1
|
Yuan Y, Sun C, Liu X, Hu L, Wang Z, Li X, Zhang J, Li D, Zhang X, Wu M, Liu L. The Role of Neutrophil Extracellular Traps in Atherosclerosis: From the Molecular to the Clinical Level. J Inflamm Res 2025; 18:4421-4433. [PMID: 40162077 PMCID: PMC11955173 DOI: 10.2147/jir.s507330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
Atherosclerosis is a chronic inflammatory condition that is typified by the deposition of lipids and the subsequent inflammation of medium and large arteries. Neutrophil extracellular traps (NETs) are fibrous meshworks of DNA, histones, and granzymes expelled by activated neutrophils in response to a variety of pathogenic conditions. In addition to their role in pathogen eradication, NETs have been demonstrated to play a pivotal role in the development of atherosclerosis. This article presents a review of the bidirectional interactions in which atherosclerosis-related risk factors stimulate the formation of NETs, which in turn support disease progression. This article emphasizes the involvement of NETs in the various stages of atherogenesis and development, influencing multiple factors such as the vascular endothelium, platelets, the inflammatory milieu, and lipid metabolism. The findings of this study offer new insights and avenues for further investigation into the processes underlying the formation and regulation of the vascular inflammatory microenvironment in atherosclerosis. Finally, potential targeted therapeutic strategies for NETs are discussed to facilitate their progression to clinical practice (Graphical Abstract).
Collapse
Affiliation(s)
- Yongfang Yuan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Changxin Sun
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xinyi Liu
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lanqing Hu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Zeping Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Xiaoya Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Jingyi Zhang
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Dexiu Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Xiaonan Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Min Wu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Longtao Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Ondracek AS, Afonyushkin T, Aszlan A, Taqi S, Koller T, Artner T, Porsch F, Resch U, Sharma S, Scherz T, Spittler A, Haertinger M, Hofbauer TM, Ozsvar-Kozma M, Seidl V, Beitzke D, Krueger M, Testori C, Lang IM, Binder CJ. Malondialdehyde-specific natural IgM inhibit NETosis triggered by culprit site-derived extracellular vesicles from myocardial infarction patients. Eur Heart J 2025; 46:926-939. [PMID: 39215577 PMCID: PMC11887544 DOI: 10.1093/eurheartj/ehae584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/08/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND AIMS Neutrophil extracellular traps (NETs) trigger atherothrombosis during acute myocardial infarction (AMI), but mechanisms of induction remain unclear. Levels of extracellular vesicles (EV) carrying oxidation-specific epitopes (OSE), which are targeted by specific natural immunoglobulin M (IgM), are increased at the culprit site in AMI. This study investigated EV as inducers of NETosis and assessed the inhibitory effect of natural anti-OSE-IgM in this process. METHODS Blood from the culprit and peripheral site of ST-segment elevation myocardial infarction (STEMI) patients (n = 28) was collected, and myocardial function assessed by cardiac magnetic resonance imaging (cMRI) 4 ± 2 days and 195 ± 15 days post-AMI. Extracellular vesicles were isolated from patient plasma and cell culture supernatants for neutrophil stimulation in vitro and in vivo, in the presence of a malondialdehyde (MDA)-specific IgM or an isotype control. NETosis and neutrophil functions were assessed via enzyme-linked immunosorbent assay and fluorescence microscopy. Pharmacological inhibitors were used to map signalling pathways. Neutrophil extracellular trap markers and anti-OSE-IgM were measured by ELISA. RESULTS CD45+ MDA+ EV and NET markers were elevated at the culprit site. Extracellular vesicles induced neutrophil activation and NET formation via TLR4 and PAD4, and mice injected with EV showed increased NETosis. Malondialdehyde-specific IgM levels were inversely associated with citH3 in STEMI patient blood. An MDA-specific IgM inhibited EV-induced NET release in vitro and in vivo. CD45+ MDA+ EV concentrations inversely correlated with left ventricular ejection fraction post-AMI. CONCLUSIONS Culprit site-derived EV induce NETosis, while MDA-specific natural IgM inhibit this effect, potentially impacting outcome after AMI.
Collapse
Affiliation(s)
- Anna S Ondracek
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Taras Afonyushkin
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| | - Adrienne Aszlan
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Soreen Taqi
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| | - Thomas Koller
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| | - Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| | - Ulrike Resch
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute for Genetics and Cologne Excellence Cluster for Aging and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Thomas Scherz
- Department of Dermatology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
| | - Andreas Spittler
- Department of Surgery and Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Maximilian Haertinger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas M Hofbauer
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Maria Ozsvar-Kozma
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| | - Veronika Seidl
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image-guided therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Krueger
- Institute for Genetics and Cologne Excellence Cluster for Aging and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Christoph Testori
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| |
Collapse
|
3
|
Manoj H, Gomes SM, Thimmappa PY, Nagareddy PR, Jamora C, Joshi MB. Cytokine signalling in formation of neutrophil extracellular traps: Implications for health and diseases. Cytokine Growth Factor Rev 2025; 81:27-39. [PMID: 39681501 DOI: 10.1016/j.cytogfr.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Neutrophils, as essential component of the innate immune response, form a crucial part in the defence mechanisms through the release of extracellular traps (NETs). These web-like structures, composed of chromatin and antimicrobial proteins, are essential for the entrapment and inactivation of pathogens. However, either constitutive formation or inefficient clearance of NETs leads to adverse effects such as fibrosis, thrombosis, delayed wound healing and tissue damage in multiple diseases associated with sterile inflammation. This dichotomy casts NETs as both protective agents and harmful factors in several diseases such as autoimmune diseases, metabolic syndromes, systemic infections, and malignancies. Besides microbes and their products, variety of stimulants including pro-inflammatory cytokines induce NETs. The complex interactions and cross talk among the pro-inflammatory cytokines including IL-8, IL-6, GM-CSF, TNF-α, IFNs, and IL-1β activate neutrophils to form NETs and also contributes to a vicious circle of inflammatory cascade, leading to increased inflammation, oxidative stress, and thrombotic events. Emerging evidence indicates that the dysregulated cytokine milieus in diseases, such as diabetes mellitus, obesity, atherosclerosis, stroke, rheumatoid arthritis, and systemic lupus erythematosus, potentiate NETs release, thereby promoting disease development. Thus, neutrophils represent both critical effectors and potential therapeutic targets, underscoring their importance in the context of cytokine-mediated therapies for a spectrum of diseases. In the present review, we describe various cytokines and associated signalling pathways activating NETs formation in different human pathologies. Further, the review identifies potential strategies to pharmacologically modulate cytokine pathways to reduce NETs.
Collapse
Affiliation(s)
- Haritha Manoj
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sarah Michael Gomes
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pooja Yedehalli Thimmappa
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma, OK, USA
| | - Colin Jamora
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh 201314, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
4
|
Liu Z, Dou Y, Lu C, Han R, He Y. Neutrophil extracellular traps in tumor metabolism and microenvironment. Biomark Res 2025; 13:12. [PMID: 39849606 PMCID: PMC11756210 DOI: 10.1186/s40364-025-00731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/11/2025] [Indexed: 01/25/2025] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, web-like formations composed of DNA, histones, and antimicrobial proteins, released by neutrophils. These structures participate in a wide array of physiological and pathological activities, including immune rheumatic diseases and damage to target organs. Recently, the connection between NETs and cancer has garnered significant attention. Within the tumor microenvironment and metabolism, NETs exhibit multifaceted roles, such as promoting the proliferation and migration of tumor cells, influencing redox balance, triggering angiogenesis, and driving metabolic reprogramming. This review offers a comprehensive analysis of the link between NETs and tumor metabolism, emphasizing areas that remain underexplored. These include the interaction of NETs with tumor mitochondria, their effect on redox states within tumors, their involvement in metabolic reprogramming, and their contribution to angiogenesis in tumors. Such insights lay a theoretical foundation for a deeper understanding of the role of NETs in cancer development. Moreover, the review also delves into potential therapeutic strategies that target NETs and suggests future research directions, offering new perspectives on the treatment of cancer and other related diseases.
Collapse
Affiliation(s)
- Zhanrui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanyao Dou
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Bishan hospital of Chongqing medical university, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
5
|
Wang Y, Wang C, Li J. Neutrophil extracellular traps: a catalyst for atherosclerosis. Mol Cell Biochem 2024; 479:3213-3227. [PMID: 38401035 DOI: 10.1007/s11010-024-04931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/26/2024]
Abstract
Neutrophil extracellular traps (NETs) are network-like structures released by activated neutrophils. They consist mainly of double-stranded DNA, histones, and neutrophil granule proteins. Continuous release of NETs in response to external stimuli leads to activation of surrounding platelets and monocytes/macrophages, resulting in damage to endothelial cells (EC) and vascular smooth muscle cells (VSMC). Some clinical trials have demonstrated the association between NETs and the severity and prognosis of atherosclerosis. Furthermore, experimental findings have shed light on the molecular mechanisms by which NETs contribute to atherogenesis. NETs play a significant role in the formation of atherosclerotic plaques. This review focuses on recent advancements in the understanding of the relationship between NETs and atherosclerosis. It explores various aspects, including the formation of NETs in atherosclerosis, clinical trials investigating NET-induced atherosclerosis, the mechanisms by which NETs promote atherogenesis, and the translational implications of NETs. Ultimately, we aim to propose new research directions for the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yinyu Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Cuiping Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Jiayan Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Liaptsi E, Merkouris E, Polatidou E, Tsiptsios D, Gkantzios A, Kokkotis C, Petridis F, Christidi F, Karatzetzou S, Karaoglanis C, Tsagkalidi AM, Chouliaras N, Tsamakis K, Protopapa M, Pantazis-Pergaminelis D, Skendros P, Aggelousis N, Vadikolias K. Targeting Neutrophil Extracellular Traps for Stroke Prognosis: A Promising Path. Neurol Int 2023; 15:1212-1226. [PMID: 37873833 PMCID: PMC10594510 DOI: 10.3390/neurolint15040076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
Stroke has become the first cause of functional disability and one of the leading causes of mortality worldwide. Therefore, it is of crucial importance to develop accurate biomarkers to assess stroke risk and prognosis. Emerging evidence suggests that neutrophil extracellular trap (NET) levels may serve as a valuable biomarker to predict stroke occurrence and functional outcome. NETs are known to create a procoagulant state by serving as a scaffold for tissue factor (TF) and platelets inducing thrombosis by activating coagulation pathways and endothelium. A literature search was conducted in two databases (MEDLINE and Scopus) to trace all relevant studies published between 1 January 2016 and 31 December 2022, addressing the potential utility of NETs as a stroke biomarker. Only full-text articles in English were included. The current review includes thirty-three papers. Elevated NET levels in plasma and thrombi seem to be associated with increased mortality and worse functional outcomes in stroke, with all acute ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage included. Additionally, higher NET levels seem to correlate with worse outcomes after recanalization therapies and are more frequently found in strokes of cardioembolic or cryptogenic origin. Additionally, total neutrophil count in plasma seems also to correlate with stroke severity. Overall, NETs may be a promising predictive tool to assess stroke severity, functional outcome, and response to recanalization therapies.
Collapse
Affiliation(s)
- Eirini Liaptsi
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Ermis Merkouris
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Efthymia Polatidou
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Dimitrios Tsiptsios
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Aimilios Gkantzios
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Christos Kokkotis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece; (C.K.); (M.P.); (D.P.-P.); (N.A.)
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Foteini Christidi
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Stella Karatzetzou
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Christos Karaoglanis
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Anna-Maria Tsagkalidi
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Nikolaos Chouliaras
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Konstantinos Tsamakis
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK;
| | - Maria Protopapa
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece; (C.K.); (M.P.); (D.P.-P.); (N.A.)
| | - Dimitrios Pantazis-Pergaminelis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece; (C.K.); (M.P.); (D.P.-P.); (N.A.)
| | - Panagiotis Skendros
- First Department of Internal Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Nikolaos Aggelousis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece; (C.K.); (M.P.); (D.P.-P.); (N.A.)
| | - Konstantinos Vadikolias
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| |
Collapse
|
7
|
Overmars LM, Mekke JM, van Solinge WW, De Jager SC, Hulsbergen-Veelken CA, Hoefer IE, de Kleijn DP, de Borst GJ, van der Laan SW, Haitjema S. Characteristics of peripheral blood cells are independently related to major adverse cardiovascular events after carotid endarterectomy. ATHEROSCLEROSIS PLUS 2023; 52:32-40. [PMID: 37389152 PMCID: PMC10300576 DOI: 10.1016/j.athplu.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
Background and aims Patients who underwent carotid endarterectomy (CEA) still have a residual risk of 13% of developing a major adverse cardiovascular event (MACE) within 3 years. Inflammatory processes leading up to MACE are not fully understood. Therefore, we examined blood cell characteristics (BCCs), possibly reflecting inflammatory processes, in relation to MACE to identify BCCs that may contribute to an increased risk. Methods We analyzed 75 pretreatment BCCs from the Sapphire analyzer, and clinical data from the Athero-Express biobank in relation to MACE after CEA using Random Survival Forests, and a Generalized Additive Survival Model. To understand biological mechanisms, we related the identified variables to intraplaque hemorrhage (IPH). Results Of 783 patients, 97 (12%) developed MACE within 3 years after CEA. Red blood cell distribution width (RDW) (HR 1.23 [1.02, 1.68], p = 0.022), CV of lymphocyte size (LACV) (HR 0.78 [0.63, 0.99], p = 0.043), neutrophil complexity of the intracellular structure (NIMN) (HR 0.80 [0.64, 0.98], p = 0.033), mean neutrophil size (NAMN) (HR 0.67 [0.55, 0.83], p < 0.001), mean corpuscular volume (MCV) (HR 1.35 [1.09, 1.66], p = 0.005), eGFR (HR 0.65 [0.52, 0.80], p < 0.001); and HDL-cholesterol (HR 0.62 [0.45, 0.85], p = 0.003) were related to MACE. NAMN was related to IPH (OR 0.83 [0.71-0.98], p = 0.02). Conclusions This is the first study to present a higher RDW and MCV and lower LACV, NIMN and NAMN as biomarkers reflecting inflammatory processes that may contribute to an increased risk of MACE after CEA.
Collapse
Affiliation(s)
- L. Malin Overmars
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joost M. Mekke
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Wouter W. van Solinge
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Saskia C.A. De Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Cornelia A.R. Hulsbergen-Veelken
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Imo E. Hoefer
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Dominique P.V. de Kleijn
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Netherlands Heart Institute, Moreelsepark 1, 3511 EP, Utrecht, the Netherlands
| | - Gert J. de Borst
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Saskia Haitjema
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
8
|
Sbrana S, Cecchettini A, Bastiani L, Mazzone A, Vozzi F, Caselli C, Neglia D, Clemente A, Scholte AJHA, Parodi O, Pelosi G, Rocchiccioli S. Association of Circulating Neutrophils with Relative Volume of Lipid-Rich Necrotic Core of Coronary Plaques in Stable Patients: A Substudy of SMARTool European Project. Life (Basel) 2023; 13:life13020428. [PMID: 36836785 PMCID: PMC9958623 DOI: 10.3390/life13020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND AIMS Coronary atherosclerosis is a chronic non-resolving inflammatory process wherein the interaction of innate immune cells and platelets plays a major role. Circulating neutrophils, in particular, adhere to the activated endothelium and migrate into the vascular wall, promoting monocyte recruitment and influencing plaque phenotype and stability at all stages of its evolution. We aimed to evaluate, by flow cytometry, if blood neutrophil number and phenotype-including their phenotypic relationships with platelets, monocytes and lymphocytes-have an association with lipid-rich necrotic core volume (LRNCV), a generic index of coronary plaque vulnerability, in a group of stable patients with chronic coronary syndrome (CCS). METHODS In 55 patients, (68.53 ± 1.07 years of age, mean ± SEM; 71% male), the total LRNCV in each subject was assessed by a quantitative analysis of all coronary plaques detected by computed tomography coronary angiography (CTCA) and was normalized to the total plaque volume. The expression of CD14, CD16, CD18, CD11b, HLA-DR, CD163, CCR2, CCR5, CX3CR1, CXCR4 and CD41a cell surface markers was quantified by flow cytometry. Adhesion molecules, cytokines and chemokines, as well as MMP9 plasma levels, were measured by ELISA. RESULTS On a per-patient basis, LRNCV values were positively associated, by a multiple regression analysis, with the neutrophil count (n°/µL) (p = 0.02), neutrophil/lymphocyte ratio (p = 0.007), neutrophil/platelet ratio (p = 0.01), neutrophil RFI CD11b expression (p = 0.02) and neutrophil-platelet adhesion index (p = 0.01). Significantly positive multiple regression associations of LRNCV values with phenotypic ratios between neutrophil RFI CD11b expression and several lymphocyte and monocyte surface markers were also observed. In the bivariate correlation analysis, a significantly positive association was found between RFI values of neutrophil-CD41a+ complexes and neutrophil RFI CD11b expression (p < 0.0001). CONCLUSIONS These preliminary findings suggest that a sustained increase in circulating neutrophils, together with the up-regulation of the integrin/activation membrane neutrophil marker CD11b may contribute, through the progressive intra-plaque accumulation of necrotic/apoptotic cells exceeding the efferocytosis/anti-inflammatory capacity of infiltrating macrophages and lymphocytes, to the relative enlargement of the lipid-rich necrotic core volume of coronary plaques in stable CAD patients, thus increasing their individual risk of acute complication.
Collapse
Affiliation(s)
- Silverio Sbrana
- CNR Institute of Clinical Physiology, 54100 Massa, Italy
- Correspondence: (S.S.); (S.R.)
| | - Antonella Cecchettini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy
| | - Luca Bastiani
- CNR Institute of Clinical Physiology, 54100 Massa, Italy
| | | | | | | | - Danilo Neglia
- Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | | | | | | | | | - Silvia Rocchiccioli
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy
- Correspondence: (S.S.); (S.R.)
| |
Collapse
|