1
|
Phokasem P, Disayathanoowat T, Chantaphanwattana T, Sinpoo C, Chen YP, Evans JD, Lee JH, Krongdang S. Comparative toxicity of oral exposure to paraquat: Survival rates and gene expression in two honey bees species; Apis mellifera and Apis cerana. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125026. [PMID: 39326830 DOI: 10.1016/j.envpol.2024.125026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Honey bees provide vital pollination services to agricultural crops and wild plants worldwide. Unfortunately, the misuse and overuse of pesticides in agricultural production have led to an increase in incidents harming honey bees in recent years. Among the commonly utilized bee species in beekeeping are Apis cerana and Apis mellifera, with wild A. cerana populations widely dispersed in forests, contributing substantially to ecosystem balance. Yet, the impact of paraquat, a toxic herbicide, on A. cerana remains largely unexplored. This study aims to address this gap by examining acute exposure endpoints based on mortality represented by median lethal doses (LD50 values) of paraquat, survival rates, and gene expression patterns between the A. cerana and A. mellifera. The findings revealed that A. cerana exhibits greater sensitivity to paraquat compared to A. mellifera. The acute oral LD50 values for A. cerana were 5.85, 1.74, and 1.21 μg/bee at 24, 48, and 72 h, respectively, whereas the corresponding values for A. mellifera were 104.00, 11.00, and 6.41 μg/bee. Further, the study demonstrated significant upregulation of the detoxification (antioxidative) enzymes SOD1, CAT, and LLDH-X2 in both A. mellifera and A. cerana following exposure to the lethal dose of paraquat. However, SOD2 expression was notably downregulated in both species, indicating potential mitochondrial damage. These findings suggest that while honey bees initiate activate defense mechanisms against oxidative damage, paraquat exposure may still impair mitochondrial function. Paraquat was found to be moderately toxic to A. mellifera but highly toxic to A. cerana, indicating the importance of screening multiple bee species when assessing the risks of chemical exposure. This research provides a rare comparative analysis of chemical stress effects on morbidity and gene expression in two different honey bee species, establishing a foundational framework for risk assessment and the regulation of herbicide risks to pollinating insects.
Collapse
Affiliation(s)
- Patcharin Phokasem
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMARTBEE SDGs), Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMARTBEE SDGs), Chiang Mai University, Chiang Mai, 50200, Thailand.
| | | | - Chainarong Sinpoo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMARTBEE SDGs), Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Yan Ping Chen
- US Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, 20705, USA.
| | - Jay D Evans
- US Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, 20705, USA.
| | - Ji-Ho Lee
- School of Natural Resources and Environmental Science, Department of Biological Environment, Kangwon National University, Chuncheon, Gangwon State, 24341, Republic of Korea.
| | - Sasiprapa Krongdang
- US Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, 20705, USA; Faculty of Science and Social Sciences, Burapha University, Sa Kaeo Campus, Sa Kaeo, 27160, Thailand.
| |
Collapse
|
2
|
De Souza DA, Feken M, Tomé HVV, Schmehl DR. Honey bee larval toxicity study designs: Applicability of the current study protocols and endpoints as a predictor of pesticide hazard for pollinators. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2283-2293. [PMID: 39110004 DOI: 10.1002/ieam.4982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 10/18/2024]
Abstract
The assessment of pesticide risks to bees in North America currently relies in part on Tier 1 honey bee laboratory toxicity studies to support the registration and registration review processes for crop protection chemicals. For immature stages, the studies follow two standardized test designs recommended by the Organization for Economic Cooperation (OECD), evaluating acute (seven-day single-dose, TG OECD 237) and chronic (22-day repeated-dose, GD OECD 239) toxicity in bee larvae. In this article, we aim to evaluate the current approach for generating and interpreting honey bee larval toxicity data, enhancing pesticide risk assessment for pollinators. First, by considering that the repeated-dose larval study covers all stages of honey bee brood development up to adult emergence, we compared endpoints (larval LD/ED50 and LC/EC50 values) from seven-day acute exposure studies with the 22-day chronic exposure studies. Our goal was to identify the study design offering greater sensitivity in assessing pesticide toxicity to immature bees. Our second objective involved analyzing available weight data from emerged adults and comparing it to survival endpoints (e.g., NOEL and LD50) to determine if the weight after adult emergence would accurately represent a sensitive indicator of pesticide effects on developing honey bees. Our analysis determined that the use of a single 22-day chronic exposure study adequately covers all immature stages and that the toxicity values based on cumulative dose are more accurate and representative measures of exposure for immature bees than using endpoints based on estimated daily doses. Furthermore, our analysis suggests that measuring the weight of emerged adults was a more sensitive indicator than mortality of treatment-related effects in 22% of the compounds included in our analysis. Here we also discuss the importance of standardized protocols for proper collection of weight after emergence and the need for further discussion on the relevance of this parameter at risk assessment scheme. Integr Environ Assess Manag 2024;20:2283-2293. © 2024 Pollinator Research Task Force. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Daiana A De Souza
- BASF Corporation, Raleigh, North Carolina, USA
- Pollinator Research Task Force (PRTF), USA
| | - Max Feken
- Pollinator Research Task Force (PRTF), USA
- Syngenta Crop Protection, LLC., Greensboro, North Carolina, USA
| | - Hudson V V Tomé
- Pollinator Research Task Force (PRTF), USA
- FMC Corporation, Newark, Delaware, USA
| | - Daniel R Schmehl
- Pollinator Research Task Force (PRTF), USA
- Bayer Crop Science LP, Chesterfield, Missouri, USA
| |
Collapse
|
3
|
Li L, Wu L, Xu Y, Liu F, Zhao H. Three odorant-binding proteins of small hive beetles, Aethina tumida, participate in the response of bee colony volatiles. Int J Biol Macromol 2024; 278:134905. [PMID: 39173797 DOI: 10.1016/j.ijbiomac.2024.134905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Aethina tumida (small hive beetle, SHB) is a rapidly spreading invasive parasite of bee colonies. The olfactory system plays a key role in insect behavior, and odorant-binding proteins (OBPs) are involved in the first step of the olfactory signal transduction pathway and the detection of host volatiles. However, the olfactory mechanism of OBPs in SHB-localized bee colonies is unclear. In this study, electroantennogram (EAG) and behavioral bioassay showed that only three compounds (2-heptanone, ocimene, and ethyl palmitate) from bee colonies triggered high electrophysiological and behavioral responses. Three antenna-specific OBP genes (OBP6, OBP11, and OBP19) were identified, and they were significantly expressed on adult days 6-7. Furthermore, by combining RNA interference (RNAi) with EAG, olfactometer bioassay, competitive fluorescence binding assays, and molecular docking, we found that these three OBP genes were involved in the recognition of 2-heptanone and ethyl palmitate, and AtumOBP6 is also involved in the recognition of ocimene. These data indicate that AtumOBP6, AtumOBP11, and AtumOBP19 play an important role in the olfactory response to bee colony volatiles. Our results provide new insights into the functions of the OBP families in A. tumida and help to explore more potential target genes for environmentally friendly pest control strategies.
Collapse
Affiliation(s)
- Liangbin Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Lixian Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Yajing Xu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Fang Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China.
| |
Collapse
|
4
|
Wu J, Liu F, Sun J, Wei Q, Kang W, Wang F, Zhang C, Zhao M, Xu S, Han B. Toxic effects of acaricide fenazaquin on development, hemolymph metabolome, and gut microbiome of honeybee (Apis mellifera) larvae. CHEMOSPHERE 2024; 358:142207. [PMID: 38697560 DOI: 10.1016/j.chemosphere.2024.142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Fenazaquin, a potent insecticide widely used to control phytophagous mites, has recently emerged as a potential solution for managing Varroa destructor mites in honeybees. However, the comprehensive impact of fenazaquin on honeybee health remains insufficiently understood. Our current study investigated the acute and chronic toxicity of fenazaquin to honeybee larvae, along with its influence on larval hemolymph metabolism and gut microbiota. Results showed that the acute median lethal dose (LD50) of fenazaquin for honeybee larvae was 1.786 μg/larva, and the chronic LD50 was 1.213 μg/larva. Although chronic exposure to low doses of fenazaquin exhibited no significant effect on larval development, increasing doses of fenazaquin resulted in significant increases in larval mortality, developmental time, and deformity rates. At the metabolic level, high doses of fenazaquin inhibited nucleotide, purine, and lipid metabolism pathways in the larval hemolymph, leading to energy metabolism disorders and physiological dysfunction. Furthermore, high doses of fenazaquin reduced gut microbial diversity and abundance, characterized by decreased relative abundance of functional gut bacterium Lactobacillus kunkeei and increased pathogenic bacterium Melissococcus plutonius. The disrupted gut microbiota, combined with the observed gut tissue damage, could potentially impair food digestion and nutrient absorption in the larvae. Our results provide valuable insights into the complex and diverse effects of fenazaquin on honeybee larvae, establishing an important theoretical basis for applying fenazaquin in beekeeping.
Collapse
Affiliation(s)
- Jiangli Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengying Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiajing Sun
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiaohong Wei
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weipeng Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Feng Wang
- Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Chenhuan Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Meijiao Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
5
|
Kiljanek T. Application of 3D-printed pollen traps as a useful tool for exposure and risk assessment of pesticide residues on bumblebees. CHEMOSPHERE 2024; 348:140748. [PMID: 37992905 DOI: 10.1016/j.chemosphere.2023.140748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
The study was designed to test the feasibility of using 3D-printed pollen traps for long-term monitoring of Bombus terrestris colonies' exposure to pesticide residues in pollen loads collected by them, along with an assessment of the resulting risks to the bumblebee's adults, larvae, and queens. Bumblebee colonies were placed in the vicinity of flowering orchards, winter oilseed rape, allotments, or home gardens for 6 weeks of the experiment. Pollen traps printed in 3D technology were installed in the hive inlets. The weight of bumblebee pollen loads obtained using pollen traps was in the range of 0.036-5.83 g. Pollen load samples were analyzed for residues of up to 261 pesticides and their metabolites by liquid and gas chromatography techniques coupled to tandem mass spectrometry (LC-MS/MS and GC-MS/MS). Residues of 18 fungicides, 12 herbicides, 6 insecticides, and an acaricide were detected. Herbicide - pendimethalin, fungicide - thiophanate-methyl, and insecticide - chlorpyrifos-ethyl were the most commonly detected pesticides. Chlorpyrifos and thiacloprid residues were detected in pollen load samples in the next year after their ban from use as plant protection products in the European Union. The risk of acute or chronic effects was assessed as negligible or low, although the chronic risk of bumblebee queens to insecticide chlorpyrifos and the acute risk of larvae exposed to acaricide fenpyroximate could be interpreted as moderate. The risk of sublethal effects related to chronic exposure of adult bumblebees and queens to pollen loads contaminated by chlorpyrifos-ethyl and cypermethrin cannot be excluded. The risk of chronic toxicity or sublethal effects may be particularly relevant for bumblebee queens, especially during their foraging in the initial period of establishing a new colony.
Collapse
Affiliation(s)
- Tomasz Kiljanek
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Pulawy, Poland.
| |
Collapse
|
6
|
Jütte T, Wernecke A, Klaus F, Pistorius J, Dietzsch AC. Risk assessment requires several bee species to address species-specific sensitivity to insecticides at field-realistic concentrations. Sci Rep 2023; 13:22533. [PMID: 38110412 PMCID: PMC10728145 DOI: 10.1038/s41598-023-48818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
In the European registration process, pesticides are currently mainly tested on the honey bee. Since sensitivity data for other bee species are lacking for the majority of xenobiotics, it is unclear if and to which extent this model species can adequately serve as surrogate for all wild bees. Here, we investigated the effects of field-realistic contact exposure to a pyrethroid insecticide, containing lambda-cyhalothrin, on seven bee species (Andrena vaga, Bombus terrestris, Colletes cunicularius, Osmia bicornis, Osmia cornuta, Megachile rotundata, Apis mellifera) with different life history characteristics in a series of laboratory trials over two years. Our results on sensitivity showed significant species-specific responses to the pesticide at a field-realistic application rate (i.e., 7.5 g a.s./ha). Species did not group into distinct classes of high and low mortality. Bumble bee and mason bee survival was the least affected by the insecticide, and M. rotundata survival was the most affected with all individuals dead 48 h after application. Apis mellifera showed medium mortality compared to the other bee species. Most sublethal effects, i.e. behavioral abnormalities, were observed within the first hours after application. In some of the solitary species, for example O. bicornis and A. vaga, a higher percentage of individuals performed some abnormal behavior for longer until the end of the observation period. While individual bee weight explained some of the observed mortality patterns, differences are likely linked to additional ecological, phylogenetic or toxicogenomic parameters as well. Our results support the idea that honey bee data can be substitute for some bee species' sensitivity and may justify the usage of safety factors. To adequately cover more sensitive species, a larger set of bee species should be considered for risk assessment.
Collapse
Affiliation(s)
- Tobias Jütte
- Institute for Bee Protection, Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Braunschweig, Germany.
| | - Anna Wernecke
- Institute for Bee Protection, Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Braunschweig, Germany
| | - Felix Klaus
- Institute for Bee Protection, Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Braunschweig, Germany
| | - Jens Pistorius
- Institute for Bee Protection, Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Braunschweig, Germany
| | - Anke C Dietzsch
- Institute for Bee Protection, Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Braunschweig, Germany
| |
Collapse
|
7
|
Hester KP, Stoner KA, Eitzer BD, Koethe RW, Lehmann DM. Pesticide residues in honey bee (Apis mellifera) pollen collected in two ornamental plant nurseries in Connecticut: Implications for bee health and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122037. [PMID: 37348699 PMCID: PMC10732578 DOI: 10.1016/j.envpol.2023.122037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Honey bees (Apis mellifera L.) are one of the most important managed pollinators of agricultural crops. While potential effects of agricultural pesticides on honey bee health have been investigated in some settings, risks to honey bees associated with exposures occurring in the plant nursery setting have received little attention. We sought to identify and quantify pesticide levels present in honey bee-collected pollen harvested in two ornamental plant nurseries (i.e., Nursery A and Nursery B) in Connecticut. From June to September 2018, pollen was collected weekly from 8 colonies using bottom-mounted pollen traps. Fifty-five unique pesticides (including related metabolites) were detected: 24 insecticides, 20 fungicides, and 11 herbicides. Some of the pesticide contaminants detected in the pollen had not been applied by the nurseries, indicating that the honey bee colonies did not exclusively forage on pollen at their respective nursery. The average number of pesticides per sample was similar at both nurseries (i.e., 12.9 at Nursery A and 14.2 at Nursery B). To estimate the potential risk posed to honey bees from these samples, we utilized the USEPA's BeeREX tool to calculate risk quotients (RQs) for each pesticide within each sample. The median aggregate RQ for nurse bees was 0.003 at both nurseries, well below the acute risk level of concern (LOC) of ≥0.4. We also calculated RQs for larvae due to their increased sensitivity to certain pesticides. In total, 6 samples had larval RQs above the LOC (0.45-2.51), resulting from the organophosphate insecticide diazinon. Since 2015, the frequency and amount of diazinon detected in pollen increased at one of our study locations, potentially due to pressure to reduce the use of neonicotinoid insecticides. Overall, these data highlight the importance of considering all life stages when estimating potential risk to honey bee colonies from pesticide exposure.
Collapse
Affiliation(s)
- K P Hester
- Center for Public Health and Environmental Assessment, Health and Environmental Effects Assessment Division, Integrated Health Assessment Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - K A Stoner
- Retired, Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - B D Eitzer
- Retired, Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - R W Koethe
- Region 1 Office, Land, Chemicals and Redevelopment Division, RCRA Waste, Underground Storage Tanks and Pesticides Section, U.S. Environmental Protection Agency, Boston, MA, 02109, USA
| | - D M Lehmann
- Center for Public Health and Environmental Assessment, Health and Environmental Effects Assessment Division, Integrated Health Assessment Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
8
|
Hung CC, Yiin LM. Availability of Using Honeybees as Bioindicators of Pesticide Exposure in the Vicinity of Agricultural Environments in Taiwan. TOXICS 2023; 11:703. [PMID: 37624208 PMCID: PMC10458306 DOI: 10.3390/toxics11080703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
While pollinating, honeybees are subject to exposure to a variety of pesticides; with their characteristics of certain foraging distances, they could serve as bioindicators of pesticide exposure in a neighborhood. We conducted a study to assess availability by collecting and analyzing bee samples from 15 apiaries located in East Taiwan and dust samples from the adjacent environment, and by finding relations between both samples. Seventeen pesticides were selected for the analysis using gas or liquid chromatography coupled with mass spectrometry, and eight (three insecticides, two herbicides, and three fungicides) were more frequently detected from bee or dust samples; the levels of these pesticides were mostly under 1000 ng/g. Significant correlation results (r ≅ 0.8) between residue concentrations in bees and in dust suggest that honeybees could be a good bioindicator for exposure to herbicides and fungicides within certain ranges. The pesticide contents of sick/dead bees were much higher than those of healthy counterparts regarding any pesticide type, with the mean total concentrations of 635 ng/g and 176 ng/g, respectively. We conclude that honeybees could be used as bioindicators of pesticide exposure; sick/dead bees could serve as a warning sign of the severity of pesticide pollution.
Collapse
Affiliation(s)
| | - Lih-Ming Yiin
- Department of Public Health, Tzu Chi University, 701, Sec. 3, Zhongyang Road, Hualien City 970374, Taiwan;
| |
Collapse
|
9
|
Odemer R, Friedrich E, Illies I, Berg S, Pistorius J, Bischoff G. Potential Risk of Residues From Neonicotinoid-Treated Sugar Beet Flowering Weeds to Honey Bees (Apis mellifera L.). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1167-1177. [PMID: 36861216 DOI: 10.1002/etc.5602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In 2018 the European Union (EU) banned the three neonicotinoid insecticides imidacloprid, clothianidin (CLO), and thiamethoxam (TMX), but they can still be used if an EU Member State issues an emergency approval. Such an approval went into effect in 2021 for TMX-coated sugar beet seeds in Germany. Usually, this crop is harvested before flowering without exposing non-target organisms to the active ingredient or its metabolites. In addition to the approval, strict mitigation measures were imposed by the EU and the German federal states. One of the measures was to monitor the drilling of sugar beet and its impact on the environment. Hence we took residue samples from different bee and plant matrices and at different dates to fully map beet growth in the German states of Lower Saxony, Bavaria, and Baden-Württemberg. A total of four treated and three untreated plots were surveyed, resulting in 189 samples. Residue data were evaluated using the US Environmental Protection Agency BeeREX model to assess acute and chronic risk to honey bees from the samples, because oral toxicity data are widely available for both TMX and CLO. Within treated plots, we found no residues either in pools of nectar and honey crop samples (n = 24) or dead bee samples (n = 21). Although 13% of beebread and pollen samples and 88% of weed and sugar beet shoot samples were positive, the BeeREX model found no evidence of acute or chronic risk. We also detected neonicotinoid residues in the nesting material of the solitary bee Osmia bicornis, probably from contaminated soil of a treated plot. All control plots were free of residues. Currently, there are insufficient data on wild bee species to allow for an individual risk assessment. In terms of the future use of these highly potent insecticides, therefore, it must be ensured that all regulatory requirements are complied with to mitigate any unintentional exposure. Environ Toxicol Chem 2023;42:1167-1177. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Richard Odemer
- Institute for Bee Protection, Julius Kühn-Institut-Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Elsa Friedrich
- Apicultural State Institute, University of Hohenheim, Stuttgart, Germany
| | - Ingrid Illies
- Institute for Bee Research and Beekeeping, Bavarian State Institute for Viticulture and Horticulture, Veitshöchheim, Germany
| | - Stefan Berg
- Institute for Bee Research and Beekeeping, Bavarian State Institute for Viticulture and Horticulture, Veitshöchheim, Germany
| | - Jens Pistorius
- Institute for Bee Protection, Julius Kühn-Institut-Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Gabriela Bischoff
- Institute for Bee Protection, Julius Kühn-Institut-Federal Research Centre for Cultivated Plants, Berlin, Germany
| |
Collapse
|