. PDL1 immunohistochemistry in canine neoplasms: Validation of commercial antibodies, standardization of evaluation, and scoring systems. Vet Pathol 2024; 61:393-401. [PMID: 37920996 DOI: 10.1177/03009858231209410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Immuno-oncology research has brought to light the paradoxical role of immune cells in the induction and elimination of cancer. Programmed cell death protein 1 (PD1), expressed by tumor-infiltrating lymphocytes, and programmed cell death ligand 1 (PDL1), expressed by tumor cells, are immune checkpoint proteins that regulate the antitumor adaptive immune response. This study aimed to validate commercially available PDL1 antibodies in canine tissue and then, applying standardized methods and scoring systems used in human pathology, evaluate PDL1 immunopositivity in different types of canine tumors. To demonstrate cross-reactivity, a monoclonal antibody (22C3) and polyclonal antibody (cod. A1645) were tested by western blot. Cross-reactivity in canine tissue cell extracts was observed for both antibodies; however, the polyclonal antibody (cod. A1645) demonstrated higher signal specificity. Canine tumor histotypes were selected based on the human counterparts known to express PDL1. Immunohistochemistry was performed on 168 tumors with the polyclonal anti-PDL1 antibody. Only membranous labeling was considered positive. PDL1 labeling was detected both in neoplastic and infiltrating immune cells. The following tumors were immunopositive: melanomas (17 of 17; 100%), renal cell carcinomas (4 of 17; 24%), squamous cell carcinomas (3 of 17; 18%), lymphomas (2 of 14; 14%), urothelial carcinomas (2 of 18; 11%), pulmonary carcinomas (2 of 20; 10%), and mammary carcinomas (1 of 31; 3%). Gastric (0 of 10; 0%) and intestinal carcinomas (0 of 24; 0%) were negative. The findings of this study suggest that PDL1 is expressed in some canine tumors, with high prevalence in melanomas.
Collapse
Affiliation(s)
| | | | | | | | | | - Giulia D'Annunzio
- University of Bologna, Bologna, Italy
- Experimental Zooprophylactic Institute of Lombardia and Emilia-Romagna, Brescia, Italy
| | | | | | | | | |
Collapse
|
8
|
Chon E, Hendricks W, White M, Rodrigues L, Haworth D, Post G. Precision Medicine in Veterinary Science. Vet Clin North Am Small Anim Pract 2024; 54:501-521. [PMID: 38212188 DOI: 10.1016/j.cvsm.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Precision medicine focuses on the clinical management of the individual patient, not on population-based findings. Successes from human precision medicine inform veterinary oncology. Early evidence of success for canines shows how precision medicine can be integrated into practice. Decreasing genomic profiling costs will allow increased utilization and subsequent improvement of knowledge base from which to make better informed decisions. Utility of precision medicine in canine oncology will only increase for improved cancer characterization, enhanced therapy selection, and overall more successful management of canine cancer. As such, practitioners are called to interpret and leverage precision medicine reports for their patients.
Collapse
Affiliation(s)
- Esther Chon
- Vidium Animal Health, 7201 East Henkel Way, Suite 210, Scottsdale, AZ 85255, USA
| | - William Hendricks
- Vidium Animal Health, 7201 East Henkel Way, Suite 210, Scottsdale, AZ 85255, USA
| | - Michelle White
- OneHealthCompany, Inc, 530 Lytton Avenue, 2nd Floor, Palo Alto, CA 94301, USA
| | - Lucas Rodrigues
- OneHealthCompany, Inc, 530 Lytton Avenue, 2nd Floor, Palo Alto, CA 94301, USA
| | - David Haworth
- Vidium Animal Health, 7201 East Henkel Way, Suite 210, Scottsdale, AZ 85255, USA
| | - Gerald Post
- OneHealthCompany, Inc, 530 Lytton Avenue, 2nd Floor, Palo Alto, CA 94301, USA.
| |
Collapse
|
9
|
Ouchida T, Suzuki H, Tanaka T, Kaneko MK, Kato Y. Establishment of Anti-Dog Programmed Cell Death Ligand 1 Monoclonal Antibodies for Immunohistochemistry. Monoclon Antib Immunodiagn Immunother 2024; 43:17-23. [PMID: 38237003 DOI: 10.1089/mab.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Immune checkpoint blockade therapy has shown successful clinical outcomes in multiple human cancers. In dogs, several types of tumors resemble human tumors in many respects. Therefore, several groups have developed the anti-dog programmed cell death ligand 1 (dPD-L1) monoclonal antibodies (mAbs) and showed efficacy in several canine tumors. To examine the abundance of dPD-L1 in canine tumors, anti-dPD-L1 diagnostic mAbs for immunohistochemistry are required. In this study, we immunized the peptide in the dPD-L1 intracellular domain, and established anti-dPD-L1 mAbs, L1Mab-352 (mouse IgG1, kappa), and L1Mab-354 (mouse IgG1, kappa). In enzyme-linked immunosorbent assay, L1Mab-352 and L1Mab-354 showed high-binding affinity to the dPD-L1 peptide, and the dissociation constants (KD) were determined as 6.9 × 10-10 M and 7.2 × 10-10 M, respectively. Furthermore, L1Mab-352 and L1Mab-354 were applicable for the detection of dPD-L1 in immunohistochemical analysis in paraffin-embedded dPD-L1-overexpressed cells. These results indicated that L1Mab-352 and L1Mab-354 are useful for detecting dPD-L1 in immunohistochemical analysis.
Collapse
Affiliation(s)
- Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Igase M, Inanaga S, Nishibori S, Itamoto K, Sunahara H, Nemoto Y, Tani K, Horikirizono H, Nakaichi M, Baba K, Kambayashi S, Okuda M, Sakai Y, Sakurai M, Kato M, Tsukui T, Mizuno T. Proof-of-concept study of the caninized anti-canine programmed death 1 antibody in dogs with advanced non-oral malignant melanoma solid tumors. J Vet Sci 2024; 25:e15. [PMID: 38311328 PMCID: PMC10839171 DOI: 10.4142/jvs.23144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The anti-programmed death 1 (PD-1) antibody has led to durable clinical responses in a wide variety of human tumors. We have previously developed the caninized anti-canine PD-1 antibody (ca-4F12-E6) and evaluated its therapeutic properties in dogs with advance-staged oral malignant melanoma (OMM), however, their therapeutic effects on other types of canine tumors remain unclear. OBJECTIVE The present clinical study was carried out to evaluate the safety profile and clinical efficacy of ca-4F12-E6 in dogs with advanced solid tumors except for OMM. METHODS Thirty-eight dogs with non-OMM solid tumors were enrolled prospectively and treated with ca-4F12-E6 at 3 mg/kg every 2 weeks of each 10-week treatment cycle. Adverse events (AEs) and treatment efficacy were graded based on the criteria established by the Veterinary Cooperative Oncology Group. RESULTS One dog was withdrawn, and thirty-seven dogs were evaluated for the safety and efficacy of ca-4F12-E6. Treatment-related AEs of any grade occurred in 13 out of 37 cases (35.1%). Two dogs with sterile nodular panniculitis and one with myasthenia gravis and hypothyroidism were suspected of immune-related AEs. In 30 out of 37 dogs that had target tumor lesions, the overall response and clinical benefit rates were 6.9% and 27.6%, respectively. The median progression-free survival and overall survival time were 70 days and 215 days, respectively. CONCLUSIONS The present study demonstrated that ca-4F12-E6 was well-tolerated in non-OMM dogs, with a small number of cases showing objective responses. This provides evidence supporting large-scale clinical trials of anti-PD-1 antibody therapy in dogs.
Collapse
Affiliation(s)
- Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Sakuya Inanaga
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Shoma Nishibori
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kazuhito Itamoto
- Laboratory of Veterinary Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Hiroshi Sunahara
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Yuki Nemoto
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kenji Tani
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Hiro Horikirizono
- Laboratory of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Munekazu Nakaichi
- Laboratory of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kenji Baba
- Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Satoshi Kambayashi
- Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Masaru Okuda
- Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Masahiro Kato
- Nippon Zenyaku Kogyo Co., Ltd., Koriyama, Fukushima 963-0196, Japan
| | - Toshihiro Tsukui
- Nippon Zenyaku Kogyo Co., Ltd., Koriyama, Fukushima 963-0196, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan.
| |
Collapse
|
11
|
Stevenson VB, Gudenschwager-Basso EK, Klahn S, LeRoith T, Huckle WR. Inhibitory checkpoint molecule mRNA expression in canine soft tissue sarcoma. Vet Comp Oncol 2023; 21:709-716. [PMID: 37680007 PMCID: PMC10841275 DOI: 10.1111/vco.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
Canine soft tissue sarcomas (STS) are common neoplasms and considered immune deserts. Tumour infiltrating lymphocytes are sparse in STS and, when present, tend to organize around blood vessels or at the periphery of the neoplasm. This pattern is associated with an immunosuppressive tumour microenvironment linked to overexpression of molecules of the PD-axis. PD-1, PD-L1 and PD-L2 expression correlates with malignancy and poor prognosis in other neoplasms in humans and dogs, but little is known about their role in canine STS, their relationship to tumour grade, and how different therapies affect expression. The objective of this study was to evaluate the expression of checkpoint molecules across STS tumour grades and after tumour ablation treatment. Gene expression analysis was performed by reverse-transcriptase real-time quantitative PCR in soft tissue sarcomas that underwent histotripsy and from histologic specimens of STS from the Virginia Tech Animal Laboratory Services archives. The expression of PD-1, PD-L1 and PD-L2 was detected in untreated STS tissue representing grades 1, 2, and 3. Numerically decreased expression of all markers was observed in tissue sampled from the treatment interface relative to untreated areas of the tumour. The relatively lower expression of these checkpoint molecules at the periphery of the treated area may be related to liquefactive necrosis induced by the histotripsy treatment, and would potentially allow TILs to infiltrate the tumour. Relative increases of these checkpoint molecules in tumours of a higher grade and alongside immune cell infiltration are consistent with previous reports that associate their expression with malignancy.
Collapse
Affiliation(s)
- Valentina Beatriz Stevenson
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Erwin Kristobal Gudenschwager-Basso
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Shawna Klahn
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - William R. Huckle
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
12
|
Sirivisoot S, Boonkrai C, Wongtangprasert T, Phakham T, Muanwein P, Pisitkun T, Sawangmake C, Radtanakatikanon A, Rungsipipat A. Development and characterization of mouse anti-canine PD-L1 monoclonal antibodies and their expression in canine tumors by immunohistochemistry in vitro. Vet Q 2023; 43:1-9. [PMID: 37477617 PMCID: PMC10388796 DOI: 10.1080/01652176.2023.2240380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
Immune escape is the hallmark of carcinogenesis. This widely known mechanism is the overexpression of immune checkpoint ligands, such as programmed cell death protein 1 and programmed death-ligand 1 (PD-1/PD-L1), leading to T cell anergy. Therefore, cancer immunotherapy with specific binding to these receptors has been developed to treat human cancers. Due to the lack of cross-reactivity of these antibodies in dogs, a specific canine PD-1/PD-L1 antibody is required. The aim of this study is to develop mouse anti-canine PD-L1 (cPD-L1) monoclonal antibodies and characterize their in vitro properties. Six mice were immunized with recombinant cPD-L1 with a fusion of human Fc tag. The hybridoma clones that successfully generated anti-cPD-L1 antibodies and had neutralizing activity were selected for monoclonal antibody production. Antibody properties were tested by immunosorbent assay, surface plasmon resonance, and immunohistochemistry. Four hybridomas were effectively bound and blocked to recombinant cPD-L1 and cPD-1-His-protein, respectively. Candidate mouse monoclonal antibodies worked efficiently on formalin-fixed paraffin-embedded tissues of canine cancers, including cutaneous T-cell lymphomas, mammary carcinomas, soft tissue sarcomas, squamous cell carcinomas, and malignant melanomas. However, functional assays of these anti-cPD-L1 antibodies need further investigation to prove their abilities as therapeutic drugs in dogs as well as their applications as prognostic markers.
Collapse
Affiliation(s)
- Sirintra Sirivisoot
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chatikorn Boonkrai
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tossapon Wongtangprasert
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- The Excellence Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Tanapati Phakham
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Phijitra Muanwein
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center, Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Araya Radtanakatikanon
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Huang HW, Wu S, Chowdhury EA, Shah DK. Expansion of platform physiologically-based pharmacokinetic model for monoclonal antibodies towards different preclinical species: cats, sheep, and dogs. J Pharmacokinet Pharmacodyn 2023:10.1007/s10928-023-09893-5. [PMID: 37947924 DOI: 10.1007/s10928-023-09893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Monoclonal antibodies (mAbs) are becoming an important therapeutic option in veterinary medicine, and understanding the pharmacokinetic (PK) of mAbs in higher-order animal species is also important for human drug development. To better understand the PK of mAbs in these animals, here we have expanded a platform physiological-based pharmacokinetic (PBPK) model to characterize the disposition of mAbs in three different preclinical species: cats, sheep, and dogs. We obtained PK data for mAbs and physiological parameters for the three different species from the literature. We were able to describe the PK of mAbs following intravenous (IV) or subcutaneous administration in cats, IV administration in sheep, and IV administration dogs reasonably well by fixing the physiological parameters and just estimating the parameters related to the binding of mAbs to the neonatal Fc receptor. The platform PBPK model presented here provides a quantitative tool to predict the plasma PK of mAbs in dogs, cats, and sheep. The model can also predict mAb PK in different tissues where the site of action might be located. As such, the mAb PBPK model presented here can facilitate the discovery, development, and preclinical-to-clinical translation of mAbs for veterinary and human medicine. The model can also be modified in the future to account for more detailed compartments for certain organs, different pathophysiology in the animals, and target-mediated drug disposition.
Collapse
Affiliation(s)
- Hsien-Wei Huang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - Shengjia Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - Ekram A Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
14
|
Hambly JN, Ruby CE, Mourich DV, Bracha S, Dolan BP. Potential Promises and Perils of Human Biological Treatments for Immunotherapy in Veterinary Oncology. Vet Sci 2023; 10:336. [PMID: 37235419 PMCID: PMC10224056 DOI: 10.3390/vetsci10050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of immunotherapy for the treatment of human cancers has heralded a new era in oncology, one that is making its way into the veterinary clinic. As the immune system of many animal species commonly seen by veterinarians is similar to humans, there is great hope for the translation of human therapies into veterinary oncology. The simplest approach for veterinarians would be to adopt existing reagents that have been developed for human medicine, due to the potential of reduced cost and the time it takes to develop a new drug. However, this strategy may not always prove to be effective and safe with regard to certain drug platforms. Here, we review current therapeutic strategies that could exploit human reagents in veterinary medicine and also those therapies which may prove detrimental when human-specific biological molecules are used in veterinary oncology. In keeping with a One Health framework, we also discuss the potential use of single-domain antibodies (sdAbs) derived from camelid species (also known as Nanobodies™) for therapies targeting multiple veterinary animal patients without the need for species-specific reformulation. Such reagents would not only benefit the health of our veterinary species but could also guide human medicine by studying the effects of outbred animals that develop spontaneous tumors, a more relevant model of human diseases compared to traditional laboratory rodent models.
Collapse
Affiliation(s)
- Jeilene N. Hambly
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Carl E. Ruby
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Biotesserae Inc., Corvallis, OR 97331, USA
| | - Dan V. Mourich
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Biotesserae Inc., Corvallis, OR 97331, USA
| | - Shay Bracha
- Biotesserae Inc., Corvallis, OR 97331, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Brian P. Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
15
|
Oh W, Kim AMJ, Dhawan D, Kirkham PM, Ostafe R, Franco J, Aryal UK, Carnahan RH, Patsekin V, Robinson JP, Knapp DW, Lim SO. Development of an Anti-canine PD-L1 Antibody and Caninized PD-L1 Mouse Model as Translational Research Tools for the Study of Immunotherapy in Humans. CANCER RESEARCH COMMUNICATIONS 2023; 3:860-873. [PMID: 37377896 PMCID: PMC10184575 DOI: 10.1158/2767-9764.crc-22-0468] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 06/29/2023]
Abstract
Immune checkpoint blockade therapy, one of the most promising cancer immunotherapies, has shown remarkable clinical impact in multiple cancer types. Despite the recent success of immune checkpoint blockade therapy, however, the response rates in patients with cancer are limited (∼20%-40%). To improve the success of immune checkpoint blockade therapy, relevant preclinical animal models are essential for the development and testing of multiple combination approaches and strategies. Companion dogs naturally develop several types of cancer that in many respects resemble clinical cancer in human patients. Therefore, the canine studies of immuno-oncology drugs can generate knowledge that informs and prioritizes new immuno-oncology therapy in humans. The challenge has been, however, that immunotherapeutic antibodies targeting canine immune checkpoint molecules such as canine PD-L1 (cPD-L1) have not been commercially available. Here, we developed a new cPD-L1 antibody as an immuno-oncology drug and characterized its functional and biological properties in multiple assays. We also evaluated the therapeutic efficacy of cPD-L1 antibodies in our unique caninized PD-L1 mice. Together, these in vitro and in vivo data, which include an initial safety profile in laboratory dogs, support development of this cPD-L1 antibody as an immune checkpoint inhibitor for studies in dogs with naturally occurring cancer for translational research. Our new therapeutic antibody and caninized PD-L1 mouse model will be essential translational research tools in raising the success rate of immunotherapy in both dogs and humans. Significance Our cPD-L1 antibody and unique caninized mouse model will be critical research tools to improve the efficacy of immune checkpoint blockade therapy in both dogs and humans. Furthermore, these tools will open new perspectives for immunotherapy applications in cancer as well as other autoimmune diseases that could benefit a diverse and broader patient population.
Collapse
Affiliation(s)
- Wonkyung Oh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Alyssa Min Jung Kim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Deepika Dhawan
- Department of Veterinary Clinical Science, Purdue University, West Lafayette, Indiana
| | - Perry M. Kirkham
- Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana
| | - Raluca Ostafe
- Molecular Evolution, Protein Engineering and Production, Purdue Institute for Inflammation Immunology and Infection Diseases, Purdue University, West Lafayette, Indiana
| | - Jackeline Franco
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
| | - Uma K. Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Valery Patsekin
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
| | - J. Paul Robinson
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Deborah W. Knapp
- Department of Veterinary Clinical Science, Purdue University, West Lafayette, Indiana
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Seung-Oe Lim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| |
Collapse
|
16
|
Moore PF. Histiocytic Diseases. Vet Clin North Am Small Anim Pract 2023; 53:121-140. [DOI: 10.1016/j.cvsm.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Minoli L, Licenziato L, Kocikowski M, Cino M, Dziubek K, Iussich S, Fanelli A, Morello E, Martano M, Hupp T, Vojtesek B, Parys M, Aresu L. Development of Monoclonal Antibodies Targeting Canine PD-L1 and PD-1 and Their Clinical Relevance in Canine Apocrine Gland Anal Sac Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14246188. [PMID: 36551672 PMCID: PMC9777308 DOI: 10.3390/cancers14246188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Canine apocrine gland anal sac adenocarcinoma (AGASACA) is an aggressive canine tumor originating from the anal sac glands. Surgical resection, with or without adjuvant chemotherapy, represents the standard of care for this tumor, but the outcome is generally poor, particularly for tumors diagnosed at an advanced stage. For this reason, novel treatment options are warranted, and a few recent reports have suggested the activation of the immune checkpoint axis in canine AGASACA. In our study, we developed canine-specific monoclonal antibodies targeting PD-1 and PD-L1. A total of 41 AGASACAs with complete clinical and follow-up information were then analyzed by immunohistochemistry for the expression of the two checkpoint molecules (PD-L1 and PD-1) and the presence of tumor-infiltrating lymphocytes (CD3 and CD20), which were evaluated within the tumor bulk (intratumor) and in the surrounding stroma (peritumor). Seventeen AGASACAs (42%) expressed PD-L1 in a range between 5% and 95%. The intratumor lymphocytes were predominantly CD3+ T-cells and were positively correlated with the number of PD-1+ intratumor lymphocytes (ρ = 0.36; p = 0.02). The peritumor lymphocytes were a mixture of CD3+ and CD20+ cells with variable PD-1 expression (range 0-50%). PD-L1 expression negatively affected survival only in the subgroup of dogs treated with surgery alone (n = 14; 576 vs. 235 days). The presence of a heterogeneous lymphocytic infiltrate and the expression of PD-1 and PD-L1 molecules support the relevance of the immune microenvironment in canine AGASACAs and the potential value of immune checkpoints as promising therapeutic targets.
Collapse
Affiliation(s)
- Lucia Minoli
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Luca Licenziato
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Mikolaj Kocikowski
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80822 Gdansk, Poland
| | - Marzia Cino
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, 43100 Parma, Italy
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80822 Gdansk, Poland
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Antonella Fanelli
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Marina Martano
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, 43100 Parma, Italy
| | - Ted Hupp
- Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Maciej Parys
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
- Correspondence: (M.P.); (L.A.)
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
- Correspondence: (M.P.); (L.A.)
| |
Collapse
|
18
|
The PD-1/PD-L1 Pathway: A Perspective on Comparative Immuno-Oncology. Animals (Basel) 2022; 12:ani12192661. [PMID: 36230402 PMCID: PMC9558501 DOI: 10.3390/ani12192661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary The programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) pathway inhibits the function of activated immune cells. This mediates immune tolerance and prevents immune-mediated tissue destruction. The malfunction of this pathway is involved in the pathogenesis of chronic infections, autoimmunity, and cancer. The PD-1/PD-L1 pathway is an excellent example of the research benefits of comparative pathology and attests to the importance of the “one health one medicine” concept. Pioneering research was mainly focused on the examination of cells and tissues of human and mouse origin. It mainly revealed that PD-L1-positive tumor cells can paralyze PD-1-bearing immune cells, which prevents immunological destruction of cancer cells. This led to a major breakthrough in cancer treatment, i.e., the use of antibodies that block the interaction of these molecules and restore anti-cancer immune defense (immune checkpoint therapy). Further studies provided more detailed information on the tissue-specific context and fine-tuning of this pathway. The most recent research has extended the investigations to the examination of several animal species with the aim of improving disease diagnostics and treatment for certain animal diseases, in particular cancer, which is a major cause of disease and death in companion animals. Abstract The programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) pathway mainly attracted attention in immuno-oncology, leading to the development of immune checkpoint therapy. It has, however, much broader importance for tissue physiology and pathology. It mediates basic processes of immune tolerance and tissue homeostasis. In addition, it is involved in the pathogenesis of chronic infectious diseases, autoimmunity, and cancer. It is also an important paradigm for comparative pathology as well as the “one health one medicine” concept. The aim of this review is to provide an overview of novel research into the diverse facets of the PD-1/PD-L1 pathway and to give insights into its fine-tuning homeostatic role in a tissue-specific context. This review details early translational research from the discovery phase based on mice as animal models for understanding pathophysiological aspects in human tissues to more recent research extending the investigations to several animal species. The latter has the twofold goal of comparing this pathway between humans and different animal species and translating diagnostic tools and treatment options established for the use in human beings to animals and vice versa.
Collapse
|
19
|
Kleber KT, Iranpur KR, Perry LM, Cruz SM, Razmara AM, Culp WTN, Kent MS, Eisen JA, Rebhun RB, Canter RJ. Using the canine microbiome to bridge translation of cancer immunotherapy from pre-clinical murine models to human clinical trials. Front Immunol 2022; 13:983344. [PMID: 36032113 PMCID: PMC9412231 DOI: 10.3389/fimmu.2022.983344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022] Open
Abstract
The microbiome has clearly been established as a cutting-edge field in tumor immunology and immunotherapy. Growing evidence supports the role of the microbiome in immune surveillance, self-tolerance, and response to immune checkpoint inhibitors such as anti PD-L1 and CTLA-4 blockade (1-6). Moreover, recent studies including those using fecal microbial transplantation (FMT) have demonstrated that response to checkpoint immunotherapies may be conferred or eliminated through gut microbiome modulation (7, 8). Consequently, studies evaluating microbiota-host immune and metabolic interactions remain an area of high impact research. While observations in murine models have highlighted the importance of the microbiome in response to therapy, we lack sufficient understanding of the exact mechanisms underlying these interactions. Furthermore, mouse and human gut microbiome composition may be too dissimilar for discovery of all relevant gut microbial biomarkers. Multiple cancers in dogs, including lymphoma, high grade gliomas, melanomas and osteosarcoma (OSA) closely resemble their human analogues, particularly in regard to metastasis, disease recurrence and response to treatment. Importantly, dogs with these spontaneous cancers also have intact immune systems, suggesting that microbiome analyses in these subjects may provide high yield information, especially in the setting of novel immunotherapy regimens which are currently expanding rapidly in canine comparative oncology (9, 10). Additionally, as onco-microbiotic therapies are developed to modify gut microbiomes for maximal responsiveness, large animal models with intact immune systems will be useful for trialing interventions and monitoring adverse events. Together, pre-clinical mechanistic studies and large animal trials can help fully unlock the potential of the microbiome as a diagnostic and therapeutic target in cancer.
Collapse
Affiliation(s)
- Kara T. Kleber
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Khurshid R. Iranpur
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Lauren M. Perry
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Sylvia M. Cruz
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Aryana M. Razmara
- School of Veterinary Medicine, University of California Davis, Sacramento, CA, United States
| | - William T. N. Culp
- Center for Companion Animal Health Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Michael S. Kent
- Center for Companion Animal Health Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Jonathan A. Eisen
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States
| | - Robert B. Rebhun
- Center for Companion Animal Health Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Robert J. Canter
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
20
|
Rebhun RB, York D, Cruz SM, Judge SJ, Razmara AM, Farley LE, Brady RV, Johnson EG, Burton JH, Willcox J, Wittenburg LA, Woolard K, Dunai C, Stewart SL, Sparger EE, Withers SS, Gingrich AA, Skorupski KA, Al-Nadaf S, LeJeune AT, Culp WT, Murphy WJ, Kent MS, Canter RJ. Inhaled recombinant human IL-15 in dogs with naturally occurring pulmonary metastases from osteosarcoma or melanoma: a phase 1 study of clinical activity and correlates of response. J Immunother Cancer 2022; 10:e004493. [PMID: 35680383 PMCID: PMC9174838 DOI: 10.1136/jitc-2022-004493] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Although recombinant human interleukin-15 (rhIL-15) has generated much excitement as an immunotherapeutic agent for cancer, activity in human clinical trials has been modest to date, in part due to the risks of toxicity with significant dose escalation. Since pulmonary metastases are a major site of distant failure in human and dog cancers, we sought to investigate inhaled rhIL-15 in dogs with naturally occurring lung metastases from osteosarcoma (OSA) or melanoma. We hypothesized a favorable benefit/risk profile given the concentrated delivery to the lungs with decreased systemic exposure. EXPERIMENTAL DESIGN We performed a phase I trial of inhaled rhIL-15 in dogs with gross pulmonary metastases using a traditional 3+3 cohort design. A starting dose of 10 µg twice daily × 14 days was used based on human, non-human primate, and murine studies. Safety, dose-limiting toxicities (DLT), and maximum tolerated dose (MTD) were the primary objectives, while response rates, progression-free and overall survival (OS), and pharmacokinetic and immune correlative analyses were secondary. RESULTS From October 2018 to December 2020, we enrolled 21 dogs with 18 dogs reaching the 28-day response assessment to be evaluable. At dose level 5 (70 μg), we observed two DLTs, thereby establishing 50 µg twice daily × 14 days as the MTD and recommended phase 2 dose. Among 18 evaluable dogs, we observed one complete response >1 year, one partial response with resolution of multiple target lesions, and five stable disease for an overall clinical benefit rate of 39%. Plasma rhIL-15 quantitation revealed detectable and sustained rhIL-15 concentrations between 1-hour and 6 hour postnebulization. Decreased pretreatment lymphocyte counts were significantly associated with clinical benefit. Cytotoxicity assays of banked peripheral blood mononuclear cells revealed significant increases in peak cytotoxicity against canine melanoma and OSA targets that correlated with OS. CONCLUSIONS In this first-in-dog clinical trial of inhaled rhIL-15 in dogs with advanced metastatic disease, we observed promising clinical activity when administered as a monotherapy for only 14 days. These data have significant clinical and biological implications for both dogs and humans with refractory lung metastases and support exploration of combinatorial therapies using inhaled rhIL-15.
Collapse
Affiliation(s)
- Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Daniel York
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Sylvia Margret Cruz
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Sean J Judge
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Aryana M Razmara
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Lauren E Farley
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Rachel V Brady
- College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Eric G Johnson
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Jenna H Burton
- Department of Clinical Sciences, Colorado State University College of Veterinary Medicine, Fort Collins, Colorado, USA
| | - Jennifer Willcox
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Luke A Wittenburg
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Kevin Woolard
- Department of Pathology, University of California, Davis, California, USA
| | - Cordelia Dunai
- Department of Dermatology, University of California, Davis, California, USA
| | - Susan L Stewart
- Department of Public Health Sciences, University of California, Davis, California, USA
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, University of California, Davis, California, USA
| | - Sita S Withers
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Alicia A Gingrich
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Katherine A Skorupski
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Sami Al-Nadaf
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Amandine T LeJeune
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - William Tn Culp
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - William J Murphy
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Medical Center, Sacramento, California, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Robert J Canter
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, California, USA
| |
Collapse
|
21
|
Sparger EE, Chang H, Chin N, Rebhun RB, Withers SS, Kieu H, Canter RJ, Monjazeb AM, Kent MS. T Cell Immune Profiles of Blood and Tumor in Dogs Diagnosed With Malignant Melanoma. Front Vet Sci 2021; 8:772932. [PMID: 34926643 PMCID: PMC8674490 DOI: 10.3389/fvets.2021.772932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Investigation of canine T cell immunophenotypes in canine melanomas as prognostic biomarkers for disease progression or predictive biomarkers for targeted immunotherapeutics remains in preliminary stages. We aimed to examine T cell phenotypes and function in peripheral blood mononuclear cells (PBMC) and baseline tumor samples by flow cytometry, and to compare patient (n = 11–20) T cell phenotypes with healthy controls dogs (n = 10–20). CD3, CD4, CD8, CD25, FoxP3, Ki67, granzyme B, and interferon-γ (IFN-γ) were used to classify T cell subsets in resting and mitogen stimulated PBMCs. In a separate patient cohort (n = 11), T cells were classified using CD3, CD4, CD8, FoxP3, and granzyme B in paired PBMC and single cell suspensions of tumor samples. Analysis of flow cytometric data of individual T cell phenotypes in PBMC revealed specific T cell phenotypes including FoxP3+ and CD25+FoxP3- populations that distinguished patients from healthy controls. Frequencies of IFN-γ+ cells after ConA stimulation identified two different patient phenotypic responses, including a normal/exaggerated IFN-γ response and a lower response suggesting dysfunction. Principle component analysis of selected T cell immunophenotypes also distinguished patients and controls for T cell phenotype and revealed a clustering of patients based on metastasis detected at diagnosis. Findings supported the overall hypothesis that canine melanoma patients display a T cell immunophenotype profile that is unique from healthy pet dogs and will guide future studies designed with larger patient cohorts necessary to further characterize prognostic T cell immunophenotypes.
Collapse
Affiliation(s)
- Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Hong Chang
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Ning Chin
- California National Primate Research Center, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Robert B Rebhun
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sita S Withers
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Hung Kieu
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Robert J Canter
- Surgical Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Arta M Monjazeb
- Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Michael S Kent
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
22
|
Von Rueden SK, Fan TM. Cancer-Immunity Cycle and Therapeutic Interventions- Opportunities for Including Pet Dogs With Cancer. Front Oncol 2021; 11:773420. [PMID: 34869014 PMCID: PMC8639699 DOI: 10.3389/fonc.2021.773420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
The tumor-immune interplay represents a dynamic series of events executed by cellular and soluble participants that either promote or inhibit successful tumor formation and growth. Throughout a tumor’s development and progression, the host organism’s immune system reacts by generating anti-cancer defenses through various incremental and combinatorial mechanisms, and this reactive orchestration is termed the cancer-immunity cycle. Success or failure of the cancer-immunity cycle dictates the fate of both host and tumor as winner or loser. Insights into how the tumor and host immune system continuously adapt to each other throughout the lifecycle of the tumor is necessary to rationally develop new effective immunotherapies. Additionally, the evolving nature of the cancer-immunity cycle necessitates therapeutic agility, requiring real-time serial assessment of immunobiologic markers that permits tailoring of therapies to the everchanging tumor immune microenvironment. In order to accelerate advances in the field of immuno-oncology, this review summarizes the steps comprising the cancer-immunity cycle, and underscores key breakpoints in the cycle that either favor cancer regression or progression, as well as shaping of the tumor microenvironment and associated immune phenotypes. Furthermore, specific large animal models of spontaneous cancers that are deemed immunogenic will be reviewed and proposed as unique resources for validating investigational immunotherapeutic protocols that are informed by the cancer-immunity cycle. Collectively, this review will provide a progressive look into the dynamic interplay between tumor and host immune responses and raise awareness for how large animal models can be included for developing combinatorial and sequenced immunotherapies to maximizing favorable treatment outcomes.
Collapse
Affiliation(s)
- Samantha K Von Rueden
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
23
|
Pinard CJ, Stegelmeier AA, Bridle BW, Mutsaers AJ, Wood RD, Wood GA, Woods JP, Hocker SE. Evaluation of lymphocyte-specific programmed cell death protein 1 receptor expression and cytokines in blood and urine in canine urothelial carcinoma patients. Vet Comp Oncol 2021; 20:427-436. [PMID: 34797014 DOI: 10.1111/vco.12788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022]
Abstract
Urothelial carcinoma (UC) is the most common urinary tumour in dogs. Despite a range of treatment options, prognosis remains poor in dogs. In people, breakthroughs with checkpoint inhibitors have established new standards of care for muscle-invasive bladder cancer patients and elevated levels of programmed cell death protein 1 (PD-1) suggest immune checkpoint blockade may be a novel target for therapy. The goal of this study was to determine if canine UC patients express elevated levels of lymphocyte-specific PD-1 and/or urinary cytokine biomarkers compared to healthy dogs. Paired blood and urine were evaluated in 10 canine UC patients, five cystitis patients and 10 control dogs for lymphocyte-specific PD-1 expression via flow cytometry and relative cytokine expression. In UC patients, PD-1 expression was significantly elevated on CD8+ lymphocytes in urine samples. UC patients had a higher CD4:CD8 ratio in their urine compared to healthy dogs, however, there was no significant variation in the CD8:Treg ratio between any group. Cystitis patients had significantly elevated levels of CD4+ T cells, CD8+ T cells and Tregs in their blood samples compared to UC patients and healthy dogs. Cytokine analysis demonstrated significant elevations in urinary cytokines (granulocyte-macrophage colony-stimulating factor, interferon-gamma [IFN-γ], interleukin (IL)-2, IL-6 IL-7, IL-8 and IL-15, IP-10, KC-like, IL-18, monocyte chemoattractant protein-1 and tumour necrosis factor-alpha). Several of these cytokines have been previously correlated with both lymphocyte-specific PD-1 expression (IFN-γ, IL-2, IL-7 and IL-15) in muscle-invasive urothelial carcinoma in humans. Our results provide evidence of urinary lymphocyte PD-1 expression and future studies could elucidate whether veterinary UC patients will respond favourably to anti-PD-1 immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Christopher J Pinard
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anthony J Mutsaers
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - R Darren Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - J Paul Woods
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Samuel E Hocker
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
24
|
Tsamouri MM, Steele TM, Mudryj M, Kent MS, Ghosh PM. Comparative Cancer Cell Signaling in Muscle-Invasive Urothelial Carcinoma of the Bladder in Dogs and Humans. Biomedicines 2021; 9:1472. [PMID: 34680588 PMCID: PMC8533305 DOI: 10.3390/biomedicines9101472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Muscle-invasive urothelial carcinoma (MIUC) is the most common type of bladder malignancy in humans, but also in dogs that represent a naturally occurring model for this disease. Dogs are immunocompetent animals that share risk factors, pathophysiological features, clinical signs and response to chemotherapeutics with human cancer patients. This review summarizes the fundamental pathways for canine MIUC initiation, progression, and metastasis, emerging therapeutic targets and mechanisms of drug resistance, and proposes new opportunities for potential prognostic and diagnostic biomarkers and therapeutics. Identifying similarities and differences between cancer signaling in dogs and humans is of utmost importance for the efficient translation of in vitro research to successful clinical trials for both species.
Collapse
Affiliation(s)
- Maria Malvina Tsamouri
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Graduate Group in Integrative Pathobiology, University of California Davis, Davis, CA 95616, USA
| | - Thomas M. Steele
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Michael S. Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Paramita M. Ghosh
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| |
Collapse
|
25
|
Klingemann H. Immunotherapy for Dogs: Still Running Behind Humans. Front Immunol 2021; 12:665784. [PMID: 34421888 PMCID: PMC8374065 DOI: 10.3389/fimmu.2021.665784] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Despite all good intentions, dogs are still running behind humans in effective cancer immunotherapies. The more effective treatments in humans, like infusions of CAR-T and NK-cells are not broadly pursued for canines due to significant costs, the rather complicated logistics and the lack of targetable surface antigens. Monoclonal antibodies are challenging to develop considering the limited knowledge about canine target antigens and about their mode of action. Although immunogenic vaccines could be less costly, this approach is hampered by the fact that cancer by itself is immuno-suppressive and any preceding chemotherapy may suppress any clinically meaningful immune response. This review - rather than providing a comprehensive listing of all available immunotherapies for dogs, aims at pointing out the issues that are holding back this field but which hopefully can be addressed so that dogs can "catch up" with what is available to humans.
Collapse
|
26
|
Nemec PS, Holmes JC, Hess PR. Dog leukocyte antigen-88*034:01 presents nonamer peptides from canine distemper virus hemagglutinin, large polymerase, and matrix proteins. HLA 2021; 97:428-434. [PMID: 33527745 DOI: 10.1111/tan.14197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/30/2022]
Abstract
Canine spontaneous cancers may offer greater fidelity than rodent models in advancing clinical immunotherapies. Boxers in particular are distinguished as study subjects by their popularity, and high incidence of human-relevant cancers. Further, the MHC class I allele DLA-88*034:01, with a known motif, dominates the breed, facilitating discovery of shared CTL responses against mutation-origin neoepitopes by standard prediction methods. We experimentally confirmed the allomorph's binding motif by developing an MHC surface stabilization assay. The assay validated four DLA-88*034:01-presented peptides from canine distemper virus, ubiquitously administered in routine vaccines, for positive controls in future CTL studies. In turn, these viral peptides substantiated motif-based prediction for DLA-88*034:01. The study adds new tools for studying neoepitope-specific CTL in Boxers to foster canine comparative oncology.
Collapse
Affiliation(s)
- Paige S Nemec
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA.,Precision Biosciences, Durham, North Carolina, USA
| | - Jennifer C Holmes
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Paul R Hess
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| |
Collapse
|
27
|
Pantelyushin S, Ranninger E, Guerrera D, Hutter G, Maake C, Markkanen E, Bettschart-Wolfensberger R, Rohrer Bley C, Läubli H, vom Berg J. Cross-Reactivity and Functionality of Approved Human Immune Checkpoint Blockers in Dogs. Cancers (Basel) 2021; 13:785. [PMID: 33668625 PMCID: PMC7918463 DOI: 10.3390/cancers13040785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Rodent cancer models have limitations in predicting efficacy, tolerability and accompanying biomarkers of ICIs in humans. Companion dogs suffering from neoplastic diseases have gained attention as a highly relevant translational disease model. Despite successful reports of PD-1/PD-L1 blockade in dogs, no compounds are available for veterinary medicine. METHODS Here, we assessed suitability of seven FDA-approved human ICIs to target CTLA-4 or PD-1/PD-L1 in dogs. Cross-reactivity and blocking potential was assessed using ELISA and flow cytometry. Functional responses were assessed on peripheral blood mononuclear cells (PBMCs) derived from healthy donors (n = 12) and cancer patient dogs (n = 27) as cytokine production after stimulation. Immune composition and target expression of healthy donors and cancer patients was assessed via flow cytometry. RESULTS Four candidates showed cross-reactivity and two blocked the interaction of canine PD-1 and PD-L1. Of those, only atezolizumab significantly increased cytokine production of healthy and patient derived PBMCs in vitro. Especially lymphoma patient PBMCs responded with increased cytokine production. In other types of cancer, response to atezolizumab appeared to correlate with a lower frequency of CD8 T cells. CONCLUSIONS Cross-functionality of atezolizumab encourages reverse translational efforts using (combination) immunotherapies in companion dog tumor patients to benefit both veterinary and human medicine.
Collapse
Affiliation(s)
- Stanislav Pantelyushin
- Institute of Laboratory Animal Science, University of Zurich, CH-8952 Schlieren, Switzerland; (S.P.); (D.G.)
- Institute of Anatomy, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Elisabeth Ranninger
- Department of Clinical and Diagnostic Services, Section of Anesthesiology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (E.R.); (R.B.-W.)
| | - Diego Guerrera
- Institute of Laboratory Animal Science, University of Zurich, CH-8952 Schlieren, Switzerland; (S.P.); (D.G.)
| | - Gregor Hutter
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland; (G.H.); (H.L.)
- Department of Neurosurgery, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Caroline Maake
- Institute of Anatomy, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Regula Bettschart-Wolfensberger
- Department of Clinical and Diagnostic Services, Section of Anesthesiology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (E.R.); (R.B.-W.)
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Heinz Läubli
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland; (G.H.); (H.L.)
- Division of Medical Oncology, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Johannes vom Berg
- Institute of Laboratory Animal Science, University of Zurich, CH-8952 Schlieren, Switzerland; (S.P.); (D.G.)
| |
Collapse
|