1
|
Shiri I, Salimi Y, Sirjani N, Razeghi B, Bagherieh S, Pakbin M, Mansouri Z, Hajianfar G, Avval AH, Askari D, Ghasemian M, Sandoughdaran S, Sohrabi A, Sadati E, Livani S, Iranpour P, Kolahi S, Khosravi B, Bijari S, Sayfollahi S, Atashzar MR, Hasanian M, Shahhamzeh A, Teimouri A, Goharpey N, Shirzad-Aski H, Karimi J, Radmard AR, Rezaei-Kalantari K, Oghli MG, Oveisi M, Vafaei Sadr A, Voloshynovskiy S, Zaidi H. Differential privacy preserved federated learning for prognostic modeling in COVID-19 patients using large multi-institutional chest CT dataset. Med Phys 2024; 51:4736-4747. [PMID: 38335175 DOI: 10.1002/mp.16964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Notwithstanding the encouraging results of previous studies reporting on the efficiency of deep learning (DL) in COVID-19 prognostication, clinical adoption of the developed methodology still needs to be improved. To overcome this limitation, we set out to predict the prognosis of a large multi-institutional cohort of patients with COVID-19 using a DL-based model. PURPOSE This study aimed to evaluate the performance of deep privacy-preserving federated learning (DPFL) in predicting COVID-19 outcomes using chest CT images. METHODS After applying inclusion and exclusion criteria, 3055 patients from 19 centers, including 1599 alive and 1456 deceased, were enrolled in this study. Data from all centers were split (randomly with stratification respective to each center and class) into a training/validation set (70%/10%) and a hold-out test set (20%). For the DL model, feature extraction was performed on 2D slices, and averaging was performed at the final layer to construct a 3D model for each scan. The DensNet model was used for feature extraction. The model was developed using centralized and FL approaches. For FL, we employed DPFL approaches. Membership inference attack was also evaluated in the FL strategy. For model evaluation, different metrics were reported in the hold-out test sets. In addition, models trained in two scenarios, centralized and FL, were compared using the DeLong test for statistical differences. RESULTS The centralized model achieved an accuracy of 0.76, while the DPFL model had an accuracy of 0.75. Both the centralized and DPFL models achieved a specificity of 0.77. The centralized model achieved a sensitivity of 0.74, while the DPFL model had a sensitivity of 0.73. A mean AUC of 0.82 and 0.81 with 95% confidence intervals of (95% CI: 0.79-0.85) and (95% CI: 0.77-0.84) were achieved by the centralized model and the DPFL model, respectively. The DeLong test did not prove statistically significant differences between the two models (p-value = 0.98). The AUC values for the inference attacks fluctuate between 0.49 and 0.51, with an average of 0.50 ± 0.003 and 95% CI for the mean AUC of 0.500 to 0.501. CONCLUSION The performance of the proposed model was comparable to centralized models while operating on large and heterogeneous multi-institutional datasets. In addition, the model was resistant to inference attacks, ensuring the privacy of shared data during the training process.
Collapse
Affiliation(s)
- Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Yazdan Salimi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Nasim Sirjani
- Research and Development Department, Med Fanavarn Plus Co, Karaj, Iran
| | - Behrooz Razeghi
- Department of Computer Science, University of Geneva, Geneva, Switzerland
| | - Sara Bagherieh
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Pakbin
- Imaging Department, Qom University of Medical Sciences, Qom, Iran
| | - Zahra Mansouri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Ghasem Hajianfar
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | | | - Dariush Askari
- Department of Radiology Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Ghasemian
- Department of Radiology, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Saleh Sandoughdaran
- Department of Clinical Oncology, Royal Surrey County Hospital, Guildford, UK
| | - Ahmad Sohrabi
- Radin Makian Azma Mehr Ltd., Radinmehr Veterinary Laboratory, Iran University of Medical Sciences, Gorgan, Iran
| | - Elham Sadati
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Somayeh Livani
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pooya Iranpour
- Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahriar Kolahi
- Department of Radiology, School of Medicine, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bardia Khosravi
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Bijari
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sahar Sayfollahi
- Department of Neurosurgery, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Hasanian
- Department of Radiology, Arak University of Medical Sciences, Arak, Iran
| | - Alireza Shahhamzeh
- Clinical research development center, Qom University of Medical Sciences, Qom, Iran
| | - Arash Teimouri
- Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Goharpey
- Department of radiation oncology, Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Jalal Karimi
- Department of Infectious Disease, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Amir Reza Radmard
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiara Rezaei-Kalantari
- Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Science, Tehran, Iran
| | | | - Mehrdad Oveisi
- Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alireza Vafaei Sadr
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| | | | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
- University Research and Innovation Center, Óbuda University, Budapest, Hungary
| |
Collapse
|
2
|
Tariq MU, Ismail SB. AI-powered COVID-19 forecasting: a comprehensive comparison of advanced deep learning methods. Osong Public Health Res Perspect 2024; 15:115-136. [PMID: 38621765 PMCID: PMC11082441 DOI: 10.24171/j.phrp.2023.0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/07/2024] [Accepted: 01/26/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic continues to pose significant challenges to the public health sector, including that of the United Arab Emirates (UAE). The objective of this study was to assess the efficiency and accuracy of various deep-learning models in forecasting COVID-19 cases within the UAE, thereby aiding the nation's public health authorities in informed decision-making. METHODS This study utilized a comprehensive dataset encompassing confirmed COVID-19 cases, demographic statistics, and socioeconomic indicators. Several advanced deep learning models, including long short-term memory (LSTM), bidirectional LSTM, convolutional neural network (CNN), CNN-LSTM, multilayer perceptron, and recurrent neural network (RNN) models, were trained and evaluated. Bayesian optimization was also implemented to fine-tune these models. RESULTS The evaluation framework revealed that each model exhibited different levels of predictive accuracy and precision. Specifically, the RNN model outperformed the other architectures even without optimization. Comprehensive predictive and perspective analytics were conducted to scrutinize the COVID-19 dataset. CONCLUSION This study transcends academic boundaries by offering critical insights that enable public health authorities in the UAE to deploy targeted data-driven interventions. The RNN model, which was identified as the most reliable and accurate for this specific context, can significantly influence public health decisions. Moreover, the broader implications of this research validate the capability of deep learning techniques in handling complex datasets, thus offering the transformative potential for predictive accuracy in the public health and healthcare sectors.
Collapse
Affiliation(s)
- Muhammad Usman Tariq
- Marketing, Operations, and Information System, Abu Dhabi University, Abu Dhabi, United Arab Emirates
- Faculty of Computer Science and Information Technology, Univesiti Tun Hussien Onn Malaysia, Parit Raja, Malaysia
| | - Shuhaida Binti Ismail
- Faculty of Computer Science and Information Technology, Univesiti Tun Hussien Onn Malaysia, Parit Raja, Malaysia
| |
Collapse
|
3
|
Kareem A, Liu H, Velisavljevic V. A Privacy-Preserving Approach to Effectively Utilize Distributed Data for Malaria Image Detection. Bioengineering (Basel) 2024; 11:340. [PMID: 38671762 PMCID: PMC11048296 DOI: 10.3390/bioengineering11040340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Malaria is one of the life-threatening diseases caused by the parasite known as Plasmodium falciparum, affecting the human red blood cells. Therefore, it is an important to have an effective computer-aided system in place for early detection and treatment. The visual heterogeneity of the malaria dataset is highly complex and dynamic, therefore higher number of images are needed to train the machine learning (ML) models effectively. However, hospitals as well as medical institutions do not share the medical image data for collaboration due to general data protection regulations (GDPR) and the data protection act (DPA). To overcome this collaborative challenge, our research utilised real-time medical image data in the framework of federated learning (FL). We have used state-of-the-art ML models that include the ResNet-50 and DenseNet in a federated learning framework. We have experimented both models in different settings on a malaria dataset constituting 27,560 publicly available images and our preliminary results showed that the DenseNet model performed better in accuracy (75%) in contrast to ResNet-50 (72%) while considering eight clients, while the trend was observed as common in four clients with the similar accuracy of 94%, and six clients showed that the DenseNet model performed quite well with the accuracy of 92%, while ResNet-50 achieved only 72%. The federated learning framework enhances the accuracy due to its decentralised nature, continuous learning, and effective communication among clients, as well as the efficient local adaptation. The use of federated learning architecture among the distinct clients for ensuring the data privacy and following GDPR is the contribution of this research work.
Collapse
Affiliation(s)
- Amer Kareem
- School of Computer Science and Technology, University of Bedfordshire, Luton LU1 3JU, UK;
| | - Haiming Liu
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK;
| | - Vladan Velisavljevic
- School of Computer Science and Technology, University of Bedfordshire, Luton LU1 3JU, UK;
| |
Collapse
|
4
|
Tariq MU, Ismail SB. Deep learning in public health: Comparative predictive models for COVID-19 case forecasting. PLoS One 2024; 19:e0294289. [PMID: 38483948 PMCID: PMC10939212 DOI: 10.1371/journal.pone.0294289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2023] [Indexed: 03/17/2024] Open
Abstract
The COVID-19 pandemic has had a significant impact on both the United Arab Emirates (UAE) and Malaysia, emphasizing the importance of developing accurate and reliable forecasting mechanisms to guide public health responses and policies. In this study, we compared several cutting-edge deep learning models, including Long Short-Term Memory (LSTM), bidirectional LSTM, Convolutional Neural Networks (CNN), hybrid CNN-LSTM, Multilayer Perceptron's, and Recurrent Neural Networks (RNN), to project COVID-19 cases in the aforementioned regions. These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. Subsequently, the models were re-evaluated to compare their effectiveness. Analytic approaches, both predictive and retrospective in nature, were used to interpret the data. Our primary objective was to determine the most effective model for predicting COVID-19 cases in the United Arab Emirates (UAE) and Malaysia. The findings indicate that the selected deep learning algorithms were proficient in forecasting COVID-19 cases, although their efficacy varied across different models. After a thorough evaluation, the model architectures most suitable for the specific conditions in the UAE and Malaysia were identified. Our study contributes significantly to the ongoing efforts to combat the COVID-19 pandemic, providing crucial insights into the application of sophisticated deep learning algorithms for the precise and timely forecasting of COVID-19 cases. These insights hold substantial value for shaping public health strategies, enabling authorities to develop targeted and evidence-based interventions to manage the virus spread and its impact on the populations of the UAE and Malaysia. The study confirms the usefulness of deep learning methodologies in efficiently processing complex datasets and generating reliable projections, a skill of great importance in healthcare and professional settings.
Collapse
Affiliation(s)
- Muhammad Usman Tariq
- Abu Dhabi University, Abu Dhabi, United Arab Emirates
- Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Malaysia
| | | |
Collapse
|
5
|
Ali MU, Zafar A, Tanveer J, Khan MA, Kim SH, Alsulami MM, Lee SW. Deep learning network selection and optimized information fusion for enhanced COVID‐19 detection. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2024; 34. [DOI: 10.1002/ima.23001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/12/2023] [Indexed: 08/25/2024]
Abstract
AbstractThis study proposes a wrapper‐based technique to improve the classification performance of chest infection (including COVID‐19) detection using X‐rays. Deep features were extracted using pretrained deep learning models. Ten optimization techniques, including poor and rich optimization, path finder algorithm, Henry gas solubility optimization, Harris hawks optimization, atom search optimization, manta‐ray foraging optimization, equilibrium optimizer, slime mold algorithm, generalized normal distribution optimization, and marine predator algorithm, were used to determine the optimal features using a support vector machine. Moreover, a network selection technique was used to select the deep learning models. An online chest infection detection X‐ray scan dataset was used to validate the proposed approach. The results suggest that the proposed wrapper‐based automatic deep learning network selection and feature optimization framework has a high classification rate of 97.7%. The comparative analysis further validates the credibility of the framework in COVID‐19 and other chest infection classifications, suggesting that the proposed approach can help doctors in clinical practice.
Collapse
Affiliation(s)
- Muhammad Umair Ali
- Department of Intelligent Mechatronics Engineering Sejong University Seoul Republic of Korea
| | - Amad Zafar
- Department of Intelligent Mechatronics Engineering Sejong University Seoul Republic of Korea
| | - Jawad Tanveer
- Department of Computer Science and Engineering Sejong University Seoul Republic of Korea
| | | | - Seong Han Kim
- Department of Intelligent Mechatronics Engineering Sejong University Seoul Republic of Korea
| | - Mashael M. Alsulami
- Department of Information Technology, College of Computers and Information Technology Taif University Taif Saudi Arabia
| | - Seung Won Lee
- Department of Precision Medicine Sungkyunkwan University School of Medicine Suwon Republic of Korea
| |
Collapse
|
6
|
Singh K, Kaur N, Prabhu A. Combating COVID-19 Crisis using Artificial Intelligence (AI) Based Approach: Systematic Review. Curr Top Med Chem 2024; 24:737-753. [PMID: 38318824 DOI: 10.2174/0115680266282179240124072121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND SARS-CoV-2, the unique coronavirus that causes COVID-19, has wreaked damage around the globe, with victims displaying a wide range of difficulties that have encouraged medical professionals to look for innovative technical solutions and therapeutic approaches. Artificial intelligence-based methods have contributed a significant part in tackling complicated issues, and some institutions have been quick to embrace and tailor these solutions in response to the COVID-19 pandemic's obstacles. Here, in this review article, we have covered a few DL techniques for COVID-19 detection and diagnosis, as well as ML techniques for COVID-19 identification, severity classification, vaccine and drug development, mortality rate prediction, contact tracing, risk assessment, and public distancing. This review illustrates the overall impact of AI/ML tools on tackling and managing the outbreak. PURPOSE The focus of this research was to undertake a thorough evaluation of the literature on the part of Artificial Intelligence (AI) as a complete and efficient solution in the battle against the COVID-19 epidemic in the domains of detection and diagnostics of disease, mortality prediction and vaccine as well as drug development. METHODS A comprehensive exploration of PubMed, Web of Science, and Science Direct was conducted using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) regulations to find all possibly suitable papers conducted and made publicly available between December 1, 2019, and August 2023. COVID-19, along with AI-specific words, was used to create the query syntax. RESULTS During the period covered by the search strategy, 961 articles were published and released online. Out of these, a total of 135 papers were chosen for additional investigation. Mortality rate prediction, early detection and diagnosis, vaccine as well as drug development, and lastly, incorporation of AI for supervising and controlling the COVID-19 pandemic were the four main topics focused entirely on AI applications used to tackle the COVID-19 crisis. Out of 135, 60 research papers focused on the detection and diagnosis of the COVID-19 pandemic. Next, 19 of the 135 studies applied a machine-learning approach for mortality rate prediction. Another 22 research publications emphasized the vaccine as well as drug development. Finally, the remaining studies were concentrated on controlling the COVID-19 pandemic by applying AI AI-based approach to it. CONCLUSION We compiled papers from the available COVID-19 literature that used AI-based methodologies to impart insights into various COVID-19 topics in this comprehensive study. Our results suggest crucial characteristics, data types, and COVID-19 tools that can aid in medical and translational research facilitation.
Collapse
Affiliation(s)
- Kavya Singh
- Department of Biotechnology, Banasthali University, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Navjeet Kaur
- Department of Chemistry & Division of Research and Development, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Ashish Prabhu
- Biotechnology Department, NIT Warangal, Warangal, 506004, Telangana, India
| |
Collapse
|
7
|
Sharma S, Guleria K. A comprehensive review on federated learning based models for healthcare applications. Artif Intell Med 2023; 146:102691. [PMID: 38042608 DOI: 10.1016/j.artmed.2023.102691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 12/04/2023]
Abstract
A disease is an abnormal condition that negatively impacts the functioning of the human body. Pathology determines the causes behind the disease and identifies its development mechanism and functional consequences. Each disease has different identification methods, including X-ray scans for pneumonia, covid-19, and lung cancer, whereas biopsy and CT-scan can identify the presence of skin cancer and Alzheimer's disease, respectively. Early disease detection leads to effective treatment and avoids abiding complications. Deep learning has provided a vast number of applications in medical sectors resulting in accurate and reliable early disease predictions. These models are utilized in the healthcare industry to provide supplementary assistance to doctors in identifying the presence of diseases. Majorly, these models are trained through secondary data sources since healthcare institutions refrain from sharing patients' private data to ensure confidentiality, which limits the effectiveness of deep learning models due to the requirement of extensive datasets for training to achieve optimal results. Federated learning deals with the data in such a way that it doesn't exploit the privacy of a patient's data. In this work, a wide variety of disease detection models trained through federated learning have been rigorously reviewed. This meta-analysis provides an in-depth review of the federated learning architectures, federated learning types, hyperparameters, dataset utilization details, aggregation techniques, performance measures, and augmentation methods applied in the existing models during the development phase. The review also highlights various open challenges associated with the disease detection models trained through federated learning for future research.
Collapse
Affiliation(s)
- Shagun Sharma
- Chitkara University Institute of Engineering & Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Kalpna Guleria
- Chitkara University Institute of Engineering & Technology, Chitkara University, Rajpura 140401, Punjab, India.
| |
Collapse
|
8
|
Bebortta S, Tripathy SS, Basheer S, Chowdhary CL. FedEHR: A Federated Learning Approach towards the Prediction of Heart Diseases in IoT-Based Electronic Health Records. Diagnostics (Basel) 2023; 13:3166. [PMID: 37891987 PMCID: PMC10605926 DOI: 10.3390/diagnostics13203166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
In contemporary healthcare, the prediction and identification of cardiac diseases is crucial. By leveraging the capabilities of Internet of Things (IoT)-enabled devices and Electronic Health Records (EHRs), the healthcare sector can largely benefit to improve patient outcomes by increasing the accuracy of disease prediction. However, protecting data privacy is essential to promote participation and adhere to rules. The suggested methodology combines EHRs with IoT-generated health data to predict heart disease. For its capacity to manage high-dimensional data and choose pertinent features, a soft-margin L1-regularised Support Vector Machine (sSVM) classifier is used. The large-scale sSVM problem is successfully solved using the cluster primal-dual splitting algorithm, which improves computational complexity and scalability. The integration of federated learning provides a cooperative predictive analytics methodology that upholds data privacy. The use of a federated learning framework in this study, with a focus on peer-to-peer applications, is crucial for enabling collaborative predictive modeling while protecting the confidentiality of each participant's private medical information.
Collapse
Affiliation(s)
- Sujit Bebortta
- Department of Computer Science, Ravenshaw University, Cuttack 753003, India;
| | | | - Shakila Basheer
- Department of Information Systems, College of computer and Information Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Chiranji Lal Chowdhary
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
9
|
Sandhu SS, Gorji HT, Tavakolian P, Tavakolian K, Akhbardeh A. Medical Imaging Applications of Federated Learning. Diagnostics (Basel) 2023; 13:3140. [PMID: 37835883 PMCID: PMC10572559 DOI: 10.3390/diagnostics13193140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Since its introduction in 2016, researchers have applied the idea of Federated Learning (FL) to several domains ranging from edge computing to banking. The technique's inherent security benefits, privacy-preserving capabilities, ease of scalability, and ability to transcend data biases have motivated researchers to use this tool on healthcare datasets. While several reviews exist detailing FL and its applications, this review focuses solely on the different applications of FL to medical imaging datasets, grouping applications by diseases, modality, and/or part of the body. This Systematic Literature review was conducted by querying and consolidating results from ArXiv, IEEE Xplorer, and PubMed. Furthermore, we provide a detailed description of FL architecture, models, descriptions of the performance achieved by FL models, and how results compare with traditional Machine Learning (ML) models. Additionally, we discuss the security benefits, highlighting two primary forms of privacy-preserving techniques, including homomorphic encryption and differential privacy. Finally, we provide some background information and context regarding where the contributions lie. The background information is organized into the following categories: architecture/setup type, data-related topics, security, and learning types. While progress has been made within the field of FL and medical imaging, much room for improvement and understanding remains, with an emphasis on security and data issues remaining the primary concerns for researchers. Therefore, improvements are constantly pushing the field forward. Finally, we highlighted the challenges in deploying FL in medical imaging applications and provided recommendations for future directions.
Collapse
Affiliation(s)
- Sukhveer Singh Sandhu
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND 58202, USA; (H.T.G.); (P.T.)
| | - Hamed Taheri Gorji
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND 58202, USA; (H.T.G.); (P.T.)
- SafetySpect Inc., 4200 James Ray Dr., Grand Forks, ND 58202, USA
| | - Pantea Tavakolian
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND 58202, USA; (H.T.G.); (P.T.)
| | - Kouhyar Tavakolian
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND 58202, USA; (H.T.G.); (P.T.)
| | | |
Collapse
|
10
|
Verma P, Gupta A, Kumar M, Gill SS. FCMCPS-COVID: AI propelled fog-cloud inspired scalable medical cyber-physical system, specific to coronavirus disease. INTERNET OF THINGS (AMSTERDAM, NETHERLANDS) 2023; 23:100828. [PMID: 37274449 PMCID: PMC10214767 DOI: 10.1016/j.iot.2023.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
Medical cyber-physical systems (MCPS) firmly integrate a network of medical objects. These systems are highly efficacious and have been progressively used in the Healthcare 4.0 to achieve continuous high-quality services. Healthcare 4.0 encompasses numerous emerging technologies and their applications have been realized in the monitoring of a variety of virus outbreaks. As a growing healthcare trend, coronavirus disease (COVID-19) can be cured and its spread can be prevented using MCPS. This virus spreads from human to human and can have devastating consequences. Moreover, with the alarmingly rising death rate and new cases across the world, there is an urgent need for continuous identification and screening of infected patients to mitigate their spread. Motivated by the facts, we propose a framework for early detection, prevention, and control of the COVID-19 outbreak by using novel Industry 5.0 technologies. The proposed framework uses a dimensionality reduction technique in the fog layer, allowing high-quality data to be used for classification purposes. The fog layer also uses the ensemble learning-based data classification technique for the detection of COVID-19 patients based on the symptomatic dataset. In addition, in the cloud layer, social network analysis (SNA) has been performed to control the spread of COVID-19. The experimental results reveal that compared with state-of-the-art methods, the proposed framework achieves better results in terms of accuracy (82.28 %), specificity (91.42 %), sensitivity (90 %) and stability with effective response time. Furthermore, the utilization of CVI-based alert generation at the fog layer improves the novelty aspects of the proposed system.
Collapse
Affiliation(s)
- Prabal Verma
- Department of Information Technology, National Institute of Technology, Srinagar, India
| | - Aditya Gupta
- Department of Computer Science and Engineering, Manipal University Jaipur, Jaipur, India
| | - Mohit Kumar
- Department of Information Technology, National Institute of Technology, Jalandhar, India
| | - Sukhpal Singh Gill
- School of Electronic Engineering and Computer Science, Queen Mary University Of London, UK
| |
Collapse
|
11
|
Narasimhan G, Victor A. Analysis of computational intelligence approaches for predicting disease severity in humans: Challenges and research guidelines. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2023; 12:334. [PMID: 38023081 PMCID: PMC10671019 DOI: 10.4103/jehp.jehp_298_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/12/2023] [Indexed: 12/01/2023]
Abstract
The word disease is a common word and there are many diseases like heart disease, diabetes, breast cancer, COVID-19, and kidney disease that threaten humans. Data-mining methods are proving to be increasingly beneficial in the present day, especially in the field of medical applications; through the use of machine-learning methods, that are used to extract valuable information from healthcare data, which can then be used to predict and treat diseases early, reducing the risk of human life. Machine-learning techniques are useful especially in the field of health care in extracting information from healthcare data. These data are very much helpful in predicting the disease early and treating the patients to reduce the risk of human life. For classification and decision-making, data mining is very much suitable. In this paper, a comprehensive study on several diseases and diverse machine-learning approaches that are functional to predict those diseases and also the different datasets used in prediction and making decisions are discussed in detail. The drawbacks of the models from various research papers have been observed and reveal countless computational intelligence approaches. Naïve Bayes, logistic regression (LR), SVM, and random forest are able to produce the best accuracy. With further optimization algorithms like genetic algorithm, particle swarm optimization, and ant colony optimization combined with machine learning, better performance can be achieved in terms of accuracy, specificity, precision, recall, and specificity.
Collapse
Affiliation(s)
- Geetha Narasimhan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Akila Victor
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
12
|
Cao T, Pan Y, Chen H, Zheng J, Hu T. PPChain: A Blockchain for Pandemic Prevention and Control Assisted by Federated Learning. Bioengineering (Basel) 2023; 10:965. [PMID: 37627850 PMCID: PMC10451482 DOI: 10.3390/bioengineering10080965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 08/27/2023] Open
Abstract
Taking COVID-19 as an example, we know that a pandemic can have a huge impact on normal human life and the economy. Meanwhile, the population flow between countries and regions is the main factor affecting the changes in a pandemic, which is determined by the airline network. Therefore, realizing the overall control of airports is an effective way to control a pandemic. However, this is restricted by the differences in prevention and control policies in different areas and privacy issues, such as how a patient's personal data from a medical center cannot be effectively combined with their passenger personal data. This prevents more precise airport control decisions from being made. To address this, this paper designed a novel data-sharing framework (i.e., PPChain) based on blockchain and federated learning. The experiment uses a CPU i7-12800HX and uses Docker to simulate multiple virtual nodes. The model is deployed to run on an NVIDIA GeForce GTX 3090Ti GPU. The experiment shows that the relationship between a pandemic and aircraft transport can be effectively explored by PPChain without sharing raw data. This approach does not require centralized trust and improves the security of the sharing process. The scheme can help formulate more scientific and rational prevention and control policies for the control of airports. Additionally, it can use aerial data to predict pandemics more accurately.
Collapse
Affiliation(s)
| | - Yongqi Pan
- Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha 410073, China
| | | | | | | |
Collapse
|
13
|
Tariq MU, Ismail SB, Babar M, Ahmad A. Harnessing the power of AI: Advanced deep learning models optimization for accurate SARS-CoV-2 forecasting. PLoS One 2023; 18:e0287755. [PMID: 37471397 PMCID: PMC10359009 DOI: 10.1371/journal.pone.0287755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
The pandemic has significantly affected many countries including the USA, UK, Asia, the Middle East and Africa region, and many other countries. Similarly, it has substantially affected Malaysia, making it crucial to develop efficient and precise forecasting tools for guiding public health policies and approaches. Our study is based on advanced deep-learning models to predict the SARS-CoV-2 cases. We evaluate the performance of Long Short-Term Memory (LSTM), Bi-directional LSTM, Convolutional Neural Networks (CNN), CNN-LSTM, Multilayer Perceptron, Gated Recurrent Unit (GRU), and Recurrent Neural Networks (RNN). We trained these models and assessed them using a detailed dataset of confirmed cases, demographic data, and pertinent socio-economic factors. Our research aims to determine the most reliable and accurate model for forecasting SARS-CoV-2 cases in the region. We were able to test and optimize deep learning models to predict cases, with each model displaying diverse levels of accuracy and precision. A comprehensive evaluation of the models' performance discloses the most appropriate architecture for Malaysia's specific situation. This study supports ongoing efforts to combat the pandemic by offering valuable insights into the application of sophisticated deep-learning models for precise and timely SARS-CoV-2 case predictions. The findings hold considerable implications for public health decision-making, empowering authorities to create targeted and data-driven interventions to limit the virus's spread and minimize its effects on Malaysia's population.
Collapse
Affiliation(s)
- Muhammad Usman Tariq
- Abu Dhabi University, Abu Dhabi, United Arab Emirates
- Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Malaysia
| | | | - Muhammad Babar
- Robotics and Internet of Things Lab, Prince Sultan University, Riyadh, Saudi Arabia
| | - Ashir Ahmad
- College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia
- Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
14
|
Alqaissi E, Alotaibi F, Ramzan MS. Graph data science and machine learning for the detection of COVID-19 infection from symptoms. PeerJ Comput Sci 2023; 9:e1333. [PMID: 37346701 PMCID: PMC10280642 DOI: 10.7717/peerj-cs.1333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/16/2023] [Indexed: 06/23/2023]
Abstract
Background COVID-19 is an infectious disease caused by SARS-CoV-2. The symptoms of COVID-19 vary from mild-to-moderate respiratory illnesses, and it sometimes requires urgent medication. Therefore, it is crucial to detect COVID-19 at an early stage through specific clinical tests, testing kits, and medical devices. However, these tests are not always available during the time of the pandemic. Therefore, this study developed an automatic, intelligent, rapid, and real-time diagnostic model for the early detection of COVID-19 based on its symptoms. Methods The COVID-19 knowledge graph (KG) constructed based on literature from heterogeneous data is imported to understand the COVID-19 different relations. We added human disease ontology to the COVID-19 KG and applied a node-embedding graph algorithm called fast random projection to extract an extra feature from the COVID-19 dataset. Subsequently, experiments were conducted using two machine learning (ML) pipelines to predict COVID-19 infection from its symptoms. Additionally, automatic tuning of the model hyperparameters was adopted. Results We compared two graph-based ML models, logistic regression (LR) and random forest (RF) models. The proposed graph-based RF model achieved a small error rate = 0.0064 and the best scores on all performance metrics, including specificity = 98.71%, accuracy = 99.36%, precision = 99.65%, recall = 99.53%, and F1-score = 99.59%. Furthermore, the Matthews correlation coefficient achieved by the RF model was higher than that of the LR model. Comparative analysis with other ML algorithms and with studies from the literature showed that the proposed RF model exhibited the best detection accuracy. Conclusion The graph-based RF model registered high performance in classifying the symptoms of COVID-19 infection, thereby indicating that the graph data science, in conjunction with ML techniques, helps improve performance and accelerate innovations.
Collapse
Affiliation(s)
- Eman Alqaissi
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
- Information Systems, King Khalid University, Abha, Saudi Arabia
| | - Fahd Alotaibi
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Sher Ramzan
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Ali F, Ullah F, Khan JI, Khan J, Sardar AW, Lee S. COVID-19 spread control policies based early dynamics forecasting using deep learning algorithm. CHAOS, SOLITONS, AND FRACTALS 2023; 167:112984. [PMID: 36530380 PMCID: PMC9744690 DOI: 10.1016/j.chaos.2022.112984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 10/14/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Many severe epidemics and pandemics have hit human civilizations throughout history. The recent Sever Actuate Respiratory disease SARS-CoV-2 known as COVID-19 became a global disease and is still growing around the globe. It has severely affected the world's economy and ways of life. It necessitates predicting the spread in advance and considering various control policies to avoid the country's complete closure. In this paper, we propose deep learning-based stacked Bi-directional long short-term memory (Stacked Bi-LSTM) network that forecasts COVID-19 more accurately for the country of South Korea. The paper's main objectives are to present a lightweight, accurate, and optimized model to predict the spread considering restriction policies such as school closure, workspace closing, and the canceling of public events. Based on the fourteen parameters (including control policies), we predict and forecast the future value of the number of positive, dead, recovered, and quarantined cases. In this paper, we use the dataset of South Korea comprised of several control policies implemented for minimizing the spread of COVID-19. We compare the performance of the stacked Bi-LSTM with the traditional time-series models and LSTM model using the performance metrics mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE). Moreover, we study the impact of control policies on forecasting accuracy. We further study the impact of changing the Bi-LSTM default activation functions Tanh with ReLU on forecasting accuracy. The research provides insight to policymakers to optimize the pooling of resources more optimally on the correct date and time prior to the event and to control the spread by employing various strategies in the meantime.
Collapse
Affiliation(s)
- Furqan Ali
- School of Electronics and Information Engineering, Korea Aerospace University, Deogyang-gu, Goyang-si 412-791, Gyeonggi-do, South Korea
| | - Farman Ullah
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Attock Campus, Punjab 43600, Pakistan
| | - Junaid Iqbal Khan
- School of Electronics and Information Engineering, Korea Aerospace University, Deogyang-gu, Goyang-si 412-791, Gyeonggi-do, South Korea
| | - Jebran Khan
- School of Electronics and Information Engineering, Korea Aerospace University, Deogyang-gu, Goyang-si 412-791, Gyeonggi-do, South Korea
- Department of Artificial Intelligence, AJOU University, South Korea
| | - Abdul Wasay Sardar
- School of Electronics and Information Engineering, Korea Aerospace University, Deogyang-gu, Goyang-si 412-791, Gyeonggi-do, South Korea
| | - Sungchang Lee
- School of Electronics and Information Engineering, Korea Aerospace University, Deogyang-gu, Goyang-si 412-791, Gyeonggi-do, South Korea
| |
Collapse
|
16
|
Wichmann RM, Fernandes FT, Chiavegatto Filho ADP, de Brito AMES, Nunes BP, Silva DLE, Anschau F, de Castro Rodrigues H, Rocha HAL, dos Reis JCB, de Oliveira Cavalcante L, de Oliveira LP, dos Santos Andrade LS, Nasi LA, de Maria Felix M, Mimica MJ, de Almeida Araujo ME, Arnoni MV, Vianna RB, Junior RMM, da Penha RV, Vicente RN, de Lima RF, Batista SR, Nunes SF, de Macedo TTS, Nuno VLES. Improving the performance of machine learning algorithms for health outcomes predictions in multicentric cohorts. Sci Rep 2023; 13:1022. [PMID: 36658181 PMCID: PMC9849836 DOI: 10.1038/s41598-022-26467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023] Open
Abstract
Machine learning algorithms are being increasingly used in healthcare settings but their generalizability between different regions is still unknown. This study aims to identify the strategy that maximizes the predictive performance of identifying the risk of death by COVID-19 in different regions of a large and unequal country. This is a multicenter cohort study with data collected from patients with a positive RT-PCR test for COVID-19 from March to August 2020 (n = 8477) in 18 hospitals, covering all five Brazilian regions. Of all patients with a positive RT-PCR test during the period, 2356 (28%) died. Eight different strategies were used for training and evaluating the performance of three popular machine learning algorithms (extreme gradient boosting, lightGBM, and catboost). The strategies ranged from only using training data from a single hospital, up to aggregating patients by their geographic regions. The predictive performance of the algorithms was evaluated by the area under the ROC curve (AUROC) on the test set of each hospital. We found that the best overall predictive performances were obtained when using training data from the same hospital, which was the winning strategy for 11 (61%) of the 18 participating hospitals. In this study, the use of more patient data from other regions slightly decreased predictive performance. However, models trained in other hospitals still had acceptable performances and could be a solution while data for a specific hospital is being collected.
Collapse
Affiliation(s)
- Roberta Moreira Wichmann
- School of Public Health, University of São Paulo, São Paulo, SP, Brazil. .,Brazilian Institute of Education, Development and Research-IDP, Economics Graduate Program, Brasilia, DF, Brazil.
| | - Fernando Timoteo Fernandes
- School of Public Health, University of São Paulo, São Paulo, SP, Brazil.,Fundacentro, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jeyananthan P. SARS-CoV-2 Diagnosis Using Transcriptome Data: A Machine Learning Approach. SN COMPUTER SCIENCE 2023; 4:218. [PMID: 36844504 PMCID: PMC9936926 DOI: 10.1007/s42979-023-01703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 01/24/2023] [Indexed: 05/02/2023]
Abstract
SARS-CoV-2 pandemic is the big issue of the whole world right now. The health community is struggling to rescue the public and countries from this spread, which revives time to time with different waves. Even the vaccination seems to be not prevents this spread. Accurate identification of infected people on time is essential these days to control the spread. So far, Polymerase chain reaction (PCR) and rapid antigen tests are widely used in this identification, accepting their own drawbacks. False negative cases are the menaces in this scenario. To avoid these problems, this study uses machine learning techniques to build a classification model with higher accuracy to filter the COVID-19 cases from the non-COVID individuals. Transcriptome data of the SARS-CoV-2 patients along with the control are used in this stratification using three different feature selection algorithms and seven classification models. Differently expressed genes also studied between these two groups of people and used in this classification. Results shows that mutual information (or DEGs) along with naïve Bayes (or SVM) gives the best accuracy (0.98 ± 0.04) among these methods. Supplementary Information The online version contains supplementary material available at 10.1007/s42979-023-01703-6.
Collapse
|
18
|
Chowdhury D, Banerjee S, Sannigrahi M, Chakraborty A, Das A, Dey A, Dwivedi AD. Federated learning based Covid-19 detection. EXPERT SYSTEMS 2022; 40:e13173. [PMID: 36718211 PMCID: PMC9877822 DOI: 10.1111/exsy.13173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 05/11/2023]
Abstract
The world is affected by COVID-19, an infectious disease caused by the SARS-CoV-2 virus. Tests are necessary for everyone as the number of COVID-19 affected individual's increases. So, the authors developed a basic sequential CNN model based on deep and federated learning that focuses on user data security while simultaneously enhancing test accuracy. The proposed model helps users detect COVID-19 in a few seconds by uploading a single chest X-ray image. A deep learning-aided architecture that can handle client and server sides efficiently has been proposed in this work. The front-end part has been developed using StreamLit, and the back-end uses a Flower framework. The proposed model has achieved a global accuracy of 99.59% after being trained for three federated communication rounds. The detailed analysis of this paper provides the robustness of this work. In addition, the Internet of Medical Things (IoMT) will improve the ease of access to the aforementioned health services. IoMT tools and services are rapidly changing healthcare operations for the better. Hopefully, it will continue to do so in this difficult time of the COVID-19 pandemic and will help to push the envelope of this work to a different extent.
Collapse
Affiliation(s)
- Deepraj Chowdhury
- Department of Electronics and CommunicationInternational Institute of Information Technology Naya RaipurNaya RaipurChhattisgarhIndia
| | - Soham Banerjee
- Department of Electronics and CommunicationInternational Institute of Information Technology Naya RaipurNaya RaipurChhattisgarhIndia
| | | | | | - Anik Das
- Department of Computer ScienceRCCIITKolkataWest BengalIndia
| | - Ajoy Dey
- Department of Electronics and TelecommunicationJadavpur UniversityKolkataWest BengalIndia
| | - Ashutosh Dhar Dwivedi
- Department of Digitalization, Centre for Business Data AnalyticsCopenhagen Business SchoolFrederiksbergDenmark
| |
Collapse
|
19
|
Nallakaruppan MK, Ramalingam S, Somayaji SRK, Prathiba SB. Comparative Analysis of Deep Learning Models Used in Impact Analysis of Coronavirus Chest X-ray Imaging. Biomedicines 2022; 10:2791. [PMID: 36359310 PMCID: PMC9687278 DOI: 10.3390/biomedicines10112791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The impact analysis of deep learning models for COVID-19-infected X-ray images is an extremely challenging task. Every model has unique capabilities that can provide suitable solutions for some given problem. The prescribed work analyzes various deep learning models that are used for capturing the chest X-ray images. Their performance-defining factors, such as accuracy, f1-score, training and the validation loss, are tested with the support of the training dataset. These deep learning models are multi-layered architectures. These parameters fluctuate based on the behavior of these layers, learning rate, training efficiency, or over-fitting of models. This may in turn introduce sudden changes in the values of training accuracy, testing accuracy, loss or validation loss, f1-score, etc. Some models produce linear responses with respect to the training and testing data, such as Xception, but most of the models provide a variation of these parameters either in the accuracy or the loss functions. The prescribed work performs detailed experimental analysis of deep learning image neural network models and compares them with the above said parameters with detailed analysis of these parameters with their responses regarding accuracy and loss functions. This work also analyses the suitability of these model based on the various parameters, such as the accuracy and loss functions to various applications. This prescribed work also lists out various challenges on the implementation and experimentation of these models. Solutions are provided for enhancing the performance of these deep learning models. The deep learning models that are used in the prescribed work are Resnet, VGG16, Resnet with VGG, Inception V3, Xception with transfer learning, and CNN. The model is trained with more than 1500 images of the chest-X-ray data and tested with around 132 samples of the X-ray image dataset. The prescribed work analyzes the accuracy, f1-score, recall, and precision of these models and analyzes these parameters. It also measures parameters such as training accuracy, testing accuracy, loss, and validation loss. Each epoch of every model is recorded to measure the changes in these parameters during the experimental analysis. The prescribed work provides insight for future research through various challenges and research findings with future directions.
Collapse
Affiliation(s)
| | - Subhashini Ramalingam
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | | | - Sahaya Beni Prathiba
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India
| |
Collapse
|
20
|
Ghose P, Uddin MA, Acharjee UK, Sharmin S. Deep viewing for the identification of Covid-19 infection status from chest X-Ray image using CNN based architecture. INTELLIGENT SYSTEMS WITH APPLICATIONS 2022; 16. [PMCID: PMC9536212 DOI: 10.1016/j.iswa.2022.200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In recent years, coronavirus (Covid-19) has evolved into one of the world’s leading life-threatening severe viral illnesses. A self-executing accord system might be a better option to stop Covid-19 from spreading due to its quick diagnostic option. Many researches have already investigated various deep learning techniques, which have a significant impact on the quick and precise early detection of Covid-19. Most of the existing techniques, though, have not been trained and tested using a significant amount of data. In this paper, we purpose a deep learning technique enabled Convolutional Neural Network (CNN) to automatically diagnose Covid-19 from chest x-rays. To train and test our model, 10,293 x-rays, including 2875 x-rays of Covid-19, were collected as a data set. The applied dataset consists of three groups of chest x-rays: Covid-19, pneumonia, and normal patients. The proposed approach achieved 98.5% accuracy, 98.9% specificity, 99.2% sensitivity, 99.2% precision, and 98.3% F1-score. Distinguishing Covid-19 patients from pneumonia patients using chest x-ray, particularly for human eyes is crucial since both diseases have nearly identical characteristics. To address this issue, we have categorized Covid-19 and pneumonia using x-rays, achieving a 99.60% accuracy rate. Our findings show that the proposed model might aid clinicians and researchers in rapidly detecting Covid-19 patients, hence facilitating the treatment of Covid-19 patients.
Collapse
Affiliation(s)
- Partho Ghose
- Depaprtment of Computer Science and Engineering, Jagannath University, Dhaka, Bangladesh,Corresponding author
| | - Md. Ashraf Uddin
- Depaprtment of Computer Science and Engineering, Jagannath University, Dhaka, Bangladesh
| | - Uzzal Kumar Acharjee
- Depaprtment of Computer Science and Engineering, Jagannath University, Dhaka, Bangladesh
| | - Selina Sharmin
- Depaprtment of Computer Science and Engineering, Jagannath University, Dhaka, Bangladesh
| |
Collapse
|
21
|
Jangam E, Annavarapu CSR, Barreto AAD. A multi-class classification framework for disease screening and disease diagnosis of COVID-19 from chest X-ray images. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:14367-14401. [PMID: 36157353 PMCID: PMC9490695 DOI: 10.1007/s11042-022-13710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/05/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
To accurately diagnose multiple lung diseases from chest X-rays, the critical aspect is to identify lung diseases with high sensitivity and specificity. This study proposed a novel multi-class classification framework that minimises either false positives or false negatives that is useful in computer aided diagnosis or computer aided detection respectively. To minimise false positives or false negatives, we generated respective stacked ensemble from pre-trained models and fully connected layers using selection metric and systematic method. The diversity of base classifiers was based on diverse set of false positives or false negatives generated. The proposed multi-class framework was evaluated on two chest X-ray datasets, and the performance was compared with the existing models and base classifiers. Moreover, we used LIME (Local Interpretable Model-agnostic Explanations) to locate the regions focused by the multi-class classification framework.
Collapse
Affiliation(s)
- Ebenezer Jangam
- Department of Information Technology, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada, Andhra Pradesh India
- Department of Computer Science Engineering, Indian Institute of Technology(ISM), Dhanbad, Jharkhand India
| | | | | |
Collapse
|
22
|
Palanivinayagam A, Kumar VV, Mahesh TR, Singh KK, Singh A. Machine Learning-Based COVID-19 Classification Using E-Adopted CT Scans. INTERNATIONAL JOURNAL OF E-ADOPTION 2022. [DOI: 10.4018/ijea.310001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, several machine learning models were successfully deployed in various fields. However, a huge quantity of data is required for training good machine learning. Data are distributivity stored across multiple sources and centralizing those data leads to privacy and security issues. To solve this problem, the proposed federated-based method works by exchanging the parameters of three locally trained machine learning models without compromising privacy. Each machine learning model uses the e-adoption of CT scans for improving their training knowledge. The CT scans are electronically transferred between various medical centers. Proper care is taken to prevent identify loss from the e-adopted data. To normalize the parameters, a novel weighting scheme is also exchanged along with the parameters. Thus, the global model is trained with more heterogeneous samples to increase performance. Based on the experiment, the proposed algorithm has obtained 89% of accuracy, which is 32% more than the existing machine learning models.
Collapse
|
23
|
Kumaresan M, Kumar MS, Muthukumar N. Analysis of mobility based COVID-19 epidemic model using Federated Multitask Learning. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:9983-10005. [PMID: 36031979 DOI: 10.3934/mbe.2022466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aggregating a massive amount of disease-related data from heterogeneous devices, a distributed learning framework called Federated Learning(FL) is employed. But, FL suffers in distributing the global model, due to the heterogeneity of local data distributions. To overcome this issue, personalized models can be learned by using Federated multitask learning(FMTL). Due to the heterogeneous data from distributed environment, we propose a personalized model learned by federated multitask learning (FMTL) to predict the updated infection rate of COVID-19 in the USA using a mobility-based SEIR model. Furthermore, using a mobility-based SEIR model with an additional constraint we can analyze the availability of beds. We have used the real-time mobility data sets in various states of the USA during the years 2020 and 2021. We have chosen five states for the study and we observe that there exists a correlation among the number of COVID-19 infected cases even though the rate of spread in each case is different. We have considered each US state as a node in the federated learning environment and a linear regression model is built at each node. Our experimental results show that the root-mean-square percentage error for the actual and prediction of COVID-19 cases is low for Colorado state and high for Minnesota state. Using a mobility-based SEIR simulation model, we conclude that it will take at least 400 days to reach extinction when there is no proper vaccination or social distance.
Collapse
Affiliation(s)
- M Kumaresan
- Department of Applied Mathematics and Computational Sciences, PSG College of Technology, Coimbatore 641004, India
| | - M Senthil Kumar
- Department of Applied Mathematics and Computational Sciences, PSG College of Technology, Coimbatore 641004, India
| | | |
Collapse
|
24
|
Durga R, Poovammal E. FLED-Block: Federated Learning Ensembled Deep Learning Blockchain Model for COVID-19 Prediction. Front Public Health 2022; 10:892499. [PMID: 35784262 PMCID: PMC9247602 DOI: 10.3389/fpubh.2022.892499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
With the SARS-CoV-2's exponential growth, intelligent and constructive practice is required to diagnose the COVID-19. The rapid spread of the virus and the shortage of reliable testing models are considered major issues in detecting COVID-19. This problem remains the peak burden for clinicians. With the advent of artificial intelligence (AI) in image processing, the burden of diagnosing the COVID-19 cases has been reduced to acceptable thresholds. But traditional AI techniques often require centralized data storage and training for the predictive model development which increases the computational complexity. The real-world challenge is to exchange data globally across hospitals while also taking into account of the organizations' privacy concerns. Collaborative model development and privacy protection are critical considerations while training a global deep learning model. To address these challenges, this paper proposes a novel framework based on blockchain and the federated learning model. The federated learning model takes care of reduced complexity, and blockchain helps in distributed data with privacy maintained. More precisely, the proposed federated learning ensembled deep five learning blockchain model (FLED-Block) framework collects the data from the different medical healthcare centers, develops the model with the hybrid capsule learning network, and performs the prediction accurately, while preserving the privacy and shares among authorized persons. Extensive experimentation has been carried out using the lung CT images and compared the performance of the proposed model with the existing VGG-16 and 19, Alexnets, Resnets-50 and 100, Inception V3, Densenets-121, 119, and 150, Mobilenets, SegCaps in terms of accuracy (98.2%), precision (97.3%), recall (96.5%), specificity (33.5%), and F1-score (97%) in predicting the COVID-19 with effectively preserving the privacy of the data among the heterogeneous users.
Collapse
|
25
|
Lim JS, Hong M, Lam WST, Zhang Z, Teo ZL, Liu Y, Ng WY, Foo LL, Ting DSW. Novel technical and privacy-preserving technology for artificial intelligence in ophthalmology. Curr Opin Ophthalmol 2022; 33:174-187. [PMID: 35266894 DOI: 10.1097/icu.0000000000000846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The application of artificial intelligence (AI) in medicine and ophthalmology has experienced exponential breakthroughs in recent years in diagnosis, prognosis, and aiding clinical decision-making. The use of digital data has also heralded the need for privacy-preserving technology to protect patient confidentiality and to guard against threats such as adversarial attacks. Hence, this review aims to outline novel AI-based systems for ophthalmology use, privacy-preserving measures, potential challenges, and future directions of each. RECENT FINDINGS Several key AI algorithms used to improve disease detection and outcomes include: Data-driven, imagedriven, natural language processing (NLP)-driven, genomics-driven, and multimodality algorithms. However, deep learning systems are susceptible to adversarial attacks, and use of data for training models is associated with privacy concerns. Several data protection methods address these concerns in the form of blockchain technology, federated learning, and generative adversarial networks. SUMMARY AI-applications have vast potential to meet many eyecare needs, consequently reducing burden on scarce healthcare resources. A pertinent challenge would be to maintain data privacy and confidentiality while supporting AI endeavors, where data protection methods would need to rapidly evolve with AI technology needs. Ultimately, for AI to succeed in medicine and ophthalmology, a balance would need to be found between innovation and privacy.
Collapse
Affiliation(s)
- Jane S Lim
- Singapore National Eye Centre, Singapore Eye Research Institute
| | | | - Walter S T Lam
- Yong Loo Lin School of Medicine, National University of Singapore
| | - Zheting Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University
| | - Zhen Ling Teo
- Singapore National Eye Centre, Singapore Eye Research Institute
| | - Yong Liu
- National University of Singapore, DukeNUS Medical School, Singapore
| | - Wei Yan Ng
- Singapore National Eye Centre, Singapore Eye Research Institute
| | - Li Lian Foo
- Singapore National Eye Centre, Singapore Eye Research Institute
| | - Daniel S W Ting
- Singapore National Eye Centre, Singapore Eye Research Institute
| |
Collapse
|
26
|
Yan S, Zhang H, Wang J. Trends and hot topics in radiology, nuclear medicine and medical imaging from 2011-2021: a bibliometric analysis of highly cited papers. Jpn J Radiol 2022; 40:847-856. [PMID: 35344133 PMCID: PMC8958482 DOI: 10.1007/s11604-022-01268-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022]
Abstract
Purpose To spotlight the trends and hot topics looming from the highly cited papers in the subject category of Radiology, Nuclear Medicine & Medical Imaging with bibliometric analysis. Materials and methods Based on the Essential Science Indicators, this study employed a bibliometric method to examine the highly cited papers in the subject category of Radiology, Nuclear Medicine & Medical Imaging in Web of Science (WoS) Categories, both quantitatively and qualitatively. In total, 1325 highly cited papers were retrieved and assessed spanning from the years of 2011 to 2021. In particular, the bibliometric information of the highly cited papers based on WoS database such as the main publication venues, the most productive countries, and the top cited publications was presented. An Abstract corpus was built to help identify the most frequently explored topics. VoSviewer was used to visualize the co-occurrence networks of author keywords. Results The top three active journals are Neuroimage, Radiology and IEEE T Med Imaging. The United States, Germany and England have the most influential publications. The top cited publications unrelated to COVID-19 can be grouped in three categories: recommendations or guidelines, processing software, and analysis methods. The top cited publications on COVID-19 are dominantly in China. The most frequently explored topics based on the Abstract corpus and the author keywords with the great link strengths overlap to a great extent. Specifically, phrases such as magnetic resonance imaging, deep learning, prostate cancer, chest CT, computed tomography, CT images, coronavirus disease, convolutional neural network(s) are among the most frequently mentioned. Conclusion The bibliometric analysis of the highly cited papers provided the most updated trends and hot topics which may provide insights and research directions for medical researchers and healthcare practitioners in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s11604-022-01268-z.
Collapse
Affiliation(s)
- Sheng Yan
- School of Foreign Languages, Central China Normal University, Wuhan, 430000, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers, Wuhan, 430071, China
| | - Jun Wang
- Department of Medical Imaging, Suizhou Central Hospital, Hubei University of Medicine, No.60 Longmen Street, Jiefang Road, Suizhou, 441399, Hubei, China.
| |
Collapse
|
27
|
Data-Driven Analytics Leveraging Artificial Intelligence in the Era of COVID-19: An Insightful Review of Recent Developments. Symmetry (Basel) 2021. [DOI: 10.3390/sym14010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This paper presents the role of artificial intelligence (AI) and other latest technologies that were employed to fight the recent pandemic (i.e., novel coronavirus disease-2019 (COVID-19)). These technologies assisted the early detection/diagnosis, trends analysis, intervention planning, healthcare burden forecasting, comorbidity analysis, and mitigation and control, to name a few. The key-enablers of these technologies was data that was obtained from heterogeneous sources (i.e., social networks (SN), internet of (medical) things (IoT/IoMT), cellular networks, transport usage, epidemiological investigations, and other digital/sensing platforms). To this end, we provide an insightful overview of the role of data-driven analytics leveraging AI in the era of COVID-19. Specifically, we discuss major services that AI can provide in the context of COVID-19 pandemic based on six grounds, (i) AI role in seven different epidemic containment strategies (a.k.a non-pharmaceutical interventions (NPIs)), (ii) AI role in data life cycle phases employed to control pandemic via digital solutions, (iii) AI role in performing analytics on heterogeneous types of data stemming from the COVID-19 pandemic, (iv) AI role in the healthcare sector in the context of COVID-19 pandemic, (v) general-purpose applications of AI in COVID-19 era, and (vi) AI role in drug design and repurposing (e.g., iteratively aligning protein spikes and applying three/four-fold symmetry to yield a low-resolution candidate template) against COVID-19. Further, we discuss the challenges involved in applying AI to the available data and privacy issues that can arise from personal data transitioning into cyberspace. We also provide a concise overview of other latest technologies that were increasingly applied to limit the spread of the ongoing pandemic. Finally, we discuss the avenues of future research in the respective area. This insightful review aims to highlight existing AI-based technological developments and future research dynamics in this area.
Collapse
|
28
|
Gudigar A, Raghavendra U, Nayak S, Ooi CP, Chan WY, Gangavarapu MR, Dharmik C, Samanth J, Kadri NA, Hasikin K, Barua PD, Chakraborty S, Ciaccio EJ, Acharya UR. Role of Artificial Intelligence in COVID-19 Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:8045. [PMID: 34884045 PMCID: PMC8659534 DOI: 10.3390/s21238045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022]
Abstract
The global pandemic of coronavirus disease (COVID-19) has caused millions of deaths and affected the livelihood of many more people. Early and rapid detection of COVID-19 is a challenging task for the medical community, but it is also crucial in stopping the spread of the SARS-CoV-2 virus. Prior substantiation of artificial intelligence (AI) in various fields of science has encouraged researchers to further address this problem. Various medical imaging modalities including X-ray, computed tomography (CT) and ultrasound (US) using AI techniques have greatly helped to curb the COVID-19 outbreak by assisting with early diagnosis. We carried out a systematic review on state-of-the-art AI techniques applied with X-ray, CT, and US images to detect COVID-19. In this paper, we discuss approaches used by various authors and the significance of these research efforts, the potential challenges, and future trends related to the implementation of an AI system for disease detection during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - U Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Sneha Nayak
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore;
| | - Wai Yee Chan
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Mokshagna Rohit Gangavarapu
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chinmay Dharmik
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Jyothi Samanth
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Prabal Datta Barua
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia;
- School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Subrata Chakraborty
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - Edward J. Ciaccio
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - U. Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore;
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
29
|
A Systematic Review of Federated Learning in the Healthcare Area: From the Perspective of Data Properties and Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311191] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in deep learning have shown many successful stories in smart healthcare applications with data-driven insight into improving clinical institutions’ quality of care. Excellent deep learning models are heavily data-driven. The more data trained, the more robust and more generalizable the performance of the deep learning model. However, pooling the medical data into centralized storage to train a robust deep learning model faces privacy, ownership, and strict regulation challenges. Federated learning resolves the previous challenges with a shared global deep learning model using a central aggregator server. At the same time, patient data remain with the local party, maintaining data anonymity and security. In this study, first, we provide a comprehensive, up-to-date review of research employing federated learning in healthcare applications. Second, we evaluate a set of recent challenges from a data-centric perspective in federated learning, such as data partitioning characteristics, data distributions, data protection mechanisms, and benchmark datasets. Finally, we point out several potential challenges and future research directions in healthcare applications.
Collapse
|
30
|
Laxmi Lydia E, Anupama CSS, Beno A, Elhoseny M, Alshehri MD, Selim MM. Cognitive computing-based COVID-19 detection on Internet of things-enabled edge computing environment. Soft comput 2021:1-12. [PMID: 34812247 PMCID: PMC8600340 DOI: 10.1007/s00500-021-06514-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 10/27/2022]
Abstract
In the current pandemic, smart technologies such as cognitive computing, artificial intelligence, pattern recognition, chatbot, wearables, and blockchain can sufficiently support the collection, analysis, and processing of medical data for decision making. Particularly, to aid medical professionals in the disease diagnosis process, cognitive computing is helpful by processing massive quantities of data rapidly and generating customized smart recommendations. On the other hand, the present world is facing a pandemic of COVID-19 and an earlier detection process is essential to reduce the mortality rate. Deep learning (DL) models are useful in assisting radiologists to investigate the large quantity of chest X-ray images. However, they require a large amount of training data and it needs to be centralized for processing. Therefore, federated learning (FL) concept can be used to generate a shared model with no use of local data for DL-based COVID-19 detection. In this view, this paper presents a federated deep learning-based COVID-19 (FDL-COVID) detection model on an IoT-enabled edge computing environment. Primarily, the IoT devices capture the patient data, and then the DL model is designed using the SqueezeNet model. The IoT devices upload the encrypted variables into the cloud server which then performs FL on major variables using the SqueezeNet model to produce a global cloud model. Moreover, the glowworm swarm optimization algorithm is utilized to optimally tune the hyperparameters involved in the SqueezeNet architecture. A wide range of experiments were conducted on benchmark CXR dataset, and the outcomes are assessed with respect to different measures . The experimental outcomes pointed out the enhanced performance of the FDL-COVID technique over the other methods.
Collapse
Affiliation(s)
- E. Laxmi Lydia
- Department of Computer Science and Engineering, Vignan’s Institute of Information Technology (Autonomous), Visakhapatnam, India
| | - C. S. S. Anupama
- Department of Electronics and Instrumentation Engineering, V. R. Siddhartha Engineering College, Vijayawada, India
| | - A. Beno
- Department of Electronics and Communication Engineering, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur, 628215 India
| | - Mohamed Elhoseny
- Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
- College of Computer Information Technology, American University in the Emirates, Dubai, United Arab Emirates
| | - Mohammad Dahman Alshehri
- Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Mahmoud M. Selim
- Department of Mathematics, College of Science & Humanities in Alaflaj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|