1
|
Alkhalefah H, Preethi D, Khare N, Abidi MH, Umer U. Deep learning infused SIRVD model for COVID-19 prediction: XGBoost-SIRVD-LSTM approach. Front Med (Lausanne) 2024; 11:1427239. [PMID: 39290396 PMCID: PMC11405207 DOI: 10.3389/fmed.2024.1427239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
The global impact of the ongoing COVID-19 pandemic, while somewhat contained, remains a critical challenge that has tested the resilience of humanity. Accurate and timely prediction of COVID-19 transmission dynamics and future trends is essential for informed decision-making in public health. Deep learning and mathematical models have emerged as promising tools, yet concerns regarding accuracy persist. This research suggests a novel model for forecasting the COVID-19's future trajectory. The model combines the benefits of machine learning models and mathematical models. The SIRVD model, a mathematical based model that depicts the reach of the infection via population, serves as basis for the proposed model. A deep prediction model for COVID-19 using XGBoost-SIRVD-LSTM is presented. The suggested approach combines Susceptible-Infected-Recovered-Vaccinated-Deceased (SIRVD), and a deep learning model, which includes Long Short-Term Memory (LSTM) and other prediction models, including feature selection using XGBoost method. The model keeps track of changes in each group's membership over time. To increase the SIRVD model's accuracy, machine learning is applied. The key properties for forecasting the spread of the infection are found using a method called feature selection. Then, in order to learn from these features and create predictions, a model involving deep learning is applied. The performance of the model proposed was assessed with prediction metrics such as R 2, root mean square error (RMSE), mean absolute percentage error (MAPE), and normalized root mean square error (NRMSE). The results are also validated to those of other prediction models. The empirical results show that the suggested model outperforms similar models. Findings suggest its potential as a valuable tool for pandemic management and public health decision-making.
Collapse
Affiliation(s)
- Hisham Alkhalefah
- Advanced Manufacturing Institute, King Saud University, Riyadh, Saudi Arabia
| | - D Preethi
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Neelu Khare
- School of Computer Science Engineering and Information Systems (SCORE), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | - Usama Umer
- Advanced Manufacturing Institute, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Gupta M, Nirola M, Sharma A, Dhungel P, Singh H, Gupta A. Geospatial analysis of contagious infection growth and cross-boundary transmission in non-vaccinated districts of North-East Indian states during the COVID-19 pandemic. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 28:100451. [PMID: 39155937 PMCID: PMC11326915 DOI: 10.1016/j.lansea.2024.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/25/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024]
Abstract
Background During the initial phase of the COVID-19 pandemic, the Government of India implemented a nationwide lockdown, sealing borders across states and districts. The northeastern region of India, surrounded by three international borders and connected to mainland India by a narrow passage, faced particular isolation. This isolation resulted in these states forming a relatively closed population. Consequently, the availability of population-based data from Indian Council of Medical Research, tracked through national identification cards, offered a distinctive opportunity to understand the spread of the virus among non-vaccinated and non-exposed populations. This research leverages this dataset to comprehend the repercussions within isolated populations. Methods The inter-district variability was visualized using geospatial analysis. The patterns do not follow any established grounded theories on disease spread. Out of 7.1 million total data weekly 0.35 million COVID-19-positive northeast data was taken from April 2020 to February 2021 including "date, test result, population density, area, latitude, longitude, district, and state" to identify the spread pattern using a modified reaction-diffusion model (MRD-Model) and Geographic Information System. Findings The analysis of the closed population group revealed an initial uneven yet rapidly expanding geographical spread characterized by a high diffusion rate α approximately 0.4503 and a lower reaction rate β approximately 0.0256, which indicated a slower growth trajectory of case numbers rather than exponential escalation. In the latter stages, COVID-19 incidence reached zero in numerous districts, while in others, the reported cases did not exceed 100. Interpretation The MRD-Model effectively captured the disease transmission dynamics in the abovementioned setting. This enhanced understanding of COVID-19 spread in remote, isolated regions provided by the MRD modelling framework can guide targeted public health strategies for similar isolated areas. Funding This study is Funded by Indian Council of Medical Research (ICMR).
Collapse
Affiliation(s)
- Mousumi Gupta
- Department of Computer Applications, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, 737136, India
| | - Madhab Nirola
- Department of Computer Applications, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, 737136, India
| | - Arpan Sharma
- Department of Computer Applications, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, 737136, India
| | - Prasanna Dhungel
- Department of Computer Applications, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, 737136, India
| | - Harpreet Singh
- Division of Biomedical Informatics, Indian Council of Medical Research, Delhi, 110029, India
| | - Amlan Gupta
- Department of Transfusion Medicine, Jay Prabha Medanta Super Speciality Hospital, Patna, 800020, India
| |
Collapse
|
3
|
Botz J, Valderrama D, Guski J, Fröhlich H. A dynamic ensemble model for short-term forecasting in pandemic situations. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003058. [PMID: 39172923 PMCID: PMC11340948 DOI: 10.1371/journal.pgph.0003058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024]
Abstract
During the COVID-19 pandemic, many hospitals reached their capacity limits and could no longer guarantee treatment of all patients. At the same time, governments endeavored to take sensible measures to stop the spread of the virus while at the same time trying to keep the economy afloat. Many models extrapolating confirmed cases and hospitalization rate over short periods of time have been proposed, including several ones coming from the field of machine learning. However, the highly dynamic nature of the pandemic with rapidly introduced interventions and new circulating variants imposed non-trivial challenges for the generalizability of such models. In the context of this paper, we propose the use of ensemble models, which are allowed to change in their composition or weighting of base models over time and could thus better adapt to highly dynamic pandemic or epidemic situations. In that regard, we also explored the use of secondary metadata-Google searches-to inform the ensemble model. We tested our approach using surveillance data from COVID-19, Influenza, and hospital syndromic surveillance of severe acute respiratory infections (SARI). In general, we found ensembles to be more robust than the individual models. Altogether we see our work as a contribution to enhance the preparedness for future pandemic situations.
Collapse
Affiliation(s)
- Jonas Botz
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Diego Valderrama
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Jannis Guski
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Tran KT, Hy TS, Jiang L, Vu XS. MGLEP: Multimodal Graph Learning for Modeling Emerging Pandemics with Big Data. Sci Rep 2024; 14:16377. [PMID: 39013976 PMCID: PMC11252387 DOI: 10.1038/s41598-024-67146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Accurate forecasting and analysis of emerging pandemics play a crucial role in effective public health management and decision-making. Traditional approaches primarily rely on epidemiological data, overlooking other valuable sources of information that could act as sensors or indicators of pandemic patterns. In this paper, we propose a novel framework, MGLEP, that integrates temporal graph neural networks and multi-modal data for learning and forecasting. We incorporate big data sources, including social media content, by utilizing specific pre-trained language models and discovering the underlying graph structure among users. This integration provides rich indicators of pandemic dynamics through learning with temporal graph neural networks. Extensive experiments demonstrate the effectiveness of our framework in pandemic forecasting and analysis, outperforming baseline methods across different areas, pandemic situations, and prediction horizons. The fusion of temporal graph learning and multi-modal data enables a comprehensive understanding of the pandemic landscape with less time lag, cheap cost, and more potential information indicators.
Collapse
Affiliation(s)
- Khanh-Tung Tran
- Department of Computing Science, Umeå University, Umeå, Sweden
- AI Center, FPT Software, Hanoi, Vietnam
| | - Truong Son Hy
- Department of Mathematics and Computer Science, Indiana State University, Terre Haute, USA
| | - Lili Jiang
- Department of Computing Science, Umeå University, Umeå, Sweden
| | - Xuan-Son Vu
- Department of Computing Science, Umeå University, Umeå, Sweden.
- DeepTensor AB, Umeå, Sweden.
| |
Collapse
|
5
|
Wang B, Shen Y, Yan X, Kong X. An autoregressive integrated moving average and long short-term memory (ARIM-LSTM) hybrid model for multi-source epidemic data prediction. PeerJ Comput Sci 2024; 10:e2046. [PMID: 38855247 PMCID: PMC11157592 DOI: 10.7717/peerj-cs.2046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 06/11/2024]
Abstract
The COVID-19 pandemic has far-reaching impacts on the global economy and public health. To prevent the recurrence of pandemic outbreaks, the development of short-term prediction models is of paramount importance. We propose an ARIMA-LSTM (autoregressive integrated moving average and long short-term memory) model for predicting future cases and utilize multi-source data to enhance prediction performance. Firstly, we employ the ARIMA-LSTM model to forecast the developmental trends of multi-source data separately. Subsequently, we introduce a Bayes-Attention mechanism to integrate the prediction outcomes from auxiliary data sources into the case data. Finally, experiments are conducted based on real datasets. The results demonstrate a close correlation between predicted and actual case numbers, with superior prediction performance of this model compared to baseline and other state-of-the-art methods.
Collapse
Affiliation(s)
- Benfeng Wang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yuqi Shen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiaoran Yan
- The Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Xiangjie Kong
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Tang S, Cao Y. A phenomenological neural network powered by the National Wastewater Surveillance System for estimation of silent COVID-19 infections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166024. [PMID: 37541490 DOI: 10.1016/j.scitotenv.2023.166024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Although wastewater-based epidemiology (WBE) has emerged as an inexpensive and non-intrusive method in contrast to clinical testing to track public health at community levels, there is a lack of structured interpretative criteria to translate the SARS-CoV-2 concentrations in wastewater to COVID-19 infection cases. The difficulties lie in the uncertainties of the amount of virus shed by an infected individual to wastewater as documented in clinical studies. This situation is even worse considering the existence of a population of silent infections and many other confounding factors. In this research, a quantitative framework of a phenomenological neural network (PNN) was developed to compute silent infections. The PNN was trained using the WBE data from the National Wastewater Surveillance System (NWSS) - a program launched by the CDC of the United States in 2020. It is found that the PNN excelled with superior interpretability and reduced overfitting. A big-data perspective on virus shedding by an infected population revealed more deterministic virus-shedding dynamics compared to the clinical studies perspective on virus shedding by an infected individual. With such characteristics employed as the theoretical basis for the estimation of the silent infections, a ratio of silent to reported infections was found to be 5.7 as the national median during the studied period. The study also noted the influence of temperature, sewershed population, and per-capita flow rates on the computation of silent infections. It is expected that the proposed framework in this work would facilitate public health actions guided by the SARS-CoV-2 concentrations in wastewater. In case of a new wave emergence or a new virus disease outbreak like COVID-19, the PNN powered by the NWSS would outline consolidated and systematic information that would enable rapid deployment of public health actions.
Collapse
Affiliation(s)
- Shunyu Tang
- Department of Mathematical and Computer Sciences, Indiana University of Pennsylvania, Indiana, PA 15705, United States of America
| | - Yongtao Cao
- Department of Mathematical and Computer Sciences, Indiana University of Pennsylvania, Indiana, PA 15705, United States of America.
| |
Collapse
|
7
|
Lim H, Kim G, Choi JH. Advancing diabetes prediction with a progressive self-transfer learning framework for discrete time series data. Sci Rep 2023; 13:21044. [PMID: 38030750 PMCID: PMC10687240 DOI: 10.1038/s41598-023-48463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023] Open
Abstract
Although diabetes mellitus is a complex and pervasive disease, most studies to date have focused on individual features, rather than considering the complexities of multivariate, multi-instance, and time-series data. In this study, we developed a novel diabetes prediction model that incorporates these complex data types. We applied advanced techniques of data imputation (bidirectional recurrent imputation for time series; BRITS) and feature selection (the least absolute shrinkage and selection operator; LASSO). Additionally, we utilized self-supervised algorithms and transfer learning to address the common issues with medical datasets, such as irregular data collection and sparsity. We also proposed a novel approach for discrete time-series data preprocessing, utilizing both shifting and rolling time windows and modifying time resolution. Our study evaluated the performance of a progressive self-transfer network for predicting diabetes, which demonstrated a significant improvement in metrics compared to non-progressive and single self-transfer prediction tasks, particularly in AUC, recall, and F1 score. These findings suggest that the proposed approach can mitigate accumulated errors and reflect temporal information, making it an effective tool for accurate diagnosis and disease management. In summary, our study highlights the importance of considering the complexities of multivariate, multi-instance, and time-series data in diabetes prediction.
Collapse
Affiliation(s)
- Heeryung Lim
- Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Korea
| | - Gihyeon Kim
- Department of Computational Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Korea
| | - Jang-Hwan Choi
- Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
8
|
de Souza GN, Mendes AGB, Costa JDS, Oliveira MDS, Lima PVC, de Moraes VN, Silva DCC, da Rocha JEC, Botelho MDN, Araujo FA, Fernandes RDS, Souza DL, Braga MDB. Deep learning framework for epidemiological forecasting: A study on COVID-19 cases and deaths in the Amazon state of Pará, Brazil. PLoS One 2023; 18:e0291138. [PMID: 37976312 PMCID: PMC10656034 DOI: 10.1371/journal.pone.0291138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/22/2023] [Indexed: 11/19/2023] Open
Abstract
Modeling time series has been a particularly challenging aspect due to the need for constant adjustments in a rapidly changing environment, data uncertainty, dependencies between variables, volatile fluctuations, and the need to identify ideal hyperparameters. The present study presents a Framework capable of making projections from time series related to cases and deaths by COVID-19 in the Amazonian state of Pará, in Brazil. For the first time, deep learning models such as TCN, TRANSFORMER, TFT, N-BEATS, and N-HiTS were assessed for this purpose. The ARIMA statistical model was also used in post-processing for residual adjustment and short-term smoothing of the generated forecasts. The Framework generates probabilistic forecasts, with multivariate support, considering the following variables: daily cases per day of the first symptom, cases published daily, the occurrence of deaths, deaths published daily, and percentage of daily vaccination. The generated predictions are statistically evaluated by determining the best model for 7-day moving average projections using evaluating metrics such as MSE, RMSE, MAPE, sMAPE, r2, Coefficient of Variation, and residual analysis. As a result, the generated projections showed an average error of 5.4% for Cases Publication, 8.0% for Cases Symptoms, 11.12% for Deaths Publication, and 4.6% for Deaths Occurrence, with the N-HiTS and N-BEATS models obtaining better results. In general terms, the use of deep learning models to predict cases and deaths from COVID-19 has proven to be a valuable practice for analyzing the spread of the virus, which allows health managers to better understand and respond to this kind of pandemic outbreak.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Daniel Leal Souza
- Computer Science Institute, Centro Universitário do Estado do Pará, Belém, Pará, Brazil
| | | |
Collapse
|
9
|
Sheikhi F, Kowsari Z. Time series forecasting of COVID-19 infections and deaths in Alpha and Delta variants using LSTM networks. PLoS One 2023; 18:e0282624. [PMID: 37862318 PMCID: PMC10588884 DOI: 10.1371/journal.pone.0282624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/21/2023] [Indexed: 10/22/2023] Open
Abstract
Since the beginning of the rapidly spreading COVID-19 pandemic, several mutations have occurred in the genetic sequence of the virus, resulting in emerging different variants of concern. These variants vary in transmissibility, severity of infections, and mortality rate. Designing models that are capable of predicting the future behavior of these variants in the societies can help decision makers and the healthcare system to design efficient health policies, and to be prepared with the sufficient medical devices and an adequate number of personnel to fight against this virus and the similar ones. Among variants of COVID-19, Alpha and Delta variants differ noticeably in the virus structures. In this paper, we study these variants in the geographical regions with different size, population densities, and social life styles. These regions include the country of Iran, the continent of Asia, and the whole world. We propose four deep learning models based on Long Short-Term Memory (LSTM), and examine their predictive power in forecasting the number of infections and deaths for the next three, next five, and next seven days in each variant. These models include Encoder Decoder LSTM (ED-LSTM), Bidirectional LSTM (Bi-LSTM), Convolutional LSTM (Conv-LSTM), and Gated Recurrent Unit (GRU). Performance of these models in predictions are evaluated using the root mean square error, mean absolute error, and mean absolute percentage error. Then, the Friedman test is applied to find the leading model for predictions in all conditions. The results show that ED-LSTM is generally the leading model for predicting the number of infections and deaths for both variants of Alpha and Delta, with the ability to forecast long time intervals ahead.
Collapse
Affiliation(s)
- Farnaz Sheikhi
- Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Zahra Kowsari
- Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
10
|
He M, Tang B, Xiao Y, Tang S. Transmission dynamics informed neural network with application to COVID-19 infections. Comput Biol Med 2023; 165:107431. [PMID: 37696183 DOI: 10.1016/j.compbiomed.2023.107431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Since the end of 2019 the COVID-19 repeatedly surges with most countries/territories experiencing multiple waves, and mechanism-based epidemic models played important roles in understanding the transmission mechanism of multiple epidemic waves. However, capturing temporal changes of the transmissibility of COVID-19 during the multiple waves keeps ill-posed problem for traditional mechanism-based epidemic compartment models, because that the transmission rate is usually assumed to be specific piecewise functions and more parameters are added to the model once multiple epidemic waves involved, which poses a huge challenge to parameter estimation. Meanwhile, data-driven deep neural networks fail to discover the driving factors of repeated outbreaks and lack interpretability. In this study, aiming at developing a data-driven method to project time-dependent parameters but also merging the advantage of mechanism-based models, we propose a transmission dynamics informed neural network (TDINN) by encoding the SEIRD compartment model into deep neural networks. We show that the proposed TDINN algorithm performs very well when fitting the COVID-19 epidemic data with multiple waves, where the epidemics in the United States, Italy, South Africa, and Kenya, and several outbreaks the Omicron variant in China are taken as examples. In addition, the numerical simulation shows that the trained TDINN can also perform as a predictive model to capture the future development of COVID-19 epidemic. We find that the transmission rate inferred by the TDINN frequently fluctuates, and a feedback loop between the epidemic shifting and the changes of transmissibility drives the occurrence of multiple waves. We observe a long response delay to the implementation of control interventions in the four countries, while the decline of the transmission rate in the outbreaks in China usually happens once the implementation of control interventions. The further simulation show that 17 days' delay of the response to the implementation of control interventions lead to a roughly four-fold increase in daily reported cases in one epidemic wave in Italy, which suggest that a rapid response to policies that strengthen control interventions can be effective in flattening the epidemic curve or avoiding subsequent epidemic waves. We observe that the transmission rate in the outbreaks in China is already decreasing before enhancing control interventions, providing the evidence that the increasing of the epidemics can drive self-conscious behavioural changes to protect against infections.
Collapse
Affiliation(s)
- Mengqi He
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| | - Biao Tang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China.
| | - Yanni Xiao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
| | - Sanyi Tang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
11
|
Song Y, Chen H, Song X, Liao Z, Zhang Y. STG-Net: A COVID-19 prediction network based on multivariate spatio-temporal information. Biomed Signal Process Control 2023; 84:104735. [PMID: 36875288 PMCID: PMC9969838 DOI: 10.1016/j.bspc.2023.104735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 03/03/2023]
Abstract
The modern urban population features a high population density and a fast population flow, and COVID-19 has strong transmission ability, long incubation period, and other characteristics. Considering only the time sequence of COVID-19 transmission cannot effectively respond to the current epidemic transmission situation. The distance between cities and population density information also have a significant impact on the transmission of the virus. Currently, cross-domain transmission prediction models do not fully exploit the time-space information and fluctuation trend of data, and cannot reasonably predict the trend of infectious diseases by integrating time-space multi-source information. To solve this problem, this paper proposes the COVID-19 prediction network (STG-Net) based on multivariate spatio-temporal information, which introduces the Spatial Information Mining module (SIM) and the Temporal Information Mining module (TIM) to mine the spatio-temporal information of the data in a deeper level, and uses the slope feature method to further mine the fluctuation trend of the data. Also, we introduce the Gramian Angular Field module (GAF), which converts one-dimensional data into two-dimensional images, further enhancing the network's feature mining capability in the time and feature dimension, ultimately combining spatiotemporal information to predict daily newly confirmed cases. We tested the network on datasets from China, Australia, the United Kingdom, France, and Netherlands. The experimental results show that STG-Net has better prediction performance than existing prediction models, with an average decision coefficient R2 of 98.23% on the datasets from five countries, as well as good long- and short-term prediction ability and overall good robustness.
Collapse
Affiliation(s)
- Yucheng Song
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Huaiyi Chen
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Xiaomeng Song
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Zhifang Liao
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yan Zhang
- Department of Computing, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK
| |
Collapse
|
12
|
Men K, Li Y, Wang X, Zhang G, Hu J, Gao Y, Han A, Liu W, Han H. Estimate the incubation period of coronavirus 2019 (COVID-19). Comput Biol Med 2023; 158:106794. [PMID: 37044045 PMCID: PMC10062796 DOI: 10.1016/j.compbiomed.2023.106794] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/23/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
COVID-19 is an infectious disease that presents unprecedented challenges to society. Accurately estimating the incubation period of the coronavirus is critical for effective prevention and control. However, the exact incubation period remains unclear, as COVID-19 symptoms can appear in as little as 2 days or as long as 14 days or more after exposure. Accurate estimation requires original chain-of-infection data, which may not be fully available from the original outbreak in Wuhan, China. In this study, we estimated the incubation period of COVID-19 by leveraging well-documented and epidemiologically informative chain-of-infection data collected from 10 regions outside the original Wuhan areas prior to February 10, 2020. We employed a proposed Monte Carlo simulation approach and nonparametric methods to estimate the incubation period of COVID-19. We also utilized manifold learning and related statistical analysis to uncover incubation relationships between different age and gender groups. Our findings revealed that the incubation period of COVID-19 did not follow general distributions such as lognormal, Weibull, or Gamma. Using proposed Monte Carlo simulations and nonparametric bootstrap methods, we estimated the mean and median incubation periods as 5.84 (95% CI, 5.42-6.25 days) and 5.01 days (95% CI 4.00-6.00 days), respectively. We also found that the incubation periods of groups with ages greater than or equal to 40 years and less than 40 years demonstrated a statistically significant difference. The former group had a longer incubation period and a larger variance than the latter, suggesting the need for different quarantine times or medical intervention strategies. Our machine-learning results further demonstrated that the two age groups were linearly separable, consistent with previous statistical analyses. Additionally, our results indicated that the incubation period difference between males and females was not statistically significant.
Collapse
Affiliation(s)
- Ke Men
- Institute for Research on Health Information and Technology, School of Public Health, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yihao Li
- The Gabelli School of Business, Fordham University, Lincoln Center, New York, NY, 10023, USA
| | - Xia Wang
- The Air Force Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Guangwei Zhang
- Institute for Research on Health Information and Technology, School of Public Health, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Jingjing Hu
- Institute for Research on Health Information and Technology, School of Public Health, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yanyan Gao
- Institute for Research on Health Information and Technology, School of Public Health, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Ashley Han
- The Skyline High School, Ann Arbor, MI, 48103, USA
| | - Wenbin Liu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, 510006, China.
| | - Henry Han
- The Laboratory of Data Science and Artificial Intelligence Innovation, Department of Computer Science, School of Engineering and Computer Science, Baylor University, Waco, TX, 76789, USA.
| |
Collapse
|
13
|
Sarmiento Varón L, González-Puelma J, Medina-Ortiz D, Aldridge J, Alvarez-Saravia D, Uribe-Paredes R, Navarrete MA. The role of machine learning in health policies during the COVID-19 pandemic and in long COVID management. Front Public Health 2023; 11:1140353. [PMID: 37113165 PMCID: PMC10126380 DOI: 10.3389/fpubh.2023.1140353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The ongoing COVID-19 pandemic is arguably one of the most challenging health crises in modern times. The development of effective strategies to control the spread of SARS-CoV-2 were major goals for governments and policy makers. Mathematical modeling and machine learning emerged as potent tools to guide and optimize the different control measures. This review briefly summarizes the SARS-CoV-2 pandemic evolution during the first 3 years. It details the main public health challenges focusing on the contribution of mathematical modeling to design and guide government action plans and spread mitigation interventions of SARS-CoV-2. Next describes the application of machine learning methods in a series of study cases, including COVID-19 clinical diagnosis, the analysis of epidemiological variables, and drug discovery by protein engineering techniques. Lastly, it explores the use of machine learning tools for investigating long COVID, by identifying patterns and relationships of symptoms, predicting risk indicators, and enabling early evaluation of COVID-19 sequelae.
Collapse
Affiliation(s)
| | - Jorge González-Puelma
- Centro Asistencial Docente y de Investigación, Universidad de Magallanes, Punta Arenas, Chile
- Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - David Medina-Ortiz
- Departamento de Ingeniería en Computación, Facultad de Ingeniería, Universidad de Magallanes, Punta Arenas, Chile
| | - Jacqueline Aldridge
- Departamento de Ingeniería en Computación, Facultad de Ingeniería, Universidad de Magallanes, Punta Arenas, Chile
| | - Diego Alvarez-Saravia
- Centro Asistencial Docente y de Investigación, Universidad de Magallanes, Punta Arenas, Chile
- Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Roberto Uribe-Paredes
- Departamento de Ingeniería en Computación, Facultad de Ingeniería, Universidad de Magallanes, Punta Arenas, Chile
| | - Marcelo A. Navarrete
- Centro Asistencial Docente y de Investigación, Universidad de Magallanes, Punta Arenas, Chile
- Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
14
|
Kumar AK, Jain S, Jain S, Ritam M, Xia Y, Chandra R. Physics-informed neural entangled-ladder network for inhalation impedance of the respiratory system. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107421. [PMID: 36805280 DOI: 10.1016/j.cmpb.2023.107421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVES The use of machine learning methods for modelling bio-systems is becoming prominent which can further improve bio-medical technologies. Physics-informed neural networks (PINNs) can embed the knowledge of physical laws that govern a system during the model training process. PINNs utilise differential equations in the model which traditionally used numerical methods that are computationally complex. METHODS We integrate PINNs with an entangled ladder network for modelling respiratory systems by considering a lungs conduction zone to evaluate the respiratory impedance for different initial conditions. We evaluate the respiratory impedance for the inhalation phase of breathing for a symmetric model of the human lungs using entanglement and continued fractions. RESULTS We obtain the impedance of the conduction zone of the lungs pulmonary airways using PINNs for nine different combinations of velocity and pressure of inhalation. We compare the results from PINNs with the finite element method using the mean absolute error and root mean square error. The results show that the impedance obtained with PINNs contrasts with the conventional forced oscillation test used for deducing the respiratory impedance. The results show similarity with the impedance plots for different respiratory diseases. CONCLUSION We find a decrease in impedance when the velocity of breathing is lowered gradually by 20%. Hence, the methodology can be used to design smart ventilators to the improve flow of breathing.
Collapse
Affiliation(s)
- Amit Krishan Kumar
- Faculty of Electrical-Electronic Engineering, Duy Tan University, Da Nang, 550000, Vietnam; State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing, 100081, China.
| | - Snigdha Jain
- Department of Electronics and Communications Engineering, Indian Institute of Technology Guwahati, Assam, India.
| | - Shirin Jain
- Department of Electronics and Communications Engineering, Indian Institute of Technology Guwahati, Assam, India.
| | - M Ritam
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, India.
| | - Yuanqing Xia
- State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing, 100081, China.
| | - Rohitash Chandra
- Transitional Artificial Intelligence Research Group, School of Mathematics and Statistics, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
15
|
McClymont H, Si X, Hu W. Using weather factors and google data to predict COVID-19 transmission in Melbourne, Australia: A time-series predictive model. Heliyon 2023; 9:e13782. [PMID: 36845036 PMCID: PMC9941072 DOI: 10.1016/j.heliyon.2023.e13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Background Forecast models have been essential in understanding COVID-19 transmission and guiding public health responses throughout the pandemic. This study aims to assess the effect of weather variability and Google data on COVID-19 transmission and develop multivariable time series AutoRegressive Integrated Moving Average (ARIMA) models for improving traditional predictive modelling for informing public health policy. Methods COVID-19 case notifications, meteorological factors and Google data were collected over the B.1.617.2 (Delta) outbreak in Melbourne, Australia from August to November 2021. Timeseries cross-correlation (TSCC) was used to evaluate the temporal correlation between weather factors, Google search trends, Google Mobility data and COVID-19 transmission. Multivariable time series ARIMA models were fitted to forecast COVID-19 incidence and Effective Reproductive Number (R eff ) in the Greater Melbourne region. Five models were fitted to compare and validate predictive models using moving three-day ahead forecasts to test the predictive accuracy for both COVID-19 incidence and R eff over the Melbourne Delta outbreak. Results Case-only ARIMA model resulted in an R squared (R2) value of 0.942, Root Mean Square Error (RMSE) of 141.59, and Mean Absolute Percentage Error (MAPE) of 23.19. The model including transit station mobility (TSM) and maximum temperature (Tmax) had greater predictive accuracy with R2 0.948, RMSE 137.57, and MAPE 21.26. Conclusion Multivariable ARIMA modelling for COVID-19 cases and R eff was useful for predicting epidemic growth, with higher predictive accuracy for models including TSM and Tmax. These results suggest that TSM and Tmax would be useful for further exploration for developing weather-informed early warning models for future COVID-19 outbreaks with potential application for the inclusion of weather and Google data with disease surveillance in developing effective early warning systems for informing public health policy and epidemic response.
Collapse
|
16
|
Ali F, Ullah F, Khan JI, Khan J, Sardar AW, Lee S. COVID-19 spread control policies based early dynamics forecasting using deep learning algorithm. CHAOS, SOLITONS, AND FRACTALS 2023; 167:112984. [PMID: 36530380 PMCID: PMC9744690 DOI: 10.1016/j.chaos.2022.112984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 10/14/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Many severe epidemics and pandemics have hit human civilizations throughout history. The recent Sever Actuate Respiratory disease SARS-CoV-2 known as COVID-19 became a global disease and is still growing around the globe. It has severely affected the world's economy and ways of life. It necessitates predicting the spread in advance and considering various control policies to avoid the country's complete closure. In this paper, we propose deep learning-based stacked Bi-directional long short-term memory (Stacked Bi-LSTM) network that forecasts COVID-19 more accurately for the country of South Korea. The paper's main objectives are to present a lightweight, accurate, and optimized model to predict the spread considering restriction policies such as school closure, workspace closing, and the canceling of public events. Based on the fourteen parameters (including control policies), we predict and forecast the future value of the number of positive, dead, recovered, and quarantined cases. In this paper, we use the dataset of South Korea comprised of several control policies implemented for minimizing the spread of COVID-19. We compare the performance of the stacked Bi-LSTM with the traditional time-series models and LSTM model using the performance metrics mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE). Moreover, we study the impact of control policies on forecasting accuracy. We further study the impact of changing the Bi-LSTM default activation functions Tanh with ReLU on forecasting accuracy. The research provides insight to policymakers to optimize the pooling of resources more optimally on the correct date and time prior to the event and to control the spread by employing various strategies in the meantime.
Collapse
Affiliation(s)
- Furqan Ali
- School of Electronics and Information Engineering, Korea Aerospace University, Deogyang-gu, Goyang-si 412-791, Gyeonggi-do, South Korea
| | - Farman Ullah
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Attock Campus, Punjab 43600, Pakistan
| | - Junaid Iqbal Khan
- School of Electronics and Information Engineering, Korea Aerospace University, Deogyang-gu, Goyang-si 412-791, Gyeonggi-do, South Korea
| | - Jebran Khan
- School of Electronics and Information Engineering, Korea Aerospace University, Deogyang-gu, Goyang-si 412-791, Gyeonggi-do, South Korea
- Department of Artificial Intelligence, AJOU University, South Korea
| | - Abdul Wasay Sardar
- School of Electronics and Information Engineering, Korea Aerospace University, Deogyang-gu, Goyang-si 412-791, Gyeonggi-do, South Korea
| | - Sungchang Lee
- School of Electronics and Information Engineering, Korea Aerospace University, Deogyang-gu, Goyang-si 412-791, Gyeonggi-do, South Korea
| |
Collapse
|
17
|
Khedhiri S. A Deep Learning LSTM Approach to Predict COVD-19 Deaths in North Africa. Asia Pac J Public Health 2023; 35:53-55. [PMID: 36461616 PMCID: PMC9720417 DOI: 10.1177/10105395221141590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Sami Khedhiri
- University of Prince Edward Island,
Charlottetown, PE, Canada,Sami Khedhiri, University of Prince Edward
Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
18
|
Zhu H, Chen S, Lu W, Chen K, Feng Y, Xie Z, Zhang Z, Li L, Ou J, Chen G. Study on the influence of meteorological factors on influenza in different regions and predictions based on an LSTM algorithm. BMC Public Health 2022; 22:2335. [PMID: 36514013 PMCID: PMC9745690 DOI: 10.1186/s12889-022-14299-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Influenza epidemics pose a threat to human health. It has been reported that meteorological factors (MFs) are associated with influenza. This study aimed to explore the similarities and differences between the influences of more comprehensive MFs on influenza in cities with different economic, geographical and climatic characteristics in Fujian Province. Then, the information was used to predict the daily number of cases of influenza in various cities based on MFs to provide bases for early warning systems and outbreak prevention. METHOD Distributed lag nonlinear models (DLNMs) were used to analyse the influence of MFs on influenza in different regions of Fujian Province from 2010 to 2021. Long short-term memory (LSTM) was used to train and model daily cases of influenza in 2010-2018, 2010-2019, and 2010-2020 based on meteorological daily values. Daily cases of influenza in 2019, 2020 and 2021 were predicted. The root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (SMAPE) were used to quantify the accuracy of model predictions. RESULTS The cumulative effect of low and high values of air pressure (PRS), air temperature (TEM), air temperature difference (TEMD) and sunshine duration (SSD) on the risk of influenza was obvious. Low (< 979 hPa), medium (983 to 987 hPa) and high (> 112 hPa) PRS were associated with a higher risk of influenza in women, children aged 0 to 12 years, and rural populations. Low (< 9 °C) and high (> 23 °C) TEM were risk factors for influenza in four cities. Wind speed (WIN) had a more significant effect on the risk of influenza in the ≥ 60-year-old group. Low (< 40%) and high (> 80%) relative humidity (RHU) in Fuzhou and Xiamen had a significant effect on influenza. When PRS was between 1005-1015 hPa, RHU > 60%, PRE was low, TEM was between 10-20 °C, and WIN was low, the interaction between different MFs and influenza was most obvious. The RMSE, MAE, MAPE, and SMAPE evaluation indices of the predictions in 2019, 2020 and 2021 were low, and the prediction accuracy was high. CONCLUSION All eight MFs studied had an impact on influenza in four cities, but there were similarities and differences. The LSTM model, combined with these eight MFs, was highly accurate in predicting the daily cases of influenza. These MFs and prediction models could be incorporated into the influenza early warning and prediction system of each city and used as a reference to formulate prevention strategies for relevant departments.
Collapse
Affiliation(s)
- Hansong Zhu
- Emergency Response and Epidemic Management Institute, Fujian Center for Disease Control and Prevention, Fuzhou, 350012, Fujian, China.
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012, Fujian, China.
- The practice base on the school of public health Fujian Medical University, Fuzhou, 350012, Fujian, China.
| | - Si Chen
- Climate Assessment Office of Fujian Climate Center, Fuzhou, 350007, Fujian, China
| | - Wen Lu
- Shengli Clinical Medical College of Fujian Medical University, Department of Health Management of Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Kaizhi Chen
- College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Yulin Feng
- School of Public Health, Fujian Medical University, Fujian, 350108, Fuzhou, China
| | - Zhonghang Xie
- Emergency Response and Epidemic Management Institute, Fujian Center for Disease Control and Prevention, Fuzhou, 350012, Fujian, China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012, Fujian, China
- The practice base on the school of public health Fujian Medical University, Fuzhou, 350012, Fujian, China
| | - Zhifang Zhang
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012, Fujian, China
- Science and Technology Information and Management, Fujian Center for Disease Control and Prevention, Fuzhou, 350012, Fujian, China
| | - Lingfang Li
- Emergency Response and Epidemic Management Institute, Fujian Center for Disease Control and Prevention, Fuzhou, 350012, Fujian, China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012, Fujian, China
| | - Jianming Ou
- Emergency Response and Epidemic Management Institute, Fujian Center for Disease Control and Prevention, Fuzhou, 350012, Fujian, China.
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012, Fujian, China.
- The practice base on the school of public health Fujian Medical University, Fuzhou, 350012, Fujian, China.
| | - Guangmin Chen
- Emergency Response and Epidemic Management Institute, Fujian Center for Disease Control and Prevention, Fuzhou, 350012, Fujian, China.
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012, Fujian, China.
- The practice base on the school of public health Fujian Medical University, Fuzhou, 350012, Fujian, China.
| |
Collapse
|
19
|
Khan JI, Ullah F, Lee S. Attention based parameter estimation and states forecasting of COVID-19 pandemic using modified SIQRD Model. CHAOS, SOLITONS, AND FRACTALS 2022; 165:112818. [PMID: 36338376 PMCID: PMC9618449 DOI: 10.1016/j.chaos.2022.112818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
In this work, we propose a new mathematical modeling of the spread of COVID-19 infection in an arbitrary population, by modifying the SIQRD model as m-SIQRD model, while taking into consideration the eight governmental interventions such as cancellation of events, closure of public places etc., as well as the influence of the asymptomatic cases on the states of the model. We introduce robustness and improved accuracy in predictions of these models by utilizing a novel deep learning scheme. This scheme comprises of attention based architecture, alongside with Generative Adversarial Network (GAN) based data augmentation, for robust estimation of time varying parameters of m-SIQRD model. In this regard, we also utilized a novel feature extraction methodology by employing noise removal operation by Spline interpolation and Savitzky-Golay filter, followed by Principal Component Analysis (PCA). These parameters are later directed towards two main tasks: forecasting of states to the next 15 days, and estimation of best policy encodings to control the infected and deceased number within the framework of data driven synergetic control theory. We validated the superiority of the forecasting performance of the proposed scheme over countries of South Korea and Germany and compared this performance with 7 benchmark forecasting models. We also showed the potential of this scheme to determine best policy encodings in South Korea for 15 day forecast horizon.
Collapse
Affiliation(s)
- Junaid Iqbal Khan
- School of Electronics and Information Engineering, Korea Aerospace University, Goyang, 10540, South Korea
| | - Farman Ullah
- Department of Electrical and Computer Engineering, COMSATS University Islamabad-Attock, Punjab 43600, Pakistan
| | - Sungchang Lee
- School of Electronics and Information Engineering, Korea Aerospace University, Goyang, 10540, South Korea
| |
Collapse
|
20
|
Nguyen-Trong K, Nguyen-Hoang K. Multi-modal approach for COVID-19 detection using coughs and self-reported symptoms. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-222863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
COVID-19 (Coronavirus Disease of 2019) is one of the most challenging healthcare crises of the twenty-first century. The pandemic causes many negative impacts on all aspects of life and livelihoods. Although recent developments of relevant vaccines, such as Pfizer/BioNTech mRNA, AstraZeneca, or Moderna, the emergence of new virus mutations and their fast infection rate yet pose significant threats to public health. In this context, early detection of the disease is an important factor to reduce its effect and quickly control the spread of pandemic. Nevertheless, many countries still rely on methods that are either expensive and time-consuming (i.e., Reverse-transcription polymerase chain reaction) or uncomfortable and difficult for self-testing (i.e., Rapid Antigen Test Nasal). Recently, deep learning methods have been proposed as a potential solution for COVID-19 analysis. However, previous works usually focus on a single symptom, which can omit critical information for disease diagnosis. Therefore, in this study, we propose a multi-modal method to detect COVID-19 using cough sounds and self-reported symptoms. The proposed method consists of five neural networks to deal with different input features, including CNN-biLSTM for MFCC features, EfficientNetV2 for Mel spectrogram images, MLP for self-reported symptoms, C-YAMNet for cough detection, and RNNoise for noise-canceling. Experimental results demonstrated that our method outperformed the other state-of-the-art methods with a high AUC, accuracy, and F1-score of 98.6%, 96.9%, and 96.9% on the testing set.
Collapse
Affiliation(s)
- Khanh Nguyen-Trong
- Faculty of Information Technology, Posts and Telecommunications Institute of Technology, Hanoi, Viet Nam
| | - Khoi Nguyen-Hoang
- Faculty of Information Technology, Posts and Telecommunications Institute of Technology, Hanoi, Viet Nam
| |
Collapse
|
21
|
Kamalov F, Rajab K, Cherukuri AK, Elnagar A, Safaraliev M. Deep learning for Covid-19 forecasting: State-of-the-art review. Neurocomputing 2022; 511:142-154. [PMID: 36097509 PMCID: PMC9454152 DOI: 10.1016/j.neucom.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/03/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022]
Abstract
The Covid-19 pandemic has galvanized scientists to apply machine learning methods to help combat the crisis. Despite the significant amount of research there exists no comprehensive survey devoted specifically to examining deep learning methods for Covid-19 forecasting. In this paper, we fill the gap in the literature by reviewing and analyzing the current studies that use deep learning for Covid-19 forecasting. In our review, all published papers and preprints, discoverable through Google Scholar, for the period from Apr 1, 2020 to Feb 20, 2022 which describe deep learning approaches to forecasting Covid-19 were considered. Our search identified 152 studies, of which 53 passed the initial quality screening and were included in our survey. We propose a model-based taxonomy to categorize the literature. We describe each model and highlight its performance. Finally, the deficiencies of the existing approaches are identified and the necessary improvements for future research are elucidated. The study provides a gateway for researchers who are interested in forecasting Covid-19 using deep learning.
Collapse
|
22
|
Palermo MB, Policarpo LM, Costa CAD, Righi RDR. Tracking machine learning models for pandemic scenarios: a systematic review of machine learning models that predict local and global evolution of pandemics. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2022; 11:40. [PMID: 36249862 PMCID: PMC9553296 DOI: 10.1007/s13721-022-00384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
This systematic review aims to study and classify machine learning models that predict pandemics' evolution within affected regions or countries. The advantage of this systematic review is that it allows the health authorities to decide what prediction model fits best depending upon the region's criticality and optimize hospitals' approaches to preparing and anticipating patient care. We searched ACM Digital Library, Biomed Central, BioRxiv+MedRxiv, BMJ, Computers and Applied Sciences, IEEEXplore, JMIR Medical Informatics, Medline Daily Updates, Nature, Oxford Academic, PubMed, Sage Online, ScienceDirect, Scopus, SpringerLink, Web of Science, and Wiley Online Library between 1 January 2020 and 31 July 2022. We divided the interventions into similarities between cumulative COVID-19 real cases and machine learning prediction models' ability to track pandemics trending. We included 45 studies that rated low to high risk of bias. The standardized mean differences (SMD) for the two groups were 0.18, 95% CI, with interval of [0.01, 0.35], I 2 =0, and p value=0.04. We built a taxonomic analysis of the included studies and determined two domains: pandemics trending prediction models and geolocation tracking models. We performed the meta-analysis and data synthesis and got low publication bias because of missing results. The level of certainty varied from very low to high. By submitting the 45 studies on the risk of bias, the levels of certainty, the summary of findings, and the statistical analysis via the forest and funnel plots assessments, we could determine the satisfactory statistical significance homogeneity across the included studies to simulate the progress of the pandemics and help the healthcare authorities to take preventive decisions.
Collapse
Affiliation(s)
- Marcelo Benedeti Palermo
- Software Innovation Laboratory-SOFTWARELAB, Programa de Pós-Graduação em Computação Aplicada, Universidade do Vale do Rio dos Sinos, Av. Unisinos 950, São Leopoldo, RS 93022-750 Brazil
| | - Lucas Micol Policarpo
- Software Innovation Laboratory-SOFTWARELAB, Programa de Pós-Graduação em Computação Aplicada, Universidade do Vale do Rio dos Sinos, Av. Unisinos 950, São Leopoldo, RS 93022-750 Brazil
| | - Cristiano André da Costa
- Software Innovation Laboratory-SOFTWARELAB, Programa de Pós-Graduação em Computação Aplicada, Universidade do Vale do Rio dos Sinos, Av. Unisinos 950, São Leopoldo, RS 93022-750 Brazil
| | - Rodrigo da Rosa Righi
- Software Innovation Laboratory-SOFTWARELAB, Programa de Pós-Graduação em Computação Aplicada, Universidade do Vale do Rio dos Sinos, Av. Unisinos 950, São Leopoldo, RS 93022-750 Brazil
| |
Collapse
|
23
|
Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends. ALEXANDRIA ENGINEERING JOURNAL 2022; 61. [PMCID: PMC9453185 DOI: 10.1016/j.aej.2022.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Several machine learning and deep learning models were reported in the literature to forecast COVID-19 but there is no comprehensive report on the comparison between statistical models and deep learning models. The present work reports a comparative time-series analysis of deep learning techniques (Recurrent Neural Networks with GRU and LSTM cells) and statistical techniques (ARIMA and SARIMA) to forecast the country-wise cumulative confirmed, recovered, and deaths. The Gated Recurrent Units (GRU), Long Short-Term Memory (LSTM) cells based on Recurrent Neural Networks (RNN), ARIMA and SARIMA models were trained, tested, and optimized to forecast the trends of the COVID-19. We deployed python to optimize the parameters of ARIMA which include (p, d, q) representing autoregressive and moving average terms and parameters of SARIMA model include additional seasonal terms which are denoted by (P, D, Q). Similarly, for LSTM and GRU based RNN models’ parameters (number of layers, hidden size, learning rate and number of epochs) are optimized by deploying PyTorch machine learning framework. The best model was chosen based on the lowest Mean Square Error (MSE) and Root Mean Squared Error (RMSE) values. For most of the time-series data of the countries, deep learning-based models LSTM and GRU outperformed statistical ARIMA and SARIMA models, with an RMSE values that are 40 folds less than that of the ARIMA models. But for some countries statistical (ARIMA, SARIMA) models outperformed deep learning models. Further, we emphasize the importance of various factors such as age, preventive measures and healthcare facilities etc. that play vital role on the rapid spread of COVID-19 pandemic.
Collapse
|
24
|
Md Saleh NI, Ab Ghani H, Jilani Z. Defining factors in hospital admissions during COVID-19 using LSTM-FCA explainable model. Artif Intell Med 2022; 132:102394. [PMID: 36207072 PMCID: PMC9443659 DOI: 10.1016/j.artmed.2022.102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/03/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Abstract
Outbreaks of the COVID-19 pandemic caused by the SARS-CoV-2 infection that started in Wuhan, China, have quickly spread worldwide. The current situation has contributed to a dynamic rate of hospital admissions. Global efforts by Artificial Intelligence (AI) and Machine Learning (ML) communities to develop solutions to assist COVID-19-related research have escalated ever since. However, despite overwhelming efforts from the AI and ML community, many machine learning-based AI systems have been designed as black boxes. This paper proposes a model that utilizes Formal Concept Analysis (FCA) to explain a machine learning technique called Long–short Term Memory (LSTM) on a dataset of hospital admissions due to COVID-19 in the United Kingdom. This paper intends to increase the transparency of decision-making in the era of ML by using the proposed LSTM-FCA explainable model. Both LSTM and FCA are able to evaluate the data and explain the model to make the results more understandable and interpretable. The results and discussions are helpful and may lead to new research to optimize the use of ML in various real-world applications and to contain the disease.
Collapse
|
25
|
Li Y, Ma K. A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12528. [PMID: 36231828 PMCID: PMC9564883 DOI: 10.3390/ijerph191912528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has spread rapidly around the world since 2020, with a significant fatality rate. Until recently, numerous countries were unable to adequately control the pandemic. As a result, COVID-19 trend prediction has become a hot topic in academic circles. Both traditional models and existing deep learning (DL) models have the problem of low prediction accuracy. In this paper, we propose a hybrid model based on an improved Transformer and graph convolution network (GCN) for COVID-19 forecasting. The salient feature of the model in this paper is that rich temporal sequence information is extracted by the multi-head attention mechanism, and then the correlation of temporal sequence information is further aggregated by GCN. In addition, to solve the problem of the high time complexity of the existing Transformer, we use the cosine function to replace the softmax calculation, so that the calculation of query, key and value can be split, and the time complexity is reduced from the original O(N2) to O(N). We only concentrated on three states in the United States, one of which was the most affected, one of which was the least affected, and one intermediate state, in order to make our predictions more meaningful. We use mean absolute percentage error and mean absolute error as evaluation indexes. The experimental results show that the proposed time series model has a better predictive performance than the current DL models and traditional models. Additionally, our model's convergence outperforms that of the current DL models, offering a more precise benchmark for the control of epidemics.
Collapse
Affiliation(s)
- Yulan Li
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Kun Ma
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
26
|
Zrieq R, Kamel S, Boubaker S, Algahtani FD, Alzain MA, Alshammari F, Alshammari FS, Aldhmadi BK, Atique S, Al-Najjar MAA, Villareal SC. Time-Series Analysis and Healthcare Implications of COVID-19 Pandemic in Saudi Arabia. Healthcare (Basel) 2022; 10:1874. [PMID: 36292321 PMCID: PMC9601417 DOI: 10.3390/healthcare10101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
The first case of coronavirus disease 2019 (COVID-19) in Saudi Arabia was reported on 2 March 2020. Since then, it has progressed rapidly and the number of cases has grown exponentially, reaching 788,294 cases on 22 June 2022. Accurately analyzing and predicting the spread of new COVID-19 cases is critical to develop a framework for universal pandemic preparedness as well as mitigating the disease's spread. To this end, the main aim of this paper is first to analyze the historical data of the disease gathered from 2 March 2020 to 20 June 2022 and second to use the collected data for forecasting the trajectory of COVID-19 in order to construct robust and accurate models. To the best of our knowledge, this study is the first that analyzes the outbreak of COVID-19 in Saudi Arabia for a long period (more than two years). To achieve this study aim, two techniques from the data analytics field, namely the auto-regressive integrated moving average (ARIMA) statistical technique and Prophet Facebook machine learning technique were investigated for predicting daily new infections, recoveries and deaths. Based on forecasting performance metrics, both models were found to be accurate and robust in forecasting the time series of COVID-19 in Saudi Arabia for the considered period (the coefficient of determination for example was in all cases more than 0.96) with a small superiority of the ARIMA model in terms of the forecasting ability and of Prophet in terms of simplicity and a few hyper-parameters. The findings of this study have yielded a realistic picture of the disease direction and provide useful insights for decision makers so as to be prepared for the future evolution of the pandemic. In addition, the results of this study have shown positive healthcare implications of the Saudi experience in fighting the disease and the relative efficiency of the taken measures.
Collapse
Affiliation(s)
- Rafat Zrieq
- Department of Public Health, College of Public Health and Health Informatics, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Souad Kamel
- Department of Computer & Network Engineering, College of Computer Science and Engineering, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Sahbi Boubaker
- Department of Computer & Network Engineering, College of Computer Science and Engineering, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Fahad D. Algahtani
- Department of Public Health, College of Public Health and Health Informatics, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Mohamed Ali Alzain
- Department of Public Health, College of Public Health and Health Informatics, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Fares Alshammari
- Department of Health Informatics, College of Public Health and Health Informatics, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Fahad Saud Alshammari
- Department of Health Informatics, College of Public Health and Health Informatics, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Badr Khalaf Aldhmadi
- Department of Health Management, College of Public Health and Health Informatics, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Suleman Atique
- Department of Health Informatics, College of Public Health and Health Informatics, University of Ha’il, Ha’il 55476, Saudi Arabia
- Department of Public Health Science, Faculty of Landscape and Society, Norwegian University of Life Sciences,1430 Ås, Norway
| | - Mohammad A. A. Al-Najjar
- Department of Pharmaceutical Science and Pharmaceutics, Faculty of Pharmacy, Applied Science Provate University, Al Arab St 21, Amman 11118, Jordan
| | - Sandro C. Villareal
- Medical-Surgical and Pediatric Nursing Department, College of Nursing, University of Ha’il, Ha’il 55476, Saudi Arabia
| |
Collapse
|
27
|
Vernikou S, Lyras A, Kanavos A. Multiclass sentiment analysis on COVID-19-related tweets using deep learning models. Neural Comput Appl 2022; 34:19615-19627. [PMID: 35968247 PMCID: PMC9362523 DOI: 10.1007/s00521-022-07650-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/18/2022] [Indexed: 12/01/2022]
Abstract
COVID-19 is an infectious disease with its first recorded cases identified in late 2019, while in March of 2020 it was declared as a pandemic. The outbreak of the disease has led to a sharp increase in posts and comments from social media users, with a plethora of sentiments being found therein. This paper addresses the subject of sentiment analysis, focusing on the classification of users’ sentiment from posts related to COVID-19 that originate from Twitter. The period examined is from March until mid-April of 2020, when the pandemic had thus far affected the whole world. The data is processed and linguistically analyzed with the use of several natural language processing techniques. Sentiment analysis is implemented by utilizing seven different deep learning models based on LSTM neural networks, and a comparison with traditional machine learning classifiers is made. The models are trained in order to distinguish the tweets between three classes, namely negative, neutral and positive.
Collapse
Affiliation(s)
- Sotiria Vernikou
- Computer Engineering and Informatics Department, University of Patras, Patras, Greece
| | - Athanasios Lyras
- Computer Engineering and Informatics Department, University of Patras, Patras, Greece
| | - Andreas Kanavos
- Department of Digital Media and Communication, Ionian University, Kefalonia, Greece
| |
Collapse
|
28
|
Prasad VK, Bhattacharya P, Bhavsar M, Verma A, Tanwar S, Sharma G, Bokoro PN, Sharma R. ABV-CoViD: An Ensemble Forecasting Model to Predict Availability of Beds and Ventilators for COVID-19 Like Pandemics. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2022; 10:74131-74151. [PMID: 36345376 PMCID: PMC9423030 DOI: 10.1109/access.2022.3190497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/10/2022] [Indexed: 06/16/2023]
Abstract
Recently, healthcare stakeholders have orchestrated steps to strengthen and curb the COVID-19 wave. There has been a surge in vaccinations to curb the virus wave, but it is crucial to strengthen our healthcare resources to fight COVID-19 and like pandemics. Recent researchers have suggested effective forecasting models for COVID-19 transmission rate, spread, and the number of positive cases, but the focus on healthcare resources to meet the current spread is not discussed. Motivated from the gap, in this paper, we propose a scheme, ABV-CoViD (Availibility of Beds and Ventilators for COVID-19 patients), that forms an ensemble forecasting model to predict the availability of beds and ventilators (ABV) for the COVID-19 patients. The scheme considers a region-wise demarcation for the allotment of beds and ventilators (BV), termed resources, based on region-wise ABV and COVID-19 positive patients (inside the hospitals occupying the BV resource). We consider an integration of artificial neural network (ANN) and auto-regressive integrated neural network (ARIMA) model to address both the linear and non-linear dependencies. We also consider the effective wave spread of COVID-19 on external patients (not occupying the BV resources) through a [Formula: see text]- ARNN model, which gives us long-term complex dependencies of BV resources in the future time window. We have considered the COVID-19 healthcare dataset on 3 USA regions (Illinois, Michigan, and Indiana) for testing our ensemble forecasting scheme from January 2021 to May 2022. We evaluated our scheme in terms of statistical performance metrics and validated that ensemble methods have higher accuracy. In simulation, for linear modelling, we considered the [Formula: see text] model, and [Formula: see text] model for ANN modelling. We considered the [Formula: see text](12,6) forecasting. On a population of 2,93,90,897, the obtained mean absolute error (MAE) on average for 3 regions is 170.5514. The average root means square error (RMSE) of [Formula: see text]-ARNN is 333.18, with an accuracy of 98.876%, which shows the scheme's efficacy in ABV measurement over conventional and manual resource allocation schemes.
Collapse
Affiliation(s)
- Vivek Kumar Prasad
- Department of Computer Science and EngineeringInstitute of Technology, Nirma UniversityAhmedabadGujarat382481India
| | - Pronaya Bhattacharya
- Department of Computer Science and EngineeringInstitute of Technology, Nirma UniversityAhmedabadGujarat382481India
| | - Madhuri Bhavsar
- Department of Computer Science and EngineeringInstitute of Technology, Nirma UniversityAhmedabadGujarat382481India
| | - Ashwin Verma
- Department of Computer Science and EngineeringInstitute of Technology, Nirma UniversityAhmedabadGujarat382481India
| | - Sudeep Tanwar
- Department of Computer Science and EngineeringInstitute of Technology, Nirma UniversityAhmedabadGujarat382481India
| | - Gulshan Sharma
- Department of Electrical Engineering TechnologyUniversity of JohannesburgJohannesburgGauteng2006South Africa
| | - Pitshou N. Bokoro
- Department of Electrical Engineering TechnologyUniversity of JohannesburgJohannesburgGauteng2006South Africa
| | - Ravi Sharma
- Centre for Inter-Disciplinary Research and InnovationUniversity of Petroleum and Energy StudiesDehradun248001India
| |
Collapse
|
29
|
Deep Learning-Based Mental Health Model on Primary and Secondary School Students’ Quality Cultivation. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7842304. [PMID: 35845877 PMCID: PMC9279049 DOI: 10.1155/2022/7842304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022]
Abstract
The purpose was to timely identify the mental disorders (MDs) of students receiving primary and secondary education (PSE) (PSE students) and improve their mental quality. Firstly, this work analyzes the research status of the mental health model (MHM) and the main contents of PSE student-oriented mental health quality cultivation under deep learning (DL). Secondly, an MHM is implemented based on big data technology (BDT) and the convolutional neural network (CNN). Simultaneously, the long short-term memory (LSTM) is introduced to optimize the proposed MHM. Finally, the performance of the MHM before and after optimization is evaluated, and the PSE student-oriented mental health quality training strategy based on the proposed MHM is offered. The results show that the accuracy curve is higher than the recall curve in all classification algorithms. The maximum recall rate is 0.58, and the minimum accuracy rate is 0.62. The decision tree (DT) algorithm has the best comprehensive performance among the five different classification algorithms, with accuracy of 0.68, recall rate of 0.58, and F1-measure of 0.69. Thus, the DT algorithm is selected as the classifier. The proposed MHM can identify 56% of students with MDs before optimization. After optimization, the accuracy is improved by 0.03. The recall rate is improved by 0.19, the F1-measure is improved by 0.05, and 75% of students with MDs can be identified. Diverse behavior data can improve the recognition effect of students' MDs. Meanwhile, from the 60th iteration, the mode accuracy and loss tend to be stable. By comparison, batch_size has little influence on the experimental results. The number of convolution kernels of the first convolution layer has little influence. The proposed MHM based on DL and CNN will indirectly improve the mental health quality of PSE students. The research provides a reference for cultivating the mental health quality of PSE students.
Collapse
|
30
|
Cinaglia P, Cannataro M. Forecasting COVID-19 Epidemic Trends by Combining a Neural Network with Rt Estimation. ENTROPY (BASEL, SWITZERLAND) 2022; 24:929. [PMID: 35885152 PMCID: PMC9322732 DOI: 10.3390/e24070929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
On 31 December 2019, a cluster of pneumonia cases of unknown etiology was reported in Wuhan (China). The cases were declared to be Coronavirus Disease 2019 (COVID-19) by the World Health Organization (WHO). COVID-19 has been defined as SARS Coronavirus 2 (SARS-CoV-2). Some countries, e.g., Italy, France, and the United Kingdom (UK), have been subjected to frequent restrictions for preventing the spread of infection, contrary to other ones, e.g., the United States of America (USA) and Sweden. The restrictions afflicted the evolution of trends with several perturbations that destabilized its normal evolution. Globally, Rt has been used to estimate time-varying reproduction numbers during epidemics. Methods: This paper presents a solution based on Deep Learning (DL) for the analysis and forecasting of epidemic trends in new positive cases of SARS-CoV-2 (COVID-19). It combined a neural network (NN) and an Rt estimation by adjusting the data produced by the output layer of the NN on the related Rt estimation. Results: Tests were performed on datasets related to the following countries: Italy, the USA, France, the UK, and Sweden. Positive case registration was retrieved between 24 February 2020 and 11 January 2022. Tests performed on the Italian dataset showed that our solution reduced the Mean Absolute Percentage Error (MAPE) by 28.44%, 39.36%, 22.96%, 17.93%, 28.10%, and 24.50% compared to other ones with the same configuration but that were based on the LSTM, GRU, RNN, ARIMA (1,0,3), and ARIMA (7,2,4) models, or an NN without applying the Rt as a corrective index. It also reduced MAPE by 17.93%, the Mean Absolute Error (MAE) by 34.37%, and the Root Mean Square Error (RMSE) by 43.76% compared to the same model without the adjustment performed by the Rt. Furthermore, it allowed an average MAPE reduction of 5.37%, 63.10%, 17.84%, and 14.91% on the datasets related to the USA, France, the UK, and Sweden, respectively.
Collapse
Affiliation(s)
- Pietro Cinaglia
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Mario Cannataro
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| |
Collapse
|
31
|
Verma H, Mandal S, Gupta A. Temporal deep learning architecture for prediction of COVID-19 cases in India. EXPERT SYSTEMS WITH APPLICATIONS 2022; 195:116611. [PMID: 35153389 PMCID: PMC8817764 DOI: 10.1016/j.eswa.2022.116611] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/09/2022] [Accepted: 01/22/2022] [Indexed: 05/05/2023]
Abstract
To combat the recent coronavirus disease 2019 (COVID-19), academician and clinician are in search of new approaches to predict the COVID-19 outbreak dynamic trends that may slow down or stop the pandemic. Epidemiological models like Susceptible-Infected-Recovered (SIR) and its variants are helpful to understand the dynamics trend of pandemic that may be used in decision making to optimize possible controls from the infectious disease. But these epidemiological models based on mathematical assumptions may not predict the real pandemic situation. Recently the new machine learning approaches are being used to understand the dynamic trend of COVID-19 spread. In this paper, we designed the recurrent and convolutional neural network models: vanilla LSTM, stacked LSTM, ED_LSTM, BiLSTM, CNN, and hybrid CNN+LSTM model to capture the complex trend of COVID-19 outbreak and perform the forecasting of COVID-19 daily confirmed cases of 7, 14, 21 days for India and its four most affected states (Maharashtra, Kerala, Karnataka, and Tamil Nadu). The root mean square error (RMSE) and mean absolute percentage error (MAPE) evaluation metric are computed on the testing data to demonstrate the relative performance of these models. The results show that the stacked LSTM and hybrid CNN+LSTM models perform best relative to other models.
Collapse
Affiliation(s)
- Hanuman Verma
- Bareilly College, Bareilly, Uttar Pradesh, 243005, India
| | - Saurav Mandal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Akshansh Gupta
- CSIR-Central Electronics Engineering Research Institute, Pilani Rajasthan, 333031, India
| |
Collapse
|
32
|
Bi L, Fili M, Hu G. COVID-19 forecasting and intervention planning using gated recurrent unit and evolutionary algorithm. Neural Comput Appl 2022; 34:17561-17579. [PMID: 35669538 PMCID: PMC9153241 DOI: 10.1007/s00521-022-07394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
Abstract
The rapid spread of COVID-19, caused by the SARS-CoV-2 virus, has had and continues to pose a significant threat to global health. We propose a predictive model based on the gated recurrent unit (GRU) that investigates the influence of non-pharmaceutical interventions (NPIs) on the progression of COVID-19. The proposed model is validated by case studies for multiple states in the United States. It should be noted that the proposed model can be generalized to other regions of interest. The results show that the predictive model can achieve accurate forecasts across the US. The forecast is then utilized to identify the optimal mitigation policies. The goal is to identify the best stringency level for each policy that can minimize the total number of new COVID-19 cases while minimizing the mitigation costs. A meta-heuristics method, named multi-population evolutionary algorithm with differential evolution (MPEA-DE), has been developed to identify optimal mitigation strategies that minimize COVID-19 infection cases while reducing economic and other negative implications. We compared the optimal mitigation strategies identified by the MPEA-DE model with three baseline search strategies. The results show that MPEA-DE performs better than other baseline models based on prescription dominance.
Collapse
Affiliation(s)
- Luning Bi
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011 USA
| | - Mohammad Fili
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011 USA
| | - Guiping Hu
- Department of Sustainability, Rochester Institute of Technology, Rochester, NY 14623 USA
| |
Collapse
|
33
|
Wang Q. COVID-19 Epidemic Analysis in India with Multi-Source State-Level Datasets. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2601149. [PMID: 35496053 PMCID: PMC9039780 DOI: 10.1155/2022/2601149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022]
Abstract
The COVID-19 pandemic has been a global crisis affecting billions of people and causing countless economic losses. Different approaches have been proposed for combating this crisis, including both medical measures and technical innovations, e.g., artificial intelligence technologies to diagnose and predict COVID-19 cases. While there is much attention being paid to the USA and China, little research attention has been drawn to less developed countries, e.g., India. In this study, I conduct an analysis of the COVID-19 epidemic in India, with datasets collected from different sources. Several machine learning models have been built to predict the COVID-19 spread, with different combinations of input features, in which the Transformer is proven as the most precise one. I also find that the Facebook mobility dataset is the most useful for predicting the number of confirmed cases. However, I find that the datasets from different sources are not very effective when predicting the number of deaths caused by the COVID-19 infection.
Collapse
Affiliation(s)
- Qirui Wang
- Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| |
Collapse
|
34
|
Alyasseri ZAA, Al‐Betar MA, Doush IA, Awadallah MA, Abasi AK, Makhadmeh SN, Alomari OA, Abdulkareem KH, Adam A, Damasevicius R, Mohammed MA, Zitar RA. Review on COVID-19 diagnosis models based on machine learning and deep learning approaches. EXPERT SYSTEMS 2022; 39:e12759. [PMID: 34511689 PMCID: PMC8420483 DOI: 10.1111/exsy.12759] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 is the disease evoked by a new breed of coronavirus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recently, COVID-19 has become a pandemic by infecting more than 152 million people in over 216 countries and territories. The exponential increase in the number of infections has rendered traditional diagnosis techniques inefficient. Therefore, many researchers have developed several intelligent techniques, such as deep learning (DL) and machine learning (ML), which can assist the healthcare sector in providing quick and precise COVID-19 diagnosis. Therefore, this paper provides a comprehensive review of the most recent DL and ML techniques for COVID-19 diagnosis. The studies are published from December 2019 until April 2021. In general, this paper includes more than 200 studies that have been carefully selected from several publishers, such as IEEE, Springer and Elsevier. We classify the research tracks into two categories: DL and ML and present COVID-19 public datasets established and extracted from different countries. The measures used to evaluate diagnosis methods are comparatively analysed and proper discussion is provided. In conclusion, for COVID-19 diagnosing and outbreak prediction, SVM is the most widely used machine learning mechanism, and CNN is the most widely used deep learning mechanism. Accuracy, sensitivity, and specificity are the most widely used measurements in previous studies. Finally, this review paper will guide the research community on the upcoming development of machine learning for COVID-19 and inspire their works for future development. This review paper will guide the research community on the upcoming development of ML and DL for COVID-19 and inspire their works for future development.
Collapse
Affiliation(s)
- Zaid Abdi Alkareem Alyasseri
- Center for Artificial Intelligence Technology, Faculty of Information Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
- ECE Department‐Faculty of EngineeringUniversity of KufaNajafIraq
| | - Mohammed Azmi Al‐Betar
- Artificial Intelligence Research Center (AIRC)Ajman UniversityAjmanUnited Arab Emirates
- Department of Information TechnologyAl‐Huson University College, Al‐Balqa Applied UniversityIrbidJordan
| | - Iyad Abu Doush
- Computing Department, College of Engineering and Applied SciencesAmerican University of KuwaitSalmiyaKuwait
- Computer Science DepartmentYarmouk UniversityIrbidJordan
| | - Mohammed A. Awadallah
- Artificial Intelligence Research Center (AIRC)Ajman UniversityAjmanUnited Arab Emirates
- Department of Computer ScienceAl‐Aqsa UniversityGazaPalestine
| | - Ammar Kamal Abasi
- Artificial Intelligence Research Center (AIRC)Ajman UniversityAjmanUnited Arab Emirates
- School of Computer SciencesUniversiti Sains MalaysiaPenangMalaysia
| | - Sharif Naser Makhadmeh
- Artificial Intelligence Research Center (AIRC)Ajman UniversityAjmanUnited Arab Emirates
- Faculty of Information TechnologyMiddle East UniversityAmmanJordan
| | | | | | - Afzan Adam
- Center for Artificial Intelligence Technology, Faculty of Information Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
| | | | - Mazin Abed Mohammed
- College of Computer Science and Information TechnologyUniversity of AnbarAnbarIraq
| | - Raed Abu Zitar
- Sorbonne Center of Artificial IntelligenceSorbonne University‐Abu DhabiAbu DhabiUnited Arab Emirates
| |
Collapse
|
35
|
Alassafi MO, Jarrah M, Alotaibi R. Time series predicting of COVID-19 based on deep learning. Neurocomputing 2022; 468:335-344. [PMID: 34690432 PMCID: PMC8523546 DOI: 10.1016/j.neucom.2021.10.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023]
Abstract
COVID-19 was declared a global pandemic by the World Health Organisation (WHO) on 11th March 2020. Many researchers have, in the past, attempted to predict a COVID outbreak and its effect. Some have regarded time-series variables as primary factors which can affect the onset of infectious diseases like influenza and severe acute respiratory syndrome (SARS). In this study, we have used public datasets provided by the European Centre for Disease Prevention and Control for developing a prediction model for the spread of the COVID-19 outbreak to and throughout Malaysia, Morocco and Saudi Arabia. We have made use of certain effective deep learning (DL) models for this purpose. We assessed some specific major features for predicting the trend of the existing COVID-19 outbreak in these three countries. In this study, we also proposed a DL approach that includes recurrent neural network (RNN) and long short-term memory (LSTM) networks for predicting the probable numbers of COVID-19 cases. The LSTM models showed a 98.58% precision accuracy while the RNN models showed a 93.45% precision accuracy. Also, this study compared the number of coronavirus cases and the number of resulting deaths in Malaysia, Morocco and Saudi Arabia. Thereafter, we predicted the number of confirmed COVID-19 cases and deaths for a subsequent seven days. In this study, we presented their predictions using the data that was available up to December 3rd, 2020.
Collapse
|
36
|
Shafiekhani S, Namdar P, Rafiei S. A COVID-19 forecasting system for hospital needs using ANFIS and LSTM models: A graphical user interface unit. Digit Health 2022; 8:20552076221085057. [PMID: 35355809 PMCID: PMC8961204 DOI: 10.1177/20552076221085057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 12/23/2022] Open
Abstract
Background Centers for Disease Control and Prevention data showed that about 40% of coronavirus disease 2019 (COVID-19) patients had been suffering from at least one underlying medical condition were hospitalized; in which nearly 33% of them needed to be admitted to the intensive care unit (ICU) to receive specialized medical services. Our study aimed to find a proper machine learning algorithm that can predict confirmed COVID-19 hospital admissions with high accuracy. Methods We obtained data on daily COVID-19 cases in regular medical inpatient units, emergency department, and ICU in the time window between 21 July 2020 and 21 November 2021. Data for the first 183 days (training data set) were used for long short-term memory (LSTM) network, adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR) and decision tree model training, whilst the remaining data for the last 60 days (test data set) were used for model validation. To predict the number of ICU and non-ICU patients, we used these models. Finally, a user-friendly graphical user interface unit was designed to load any time series data (here the trend of population of COVID-19 patients) and train LSTM, ANFIS, SVR or tree models for the prediction of COVID-19 cases for one week ahead. Results All models predicted the dynamics of COVID-19 cases in ICU and non- wards. The values of root-mean-square error and R2 as model assessment metrics showed that ANFIS model had better predictive power among all models. Conclusion Artificial intelligence-based forecasting models such as ANFIS system or deep learning approach based on LSTM or regression models including SVR or tree regression play a key role in forecasting the required number of beds or other types of medical facilities during the coronavirus pandemic. Thus, the designed graphical user interface of the present study can be used for optimum management of resources by health care systems amid COVID-19 pandemic.
Collapse
Affiliation(s)
- Sajad Shafiekhani
- Department of Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Biomedical Technologies and Robotics, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Namdar
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sima Rafiei
- Department of Healthcare Management, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
37
|
Forecasting COVID-19 infections in the Arabian Gulf region. MODELING EARTH SYSTEMS AND ENVIRONMENT 2021; 8:3813-3822. [PMID: 34778510 PMCID: PMC8571680 DOI: 10.1007/s40808-021-01332-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022]
Abstract
In this paper, an empirical analysis of linear state space models and long short-term memory neural networks is performed to compare the statistical performance of these models in predicting the spread of COVID-19 infections. Data on the pandemic daily infections from the Arabian Gulf countries from 2020/03/24 to 2021/05/20 are fitted to each model and a statistical analysis is conducted to assess their short-term prediction accuracy. The results show that state space model predictions are more accurate with notably smaller root mean square errors than the deep learning forecasting method. The results also indicate that the poorer forecast performance of long short-term memory neural networks occurs in particular when health surveillance data are characterized by high fluctuations of the daily infection records and frequent occurrences of abrupt changes. One important result of this study is the possible relationship between data complexity and forecast accuracy with different models as suggested in the entropy analysis. It is concluded that state space models perform better than long short-term memory networks with highly irregular and more complex surveillance data.
Collapse
|
38
|
Kumar S, Sharma R, Tsunoda T, Kumarevel T, Sharma A. Forecasting the spread of COVID-19 using LSTM network. BMC Bioinformatics 2021; 22:316. [PMID: 34112086 PMCID: PMC8190741 DOI: 10.1186/s12859-021-04224-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The novel coronavirus (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2, and within a few months, it has become a global pandemic. This forced many affected countries to take stringent measures such as complete lockdown, shutting down businesses and trade, as well as travel restrictions, which has had a tremendous economic impact. Therefore, having knowledge and foresight about how a country might be able to contain the spread of COVID-19 will be of paramount importance to the government, policy makers, business partners and entrepreneurs. To help social and administrative decision making, a model that will be able to forecast when a country might be able to contain the spread of COVID-19 is needed. RESULTS The results obtained using our long short-term memory (LSTM) network-based model are promising as we validate our prediction model using New Zealand's data since they have been able to contain the spread of COVID-19 and bring the daily new cases tally to zero. Our proposed forecasting model was able to correctly predict the dates within which New Zealand was able to contain the spread of COVID-19. Similarly, the proposed model has been used to forecast the dates when other countries would be able to contain the spread of COVID-19. CONCLUSION The forecasted dates are only a prediction based on the existing situation. However, these forecasted dates can be used to guide actions and make informed decisions that will be practically beneficial in influencing the real future. The current forecasting trend shows that more stringent actions/restrictions need to be implemented for most of the countries as the forecasting model shows they will take over three months before they can possibly contain the spread of COVID-19.
Collapse
Affiliation(s)
- Shiu Kumar
- School of Electrical and Electronics Engineering, Fiji National University, Suva, Fiji
| | - Ronesh Sharma
- School of Electrical and Electronics Engineering, Fiji National University, Suva, Fiji
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510 Japan
| | - Thirumananseri Kumarevel
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Alok Sharma
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510 Japan
- Institute for Integrated and Intelligent Systems, Griffith University, Nathan, Brisbane, QLD Australia
| |
Collapse
|