1
|
Barzegar Behrooz A, Aghanoori MR, Nazari M, Latifi-Navid H, Vosoughian F, Anjomani M, Lotfi J, Ahmadiani A, Eliassi A, Nabavizadeh F, Soleimani E, Ghavami S, Khodagholi F, Fahanik-Babaei J. 40 Hz light preserves synaptic plasticity and mitochondrial function in Alzheimer's disease model. Sci Rep 2024; 14:26949. [PMID: 39506052 DOI: 10.1038/s41598-024-78528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia. Its causes are not fully understood, but it is now known that factors like mitochondrial dysfunction, oxidative stress, and compromised ion channels contribute to its onset and progression. Flickering light therapy has shown promise in AD treatment, though its mechanisms remain unclear. In this study, we used a rat model of streptozotocin (STZ)-induced AD to evaluate the effects of 40 Hz flickering light therapy. Rats received intracerebroventricular (ICV) STZ injections, and 7 days after, they were exposed to 40 Hz flickering light for 15 min daily over seven days. Cognitive and memory functions were assessed using Morris water maze, novel object recognition, and passive avoidance tests. STZ-induced AD rats exhibited cognitive decline, elevated reactive oxygen species, amyloid beta accumulation, decreased serotonin and dopamine levels, and impaired mitochondrial function. However, light therapy prevented these effects, preserving cognitive function and synaptic plasticity. Additionally, flickering light restored mitochondrial metabolites and normalized ATP-insensitive mitochondrial calcium-sensitive potassium (mitoBKCa) channel activity, which was otherwise downregulated in AD rats. Our findings suggest that 40 Hz flickering light therapy could be a promising treatment for neurodegenerative disorders like AD by preserving synaptic and mitochondrial function.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Mohamad-Reza Aghanoori
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary & Alberta Children's Hospital Research Institute, Calgary, AB, T2N 4N1, Canada
| | - Maryam Nazari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Latifi-Navid
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Fatemeh Vosoughian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Anjomani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jabar Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Eliassi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Soleimani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, 41-800, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Manippa V, Nitsche MA, Filardi M, Vilella D, Scianatico G, Logroscino G, Rivolta D. Temporal gamma tACS and auditory stimulation affect verbal memory in healthy adults. Psychophysiology 2024; 61:e14653. [PMID: 39014532 DOI: 10.1111/psyp.14653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
Research suggests a potential of gamma oscillation entrainment for enhancing memory in Alzheimer's disease and healthy subjects. Gamma entrainment can be accomplished with oscillatory electrical, but also sensory stimulation. However, comparative studies between sensory stimulation and transcranial alternating current stimulation (tACS) effects on memory processes are lacking. This study examined the effects of rhythmic gamma auditory stimulation (rAS) and temporal gamma-tACS on verbal long-term memory (LTM) and working memory (WM) in 74 healthy individuals. Participants were assigned to two groups according to the stimulation techniques (rAS or tACS). Memory was assessed in three experimental blocks, in which each participant was administered with control, 40, and 60 Hz stimulation in counterbalanced order. All interventions were well-tolerated, and participants reported mostly comparable side effects between real stimulation (40 and 60 Hz) and the control condition. LTM immediate and delayed recall remained unaffected by stimulations, while immediate recall intrusions decreased during 60 Hz stimulation. Notably, 40 Hz interventions improved WM compared to control stimulations. These results highlight the potential of 60 and 40 Hz temporal cortex stimulation for reducing immediate LTM recall intrusions and improving WM performance, respectively, probably due to the entrainment of specific gamma oscillations in the auditory cortex. The results also shed light on the comparative effects of these neuromodulation tools on memory functions, and their potential applications for cognitive enhancement and in clinical trials.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Lecce, Italy
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
- University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Lecce, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Davide Vilella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Lecce, Italy
| | - Gaetano Scianatico
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Lecce, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Smeralda CL, Pandit S, Turrini S, Reilly J, Palmisano A, Sprugnoli G, Hampel H, Benussi A, Borroni B, Press D, Rotenberg A, El Fakhri G, Koch G, Rossi S, Santarnecchi E. The role of parvalbumin interneuron dysfunction across neurodegenerative dementias. Ageing Res Rev 2024; 101:102509. [PMID: 39306248 DOI: 10.1016/j.arr.2024.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
Parvalbumin-positive (PV+) basket neurons are fast-spiking, non-adapting inhibitory interneurons whose oscillatory activity is essential for regulating cortical excitation/inhibition balance. Their dysfunction results in cortical hyperexcitability and gamma rhythm disruption, which have recently gained substantial traction as contributing factors as well as potential therapeutic targets for the treatment of Alzheimer's Disease (AD). Recent evidence indicates that PV+ cells are also impaired in Frontotemporal Dementia (FTD) and Dementia with Lewy bodies (DLB). However, no attempt has been made to integrate these findings into a coherent pathophysiological framework addressing the contribution of PV+ interneuron dysfunction to the generation of cortical hyperexcitability and gamma rhythm disruption in FTD and DLB. To fill this gap, we epitomized the most recent evidence on PV+ interneuron impairment in AD, FTD, and DLB, focusing on its contribution to the generation of cortical hyperexcitability and gamma oscillatory disruption and their interplay with misfolded protein accumulation, neuronal death, and clinical symptoms' onset. Our work deepens the current understanding concerning the role of PV+ interneuron dysfunction across neurodegenerative dementias, highlighting commonalities and differences among AD, FTD, and DLB, thus paving the way for identifying novel biomarkers and potential therapeutic targets for the treatment of these diseases.
Collapse
Affiliation(s)
- Carmelo Luca Smeralda
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Siddhartha Pandit
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sonia Turrini
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, University of Bologna, Italy
| | - Julianne Reilly
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, Dresden, Germany
| | - Giulia Sprugnoli
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniel Press
- Cognitive Neurology Unit, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Brookline, MA, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giacomo Koch
- Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Simone Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Da X, Hempel E, Brickman AM, Hajós M, Kern R, Cimenser A. Spectris™ treatment preserves corpus callosum structure in Alzheimer's disease. Front Neurol 2024; 15:1452930. [PMID: 39479005 PMCID: PMC11522122 DOI: 10.3389/fneur.2024.1452930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024] Open
Abstract
Objective To examine the impact of 40Hz gamma stimulation on the preservation of the corpus callosum, a critical structure for interhemispheric connectivity, in people with mild cognitive impairment or Alzheimer's disease. Methods OVERTURE (NCT03556280) participants were randomized 2:1 (Active:Sham) to receive daily, 1-h, 40Hz gamma sensory stimulation or sham treatment for 6 months. Structural magnetic resonance imaging data were analyzed to assess changes in corpus callosum area (N = 50; 33 for active, 17 for sham). Bayesian linear mixed-effects modeling was used to assess differences in longitudinal changes of corpus callosum area between the two treatment groups. Results All observed differences in corpus callosum area favored the active treatment group. Differences were observed in the total corpus callosum area (2.28 ± 0.87%, p < 0.02) and its subregions, including genu/rostrum (2.36 ± 0.90%, p < 0.02), anterior-body (2.64 ± 1.26%, p < 0.04), mid-body (2.79 ± 1.18%, p < 0.03), posterior-body (2.87 ± 1.41%, p < 0.05), and splenium (1.58 ± 0.73%, p < 0.04). Total corpus callosum area and some of the sub-regional differences, such as genu/rostrum and splenium, were observed as early as 3 months after commencement of treatment. Interpretation The structural magnetic resonance imaging results from the OVERTURE Phase 2 study suggest that 6 months of non-invasive 40Hz stimulation reduces the rate of atrophy of the corpus callosum in individuals with Alzheimer's disease. The preservation of structural integrity in the corpus callosum, crucial for interhemispheric communication and cognitive function, may be achievable through this non-invasive approach, potentially providing a promising disease-modifying alternative in Alzheimer's disease management.
Collapse
Affiliation(s)
- Xiao Da
- Cognito Therapeutics, Inc, Cambridge, MA, United States
| | - Evan Hempel
- Cognito Therapeutics, Inc, Cambridge, MA, United States
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Mihály Hajós
- Cognito Therapeutics, Inc, Cambridge, MA, United States
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Ralph Kern
- Cognito Therapeutics, Inc, Cambridge, MA, United States
| | | |
Collapse
|
5
|
Patel AA, Zhu MH, Yan R, Antic SD. Ex vivo propagation of synaptically-evoked cortical depolarizations in a mouse model of Alzheimer's disease at 20 Hz, 40 Hz, or 83 Hz. Sci Rep 2024; 14:23365. [PMID: 39375474 PMCID: PMC11458755 DOI: 10.1038/s41598-024-74262-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Sensory stimulations at 40 Hz gamma (but not any other frequency), have shown promise in reversing Alzheimer's disease (AD)-related pathologies. What distinguishes 40 Hz? We hypothesized that stimuli at 40 Hz might summate more efficiently (temporal summation) or propagate more efficiently between cortical layers (vertically), or along cortical laminas (horizontally), compared to inputs at 20 or 83 Hz. To investigate these hypotheses, we used brain slices from AD mouse model animals (5xFAD). Extracellular (synaptic) stimuli were delivered in cortical layer 4 (L4). Leveraging a fluorescent voltage indicator (VSFP) expressed in cortical pyramidal neurons, we simultaneously monitored evoked cortical depolarizations at multiple sites, at 1 kHz sampling frequency. Experimental groups (AD-Female, CTRL-Female, AD-Male, and CTRL-Male) were tested at three stimulation frequencies (20, 40, and 83 Hz). Despite our initial hypothesis, two parameters-temporal summation of voltage waveforms and the strength of propagation through the cortical neuropil-did not reveal any distinct advantage of 40 Hz stimulation. Significant physiological differences between AD and Control mice were found at all stimulation frequencies tested, while the 40 Hz stimulation frequency was not remarkable.
Collapse
Affiliation(s)
- Aayushi A Patel
- Department of Neuroscience, School of Medicine, UConn Health, Farmington, CT, 06030, USA
- Touro College of Osteopathic Medicine, Middletown, NY, 10940, USA
| | - Mei Hong Zhu
- Department of Neuroscience, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Riqiang Yan
- Department of Neuroscience, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Srdjan D Antic
- Department of Neuroscience, School of Medicine, UConn Health, Farmington, CT, 06030, USA.
| |
Collapse
|
6
|
Dolgin E. Can flashing lights stall Alzheimer's? What the science shows. Nature 2024; 634:22-24. [PMID: 39358529 DOI: 10.1038/d41586-024-03147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
|
7
|
Yao J, Zhang L, Zhang C, Chen X, Bao K, Hou S, Yin Y, Liu K, Wen Q, Huang X, Song L. Rhythmic gamma frequency light flickering ameliorates stress-related behaviors and cognitive deficits by modulating neuroinflammatory response through IL-12-Mediated cytokines production in chronic stress-induced mice. Brain Behav Immun 2024; 121:213-228. [PMID: 39043349 DOI: 10.1016/j.bbi.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
Chronic stress enhances the risk for psychiatric disorders and induces depression and cognitive impairment. Gamma oscillations are essential for neurocircuit function, emotion, and cognition. However, the influence of gamma entrainment by sensory stimuli on specific aspects of chronic stress-induced responses remains unclear. Mice were subjected to corticosterone (CORT) administration and chronic restraint stress (CRS) for weeks, followed by rhythmic gamma frequency light flickering exposure. Local field potentials (LFPs) were recorded from the V1, CA1, and PFC regions to verify the light flicker on gamma oscillations. Behavioral tests were used to examine stress-related and memory-related behaviors. Golgi staining was performed to observe changes in spine morphology. Synaptosomes were isolated to determine the expression of synapse-related proteins through immunoblotting. RNA sequencing (RNA-seq) was applied to explore specific changes in the transcriptome. Immunofluorescence staining, real-time quantitative polymerase chain reaction (qPCR), and ELISA were used to evaluate microglial activation and cytokine levels. In this study, we demonstrated that rhythmic 40 Hz LF attenuated stress-related behavior and cognitive impairments by ameliorating the microstructural alterations in spine morphology and increasing the expression of GluN2A and GluA1 in chronically stressed mice. Transcriptome analysis revealed that significantly downregulated genes in LF-exposed CRS mice were enriched in neuroimmune-related signaling pathways. Rhythmic 40 Hz LF exposure significantly decreased the number of Iba1-positive microglia in the PFC and hippocampus, and the expression levels of the M1 markers of microglia iNOS and CD68 were reduced significantly in CRS mice. In addition, 40 Hz LF exposure suppressed the secretion of cytokines IL-12, which could regulate the production of IFN-γ and IL-10 in stressed mice. Our results demonstrate that exposure to rhythmic 40 Hz LF induces the neuroimmune response and downregulation of neuroinflammation with attenuated stress-related behaviors and cognitive function in CRS-induced mice. Our findings highlight the importance of sensory-evoked gamma entrainment as a potential therapeutic strategy for stress-related disorders treatment. Abbreviations: CORT, Chronic corticosterone treatment; CRS, Chronic restraint stress; IACUC, Institutional Animal Care and Use Committee; LF, light flickers; FST, Forced swim test; NSFT, Novelty-suppressed feeding test; SPT, Sucrose preference test; NSFT, Novelty-suppressed feeding; qPCR, Quantitative real-time polymerase chain reaction; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; PVDF, polyvinylidene fluoride; PBS, phosphate-buffered saline; PBS-T, phosphate-buffered saline plus 0.1% Tween 20; PVDF, polyvinylidene fluoride; GFAP, Glial fibrillary acidic protein; DAPI, 4',6-Diamid- ino-2-phenylindole; Iba1, Ionized calcium-binding adaptor molecule 1; iNOS, Inducible nitric oxide synthase; IL-10, Interleukin-10; IL6, Interleukin 6; IL-1β, Interleukin 1β; IL-12, Interleukin 12; TNF-α, Tumor necrosis factor alpha; IFN-γ, Interferon-gamma; TLR6 and 9, Toll-like Receptor 6 and 9.
Collapse
Affiliation(s)
- Junqi Yao
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China; Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing 100850, China
| | - Chunkui Zhang
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Xing Chen
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Ke Bao
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Shaojun Hou
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Yongyu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing 100850, China
| | - Kun Liu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Qing Wen
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China.
| | - Lun Song
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China.
| |
Collapse
|
8
|
Mockevičius A, Voicikas A, Jurkuvėnas V, Tarailis P, Griškova-Bulanova I. Individualized EEG-Based Neurofeedback Targeting Auditory Steady-State Responses: A Proof-of-Concept Study. Appl Psychophysiol Biofeedback 2024:10.1007/s10484-024-09662-1. [PMID: 39183248 DOI: 10.1007/s10484-024-09662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Gamma-band (> 30 Hz) brain oscillatory activity is linked with sensory and cognitive processes and exhibits abnormalities in neuropsychiatric disorders. Therefore, neuromodulation techniques targeting gamma activity are being developed. One promising approach is neurofeedback (NFB) which is based on the alteration of brain responses via online feedback. However, the existing gamma-based NFB systems lack individualized approach. In the present work, we developed and tested an individualized EEG-NFB system. 46 healthy volunteers participated in three sessions on separate days. Before NFB training, individual gamma frequency (IGF) was estimated using chirp-modulated auditory stimulation (30-60 Hz). Participants were subjected to IGF-increase (if IGF was ≤ 45 Hz) or IGF-decrease conditions (if IGF was > 45 Hz). Gamma-band responses were targeted during NFB training, in which participants received auditory steady-state stimulation at frequency slightly above or below IGF and were instructed to try to increase their response while receiving real-time visual feedback. Each time a pre-defined response goal was reached, stimulation frequency was either increased or decreased. After training, IGF was reassessed. Experimental group participants were divided into equal groups based on the median success rate during NFB training. The results showed that high-responders had a significantly higher IGF modulation compared to control group, while low-responders did not differ from controls. No differences in IGF modulation were found between sessions and between NFB repetitions in all participant groups. The initial evaluation of the proposed EEG-NFB system showed potential to modulate IGF. Future studies could investigate longer-lasting electrophysiological and behavioural effects of the application of ASSR/IGF-based NFB system in clinical populations.
Collapse
|
9
|
Wei X, Campagna JJ, Jagodzinska B, Wi D, Cohn W, Lee JT, Zhu C, Huang CS, Molnár L, Houser CR, John V, Mody I. A therapeutic small molecule enhances γ-oscillations and improves cognition/memory in Alzheimer's disease model mice. Proc Natl Acad Sci U S A 2024; 121:e2400420121. [PMID: 39106304 PMCID: PMC11331084 DOI: 10.1073/pnas.2400420121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
Brain rhythms provide the timing for recruitment of brain activity required for linking together neuronal ensembles engaged in specific tasks. The γ-oscillations (30 to 120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here, we report on a potent brain-permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a class of therapeutics for AD. We employed anatomical, in vitro and in vivo electrophysiological, and behavioral methods to examine the effects of our lead therapeutic candidate small molecule. As a novel in central nervous system pharmacotherapy, our lead molecule acts as a potent, efficacious, and selective negative allosteric modulator of the γ-aminobutyric acid type A receptors most likely assembled from α1β2δ subunits. These receptors, identified through anatomical and pharmacological means, underlie the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. When orally administered twice daily for 2 wk, DDL-920 restored the cognitive/memory impairments of 3- to 4-mo-old AD model mice as measured by their performance in the Barnes maze. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.
Collapse
Affiliation(s)
- Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
- Department of Neurosurgery, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Jesus J. Campagna
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Barbara Jagodzinska
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Dongwook Wi
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Whitaker Cohn
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Jessica T. Lee
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Chunni Zhu
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Christine S. Huang
- Department of Neurobiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - László Molnár
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania, Târgu Mureş540485, Romania
| | - Carolyn R. Houser
- Department of Neurobiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Varghese John
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
- Department of Physiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
10
|
Sun X, Dias L, Peng C, Zhang Z, Ge H, Wang Z, Jin J, Jia M, Xu T, Guo W, Zheng W, He Y, Wu Y, Cai X, Agostinho P, Qu J, Cunha RA, Zhou X, Bai R, Chen JF. 40 Hz light flickering facilitates the glymphatic flow via adenosine signaling in mice. Cell Discov 2024; 10:81. [PMID: 39103336 DOI: 10.1038/s41421-024-00701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
The glymphatic-lymphatic system is increasingly recognized as fundamental for the homeostasis of the brain milieu since it defines cerebral spinal fluid flow in the brain parenchyma and eliminates metabolic waste. Animal and human studies have uncovered several important physiological factors regulating the glymphatic system including sleep, aquaporin-4, and hemodynamic factors. Yet, our understanding of the modulation of the glymphatic system is limited, which has hindered the development of glymphatic-based treatment for aging and neurodegenerative disorders. Here, we present the evidence from fluorescence tracing, two-photon recording, and dynamic contrast-enhanced magnetic resonance imaging analyses that 40 Hz light flickering enhanced glymphatic influx and efflux independently of anesthesia and sleep, an effect attributed to increased astrocytic aquaporin-4 polarization and enhanced vasomotion. Adenosine-A2A receptor (A2AR) signaling emerged as the neurochemical underpinning of 40 Hz flickering-induced enhancement of glymphatic flow, based on increased cerebrofluid adenosine levels, the abolishment of enhanced glymphatic flow by pharmacological or genetic inactivation of equilibrative nucleotide transporters-2 or of A2AR, and by the physical and functional A2AR-aquaporin-4 interaction in astrocytes. These findings establish 40 Hz light flickering as a novel non-invasive strategy of enhanced glymphatic flow, with translational potential to relieve brain disorders.
Collapse
Affiliation(s)
- Xiaoting Sun
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liliana Dias
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Chenlei Peng
- Department of Pediatric Sleep, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziyi Zhang
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoting Ge
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zejun Wang
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiayi Jin
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Manli Jia
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Xu
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Guo
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wu Zheng
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan He
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Youru Wu
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohong Cai
- Department of Pediatric Sleep, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Paula Agostinho
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Jia Qu
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rodrigo A Cunha
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Xuzhao Zhou
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiang-Fan Chen
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Huang W, Zong J, Zhang Y, Zhou Y, Zhang L, Wang Y, Shan Z, Xie Q, Li M, Pan S, Xiao Z. The Role of Circadian Rhythm in Neurological Diseases: A Translational Perspective. Aging Dis 2024; 15:1565-1587. [PMID: 37815902 PMCID: PMC11272204 DOI: 10.14336/ad.2023.0921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
Intrinsic biological clocks drive the circadian rhythm, which coordinates the physiological and pathophysiological processes in the body. Recently, a bidirectional relationship between circadian rhythms and several neurological diseases has been reported. Neurological diseases can lead to the disruption of circadian homeostasis, thereby increasing disease severity. Therefore, optimizing the current treatments through circadian-based approaches, including adjusted dosing, changing lifestyle, and targeted interventions, offer a promising opportunity for better clinical outcomes and precision medicine. In this review, we provide detailed implications of the circadian rhythm in neurological diseases through bench-to-bedside approaches. Furthermore, based on the unsatisfactory clinical outcomes, we critically discuss the potential of circadian-based interventions, which may encourage more studies in this discipline, with the hope of improving treatment efficacy in neurological diseases.
Collapse
Affiliation(s)
- Wanbin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanjie Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lily Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yajuan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhengming Shan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingfang Xie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Songqing Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
12
|
Thamizhmani L, Ganapathy K, Palaniswamy HP, Patil DS, Purdy SC. Efficacy of acoustic stimulation techniques on cognitive functions in individuals with Alzheimer's disease-a scoping review. Alzheimers Res Ther 2024; 16:174. [PMID: 39085956 PMCID: PMC11293131 DOI: 10.1186/s13195-024-01544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder that severely affects cognitive functions and social behaviors, leading to a significant decline in an individual's quality of life. Auditory processing deficits often precede the clinical symptoms of AD, prompting interest in auditory-based interventions as potential treatments. This scoping review aimed to compile the existing evidence on active and passive auditory-based interventions for individuals with AD and its prodromal stages. METHOD AND RESULTS This scoping review followed Arksey and O'Malley's five-step framework to identify the existing evidence on auditory-based interventions for AD. Four databases (PubMed, Web of Science, CINAHL, and Embase) were used to search for studies on auditory stimulation techniques to treat cognitive decline in AD patients. In total, 14 studies were included in the analysis. Seven studies explored active auditory stimulation techniques, such as the Brain Fitness Program (BrainHQ), aiming to improve cognitive function in individuals with Mild Cognitive Impairment (MCI). The other seven studies focused on passive auditory stimulation, often combined with other sensory stimuli such as light or tactile inputs. Passive stimulation studies have focused mainly on Gamma Entrainment Using Sensory Stimulation (GENUS). The intervention frequency and duration varied across studies, ranging from one session lasting 8 h to a year. Both active and passive auditory stimulation showed potential for enhancing cognitive function in individuals with AD. CONCLUSION The literature suggests that auditory stimulation may positively influence cortical wiring and enhance cognitive abilities. Multimodal interventions that combine auditory stimulation with other sensory or behavioural approaches could yield more substantial effects on global cognition. However, the study design, intervention characteristics and outcome measures varied across studies, underscoring the necessity for standardised reporting. Well-designed studies using standard cognitive assessment protocols are recommended.
Collapse
Affiliation(s)
- Leelavathi Thamizhmani
- Department of Speech and Hearing, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Kanaka Ganapathy
- Department of Speech and Hearing, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India.
| | - Hari Prakash Palaniswamy
- Department of Speech and Hearing, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Divya Sussana Patil
- Centre for Evidence-Informed Decision-Making, Department of Health Information, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - Suzanne Carolyn Purdy
- School of Psychology (Speech Science), Faculty of Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Li KY, Chien CF, Huang LC, Lim K, Yang YH. Exploring the impact of 40 Hz multi-luminaire light exposure in Alzheimer's dementia: insights from a convenient sampling, non-randomized case-control study. J Neurol 2024; 271:5425-5432. [PMID: 38884789 DOI: 10.1007/s00415-024-12486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Recent studies propose 40 Hz neural activity induction as a promising approach for managing Alzheimer's dementia (AD). However, traditional flickering light is suboptimal in addressing cognitive and neuropsychiatric symptoms (NPS) of AD. This study aims to investigate the clinical efficacy of a novel multi-luminaire lighting technology, with reduced perceptible flickering, for treating AD NPS. METHODS This study is a prospective, convenient sampling, non-randomized case-control investigation involving seventy-eight clinically diagnosed AD patients from 7 daycare centers. Thirty-five were exposed to 40 Hz light through Delta M + BrainCare Light (M +), 4 h daily, 5 days/week, for 12 weeks. The other 43 patients served as controls. Sum of boxes of the Clinical Dementia Rating (CDR-SB) scale, Neuropsychiatric Inventory (NPI), and Zarit Burden Interview (ZBI) were assessed at baseline and the 13th week. RESULTS At baseline, the cases had worse cognitive function, lower cognitive score (Mini-Mental State Examination, p = 0.04; Cognitive Abilities Screening Instrument, p = 0.04), and advanced caregiver burden with higher ZBI scores (p < 0.01) than the controls. After the intervention, the cases had significant improvements in NPS as assessed using the NPI (p = 0.02), especially depression and euphoria symptoms (p = 0.04 and < 0.01, respectively) and less caregiver burden (ZBI score, p < 0.01). In global function, the control group showed a significant decline in CDR-SB score (p < 0.01), while the cases did not. CONCLUSIONS Results suggest M + may slow global function decline, preserve cognitive function, improve NPS, and reduce caregiver burden in AD patients. Larger studies with biomarkers are needed to explore underlying mechanisms.
Collapse
Affiliation(s)
- Kuan-Ying Li
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Fang Chien
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ling-Chun Huang
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kelly Lim
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Petro NM, Webert LK, Springer SD, Okelberry HJ, John JA, Horne LK, Glesinger R, Rempe MP, Wilson TW. Optimal gamma-band entrainment of visual cortex. Hum Brain Mapp 2024; 45:e26775. [PMID: 38970249 PMCID: PMC11226544 DOI: 10.1002/hbm.26775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024] Open
Abstract
Visual entrainment is a powerful and widely used research tool to study visual information processing in the brain. While many entrainment studies have focused on frequencies around 14-16 Hz, there is renewed interest in understanding visual entrainment at higher frequencies (e.g., gamma-band entrainment). Notably, recent groundbreaking studies have demonstrated that gamma-band visual entrainment at 40 Hz may have therapeutic effects in the context of Alzheimer's disease (AD) by stimulating specific neural ensembles, which utilize GABAergic signaling. Despite such promising findings, few studies have investigated the optimal parameters for gamma-band visual entrainment. Herein, we examined whether visual stimulation at 32, 40, or 48 Hz produces optimal visual entrainment responses using high-density magnetoencephalography (MEG). Our results indicated strong entrainment responses localizing to the primary visual cortex in each condition. Entrainment responses were stronger for 32 and 40 Hz relative to 48 Hz, indicating more robust synchronization of neural ensembles at these lower gamma-band frequencies. In addition, 32 and 40 Hz entrainment responses showed typical patterns of habituation across trials, but this effect was absent for 48 Hz. Finally, connectivity between visual cortex and parietal and prefrontal cortices tended to be strongest for 40 relative to 32 and 48 Hz entrainment. These results suggest that neural ensembles in the visual cortex may resonate at around 32 and 40 Hz and thus entrain more readily to photic stimulation at these frequencies. Emerging AD therapies, which have focused on 40 Hz entrainment to date, may be more effective at lower relative to higher gamma frequencies, although additional work in clinical populations is needed to confirm these findings. PRACTITIONER POINTS: Gamma-band visual entrainment has emerged as a therapeutic approach for eliminating amyloid in Alzheimer's disease, but its optimal parameters are unknown. We found stronger entrainment at 32 and 40 Hz compared to 48 Hz, suggesting neural ensembles prefer to resonate around these relatively lower gamma-band frequencies. These findings may inform the development and refinement of innovative AD therapies and the study of GABAergic visual cortical functions.
Collapse
Affiliation(s)
- Nathan M. Petro
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Lauren K. Webert
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Seth D. Springer
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Jason A. John
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Lucy K. Horne
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Ryan Glesinger
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Maggie P. Rempe
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
15
|
Lahijanian M, Aghajan H, Vahabi Z. Auditory gamma-band entrainment enhances default mode network connectivity in dementia patients. Sci Rep 2024; 14:13153. [PMID: 38849418 PMCID: PMC11161471 DOI: 10.1038/s41598-024-63727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Dementia, and in particular Alzheimer's disease (AD), can be characterized by disrupted functional connectivity in the brain caused by beta-amyloid deposition in neural links. Non-pharmaceutical treatments for dementia have recently explored interventions involving the stimulation of neuronal populations in the gamma band. These interventions aim to restore brain network functionality by synchronizing rhythmic energy through various stimulation modalities. Entrainment, a newly proposed non-invasive sensory stimulation method, has shown promise in improving cognitive functions in dementia patients. This study investigates the effectiveness of entrainment in terms of promoting neural synchrony and spatial connectivity across the cortex. EEG signals were recorded during a 40 Hz auditory entrainment session conducted with a group of elderly participants with dementia. Phase locking value (PLV) between different intraregional and interregional sites was examined as an attribute of network synchronization, and connectivity of local and distant links were compared during the stimulation and rest trials. Our findings demonstrate enhanced neural synchrony between the frontal and parietal regions, which are key components of the brain's default mode network (DMN). The DMN operation is known to be impacted by dementia's progression, leading to reduced functional connectivity across the parieto-frontal pathways. Notably, entrainment alone significantly improves synchrony between these DMN components, suggesting its potential for restoring functional connectivity.
Collapse
Affiliation(s)
- Mojtaba Lahijanian
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamid Aghajan
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Zahra Vahabi
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Ku Y. The Mystery 40 Hz: Unraveling the Efficacy of Rhythmic Stimulation in Alzheimer's Disease. Neurosci Bull 2024; 40:831-834. [PMID: 38240990 PMCID: PMC11178681 DOI: 10.1007/s12264-023-01165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/08/2023] [Indexed: 06/15/2024] Open
Affiliation(s)
- Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, 510006, China.
- Peng Cheng Laboratory, Shenzhen, 518000, China.
| |
Collapse
|
17
|
Moguilner SG, Berezuk C, Bender AC, Pellerin KR, Gomperts SN, Cash SS, Sarkis RA, Lam AD. Sleep functional connectivity, hyperexcitability, and cognition in Alzheimer's disease. Alzheimers Dement 2024; 20:4234-4249. [PMID: 38764252 PMCID: PMC11180941 DOI: 10.1002/alz.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Sleep disturbances are common in Alzheimer's disease (AD) and may reflect pathologic changes in brain networks. To date, no studies have examined changes in sleep functional connectivity (FC) in AD or their relationship with network hyperexcitability and cognition. METHODS We assessed electroencephalogram (EEG) sleep FC in 33 healthy controls, 36 individuals with AD without epilepsy, and 14 individuals with AD and epilepsy. RESULTS AD participants showed increased gamma connectivity in stage 2 sleep (N2), which was associated with longitudinal cognitive decline. Network hyperexcitability in AD was associated with a distinct sleep connectivity signature, characterized by decreased N2 delta connectivity and reversal of several connectivity changes associated with AD. Machine learning algorithms using sleep connectivity features accurately distinguished diagnostic groups and identified "fast cognitive decliners" among study participants who had AD. DISCUSSION Our findings reveal changes in sleep functional networks associated with cognitive decline in AD and may have implications for disease monitoring and therapeutic development. HIGHLIGHTS Brain functional connectivity (FC) in Alzheimer's disease is altered during sleep. Sleep FC measures correlate with cognitive decline in AD. Network hyperexcitability in AD has a distinct sleep connectivity signature.
Collapse
Affiliation(s)
- Sebastian G. Moguilner
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Courtney Berezuk
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Alex C. Bender
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Kyle R. Pellerin
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Stephen N. Gomperts
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Sydney S. Cash
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Rani A. Sarkis
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Alice D. Lam
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
18
|
Black T, Jenkins BW, Laprairie RB, Howland JG. Therapeutic potential of gamma entrainment using sensory stimulation for cognitive symptoms associated with schizophrenia. Neurosci Biobehav Rev 2024; 161:105681. [PMID: 38641090 DOI: 10.1016/j.neubiorev.2024.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Schizophrenia is a complex neuropsychiatric disorder with significant morbidity. Treatment options that address the spectrum of symptoms are limited, highlighting the need for innovative therapeutic approaches. Gamma Entrainment Using Sensory Stimulation (GENUS) is an emerging treatment for neuropsychiatric disorders that uses sensory stimulation to entrain impaired oscillatory network activity and restore brain function. Aberrant oscillatory activity often underlies the symptoms experienced by patients with schizophrenia. We propose that GENUS has therapeutic potential for schizophrenia. This paper reviews the current status of schizophrenia treatment and explores the use of sensory stimulation as an adjunctive treatment, specifically through gamma entrainment. Impaired gamma frequency entrainment is observed in patients, particularly in response to auditory and visual stimuli. Thus, sensory stimulation, such as music listening, may have therapeutic potential for individuals with schizophrenia. GENUS holds novel therapeutic potential to improve the lives of individuals with schizophrenia, but further research is required to determine the efficacy of GENUS, optimize its delivery and therapeutic window, and develop strategies for its implementation in specific patient populations.
Collapse
Affiliation(s)
- Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Bryan W Jenkins
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada; Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
19
|
Sakalauskaitė L, Hansen LS, Dubois JM, Ploug Larsen M, Feijóo GM, Carstensen MS, Woznica Miskowiak K, Nguyen M, Harder Clemmensen LK, Petersen PM, Martiny K. Rationale and design of a double-blinded, randomized placebo-controlled trial of 40 Hz light neurostimulation therapy for depression (FELIX). Ann Med 2024; 56:2354852. [PMID: 38767238 PMCID: PMC11107857 DOI: 10.1080/07853890.2024.2354852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a debilitating condition that affects more than 300 million people worldwide. Current treatments are based on a trial-and-error approach, and reliable biomarkers are needed for more informed and personalized treatment solutions. One of the potential biomarkers, gamma-frequency (30-80 Hz) brainwaves, are hypothesized to originate from the excitatory-inhibitory interaction between the pyramidal cells and interneurons. The imbalance between this interaction is described as a crucial pathological mechanism in neuropsychiatric conditions, including MDD, and the modulation of this pathological interaction has been investigated as a potential target. Previous studies attempted to induce gamma activity in the brain using rhythmic light and sound stimuli (GENUS - Gamma Entrainment Using Sensory stimuli) that resulted in neuroprotective effects in Alzheimer's disease (AD) patients and animal models. Here, we investigate the antidepressant, cognitive, and electrophysiological effects of the novel light therapy approach using 40 Hz masked flickering light for patients diagnosed with MDD. METHODS AND DESIGN Sixty patients with a current diagnosis of a major depressive episode will be enrolled in a randomized, double-blinded, placebo-controlled trial. The active treatment group will receive 40 Hz masked flickering light stimulation while the control group will receive continuous light matched in color temperature and brightness. Patients in both groups will get daily light treatment in their own homes and will attend four follow-up visits to assess the symptoms of depression, including depression severity measured by Hamilton Depression Rating Scale (HAM-D17), cognitive function, quality of life and sleep, and electroencephalographic changes. The primary endpoint is the mean change from baseline to week 6 in depression severity (HAM-D6 subscale) between the groups.
Collapse
Affiliation(s)
- Laura Sakalauskaitė
- New Interventions in Depression Group (NID-Group), Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Electrical and Photonics Engineering, The Technical University of Denmark
- OptoCeutics ApS, Lyngby, Denmark
| | | | - Julie Margrethe Dubois
- New Interventions in Depression Group (NID-Group), Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Malina Ploug Larsen
- New Interventions in Depression Group (NID-Group), Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Marcus S. Carstensen
- Department of Electrical and Photonics Engineering, The Technical University of Denmark
- OptoCeutics ApS, Lyngby, Denmark
| | - Kamilla Woznica Miskowiak
- Neurocognition and Emotion in Affective Disorders (NEAD) Group, Copenhagen Affective Disorders Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | - Paul Michael Petersen
- Department of Electrical and Photonics Engineering, The Technical University of Denmark
| | - Klaus Martiny
- New Interventions in Depression Group (NID-Group), Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
20
|
Mehl LC, Gibson EM. Precise timing of audiovisual stimulation conquers chemobrain. Trends Cancer 2024; 10:386-388. [PMID: 38644103 PMCID: PMC11096014 DOI: 10.1016/j.trecan.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
In a recent study, Kim et al. utilized gamma entrainment using sensory stimuli (GENUS) to rescue cognitive impairment and glial dysregulation associated with cisplatin and methotrexate chemotherapy, specifically when applied both throughout and after chemotherapy administration. GENUS provides a time-dependent, non-invasive method for treating chemobrain, with broader implications for resolving neurodegenerative neuroinflammation.
Collapse
Affiliation(s)
- Lindsey C Mehl
- Cancer Biology Graduate Program, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| |
Collapse
|
21
|
Greenberg SM, van Veluw SJ. Cerebral Amyloid Angiopathy. Stroke 2024; 55:1409-1411. [PMID: 38269538 DOI: 10.1161/strokeaha.124.044293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Affiliation(s)
- Steven M Greenberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (S.M.G., S.J.v.V.)
| | - Susanne J van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (S.M.G., S.J.v.V.)
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown (S.J.v.V.)
| |
Collapse
|
22
|
Hu H, Pang Y, Luo H, Tong B, Wang F, Song Y, Ying Q, Xu K, Xiong C, Peng Z, Xu H, Zhang X. Noninvasive Light Flicker Stimulation Promotes Optic Nerve Regeneration by Activating Microglia and Enhancing Neural Plasticity in Zebrafish. Invest Ophthalmol Vis Sci 2024; 65:3. [PMID: 38691090 PMCID: PMC11077911 DOI: 10.1167/iovs.65.5.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024] Open
Abstract
Purpose Forty-hertz light flicker stimulation has been proven to reduce neurodegeneration, but its effect on optic nerve regeneration is unclear. This study explores the effect of 40-Hz light flicker in promoting optic nerve regeneration in zebrafish and investigates the underlying mechanisms. Methods Wild-type and mpeg1:EGFP zebrafish were used to establish a model of optic nerve crush. Biocytin tracing and hematoxylin and eosin staining were employed to observe whether 40-Hz light flicker promotes regeneration of retinal ganglion cell axons and dendrites. Optomotor and optokinetic responses were evaluated to assess recovery of visual function. Immunofluorescence staining of mpeg1:EGFP zebrafish was performed to observe changes in microglia. Differentially expressed genes that promote optic nerve regeneration following 40-Hz light flicker stimulation were identified and validated through RNA-sequencing analysis and quantitative real-time PCR (qRT-PCR). Results Zebrafish exhibited spontaneous optic nerve regeneration after optic nerve injury and restored visual function. We observed that 40-Hz light flicker significantly activated microglia following optic nerve injury and promoted regeneration of retinal ganglion cell axons and dendrites, as well as recovery of visual function. Transcriptomics and qRT-PCR analyses revealed that 40-Hz light flicker increased the expression of genes associated with neuronal plasticity, including bdnf, npas4a, fosab, fosb, egr4, and ier2a. Conclusions To our knowledge, this study is the first to demonstrate that 40-Hz light flicker stimulation promotes regeneration of retinal ganglion cell axons and dendrites and recovery of visual function in zebrafish, which is associated with microglial activation and enhancement of neural plasticity.
Collapse
Affiliation(s)
- Haijian Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Hongdou Luo
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Bin Tong
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Feifei Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuning Song
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Qian Ying
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Ke Xu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Chan Xiong
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Zhida Peng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Hong Xu
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| |
Collapse
|
23
|
Blanpain LT, Cole ER, Chen E, Park JK, Walelign MY, Gross RE, Cabaniss BT, Willie JT, Singer AC. Multisensory flicker modulates widespread brain networks and reduces interictal epileptiform discharges. Nat Commun 2024; 15:3156. [PMID: 38605017 PMCID: PMC11009358 DOI: 10.1038/s41467-024-47263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Modulating brain oscillations has strong therapeutic potential. Interventions that both non-invasively modulate deep brain structures and are practical for chronic daily home use are desirable for a variety of therapeutic applications. Repetitive audio-visual stimulation, or sensory flicker, is an accessible approach that modulates hippocampus in mice, but its effects in humans are poorly defined. We therefore quantified the neurophysiological effects of flicker with high spatiotemporal resolution in patients with focal epilepsy who underwent intracranial seizure monitoring. In this interventional trial (NCT04188834) with a cross-over design, subjects underwent different frequencies of flicker stimulation in the same recording session with the effect of sensory flicker exposure on local field potential (LFP) power and interictal epileptiform discharges (IEDs) as primary and secondary outcomes, respectively. Flicker focally modulated local field potentials in expected canonical sensory cortices but also in the medial temporal lobe and prefrontal cortex, likely via resonance of stimulated long-range circuits. Moreover, flicker decreased interictal epileptiform discharges, a pathological biomarker of epilepsy and degenerative diseases, most strongly in regions where potentials were flicker-modulated, especially the visual cortex and medial temporal lobe. This trial met the scientific goal and is now closed. Our findings reveal how multi-sensory stimulation may modulate cortical structures to mitigate pathological activity in humans.
Collapse
Affiliation(s)
- Lou T Blanpain
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Eric R Cole
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Emily Chen
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - James K Park
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Y Walelign
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Neurosurgery and Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick and New Jersey Medical School, Newark, NJ, USA
| | - Brian T Cabaniss
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jon T Willie
- Departments of Neurological Surgery, Neurology, Psychiatry, and Biomedical Engineering, Washington University, St. Louis, MO, USA.
| | - Annabelle C Singer
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA.
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
| |
Collapse
|
24
|
Martin DM, Su Y, Chan HF, Dielenberg V, Chow E, Xu M, Wang A, Nikolin S, Moffa AH, Loo CK. Individualised Transcranial Magnetic Stimulation Targeting of the Left Dorsolateral Prefrontal Cortex for Enhancing Cognition: A Randomised Controlled Trial. Brain Sci 2024; 14:299. [PMID: 38671951 PMCID: PMC11048387 DOI: 10.3390/brainsci14040299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been demonstrated to produce cognitive enhancing effects across different neuropsychiatric disorders; however, so far, these effects have been limited. This trial investigated the efficacy of using a novel individualised approach to target the left dorsolateral prefrontal cortex (L-DLPFC) for enhancing cognitive flexibility based on performance on a cognitive task. First, forty healthy participants had their single target site at the L-DLPFC determined based on each individual's performance on a random letter generation task. Participants then received, in a cross-over single-blinded experimental design, a single session of intermittent theta burst stimulation (iTBS) to their individualised DLPFC target site, an active control site and sham iTBS. Following each treatment condition, participants completed the Task Switching task and Colour-Word Stroop test. There was no significant main effect of treatment condition on the primary outcome measure of switch reaction times from the Task Switching task [F = 1.16 (2, 21.6), p = 0.33] or for any of the secondary cognitive outcome measures. The current results do not support the use of our novel individualised targeting methodology for enhancing cognitive flexibility in healthy participants. Research into alternative methodological targeting approaches is required to further improve rTMS's cognitive enhancing effects.
Collapse
Affiliation(s)
- Donel M. Martin
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Black Dog Institute, Sydney, NSW 2031, Australia
| | - Yon Su
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ho Fung Chan
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Victoria Dielenberg
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Esther Chow
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mei Xu
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Black Dog Institute, Sydney, NSW 2031, Australia
| | - Ashley Wang
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Stevan Nikolin
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Black Dog Institute, Sydney, NSW 2031, Australia
| | - Adriano H. Moffa
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Black Dog Institute, Sydney, NSW 2031, Australia
| | - Colleen K. Loo
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Black Dog Institute, Sydney, NSW 2031, Australia
| |
Collapse
|
25
|
Branigan KS, Dotta BT. Cognitive Decline: Current Intervention Strategies and Integrative Therapeutic Approaches for Alzheimer's Disease. Brain Sci 2024; 14:298. [PMID: 38671950 PMCID: PMC11048559 DOI: 10.3390/brainsci14040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) represents a pressing global health challenge, with an anticipated surge in diagnoses over the next two decades. This progressive neurodegenerative disorder unfolds gradually, with observable symptoms emerging after two decades of imperceptible brain changes. While traditional therapeutic approaches, such as medication and cognitive therapy, remain standard in AD management, their limitations prompt exploration into novel integrative therapeutic approaches. Recent advancements in AD research focus on entraining gamma waves through innovative methods, such as light flickering and electromagnetic fields (EMF) stimulation. Flickering light stimulation (FLS) at 40 Hz has demonstrated significant reductions in AD pathologies in both mice and humans, providing improved cognitive functioning. Additionally, recent experiments have demonstrated that APOE mutations in mouse models substantially reduce tau pathologies, with microglial modulation playing a crucial role. EMFs have also been demonstrated to modulate microglia. The exploration of EMFs as a therapeutic approach is gaining significance, as many recent studies have showcased their potential to influence microglial responses. Th article concludes by speculating on the future directions of AD research, emphasizing the importance of ongoing efforts in understanding the complexities of AD pathogenesis through a holistic approach and developing interventions that hold promise for improved patient outcomes.
Collapse
Affiliation(s)
| | - Blake T. Dotta
- Behavioural Neuroscience & Biology Programs, School of Natural Science, Laurentian University, Sudbury, ON P3E2C6, Canada
| |
Collapse
|
26
|
Hajós M, Boasso A, Hempel E, Shpokayte M, Konisky A, Seshagiri CV, Fomenko V, Kwan K, Nicodemus-Johnson J, Hendrix S, Vaughan B, Kern R, Megerian JT, Malchano Z. Safety, tolerability, and efficacy estimate of evoked gamma oscillation in mild to moderate Alzheimer's disease. Front Neurol 2024; 15:1343588. [PMID: 38515445 PMCID: PMC10957179 DOI: 10.3389/fneur.2024.1343588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
Background Alzheimer's Disease (AD) is a multifactorial, progressive neurodegenerative disease that disrupts synaptic and neuronal activity and network oscillations. It is characterized by neuronal loss, brain atrophy and a decline in cognitive and functional abilities. Cognito's Evoked Gamma Therapy System provides an innovative approach for AD by inducing EEG-verified gamma oscillations through sensory stimulation. Prior research has shown promising disease-modifying effects in experimental AD models. The present study (NCT03556280: OVERTURE) evaluated the feasibly, safety and efficacy of evoked gamma oscillation treatment using Cognito's medical device (CogTx-001) in participants with mild to moderate AD. Methods The present study was a randomized, double blind, sham-controlled, 6-months clinical trial in participants with mild to moderate AD. The trial enrolled 76 participants, aged 50 or older, who met the clinical criteria for AD with baseline MMSE scores between 14 and 26. Participants were randomly assigned 2:1 to receive self-administered daily, one-hour, therapy, evoking EEG-verified gamma oscillations or sham treatment. The CogTx-001 device was use at home with the help of a care partner, over 6 months. The primary outcome measures were safety, evaluated by physical and neurological exams and monthly assessments of adverse events (AEs) and MRI, and tolerability, measured by device use. Although the trial was not statistically powered to evaluate potential efficacy outcomes, primary and secondary clinical outcome measures included several cognitive and functional endpoints. Results Total AEs were similar between groups, there were no unexpected serious treatment related AEs, and no serious treatment-emergent AEs that led to study discontinuation. MRI did not show Amyloid-Related Imaging Abnormalities (ARIA) in any study participant. High adherence rates (85-90%) were observed in sham and treatment participants. There was no statistical separation between active and sham arm participants in primary outcome measure of MADCOMS or secondary outcome measure of CDR-SB or ADAS-Cog14. However, some secondary outcome measures including ADCS-ADL, MMSE, and MRI whole brain volume demonstrated reduced progression in active compared to sham treated participants, that achieved nominal significance. Conclusion Our results demonstrate that 1-h daily treatment with Cognito's Evoked Gamma Therapy System (CogTx-001) was safe and well-tolerated and demonstrated potential clinical benefits in mild to moderate AD.Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03556280.
Collapse
Affiliation(s)
- Mihály Hajós
- Cognito Therapeutics, Inc., Cambridge, MA, United States
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Alyssa Boasso
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | - Evan Hempel
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | | | - Alex Konisky
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | | | | | - Kim Kwan
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | | | | | - Brent Vaughan
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | - Ralph Kern
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | | | - Zach Malchano
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| |
Collapse
|
27
|
Kim T, James BT, Kahn MC, Blanco-Duque C, Abdurrob F, Islam MR, Lavoie NS, Kellis M, Tsai LH. Gamma entrainment using audiovisual stimuli alleviates chemobrain pathology and cognitive impairment induced by chemotherapy in mice. Sci Transl Med 2024; 16:eadf4601. [PMID: 38446899 DOI: 10.1126/scitranslmed.adf4601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
Patients with cancer undergoing chemotherapy frequently experience a neurological condition known as chemotherapy-related cognitive impairment, or "chemobrain," which can persist for the remainder of their lives. Despite the growing prevalence of chemobrain, both its underlying mechanisms and treatment strategies remain poorly understood. Recent findings suggest that chemobrain shares several characteristics with neurodegenerative diseases, including chronic neuroinflammation, DNA damage, and synaptic loss. We investigated whether a noninvasive sensory stimulation treatment we term gamma entrainment using sensory stimuli (GENUS), which has been shown to alleviate aberrant immune and synaptic pathologies in mouse models of neurodegeneration, could also mitigate chemobrain phenotypes in mice administered a chemotherapeutic drug. When administered concurrently with the chemotherapeutic agent cisplatin, GENUS alleviated cisplatin-induced brain pathology, promoted oligodendrocyte survival, and improved cognitive function in a mouse model of chemobrain. These effects persisted for up to 105 days after GENUS treatment, suggesting the potential for long-lasting benefits. However, when administered to mice 90 days after chemotherapy, GENUS treatment only provided limited benefits, indicating that it was most effective when used to prevent the progression of chemobrain pathology. Furthermore, we demonstrated that the effects of GENUS in mice were not limited to cisplatin-induced chemobrain but also extended to methotrexate-induced chemobrain. Collectively, these findings suggest that GENUS may represent a versatile approach for treating chemobrain induced by different chemotherapy agents.
Collapse
Affiliation(s)
- TaeHyun Kim
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin T James
- Computer Science and Artificial intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin C Kahn
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cristina Blanco-Duque
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fatema Abdurrob
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Md Rezaul Islam
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas S Lavoie
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manolis Kellis
- Computer Science and Artificial intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
28
|
Wang C, Li M, Szanton S, Courtney S, Pantelyat A, Li Q, Huang J, Li J. A qualitative exploration of 40 Hz sound and music for older adults with mild cognitive impairment. Geriatr Nurs 2024; 56:259-269. [PMID: 38402805 PMCID: PMC10990781 DOI: 10.1016/j.gerinurse.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
Emerging evidence suggests that 40 Hz auditory stimulation may benefit cognition. Nested within a randomized crossover trial, this qualitative study evaluates the acceptability and experience of three auditory interventions-self-selected music, 40 Hz sound, and a novel combination, termed 40 Hz music-in individuals with Mild Cognitive Impairment (MCI). Semi-structured interviews were conducted with individuals with MCI post-intervention exposure. Findings indicated a preference for self-selected music due to its memory-boosting and emotional benefits, while responses to 40 Hz sound were mixed, with several participants reporting discomfort. The composite 40 Hz music intervention showed promise, striking a balance by enhancing user experience and mitigating the 40 Hz sound's negative aspects. Engagement was influenced by personal music interests, listening routines, and support networks. This study highlights the potential of integrating 40 Hz sound with personalized music to offer a more acceptable 40 Hz auditory intervention for cognition in older adults with MCI.
Collapse
Affiliation(s)
- Claire Wang
- Johns Hopkins School of Nursing, Baltimore, MD, USA; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mengchi Li
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | | | - Susan Courtney
- Johns Hopkins Krieger School of Arts & Sciences, Baltimore, MD, USA
| | | | - Qiwei Li
- California State University, Long Beach, CA, USA
| | - Jing Huang
- Johns Hopkins School of Nursing, Baltimore, MD, USA
| | - Junxin Li
- Johns Hopkins School of Nursing, Baltimore, MD, USA.
| |
Collapse
|
29
|
Zhou X, He Y, Xu T, Wu Z, Guo W, Xu X, Liu Y, Zhang Y, Shang H, Huang L, Yao Z, Li Z, Su L, Li Z, Feng T, Zhang S, Monteiro O, Cunha RA, Huang ZL, Zhang K, Li Y, Cai X, Qu J, Chen JF. 40 Hz light flickering promotes sleep through cortical adenosine signaling. Cell Res 2024; 34:214-231. [PMID: 38332199 PMCID: PMC10907382 DOI: 10.1038/s41422-023-00920-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024] Open
Abstract
Flickering light stimulation has emerged as a promising non-invasive neuromodulation strategy to alleviate neuropsychiatric disorders. However, the lack of a neurochemical underpinning has hampered its therapeutic development. Here, we demonstrate that light flickering triggered an immediate and sustained increase (up to 3 h after flickering) in extracellular adenosine levels in the primary visual cortex (V1) and other brain regions, as a function of light frequency and intensity, with maximal effects observed at 40 Hz frequency and 4000 lux. We uncovered cortical (glutamatergic and GABAergic) neurons, rather than astrocytes, as the cellular source, the intracellular adenosine generation from AMPK-associated energy metabolism pathways (but not SAM-transmethylation or salvage purine pathways), and adenosine efflux mediated by equilibrative nucleoside transporter-2 (ENT2) as the molecular pathway responsible for extracellular adenosine generation. Importantly, 40 Hz (but not 20 and 80 Hz) light flickering for 30 min enhanced non-rapid eye movement (non-REM) and REM sleep for 2-3 h in mice. This somnogenic effect was abolished by ablation of V1 (but not superior colliculus) neurons and by genetic deletion of the gene encoding ENT2 (but not ENT1), but recaptured by chemogenetic inhibition of V1 neurons and by focal infusion of adenosine into V1 in a dose-dependent manner. Lastly, 40 Hz light flickering for 30 min also promoted sleep in children with insomnia by decreasing sleep onset latency, increasing total sleep time, and reducing waking after sleep onset. Collectively, our findings establish the ENT2-mediated adenosine signaling in V1 as the neurochemical basis for 40 Hz flickering-induced sleep and unravel a novel and non-invasive treatment for insomnia, a condition that affects 20% of the world population.
Collapse
Affiliation(s)
- Xuzhao Zhou
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan He
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Xu
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Wei Guo
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xi Xu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuntao Liu
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Zhang
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huiping Shang
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Libin Huang
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhimo Yao
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zewen Li
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingya Su
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihui Li
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Feng
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shaomin Zhang
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Olivia Monteiro
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Kang Zhang
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China.
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Xiaohong Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jia Qu
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jiang-Fan Chen
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
30
|
Hablitz L, Nedergaard M. Synchronized neuronal activity drives waste fluid flow. Nature 2024; 627:44-45. [PMID: 38418726 DOI: 10.1038/d41586-024-00422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
|
31
|
Murdock MH, Yang CY, Sun N, Pao PC, Blanco-Duque C, Kahn MC, Kim T, Lavoie NS, Victor MB, Islam MR, Galiana F, Leary N, Wang S, Bubnys A, Ma E, Akay LA, Sneve M, Qian Y, Lai C, McCarthy MM, Kopell N, Kellis M, Piatkevich KD, Boyden ES, Tsai LH. Multisensory gamma stimulation promotes glymphatic clearance of amyloid. Nature 2024; 627:149-156. [PMID: 38418876 PMCID: PMC10917684 DOI: 10.1038/s41586-024-07132-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
The glymphatic movement of fluid through the brain removes metabolic waste1-4. Noninvasive 40 Hz stimulation promotes 40 Hz neural activity in multiple brain regions and attenuates pathology in mouse models of Alzheimer's disease5-8. Here we show that multisensory gamma stimulation promotes the influx of cerebrospinal fluid and the efflux of interstitial fluid in the cortex of the 5XFAD mouse model of Alzheimer's disease. Influx of cerebrospinal fluid was associated with increased aquaporin-4 polarization along astrocytic endfeet and dilated meningeal lymphatic vessels. Inhibiting glymphatic clearance abolished the removal of amyloid by multisensory 40 Hz stimulation. Using chemogenetic manipulation and a genetically encoded sensor for neuropeptide signalling, we found that vasoactive intestinal peptide interneurons facilitate glymphatic clearance by regulating arterial pulsatility. Our findings establish novel mechanisms that recruit the glymphatic system to remove brain amyloid.
Collapse
Affiliation(s)
- Mitchell H Murdock
- Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cheng-Yi Yang
- Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Na Sun
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ping-Chieh Pao
- Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cristina Blanco-Duque
- Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Martin C Kahn
- Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - TaeHyun Kim
- Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas S Lavoie
- Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matheus B Victor
- Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Md Rezaul Islam
- Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fabiola Galiana
- Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Noelle Leary
- Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sidney Wang
- Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adele Bubnys
- Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Ma
- Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Leyla A Akay
- Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Madison Sneve
- Departments of Biological Engineering and Brain and Cognitive Sciences, McGovern Institute, Cambridge, MA, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yong Qian
- Departments of Biological Engineering and Brain and Cognitive Sciences, McGovern Institute, Cambridge, MA, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cuixin Lai
- School of Life Sciences, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, and Westlake Institute for Advanced Study, Hangzhou, China
| | - Michelle M McCarthy
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Nancy Kopell
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kiryl D Piatkevich
- Departments of Biological Engineering and Brain and Cognitive Sciences, McGovern Institute, Cambridge, MA, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Life Sciences, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, and Westlake Institute for Advanced Study, Hangzhou, China
| | - Edward S Boyden
- Departments of Biological Engineering and Brain and Cognitive Sciences, McGovern Institute, Cambridge, MA, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
32
|
Sleem T, Decourt B, Sabbagh MN. Nonmedication Devices in Development for the Treatment of Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:241-255. [PMID: 38405349 PMCID: PMC10894612 DOI: 10.3233/adr-230115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/13/2024] [Indexed: 02/27/2024] Open
Abstract
Huge investments continue to be made in treatment for Alzheimer's disease (AD), with more than one hundred drugs currently in development. Pharmacological approaches and drug development, particularly those targeting amyloid-β, have dominated the therapeutic landscape. At the same time, there is also a growing interest in devices for treating AD. This review aimed to identify and describe devices under development for AD treatment. In this review, we queried the devices that are in development for the treatment of AD. PubMed was searched through the end of 2021 using the terms "device," "therapeutics," and "Alzheimer's" for articles that report on devices to treat AD. Ten devices with 31 references were identified as actively being developed for the treatment of AD. Many of these devices are far along in development. Device-based therapies are often overlooked when evaluating treatment approaches to AD. However, many devices for treating AD are in development and some show promising results.
Collapse
Affiliation(s)
- Tamara Sleem
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
| | - Marwan N. Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
33
|
Blanco-Duque C, Chan D, Kahn MC, Murdock MH, Tsai LH. Audiovisual gamma stimulation for the treatment of neurodegeneration. J Intern Med 2024; 295:146-170. [PMID: 38115692 PMCID: PMC10842797 DOI: 10.1111/joim.13755] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disease and a health challenge with major social and economic consequences. In this review, we discuss the therapeutic potential of gamma stimulation in treating AD and delve into the possible mechanisms responsible for its positive effects. Recent studies reveal that it is feasible and safe to induce 40 Hz brain activity in AD patients through a range of 40 Hz multisensory and noninvasive electrical or magnetic stimulation methods. Although research into the clinical potential of these interventions is still in its nascent stages, these studies suggest that 40 Hz stimulation can yield beneficial effects on brain function, disease pathology, and cognitive function in individuals with AD. Specifically, we discuss studies involving 40 Hz light, auditory, and vibrotactile stimulation, as well as noninvasive techniques such as transcranial alternating current stimulation and transcranial magnetic stimulation. The precise mechanisms underpinning the beneficial effects of gamma stimulation in AD are not yet fully elucidated, but preclinical studies have provided relevant insights. We discuss preclinical evidence related to both neuronal and nonneuronal mechanisms that may be involved, touching upon the relevance of interneurons, neuropeptides, and specific synaptic mechanisms in translating gamma stimulation into widespread neuronal activity within the brain. We also explore the roles of microglia, astrocytes, and the vasculature in mediating the beneficial effects of gamma stimulation on brain function. Lastly, we examine upcoming clinical trials and contemplate the potential future applications of gamma stimulation in the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Blanco-Duque
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Diane Chan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin C Kahn
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mitchell H Murdock
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
34
|
Henney MA, Carstensen M, Thorning-Schmidt M, Kubińska M, Grønberg MG, Nguyen M, Madsen KH, Clemmensen LKH, Petersen PM. Brain stimulation with 40 Hz heterochromatic flicker extended beyond red, green, and blue. Sci Rep 2024; 14:2147. [PMID: 38273009 PMCID: PMC10810780 DOI: 10.1038/s41598-024-52679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease (AD) is associated with electrophysiological changes in the brain. Pre-clinical and early clinical trials have shown promising results for the possible therapy of AD with 40 Hz neurostimulation. The most notable findings used stroboscopic flicker, but this technique poses an inherent barrier for human applications due to its visible flickering and resulting high level of perceived discomfort. Therefore, alternative options should be investigated for entraining 40 Hz brain activity with light sources that appear less flickering. Previously, chromatic flicker based on red, green, and blue (RGB) have been studied in the context of brain-computer interfaces, but this is an incomplete representation of the colours in the visual spectrum. This study introduces a new kind of heterochromatic flicker based on spectral combinations of blue, cyan, green, lime, amber, and red (BCGLAR). These combinations are investigated by the steady-state visually evoked potential (SSVEP) response from the flicker with an aim of optimising the choice of 40 Hz light stimulation with spectrally similar colour combinations in BCGLAR space. Thirty healthy young volunteers were stimulated with heterochromatic flicker in an electroencephalography experiment with randomised complete block design. Responses were quantified as the 40 Hz signal-to-noise ratio and analysed using mixed linear models. The size of the SSVEP response to heterochromatic flicker is dependent on colour combinations and influenced by both visual and non-visual effects. The amber-red flicker combination evoked the highest SSVEP, and combinations that included blue and/or red consistently evoked higher SSVEP than combinations only with mid-spectrum colours. Including a colour from either extreme of the visual spectrum (blue and/or red) in at least one of the dyadic phases appears to be more important than choosing pairs of colours that are far from each other on the visual spectrum. Spectrally adjacent colour pairs appear less flickering to the perceiver, and thus the results motivate investigations into the limits for how alike the two phases can be and still evoke a 40 Hz response. Specifically, combining a colour on either extreme of the visual spectrum with another proximal colour might provide the best trade-off between flickering sensation and SSVEP magnitude.
Collapse
Affiliation(s)
- Mark Alexander Henney
- Department of Applied Mathematics and Computer Science, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark.
- OptoCeutics ApS, Copenhagen, 1610, Denmark.
| | - Marcus Carstensen
- OptoCeutics ApS, Copenhagen, 1610, Denmark
- Department of Electrical and Photonics Engineering, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Martin Thorning-Schmidt
- OptoCeutics ApS, Copenhagen, 1610, Denmark
- Department of Electrical and Photonics Engineering, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Marta Kubińska
- OptoCeutics ApS, Copenhagen, 1610, Denmark
- Department of Electrical and Photonics Engineering, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Manja Gersholm Grønberg
- Department of Applied Mathematics and Computer Science, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Mai Nguyen
- OptoCeutics ApS, Copenhagen, 1610, Denmark
| | - Kristoffer Hougaard Madsen
- Department of Applied Mathematics and Computer Science, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, 2650, Denmark
| | | | - Paul Michael Petersen
- Department of Electrical and Photonics Engineering, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
35
|
Yokota Y, Tanaka K, Chang M, Naruse Y, Imamura Y, Fujii S. Gamma music: a new acoustic stimulus for gamma-frequency auditory steady-state response. Front Hum Neurosci 2024; 17:1287018. [PMID: 38273878 PMCID: PMC10808749 DOI: 10.3389/fnhum.2023.1287018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
A frequency range exceeding approximately 30 Hz, denoted as the gamma frequency range, is associated with various cognitive functions, consciousness, sensory integration, short-term memory, working memory, encoding and maintenance of episodic memory, and retrieval processes. In this study, we proposed a new form of gamma stimulation, called gamma music, combining 40 Hz auditory stimuli and music. This gamma music consists of drums, bass, and keyboard sounds, each containing a 40 Hz frequency oscillation. Since 40 Hz stimuli are known to induce an auditory steady-state response (ASSR), we used the 40 Hz power and phase locking index (PLI) as indices of neural activity during sound stimulation. We also recorded subjective ratings of each sound through a questionnaire using a visual analog scale. The gamma music, gamma drums, gamma bass, and gamma keyboard sounds showed significantly higher values in 40 Hz power and PLI compared to the control music without a 40 Hz oscillation. Particularly, the gamma keyboard sound showed a potential to induce strong ASSR, showing high values in these indices. In the subjective ratings, the gamma music, especially the gamma keyboard sound, received more relaxed, comfortable, preferred, pleasant, and natural impressions compared to the control music with conventional gamma stimulation. These results indicate that our proposed gamma music has potential as a new method for inducing ASSR. Particularly, the gamma keyboard sound proved to be an effective acoustic source for inducing a strong ASSR while preserving the comfortable and pleasant sensation of listening to music. Our developed gamma music, characterized by its pleasantness to the human ear, offers a significant advantage for the long-term use of gamma stimulation. The utilization of this music could potentially reduce the physical and psychological burden on participants compared to conventional 40 Hz stimuli. This music is not only expected to contribute to fundamental neuroscience research utilizing ASSR but also to facilitate the implementation of gamma music-based interventions aimed at enhancing human cognitive functions in everyday life.
Collapse
|
36
|
Bentley JH, Broussard JI. Multimodal Gamma Stimulation Improves Activity but not Memory in Aged Tgf344-AD Rats. Curr Alzheimer Res 2024; 20:769-777. [PMID: 38445702 DOI: 10.2174/0115672050281956240228075849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Multimodal sensory gamma stimulation is a treatment approach for Alzheimers disease that has been shown to improve pathology and memory in transgenic mouse models of Alzheimer's. Because rats are closer to humans in evolution, we tested the hypothesis that the transgenic rat line bearing human APP and PS1, line TgF344-AD, would be a good supplemental candidate to test the efficacy of this treatment. Current therapy approaches under investigation seek to utilize the immune response to minimize or degrade the accumulation of β-amyloid plaque load in mouse models designed to overexpress Aβ. However, many of these models lack some of the hallmarks of Alzheimer's disease, such as hyperphosphorylated tau and neuronal cell loss. The TgF344-AD transgenic rat model is a good candidate to bridge the gap between mouse models and clinical efficacy in humans. OBJECTIVE The objective of this study was to use multimodal gamma stimulation at light and auditory modalities simultaneously to test whether this enhances memory performance as measured by the object location task and the spontaneous alternation task. METHODS In our study, we designed and built a low-cost, easy-to-construct multimodal light and sound gamma stimulator. Our gamma stimulation device was built using an Arduino microcontroller, which drives lights and a speaker at the gamma frequency. We have included in this paper our device's parts, hardware design, and software architecture for easy reproducibility. We then performed an experiment to test the effect of multimodal gamma stimulation on the cognitive performance of fourteen-month-old TgF344-AD rats. Rats were randomly assigned to either an experimental group that received gamma stimulation or a control group that did not. Performance in a Novel Object Location (NOL) task and spontaneous alternation task was evaluated in both groups before and after the treatment. RESULTS Multimodal gamma stimulation did not improve memory compared to unstimulated TgF344-AD rats. However, the gamma-stimulated rats did spend significantly more time exploring objects in the novel location task than the unstimulated rats. In the spontaneous alternation task, gamma-stimulated rats exhibited significantly greater exploratory activity than unstimulated controls. CONCLUSION Multimodal gamma stimulation did not enhance memory performance in the object location task or the spontaneous alternation task. However, in both tasks, the treatment group had improved measures of exploratory activity relative to the untreated group. We conclude that several limitations could have contributed to this mixed effect, including aging complications, different animal models, or light cycle effects.
Collapse
Affiliation(s)
- J H Bentley
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - J I Broussard
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
37
|
Keil J, Kiiski H, Doherty L, Hernandez-Urbina V, Vassiliou C, Dean C, Müschenich M, Bahmani H. Artificial sharp-wave-ripples to support memory and counter neurodegeneration. Brain Res 2024; 1822:148646. [PMID: 37871674 DOI: 10.1016/j.brainres.2023.148646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Information processed in our sensory neocortical areas is transported to the hippocampus during memory encoding, and between hippocampus and neocortex during memory consolidation, and retrieval. Short bursts of high-frequency oscillations, so called sharp-wave-ripples, have been proposed as a potential mechanism for this information transfer: They can synchronize neural activity to support the formation of local neural networks to store information, and between distant cortical sites to act as a bridge to transfer information between sensory cortical areas and hippocampus. In neurodegenerative diseases like Alzheimer's Disease, different neuropathological processes impair normal neural functioning and neural synchronization as well as sharp-wave-ripples, which impairs consolidation and retrieval of information, and compromises memory. Here, we formulate a new hypothesis, that artificially inducing sharp-wave-ripples with noninvasive high-frequency visual stimulation could potentially support memory functioning, as well as target the neuropathological processes underlying neurodegenerative diseases. We also outline key challenges for empirical tests of the hypothesis.
Collapse
Affiliation(s)
- Julian Keil
- Department of Psychology, Christian-Albrechts-University Kiel, Germany; Ababax Health GmbH, Berlin, Germany; Department of Cognitive Science, University of Potsdam, Germany.
| | - Hanni Kiiski
- Ababax Health GmbH, Berlin, Germany; Department of Cognitive Science, University of Potsdam, Germany
| | | | | | - Chrystalleni Vassiliou
- German Center for Neurodegenerative Diseases, Charité University of Medicine, Berlin, Germany
| | - Camin Dean
- German Center for Neurodegenerative Diseases, Charité University of Medicine, Berlin, Germany
| | | | - Hamed Bahmani
- Ababax Health GmbH, Berlin, Germany; Bernstein Center for Computational Neuroscience, Tuebingen, Germany
| |
Collapse
|
38
|
Luppi JJ, Stam CJ, Scheltens P, de Haan W. Virtual neural network-guided optimization of non-invasive brain stimulation in Alzheimer's disease. PLoS Comput Biol 2024; 20:e1011164. [PMID: 38232116 PMCID: PMC10824453 DOI: 10.1371/journal.pcbi.1011164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/29/2024] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique with potential for counteracting disrupted brain network activity in Alzheimer's disease (AD) to improve cognition. However, the results of tDCS studies in AD have been variable due to different methodological choices such as electrode placement. To address this, a virtual brain network model of AD was used to explore tDCS optimization. We compared a large, representative set of virtual tDCS intervention setups, to identify the theoretically optimized tDCS electrode positions for restoring functional network features disrupted in AD. We simulated 20 tDCS setups using a computational dynamic network model of 78 neural masses coupled according to human structural topology. AD network damage was simulated using an activity-dependent degeneration algorithm. Current flow modeling was used to estimate tDCS-targeted cortical regions for different electrode positions, and excitability of the pyramidal neurons of the corresponding neural masses was modulated to simulate tDCS. Outcome measures were relative power spectral density (alpha bands, 8-10 Hz and 10-13 Hz), total spectral power, posterior alpha peak frequency, and connectivity measures phase lag index (PLI) and amplitude envelope correlation (AEC). Virtual tDCS performance varied, with optimized strategies improving all outcome measures, while others caused further deterioration. The best performing setup involved right parietal anodal stimulation, with a contralateral supraorbital cathode. A clear correlation between the network role of stimulated regions and tDCS success was not observed. This modeling-informed approach can guide and perhaps accelerate tDCS therapy development and enhance our understanding of tDCS effects. Follow-up studies will compare the general predictions to personalized virtual models and validate them with tDCS-magnetoencephalography (MEG) in a clinical AD patient cohort.
Collapse
Affiliation(s)
- Janne J. Luppi
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Cornelis J. Stam
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Willem de Haan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Sun MK, Alkon DL. Treating Alzheimer's Disease: Focusing on Neurodegenerative Consequences. J Alzheimers Dis 2024; 101:S263-S274. [PMID: 39422958 DOI: 10.3233/jad-240479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Neurodegenerative disorders involve progressive dysfunction and loss of synapses and neurons and brain atrophy, slowly declining memories and cognitive skills, throughout a long process. Alzheimer's disease (AD), the leading neurodegenerative disorder, suffers from a lack of effective therapeutic drugs. Decades of efforts targeting its pathologic hallmarks, amyloid plaques and neurofibrillary tangles, in clinical trials have produced therapeutics with marginal benefits that lack meaningful clinical improvements in cognition. Delivering meaningful clinical therapeutics to treat or prevent neurodegenerative disorders thus remains a great challenge to scientists and clinicians. Emerging evidence, however, suggests that dysfunction of various synaptogenic signaling pathways participates in the neurodegenerative progression, resulting in deterioration of operation/structure of the synaptic networks involved in cognition. These derailed endogenous signaling pathways and disease processes are potential pharmacological targets for the therapies. Therapeutics with meaningful clinical benefit in cognition may depend on the effectiveness of arresting and reversing the neurodegenerative process through these targets. In essence, promoting neuro-regeneration may represent the only option to recover degenerated synapses and neurons. These potential directions in clinical trials for AD therapeutics with meaningful clinical benefit in cognitive function are summarized and discussed.
Collapse
|
40
|
Wei X, Campagna JJ, Jagodzinska B, Wi D, Cohn W, Lee J, Zhu C, Huang CS, Molnár L, Houser CR, John V, Mody I. A therapeutic small molecule lead enhances γ-oscillations and improves cognition/memory in Alzheimer's disease model mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569994. [PMID: 38106006 PMCID: PMC10723366 DOI: 10.1101/2023.12.04.569994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Brain rhythms provide the timing and concurrence of brain activity required for linking together neuronal ensembles engaged in specific tasks. In particular, the γ-oscillations (30-120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here we report on a potent brain permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a new class of therapeutics for AD. As a first in CNS pharmacotherapy, our lead candidate acts as a potent, efficacious, and selective negative allosteric modulator (NAM) of the γ-aminobutyric acid type A receptors (GABA A Rs) assembled from α1β2δ subunits. We identified these receptors through anatomical and pharmacological means to mediate the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.
Collapse
|
41
|
Niu Z, Yu M, Xu P, Liu R, Li S, Wu C, Huang B, Ye X, Hu J, Xu Y, Lu S. Effect of 40 Hz light flicker on cognitive impairment and transcriptome of hippocampus in right unilateral common carotid artery occlusion mice. Sci Rep 2023; 13:21361. [PMID: 38049571 PMCID: PMC10695931 DOI: 10.1038/s41598-023-48897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023] Open
Abstract
Vascular cognitive impairment caused by chronic cerebral hypoperfusion (CCH) seriously affects the quality of life of elderly patients. However, there is no effective treatment to control this disease. This study investigated the potential neuroprotective effect of the 40 Hz light flicker in a mouse model of CCH. CCH was induced in male C57 mice by right unilateral common carotid artery occlusion (rUCCAO), leading to chronic brain injury. The mice underwent 40 Hz light flicker stimulation for 30 days after surgery. The results showed that 40 Hz light flicker treatment ameliorated memory deficits after rUCCAO and alleviated the damage to neurons in the frontal lobe and hippocampus. Light flicker administration at 40 Hz decreased IL-1β and TNF-α levels in the frontal lobe and hippocampus, but immunohistochemistry showed that it did not induce angiogenesis in mice with rUCCAO. Gene expression profiling revealed that the induction of genes was mainly enriched in inflammatory-related pathways. Our findings demonstrate that 40 Hz light flicker can suppress cognitive impairment caused by rUCCAO and that this effect may be involved in the attenuation of neuroinflammation.
Collapse
Affiliation(s)
- Zhaorui Niu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Minjie Yu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Peixia Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Renchuan Liu
- Zhejiang Xinyue Health Consulting Service Medical Institution, Hangzhou, 310003, China
| | - Shangda Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Congchong Wu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Bochao Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Xinyue Health Consulting Service Medical Institution, Hangzhou, 310003, China
| | - Xinyi Ye
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jianbo Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- Zhejiang Xinyue Health Consulting Service Medical Institution, Hangzhou, 310003, China.
| | - Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
| |
Collapse
|
42
|
Hu J, Zheng L, Guan Z, Zhong K, Huang F, Huang Q, Yang J, Li W, Li S. Sensory gamma entrainment: Impact on amyloid protein and therapeutic mechanism. Brain Res Bull 2023; 202:110750. [PMID: 37625524 DOI: 10.1016/j.brainresbull.2023.110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The deposition of amyloid β peptide (Aβ) is one of the main pathological features of AD. The much-talked sensory gamma entrainment may be a new treatment for Aβ load. Here we reviewed the generation and clearance pathways of Aβ, aberrant gamma oscillation in AD, and the therapeutic effect of sensory gamma entrainment on AD. In addition, we discuss these results based on stimulus parameters and possible potential mechanisms. This provides the support for sensory gamma entrainment targeting Aβ to improve AD.
Collapse
Affiliation(s)
- Jiaying Hu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Leyan Zheng
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Ziyu Guan
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Kexin Zhong
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Fankai Huang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qiankai Huang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Weiyun Li
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Shanshan Li
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
43
|
Griffiths BJ, Jensen O. Gamma oscillations and episodic memory. Trends Neurosci 2023; 46:832-846. [PMID: 37550159 DOI: 10.1016/j.tins.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/20/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023]
Abstract
Enhanced gamma oscillatory activity (30-80 Hz) accompanies the successful formation and retrieval of episodic memories. While this co-occurrence is well documented, the mechanistic contributions of gamma oscillatory activity to episodic memory remain unclear. Here, we review how gamma oscillatory activity may facilitate spike timing-dependent plasticity, neural communication, and sequence encoding/retrieval, thereby ensuring the successful formation and/or retrieval of an episodic memory. Based on the evidence reviewed, we propose that multiple, distinct forms of gamma oscillation can be found within the canonical gamma band, each of which has a complementary role in the neural processes listed above. Further exploration of these theories using causal manipulations may be key to elucidating the relevance of gamma oscillatory activity to episodic memory.
Collapse
Affiliation(s)
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
44
|
Moos WH, Faller DV, Glavas IP, Kanara I, Kodukula K, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG. Epilepsy: Mitochondrial connections to the 'Sacred' disease. Mitochondrion 2023; 72:84-101. [PMID: 37582467 DOI: 10.1016/j.mito.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
Over 65 million people suffer from recurrent, unprovoked seizures. The lack of validated biomarkers specific for myriad forms of epilepsy makes diagnosis challenging. Diagnosis and monitoring of childhood epilepsy add to the need for non-invasive biomarkers, especially when evaluating antiseizure medications. Although underlying mechanisms of epileptogenesis are not fully understood, evidence for mitochondrial involvement is substantial. Seizures affect 35%-60% of patients diagnosed with mitochondrial diseases. Mitochondrial dysfunction is pathophysiological in various epilepsies, including those of non-mitochondrial origin. Decreased ATP production caused by malfunctioning brain cell mitochondria leads to altered neuronal bioenergetics, metabolism and neurological complications, including seizures. Iron-dependent lipid peroxidation initiates ferroptosis, a cell death pathway that aligns with altered mitochondrial bioenergetics, metabolism and morphology found in neurodegenerative diseases (NDDs). Studies in mouse genetic models with seizure phenotypes where the function of an essential selenoprotein (GPX4) is targeted suggest roles for ferroptosis in epilepsy. GPX4 is pivotal in NDDs, where selenium protects interneurons from ferroptosis. Selenium is an essential central nervous system micronutrient and trace element. Low serum concentrations of selenium and other trace elements and minerals, including iron, are noted in diagnosing childhood epilepsy. Selenium supplements alleviate intractable seizures in children with reduced GPX activity. Copper and cuproptosis, like iron and ferroptosis, link to mitochondria and NDDs. Connecting these mechanistic pathways to selenoproteins provides new insights into treating seizures, pointing to using medicines including prodrugs of lipoic acid to treat epilepsy and to potential alternative therapeutic approaches including transcranial magnetic stimulation (transcranial), photobiomodulation and vagus nerve stimulation.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | | | | | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| |
Collapse
|
45
|
Huang F, Huang Q, Zheng L, Zhang W, Yang Q, Yang J, Wang Y, Wang Z, Li W, Zeng L, Li S. Effect of 40 Hz light flicker on behaviors of adult C57BL/6J mice. Brain Res 2023; 1814:148441. [PMID: 37271490 DOI: 10.1016/j.brainres.2023.148441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
40 Hz light flicker can activate multiple brain regions of wild-type mice. However, there are no systematic studies on the behavioral effects of 40 Hz light flicker on wild-type mice. Adult wild-type C57BL/6J mice were treated with 40 Hz light flicker (200 lx, 40 Hz, 1 h/day for 3 weeks) to evaluate its effects on several behaviors, including mood, locomotor activity, memory, social interaction, mechanical pain, and sense of smell. In the open field test, the elevated zero-maze test, forced swimming test, and tail suspension test, 40 Hz mice showed no anxiety and depression-like behaviors. In the rotarod test, no differences were found between the anti-fatigue ability and motor coordination ability. In memory-related tests, 40 Hz mice showed the short-term cognitive enhancement in the novel object recognition test. Interestingly, 40 Hz mice showed no enhanced the long-term memory performance in the contextual fear conditioning test, and tone-cued fear conditioning test. Besides, 40 Hz mice increased their exploration of social cues that were unfamiliar to them and differed significantly from their own experiences. In terms of sensory abilities, 40 Hz mice had unchanged pain sensitivity in the von Frey fiber test and significant enhancement in the olfactory ability in the food-seeking test. In conclusion, this 40 Hz light stimulation paradigm has high safety and can improve the specific behavioral ability, which provides a theoretical basis for the future use of 40 Hz light flicker as a disease prevention or treatment method.
Collapse
Affiliation(s)
- Fankai Huang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qiankai Huang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Leyan Zheng
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Wenchong Zhang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qi Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yu Wang
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhong Wang
- Zhejiang Qianjiahui Electric Appliance Equipment Co., Ltd, Wenling Taizhou City, Zhejiang, China
| | - Weiyun Li
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| | - Linghui Zeng
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| | - Shanshan Li
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
46
|
Yang Y, Ondrejcak T, Hu NW, Islam S, O'Rourke E, Reilly RB, Cunningham C, Rowan MJ, Klyubin I. Gamma-patterned sensory stimulation reverses synaptic plasticity deficits in rat models of early Alzheimer's disease. Eur J Neurosci 2023; 58:3402-3411. [PMID: 37655756 DOI: 10.1111/ejn.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
Non-invasive sensory stimulation in the range of the brain's gamma rhythm (30-100 Hz) is emerging as a new potential therapeutic strategy for the treatment of Alzheimer's disease (AD). Here, we investigated the effect of repeated combined exposure to 40 Hz synchronized sound and light stimuli on hippocampal long-term potentiation (LTP) in vivo in three rat models of early AD. We employed a very complete model of AD amyloidosis, amyloid precursor protein (APP)-overexpressing transgenic McGill-R-Thy1-APP rats at an early pre-plaque stage, systemic treatment of transgenic APP rats with corticosterone modelling certain environmental AD risk factors and, importantly, intracerebral injection of highly disease-relevant AD patient-derived synaptotoxic beta-amyloid and tau in wild-type animals. We found that daily treatment with 40 Hz sensory stimulation for 2 weeks fully abrogated the inhibition of LTP in all three models. Moreover, there was a negative correlation between the magnitude of LTP and the level of active caspase-1 in the hippocampus of transgenic APP animals, which suggests that the beneficial effect of 40 Hz stimulation was dependent on modulation of pro-inflammatory mechanisms. Our findings support ongoing clinical trials of gamma-patterned sensory stimulation in early AD.
Collapse
Affiliation(s)
- Yin Yang
- Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tomas Ondrejcak
- Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Neng-Wei Hu
- Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sadia Islam
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Eugene O'Rourke
- Department of Electronic and Electrical Engineering, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Richard B Reilly
- School of Medicine, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Michael J Rowan
- Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Igor Klyubin
- Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| |
Collapse
|
47
|
Wang D, Shapiro KL, Hanslmayr S. Altering stimulus timing via fast rhythmic sensory stimulation induces STDP-like recall performance in human episodic memory. Curr Biol 2023; 33:3279-3288.e7. [PMID: 37463586 DOI: 10.1016/j.cub.2023.06.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/03/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
Episodic memory provides humans with the ability to mentally travel back to the past,1 where experiences typically involve associations between multimodal information. Forming a memory of the association is thought to be dependent on modification of synaptic connectivity.2,3 Animal studies suggest that the strength of synaptic modification depends on spike timing between pre- and post-synaptic neurons on the order of tens of milliseconds, which is termed "spike-timing-dependent plasticity" (STDP).4 Evidence found in human in vitro studies suggests different temporal scales in long-term potentiation (LTP) and depression (LTD), compared with the critical time window of STDP in animals.5,6 In the healthy human brain, STDP-like effects have been shown in the motor cortex, visual perception, and face identity recognition.7,8,9,10,11,12,13 However, evidence in human episodic memory is lacking. We investigated this using rhythmic sensory stimulation to drive visual and auditory cortices at 37.5 Hz with four phase offsets. Visual relative to auditory cued recall accuracy was significantly enhanced in the 90° condition when the visual stimulus led at the shortest delay (6.67 ms). This pattern was reversed in the 270° condition when the auditory stimulus led at the shortest delay. Within cue modality, recall was enhanced when a stimulus of the corresponding modality led the shortest delay (6.67 ms) compared with the longest delay (20 ms). Our findings provide evidence for STDP in human episodic memory, which builds an important bridge from in vitro studies in animals to human memory behavior.
Collapse
Affiliation(s)
- Danying Wang
- School for Psychology and Neuroscience and Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK; School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK.
| | - Kimron L Shapiro
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Simon Hanslmayr
- School for Psychology and Neuroscience and Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK; School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
48
|
Yang YL, Lai TW. Chronic Visual Stimulation with LED Light Flickering at 24, 40, or 80 Hz Failed to Reduce Amyloid β Load in the 5XFAD Alzheimer's Disease Mouse Model. eNeuro 2023; 10:ENEURO.0189-23.2023. [PMID: 37550065 PMCID: PMC10408781 DOI: 10.1523/eneuro.0189-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
A single 1-h session (or 7 d of daily 1-h sessions) of noninvasive visual stimulation with LED light flickering at 40 Hz, but not at 20 or 80 Hz, was reported to increase microglial size and decrease amyloid β (Aβ) load in the 5xFAD mouse model of Alzheimer's disease. To achieve better therapeutic benefits, we explored the effects of daily 1-h sessions of visual stimulation with continuous light or LED light flickering at 24, 40, or 80 Hz for a period of five weeks in 5xFAD mice. As expected, 33-week-old 5xFAD mice but not control wild-type mice of the same age exhibited an abundance of swollen microglia and Aβ plaques in the visual cortex and hippocampus. Unexpectedly, however, compared with similar session of stimulation with continuous light or a light flickering at 24 or 80 Hz, daily sessions of stimulation with LED light flickering at 40 Hz for five weeks failed to further increase the microglial size and could not noticeably decrease the Aβ load in the visual cortex and hippocampus of the 5xFAD mice. In conclusion, contrary to previous findings based on shorter treatment periods, our data showed that daily noninvasive exposure to a light flickering at 40 Hz for a period of five weeks is not effective in reducing Aβ load in the 5xFAD mouse model of Alzheimer's disease.
Collapse
Affiliation(s)
- Ya Lan Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
| | - Ted Weita Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung 404333, Taiwan
- Drug Development Center, China Medical University, Taichung 404333, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 404327, Taiwan
| |
Collapse
|
49
|
Woo CC, Miranda B, Sathishkumar M, Dehkordi-Vakil F, Yassa MA, Leon M. Overnight olfactory enrichment using an odorant diffuser improves memory and modifies the uncinate fasciculus in older adults. Front Neurosci 2023; 17:1200448. [PMID: 37554295 PMCID: PMC10405466 DOI: 10.3389/fnins.2023.1200448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVE Cognitive loss in older adults is a growing issue in our society, and there is a need to develop inexpensive, simple, effective in-home treatments. This study was conducted to explore the use of olfactory enrichment at night to improve cognitive ability in healthy older adults. METHODS Male and female older adults (N = 43), age 60-85, were enrolled in the study and randomly assigned to an Olfactory Enriched or Control group. Individuals in the enriched group were exposed to 7 different odorants a week, one per night, for 2 h, using an odorant diffuser. Individuals in the control group had the same experience with de minimis amounts of odorant. Neuropsychological assessments and fMRI scans were administered at the beginning of the study and after 6 months. RESULTS A statistically significant 226% improvement was observed in the enriched group compared to the control group on the Rey Auditory Verbal Learning Test and improved functioning was observed in the left uncinate fasciculus, as assessed by mean diffusivity. CONCLUSION Minimal olfactory enrichment administered at night produces improvements in both cognitive and neural functioning. Thus, olfactory enrichment may provide an effective and low-effort pathway to improved brain health.
Collapse
Affiliation(s)
- Cynthia C. Woo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Blake Miranda
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | - Mithra Sathishkumar
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | | | - Michael A. Yassa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | - Michael Leon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
50
|
McNett SD, Vyshedskiy A, Savchenko A, Durakovic D, Heredia G, Cahn R, Kogan M. A Feasibility Study of AlzLife 40 Hz Sensory Therapy in Patients with MCI and Early AD. Healthcare (Basel) 2023; 11:2040. [PMID: 37510481 PMCID: PMC10379682 DOI: 10.3390/healthcare11142040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) are debilitating diseases that affect millions of individuals and have notoriously limited treatment options. One emerging therapy, non-invasive 40 Hz sensory therapy delivered through light and sound has previously shown promise in improving cognition in Alzheimer Disease (AD) rodent models. Small studies in humans have proven safe and tolerable, however exploration of feasibility and utility is limited. The purpose of this study is to examine the feasibility of this treatment in a human population through a smart tablet application that emits light and sound waves at 40 Hz to the user over the span of 1 h a day. Confirmation of entrainment of 40 Hz stimulation in the cerebral cortex was performed via EEG. 27 preliminary subjects with subjective cognitive complaints, Mild Cognitive Impairment, or AD were enrolled in the study; 11 participants completed 6 months of therapy. Of those that discontinued treatment, other health issues and difficulties with compliance were the most common causes. Participants were followed with Montreal Cognitive Assessment (MOCA) and Boston Cognitive Assessment (BOCA). For participants with subjective cognitive complaints, 2 of the 4 had improved MOCA score and 1 of 4 had improved BOCA score. For the participant with MCI, his MOCA score improved. For AD participants, 2 out of 6 had improved MOCA score and 3 of the 6 stayed stable, while 3 of 6 BOCA score improved. 4 of 11 participants specifically increased their MOCA scores in the Memory Index section. Of the 8 participants/caregivers able to speak to perceived usefulness of the study, 6 spoke to at least some level of benefit. Of these 6, 2 enrolled with subjective cognitive complaint, 1 had MCI, and 3 had AD. The therapy did not have reported side effects. However, those who did not finish the study experienced issues obtaining and operating a smart tablet independently as well as complying with the therapy. Overall, further exploration of this treatment modalities efficacy is warranted.
Collapse
Affiliation(s)
- Sienna D McNett
- Center for Integrative Medicine, George Washington University, Washington, DC 20052, USA
| | - Andrey Vyshedskiy
- MET, Boston University, Boston, MA 02215, USA
- Alzheimer's Light, Miami, FL 33626, USA
| | | | | | - George Heredia
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA 90007, USA
| | - Rael Cahn
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA 90007, USA
| | - Mikhail Kogan
- Center for Integrative Medicine, George Washington University, Washington, DC 20052, USA
| |
Collapse
|