1
|
Liu C, Wong PY, Barua N, Li B, Wong HY, Zhang N, Chow SKH, Wong SH, Yu J, Ip M, Cheung WH, Duque G, Brochhausen C, Sung JJY, Wong RMY. From Clinical to Benchside: Lacticaseibacillus and Faecalibacterium Are Positively Associated With Muscle Health and Alleviate Age-Related Muscle Disorder. Aging Cell 2025:e14485. [PMID: 39829204 DOI: 10.1111/acel.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025] Open
Abstract
Sarcopenia is an age-related muscle disorder that increases risks of adverse clinical outcomes, but its treatments are still limited. Gut microbiota is potentially associated with sarcopenia, and its role is still unclear. To investigate the role of gut microbiota in sarcopenia, we first compared gut microbiota and metabolites composition in old participants with or without sarcopenia. Fecal microbiota transplantation (FMT) from human donors to antibiotic-treated recipient mice was then performed. Specific probiotics and their mechanisms to treat aged mice were identified. Old people with sarcopenia had different microbial composition and metabolites, including Paraprevotella, Lachnospira, short-chain fatty acids, and purine. After FMT, mice receiving microbes from people with sarcopenia displayed lower muscle mass and strength compared with those receiving microbes from non-sarcopenic donors. Lacticaseibacillus rhamnosus (LR) and Faecalibacterium prausnitzii (FP) were positively related to muscle health of old people, and enhanced muscle mass and function of aged mice. Transcriptomics showed that genes related to tricarboxylic acid cycle (TCA) were enriched after treatments. Metabolic analysis showed increased substrates of TCA cycle in both LR and FP supernatants. Muscle mitochondria density, ATP content, NAD+/NADH, mitochondrial dynamics and biogenesis proteins, as well as colon tight junction proteins of aged mice were improved by both probiotics. LR and the combination of two probiotics also benefit intestinal immune health by reducing CD8+ IFNγ+ T cells. Gut microbiota dysbiosis is a pathogenesis of sarcopenia, and muscle-related probiotics could alleviate age-related muscle disorders mainly through mitochondria improvement. Further clinical translation is warranted.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Yan Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nilakshi Barua
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Baoqi Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hei Yuet Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ning Zhang
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Kwoon Ho Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gustavo Duque
- Bone, Muscle & Geroscience Research Group, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Christoph Brochhausen
- Institute of Pathology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Joseph Jao Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Lv L, Maimaitiming M, Yang J, Xia S, Li X, Wang P, Liu Z, Wang CY. Quinazolinone Derivative MR2938 Protects DSS-Induced Barrier Dysfunction in Mice Through Regulating Gut Microbiota. Pharmaceuticals (Basel) 2025; 18:123. [PMID: 39861184 PMCID: PMC11768254 DOI: 10.3390/ph18010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Ulcerative colitis (UC), a chronic inflammatory bowel disease (IBD), is characterized by colorectal immune infiltration and significant microbiota compositional changes. Gut microbiota homeostasis is necessary to maintain the healthy state of humans. MR2938, a quinazolin-4(3H)-one derivative derived from the marine natural product penipanoid C, alleviated DSS-induced colitis in a dose-dependent manner. Herein, we aimed to investigate the impact of MR2938 on the gut microbiota in dextran sodium sulfate (DSS)-induced colitis in mice and to elucidate the role of the gut microbiota in the therapeutic mechanism of MR2938 for alleviating colitis. Methods: Acute colitis was induced with DSS in mice. Mice were administered with 100 mg/kg or 50 mg/kg of MR2938. Cecal content was also preserved in liquid nitrogen and subsequently analyzed following 16S RNA sequencing. Antibiotic cocktail-induced microbiome depletion was performed to further investigate the relationship between MR2938 and gut microbiota. The inflammatory factor levels were performed by quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA). Alcian blue staining and immunofluorescence were used to estimate the intestinal barrier. Results: The 16S rRNA sequencing revealed microbiota modulation by MR2938. Compared with the model group, the 100 mg/kg MR2938 group was associated with higher abundances of Entercoccus and a lower abundance of Staphylococcus, while the 50 mg/kg MR2938 group was associated with higher abundances of Lactobacillus and a lower abundance of Staphylococcus. The antibiotic-mediated microbiota depletion experiments demonstrated that the gut microbiota primarily contributed to barrier function protection, with little impact on inflammatory factor levels during the MR2938 treatment. Conclusions: These findings suggest that intestinal flora play a crucial role in MR2938's therapeutic mechanism for alleviating colitis.
Collapse
Affiliation(s)
- Ling Lv
- MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China (Z.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Mireguli Maimaitiming
- MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China (Z.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jichen Yang
- MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China (Z.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Shuli Xia
- MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China (Z.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xin Li
- MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China (Z.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Pingyuan Wang
- MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China (Z.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhiqing Liu
- MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China (Z.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chang-Yun Wang
- MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China (Z.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Sarra F, Paocic D, Zöchling A, Gregor A, Auñon-Lopez A, Pignitter M, Duszka K. Gut microbiota, dietary taurine, and fiber shift taurine homeostasis in adipose tissue of calorie-restricted mice to impact fat loss. J Nutr Biochem 2024; 134:109720. [PMID: 39103106 DOI: 10.1016/j.jnutbio.2024.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Previously, we demonstrated that caloric restriction (CR) stimulates the synthesis, conjugation, secretion, and deconjugation of taurine and bile acids in the intestine, as well as their reuptake. Given taurine's potent antiobesogenic properties, this study aimed to assess whether the CR-induced shift in taurine homeostasis contributes to adipose tissue loss. To verify that, male C57Bl/6 mice were subjected to 20% CR or ad libitum feeding, with variations in cage bedding and gut microbiota conditions. Additional groups received taurine supplementation or were fed a low-taurine diet (LTD). The results showed that in CR animals, taurine derived from the intestine was preferentially trafficked to epididymal white adipose tissue (eWAT) over other tested organs. Besides increased levels of taurine transporter TauT, gene expression of Cysteine dioxygenase (Cdo) involved in taurine synthesis was upregulated in CR eWAT. Taurine concentration in adipocytes was inversely correlated with fat pad weight of CR mice. Different types of cage bedding did not impact eWAT taurine levels; however, the lack of bedding and consumption of a diet high in soluble fiber did. Depleting gut microbiota with antibiotics or inhibiting bile salt hydrolase (BSH) activity reduced WAT taurine concentration in CR mice. Taurine supplementation increased taurine levels in WAT and brown adipose tissue (BAT), promoting fat loss in CR animals. LTD consumption blunted WAT loss in CR animals, with negligible impact on BAT. This study provides multiple insights into taurine's role in CR-triggered fat loss and describes a novel communication path between the liver, gut, microbiota, and WAT, with taurine acting as a messenger.
Collapse
Affiliation(s)
- Filomena Sarra
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Daniela Paocic
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Andrea Zöchling
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - András Gregor
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Faculty of Chemistry, Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Bohm MS, Ramesh AV, Pierre JF, Cook KL, Murphy EA, Makowski L. Fecal microbial transplants as investigative tools in cancer. Am J Physiol Gastrointest Liver Physiol 2024; 327:G711-G726. [PMID: 39301964 PMCID: PMC11559651 DOI: 10.1152/ajpgi.00171.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
The gut microbiome plays a critical role in the development, progression, and treatment of cancer. As interest in microbiome-immune-cancer interactions expands, the prevalence of fecal microbial transplant (FMT) models has increased proportionally. However, current literature does not provide adequate details or consistent approaches to allow for necessary rigor and experimental reproducibility. In this review, we evaluate key studies using FMT to investigate the relationship between the gut microbiome and various types of cancer. In addition, we will discuss the common pitfalls of these experiments and methods for improved standardization and validation as the field uses FMT with greater frequency. Finally, this review focuses on the impacts of the gut and extraintestinal microbes, prebiotics, probiotics, and postbiotics in cancer risk and response to therapy across a variety of tumor types.NEW & NOTEWORTHY The microbiome impacts the onset, progression, and therapy response of certain types of cancer. Fecal microbial transplants (FMTs) are an increasingly prevalent tool to test these mechanisms that require standardization by the field.
Collapse
Affiliation(s)
- Margaret S Bohm
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Arvind V Ramesh
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Joseph F Pierre
- Department of Nutritional Sciences, College of Agriculture and Life Science, The University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Katherine L Cook
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Liza Makowski
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
5
|
Capocchi JK, Figueroa-Romero C, Dunham SJB, Faraci G, Rothman JA, Whiteson KL, Seo DO, Holtzman DM, Grabrucker S, Nolan YM, Kaddurah-Daouk R, Jett DA. Symposium: What Does the Microbiome Tell Us about Prevention and Treatment of AD/ADRD? J Neurosci 2024; 44:e1295242024. [PMID: 39384409 PMCID: PMC11466070 DOI: 10.1523/jneurosci.1295-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 10/11/2024] Open
Abstract
Alzheimer's disease (AD) and Alzheimer's disease-related dementias (ADRDs) are broad-impact multifactorial neurodegenerative diseases. Their complexity presents unique challenges for developing effective therapies. This review highlights research presented at the 2024 Society for Neuroscience meeting which emphasized the gut microbiome's role in AD pathogenesis by influencing brain function and neurodegeneration through the microbiota-gut-brain axis. This emerging evidence underscores the potential for targeting the gut microbiota to treat AD/ADRD.
Collapse
Affiliation(s)
| | | | | | - Gina Faraci
- University of California, Irvine, Irvine, California 92697
| | - Jason A Rothman
- University of California, Irvine, Irvine, California 92697
- University of California, Riverside, Riverside, California 92521
| | | | - Dong-Oh Seo
- Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - David M Holtzman
- Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Stefanie Grabrucker
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 XF62, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 XF62, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | | | - David A Jett
- National Institute of Neurological Disorders and Stroke, Rockville, Maryland 20852
| |
Collapse
|
6
|
Lane AN, Higashi RM, Fan TWM. Challenges of Spatially Resolved Metabolism in Cancer Research. Metabolites 2024; 14:383. [PMID: 39057706 PMCID: PMC11278851 DOI: 10.3390/metabo14070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.
Collapse
Affiliation(s)
- Andrew N. Lane
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA; (R.M.H.); (T.W.-M.F.)
| | | | | |
Collapse
|
7
|
Nel NH, Haddad EN, Kerver JM, Cassidy-Bushrow AE, Comstock SS. Maternal Body Mass Index Associates with Prenatal Characteristics and Fecal Microbial Communities. Nutrients 2024; 16:1881. [PMID: 38931236 PMCID: PMC11206496 DOI: 10.3390/nu16121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The maternal microbiome plays a vital role in shaping pregnancy outcomes, but there remains a substantial gap in understanding its precise relationships to maternal health, particularly in relation to potential effects of body mass index (BMI) on gut microbial diversity. The aim of this observational study was to assess maternal characteristics in association with pre-pregnancy BMI and to further assess microbial diversity in association with specific maternal characteristics. Eighty-four pregnant women were recruited during their third trimester of pregnancy from various prenatal clinics across the state of Michigan. The participants completed an enrollment questionnaire including self-reported pre-pregnancy BMI; stool samples were collected to assess the fecal microbial community composition. Pre-pregnancy obesity (BMI 30+) was associated (univariably) with antibiotic use before pregnancy, ever smoked, lower education level, and being unmarried. The gut microbiota alpha diversity was significantly different for pregnant women by pre-pregnancy BMI category (normal, overweight, obese). The beta diversity was unique for the gut microbiotas of pregnant women within each BMI category, by education level, and by marital status. Multivariable models revealed that pre-pregnancy BMI, maternal education, marital status, and maternal age were associated with the microbial diversity of the gut microbiota during pregnancy. These results give new insight into the relationship between a woman's microbiome during pregnancy and their prenatal health, along with an understanding of the relationships between socioeconomic factors and microbial diversity.
Collapse
Affiliation(s)
- Nikita H. Nel
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Eliot N. Haddad
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Jean M. Kerver
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Andrea E. Cassidy-Bushrow
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI 48202, USA
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Roubalová R, Procházková P, Kovářová T, Ježková J, Hrnčíř T, Tlaskalová-Hogenová H, Papežová H. Influence of the gut microbiome on appetite-regulating neuropeptides in the hypothalamus: Insight from conventional, antibiotic-treated, and germ-free mouse models of anorexia nervosa. Neurobiol Dis 2024; 193:106460. [PMID: 38432539 DOI: 10.1016/j.nbd.2024.106460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Recent research highlights the profound impact of the gut microbiome on neuropsychiatric disorders, shedding light on its potential role in shaping human behavior. In this study, we investigate the role of the gut microbiome in appetite regulation using activity-based anorexia (ABA) mouse model of anorexia nervosa (AN) - a severe eating disorder with significant health consequences. ABA was induced in conventional, antibiotic-treated, and germ-free mice. Our results show the clear influence of the gut microbiome on the expression of four orexigenic (neuropeptide Y, agouti-related peptide, melanin-concentrating hormone, and orexin) and four anorexigenic peptides (cocaine- and amphetamine-regulated transcript, corticotropin-releasing hormone, thyrotropin-releasing hormone, and pro-opiomelanocortin) in the hypothalamus. Additionally, we assessed alterations in gut barrier permeability. While variations were noted in germ-free mice based on feeding and activity, they were not directly attributable to the gut microbiome. This research emphasizes that the gut microbiome is a pivotal factor in AN's appetite regulation beyond just dietary habits or physical activity.
Collapse
Affiliation(s)
- Radka Roubalová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Petra Procházková
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Kovářová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Janet Ježková
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Hrnčíř
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Helena Tlaskalová-Hogenová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Papežová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
9
|
Liu F, Hu L, Sheng J, Sun Y, Xia Q, Tang Y, Jiang P, Wei S, Hu J, Lin H, Xu Z, Guo W, Gu Y, Feng N. Can antibiotics for enteritis or for urinary tract infection disrupt the urinary microbiota in rats? Front Cell Infect Microbiol 2023; 13:1169909. [PMID: 37448775 PMCID: PMC10338079 DOI: 10.3389/fcimb.2023.1169909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/08/2023] [Indexed: 07/15/2023] Open
Abstract
Background To establish antibiotic preregimes and administration routes for studies on urinary microbiota. Methods and materials Antibiotics for enteritis (Abx-enteritis) and UTIs (Abx-UTI) were administered via gavage and/or urinary catheterisation (UC) for 1 and/or 2 weeks. The effects of these Abx on the urinary microbiota of rats were examined via 16S rRNA sequencing and urine culture, including anaerobic and aerobic culture. Additionally, the safety of the Abx was examined. Results Abx-enteritis/Abx-UTI (0.5 g/L and 1 g/L) administered via gavage did not alter the microbial community and bacterial diversity in the urine of rats (FDR > 0.05); however, Abx-UTI (1 g/L) administered via UC for 1 and 2 weeks altered the urinary microbial community (FDR < 0.05). Rats administered Abx-UTI (1 g/L) via UC for 1 week demonstrated a distinct urinary microbiota in culture. Abx-enteritis/Abx-UTI administered via gavage disrupted the microbial community and reduced bacterial diversity in the faeces of rats (FDR < 0.05), and Abx-UTI administered via UC for 2 weeks (FDR < 0.05) altered the fecal microbiota. Abx-UTI (1 g/L) administered via UC did not alter safety considerations. In addition, we noticed that UC did not induce infections and injuries to the bladder and kidney tissues. Conclusions Administration of Abx-UTI via UC for 1 week can be considered a pre-treatment option while investigating the urinary microbiota.
Collapse
Affiliation(s)
- Fengping Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
- Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Lei Hu
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jiayi Sheng
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yifan Sun
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Qiang Xia
- Department of Urology, Wuxi 9 People’s Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Yifan Tang
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Peng Jiang
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Shichao Wei
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jialin Hu
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Hao Lin
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Zhenyi Xu
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Wei Guo
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yifeng Gu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
- Jiangnan University Medical Center, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Ritter K, Vetter D, Wernersbach I, Schwanz T, Hummel R, Schäfer MKE. Pre-traumatic antibiotic-induced microbial depletion reduces neuroinflammation in acute murine traumatic brain injury. Neuropharmacology 2023:109648. [PMID: 37385435 DOI: 10.1016/j.neuropharm.2023.109648] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
The connection between dysbiosis of the gut microbiome and diseases and injuries of the brain has attracted considerable interest in recent years. Interestingly, antibiotic-induced microbial dysbiosis has been implicated in the pathogenesis of traumatic brain injury (TBI), while early administration of antibiotics associates with improved survival in TBI patients. In animal models of TBI, short- or long-term administration of antibiotics, both peri- or post-operatively, were shown to induce gut microbiome dysbiosis but also anti-inflammatory and neuroprotective effects. However, the acute consequences of microbial dysbiosis on TBI pathogenesis after discontinuation of antibiotic treatment are elusive. In this study, we tested whether pre-traumatic antibiotic-induced microbial depletion by vancomycin, amoxicillin, and clavulanic acid affects pathogenesis during the acute phase of TBI in adult male C57BL/6 mice. Pre-traumatic microbiome depletion did not affect neurological deficits over 72 h post injury (hpi) and brain histopathology, including numbers of activated astrocytes and microglia, at 72 hpi. However, astrocytes and microglia were smaller after pre-traumatic microbiome depletion compared to vehicle treatment at 72hpi, indicating less inflammatory activation. Accordingly, TBI-induced gene expression of the inflammation markers Interleukin-1β, complement component C3, translocator protein TSPO and the major histocompatibility complex MHC2 was attenuated in microbiome-depleted mice along with reduced Immunoglobulin G extravasation as a proxy of blood-brain barrier (BBB) impairment. These results suggest that the gut microbiome contributes to early neuroinflammatory responses to TBI but does not have a significant impact on brain histopathology and neurological deficits.
Collapse
Affiliation(s)
- Katharina Ritter
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Mainz, Germany.
| | - Diana Vetter
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Mainz, Germany.
| | - Isa Wernersbach
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Mainz, Germany.
| | - Thomas Schwanz
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany.
| | - Regina Hummel
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Mainz, Germany.
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Mainz, Germany; Research Center for Immunotherapy (FZI), Germany; Focus Program Translational Neurosciences (FTN), Germany.
| |
Collapse
|
11
|
Bongers KS, Chanderraj R, Woods RJ, McDonald RA, Adame MD, Falkowski NR, Brown CA, Baker JM, Winner KM, Fergle DJ, Hinkle KJ, Standke AK, Vendrov KC, Young VB, Stringer KA, Sjoding MW, Dickson RP. The Gut Microbiome Modulates Body Temperature Both in Sepsis and Health. Am J Respir Crit Care Med 2023; 207:1030-1041. [PMID: 36378114 PMCID: PMC10112447 DOI: 10.1164/rccm.202201-0161oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 11/15/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Among patients with sepsis, variation in temperature trajectories predicts clinical outcomes. In healthy individuals, normal body temperature is variable and has decreased consistently since the 1860s. The biologic underpinnings of this temperature variation in disease and health are unknown. Objectives: To establish and interrogate the role of the gut microbiome in calibrating body temperature. Methods: We performed a series of translational analyses and experiments to determine whether and how variation in gut microbiota explains variation in body temperature in sepsis and in health. We studied patient temperature trajectories using electronic medical record data. We characterized gut microbiota in hospitalized patients using 16S ribosomal RNA gene sequencing. We modeled sepsis using intraperitoneal LPS in mice and modulated the microbiome using antibiotics, germ-free, and gnotobiotic animals. Measurements and Main Results: Consistent with prior work, we identified four temperature trajectories in patients hospitalized with sepsis that predicted clinical outcomes. In a separate cohort of 116 hospitalized patients, we found that the composition of patients' gut microbiota at admission predicted their temperature trajectories. Compared with conventional mice, germ-free mice had reduced temperature loss during experimental sepsis. Among conventional mice, heterogeneity of temperature response in sepsis was strongly explained by variation in gut microbiota. Healthy germ-free and antibiotic-treated mice both had lower basal body temperatures compared with control animals. The Lachnospiraceae family was consistently associated with temperature trajectories in hospitalized patients, experimental sepsis, and antibiotic-treated mice. Conclusions: The gut microbiome is a key modulator of body temperature variation in both health and critical illness and is thus a major, understudied target for modulating physiologic heterogeneity in sepsis.
Collapse
Affiliation(s)
| | - Rishi Chanderraj
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
- Medicine Service, Infectious Diseases Section, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Robert J. Woods
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
- Medicine Service, Infectious Diseases Section, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
- Center for Computational Medicine and Bioinformatics and
| | | | - Mark D. Adame
- Division of Pulmonary and Critical Care Medicine and
| | | | - Christopher A. Brown
- Division of Pulmonary and Critical Care Medicine and
- Institute for Research on Innovation and Science, Institute for Social Research
| | - Jennifer M. Baker
- Division of Pulmonary and Critical Care Medicine and
- Department of Microbiology and Immunology, Medical School
| | - Katherine M. Winner
- Division of Pulmonary and Critical Care Medicine and
- Department of Microbiology and Immunology, Medical School
| | | | | | - Alexandra K. Standke
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Kimberly C. Vendrov
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Vincent B. Young
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
- Department of Microbiology and Immunology, Medical School
| | - Kathleen A. Stringer
- Division of Pulmonary and Critical Care Medicine and
- Department of Clinical Pharmacy, College of Pharmacy, and
- Weil Institute for Critical Care Research & Innovation, Ann Arbor, Michigan
| | - Michael W. Sjoding
- Division of Pulmonary and Critical Care Medicine and
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, Michigan; and
- Weil Institute for Critical Care Research & Innovation, Ann Arbor, Michigan
| | - Robert P. Dickson
- Division of Pulmonary and Critical Care Medicine and
- Department of Microbiology and Immunology, Medical School
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, Michigan; and
| |
Collapse
|
12
|
Chew W, Lim YP, Lim WS, Chambers ES, Frost G, Wong SH, Ali Y. Gut-muscle crosstalk. A perspective on influence of microbes on muscle function. Front Med (Lausanne) 2023; 9:1065365. [PMID: 36698827 PMCID: PMC9868714 DOI: 10.3389/fmed.2022.1065365] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Our gastrointestinal system functions to digest and absorb ingested food, but it is also home to trillions of microbes that change across time, nutrition, lifestyle, and disease conditions. Largely commensals, these microbes are gaining prominence with regards to how they collectively affect the function of important metabolic organs, from the adipose tissues to the endocrine pancreas to the skeletal muscle. Muscle, as the biggest utilizer of ingested glucose and an important reservoir of body proteins, is intricately linked with homeostasis, and with important anabolic and catabolic functions, respectively. Herein, we provide a brief overview of how gut microbiota may influence muscle health and how various microbes may in turn be altered during certain muscle disease states. Specifically, we discuss recent experimental and clinical evidence in support for a role of gut-muscle crosstalk and include suggested underpinning molecular mechanisms that facilitate this crosstalk in health and diseased conditions. We end with a brief perspective on how exercise and pharmacological interventions may interface with the gut-muscle axis to improve muscle mass and function.
Collapse
Affiliation(s)
- Weixuan Chew
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yen Peng Lim
- Institute of Geriatrics and Active Aging, Tan Tock Seng Hospital, Singapore, Singapore,Department of Nutrition and Dietetics, Tan Tock Seng Hospital, National Healthcare Group, Singapore, Singapore
| | - Wee Shiong Lim
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Institute of Geriatrics and Active Aging, Tan Tock Seng Hospital, Singapore, Singapore
| | - Edward S. Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gary Frost
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Sunny Hei Wong
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, Singapore, Singapore
| | - Yusuf Ali
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Singapore General Hospital, Singapore Eye Research Institute (SERI), Singapore, Singapore,Clinical Research Unit, Khoo Teck Puat Hospital, National Healthcare Group, Singapore, Singapore,*Correspondence: Yusuf Ali ✉
| |
Collapse
|
13
|
Barnes KB, Bayliss M, Davies C, Richards MI, Laws TR, Vente A, Harding SV. Efficacy of finafloxacin in a murine model of inhalational glanders. Front Microbiol 2022; 13:1057202. [PMID: 36504783 PMCID: PMC9730244 DOI: 10.3389/fmicb.2022.1057202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Burkholderia mallei, the causative agent of glanders, is principally a disease of equines, although it can also infect humans and is categorized by the U.S. Centers for Disease Control and Prevention as a category B biological agent. Human cases of glanders are rare and thus there is limited information on treatment. It is therefore recommended that cases are treated with the same therapies as used for melioidosis, which for prophylaxis, is co-trimoxazole (trimethoprim/sulfamethoxazole) or co-amoxiclav (amoxicillin/clavulanic acid). In this study, the fluoroquinolone finafloxacin was compared to co-trimoxazole as a post-exposure prophylactic in a murine model of inhalational glanders. BALB/c mice were exposed to an aerosol of B. mallei followed by treatment with co-trimoxazole or finafloxacin initiated at 24 h post-challenge and continued for 14 days. Survival at the end of the study was 55% or 70% for mice treated with finafloxacin or co-trimoxazole, respectively, however, this difference was not significant. However, finafloxacin was more effective than co-trimoxazole in controlling bacterial load within tissues and demonstrating clearance in the liver, lung and spleen following 14 days of therapy. In summary, finafloxacin should be considered as a promising alternative treatment following exposure to B. mallei.
Collapse
Affiliation(s)
- Kay B. Barnes
- Defence Science and Technology Laboratory, Salisbury, United Kingdom,*Correspondence: Kay B. Barnes,
| | - Marc Bayliss
- Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Carwyn Davies
- Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Mark I. Richards
- Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Thomas R. Laws
- Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | | | - Sarah V. Harding
- Defence Science and Technology Laboratory, Salisbury, United Kingdom,Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
14
|
Vieceli T, Tejada S, Martinez-Reviejo R, Pumarola T, Schrenzel J, Waterer GW, Rello J. Impact of air pollution on respiratory microbiome: A narrative review. Intensive Crit Care Nurs 2022. [DOI: 10.1016/j.iccn.2022.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Sharma P, Silva C, Pfreundschuh S, Ye H, Sampath H. Metabolic protection by the dietary flavonoid 7,8-dihydroxyflavone requires an intact gut microbiome. Front Nutr 2022; 9:987956. [PMID: 36061902 PMCID: PMC9428675 DOI: 10.3389/fnut.2022.987956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background 7,8-dihydroxyflavone (DHF) is a naturally occurring flavonoid found in Godmania, Tridax, and Primula species that confers protection against high-fat diet (HFD) induced metabolic pathologies selectively in female mice. We have previously reported that this metabolic protection is associated with early and stable remodeling of the intestinal microbiome, evident in female but not male DHF-supplemented mice. Early changes in the gut microbiome in female DHF-fed mice were highly predictive of subsequent metabolic protection, suggesting a causative association between the gut microbiome and the metabolic effects of DHF. Objective To investigate a causal association between the gut microbiome and the metabolic effects of DHF using a model of antibiotic-induced gut microbiome ablation. Materials and methods Age-matched male and female C57Bl6/J mice were given ad libitum access to HFD and drinking water containing vehicle or DHF for 12 weeks. For antibiotic (Abx) treatment, female mice were given drinking water containing a cocktail of antibiotics for 2 weeks prior to HFD feeding and throughout the feeding period. Metabolic phenotyping consisted of longitudinal assessments of body weights, body composition, food, and water intake, as well as measurement of energy expenditure, glucose tolerance, and plasma and hepatic lipids. Protein markers mediating the cellular effects of DHF were assessed in brown adipose tissue (BAT) and skeletal muscle. Results Metabolic protection conferred by DHF in female HFD-fed mice was only apparent in the presence of an intact gut microbiome. Abx-treated mice were not protected from HFD-induced obesity by DHF administration. Further, tissue activation of the tropomyosin-related kinase receptor B (TrkB) receptor, which has been attributed to the biological activity of DHF, was lost upon gut microbiome ablation, indicating a requirement for microbial “activation” of DHF for its systemic effects. In addition, we report for the first time that DHF supplementation significantly activates TrkB in BAT of female, but not male, mice uncovering a novel target tissue of DHF. DHF supplementation also increased uncoupling protein 1 (UCP1) and AMP-activated protein kinase (AMPK) protein in BAT, consistent with protection from diet-induced obesity. Conclusion These results establish for the first time a requirement for the gut microbiome in mediating the metabolic effects of DHF in female mice and uncover a novel target tissue that may mediate these sexually-dimorphic protective effects.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
| | - Camila Silva
- Department of Biotechnology, Rutgers University, New Brunswick, NJ, United States
| | - Sarah Pfreundschuh
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Hong Ye
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
- *Correspondence: Harini Sampath,
| |
Collapse
|