1
|
Garcia-Valtanen P, Hope CM, Masavuli MG, Yeow AEL, Balachandran H, Mekonnen ZA, Al-Delfi Z, Abayasingam A, Agapiou D, Stella AO, Aggarwal A, Bouras G, Gummow J, Ferguson C, O'Connor S, McCartney EM, Lynn DJ, Maddern G, Gowans EJ, Reddi BAJ, Shaw D, Kok-Lim C, Beard MR, Weiskopf D, Sette A, Turville SG, Bull RA, Barry SC, Grubor-Bauk B. SARS-CoV-2 Omicron variant escapes neutralizing antibodies and T cell responses more efficiently than other variants in mild COVID-19 convalescents. Cell Rep Med 2022; 3:100651. [PMID: 35654046 PMCID: PMC9110310 DOI: 10.1016/j.xcrm.2022.100651] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) convalescents living in regions with low vaccination rates rely on post-infection immunity for protection against re-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluate humoral and T cell immunity against five variants of concern (VOCs) in mild-COVID-19 convalescents at 12 months after infection with ancestral virus. In this cohort, ancestral, receptor-binding domain (RBD)-specific antibody and circulating memory B cell levels are conserved in most individuals, and yet serum neutralization against live B.1.1.529 (Omicron) is completely abrogated and significantly reduced for other VOCs. Likewise, ancestral SARS-CoV-2-specific memory T cell frequencies are maintained in >50% of convalescents, but the cytokine response in these cells to mutated spike epitopes corresponding to B.1.1.529 and B.1.351 (Beta) VOCs were impaired. These results indicate that increased antigen variability in VOCs impairs humoral and spike-specific T cell immunity post-infection, strongly suggesting that COVID-19 convalescents are vulnerable and at risk of re-infection with VOCs, thus stressing the importance of vaccination programs. Most mild COVID-19 convalescents maintain immunity at 12 months after disease onset B.1.1.529 escapes antibodies in convalescents infected with ancestral SARS-CoV-2 SARS-CoV-2 VOCs can partially avoid recognition by antigen-specific T cells Antigenic drift in SARS-CoV-2 VOCs significantly challenges convalescent immunity
Collapse
Affiliation(s)
- Pablo Garcia-Valtanen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Christopher M Hope
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia; Women's and Children's Health Network, North Adelaide, SA, Australia
| | - Makutiro G Masavuli
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Arthur Eng Lip Yeow
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | | | - Zelalem A Mekonnen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Zahraa Al-Delfi
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | | | - David Agapiou
- School of Medical Sciences, Faculty of Medicine, UNSW, Australia, Sydney, NSW, Australia
| | | | - Anupriya Aggarwal
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; The Department of Surgery - Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
| | - Jason Gummow
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Catherine Ferguson
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Stephanie O'Connor
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Erin M McCartney
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Guy Maddern
- Discipline of Surgery, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Eric J Gowans
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Benjamin A J Reddi
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - David Shaw
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Chuan Kok-Lim
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia; Microbiology and Infectious Diseases Department, SA Pathology, Adelaide, SA, Australia; Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Stuart G Turville
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Rowena A Bull
- School of Medical Sciences, Faculty of Medicine, UNSW, Australia, Sydney, NSW, Australia
| | - Simon C Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia; Women's and Children's Health Network, North Adelaide, SA, Australia.
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Osuch S, Laskus T, Perlejewski K, Berak H, Bukowska-Ośko I, Pollak A, Zielenkiewicz M, Radkowski M, Caraballo Cortés K. CD8 + T-Cell Exhaustion Phenotype in Chronic Hepatitis C Virus Infection Is Associated With Epitope Sequence Variation. Front Immunol 2022; 13:832206. [PMID: 35386708 PMCID: PMC8977521 DOI: 10.3389/fimmu.2022.832206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Background and Aims During chronic hepatitis C virus (HCV) infection, CD8+ T-cells become functionally exhausted, undergoing progressive phenotypic changes, i.e., overexpression of “inhibitory” molecules such as PD-1 (programmed cell death protein 1) and/or Tim-3 (T-cell immunoglobulin and mucin domain-containing molecule-3). The extreme intrahost genetic diversity of HCV is a major mechanism of immune system evasion, facilitating epitope escape. The aim of the present study was to determine whether T-cell exhaustion phenotype in chronic HCV infection is related to the sequence repertoire of NS3 viral immunodominant epitopes. Methods The study population was ninety prospective patients with chronic HCV genotype 1b infection. Populations of peripheral blood CD8+ T-cells expressing PD-1/Tim-3 were assessed by multiparametric flow cytometry, including HCV-specific T-cells after magnetic-based enrichment using MHC-pentamer. Autologous epitope sequences were inferred from next-generation sequencing. The correction of sequencing errors and genetic variants reconstruction was performed using Quasirecomb. Results There was an interplay between the analyzed epitopes sequences and exhaustion phenotype of CD8+ T-cells. A predominance of NS31406 epitope sequence, representing neither prototype KLSGLGLNAV nor cross-reactive variants (KLSSLGLNAV, KLSGLGINAV or KLSALGLNAV), was associated with higher percentage of HCV-specific CD8+PD-1+Tim-3+ T-cells, P=0.0102. Variability (at least two variants) of NS31406 epitope sequence was associated with increased frequencies of global CD8+PD-1+Tim-3+ T-cells (P=0.0197) and lower frequencies of CD8+PD-1−Tim-3− T-cells (P=0.0079). In contrast, infection with NS31073 dominant variant epitope (other than prototype CVNGVCWTV) was associated with lower frequency of global CD8+PD-1+Tim-3+ T-cells (P=0.0054). Conclusions Our results indicate that PD-1/Tim-3 receptor expression is largely determined by viral epitope sequence and is evident for both HCV-specific and global CD8+ T-cells, pointing to the importance of evaluating autologous viral epitope sequences in the investigation of CD8+ T-cell exhaustion in HCV infection.
Collapse
Affiliation(s)
- Sylwia Osuch
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Laskus
- Department of Adult Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Hanna Berak
- Outpatient Clinic, Warsaw Hospital for Infectious Diseases, Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Human Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Kamila Caraballo Cortés
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. A Detailed Overview of Immune Escape, Antibody Escape, Partial Vaccine Escape of SARS-CoV-2 and Their Emerging Variants With Escape Mutations. Front Immunol 2022; 13:801522. [PMID: 35222380 PMCID: PMC8863680 DOI: 10.3389/fimmu.2022.801522] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/05/2022] [Indexed: 01/08/2023] Open
Abstract
The infective SARS-CoV-2 is more prone to immune escape. Presently, the significant variants of SARS-CoV-2 are emerging in due course of time with substantial mutations, having the immune escape property. Simultaneously, the vaccination drive against this virus is in progress worldwide. However, vaccine evasion has been noted by some of the newly emerging variants. Our review provides an overview of the emerging variants' immune escape and vaccine escape ability. We have illustrated a broad view related to viral evolution, variants, and immune escape ability. Subsequently, different immune escape approaches of SARS-CoV-2 have been discussed. Different innate immune escape strategies adopted by the SARS-CoV-2 has been discussed like, IFN-I production dysregulation, cytokines related immune escape, immune escape associated with dendritic cell function and macrophages, natural killer cells and neutrophils related immune escape, PRRs associated immune evasion, and NLRP3 inflammasome associated immune evasion. Simultaneously we have discussed the significant mutations related to emerging variants and immune escape, such as mutations in the RBD region (N439K, L452R, E484K, N501Y, K444R) and other parts (D614G, P681R) of the S-glycoprotein. Mutations in other locations such as NSP1, NSP3, NSP6, ORF3, and ORF8 have also been discussed. Finally, we have illustrated the emerging variants' partial vaccine (BioNTech/Pfizer mRNA/Oxford-AstraZeneca/BBIBP-CorV/ZF2001/Moderna mRNA/Johnson & Johnson vaccine) escape ability. This review will help gain in-depth knowledge related to immune escape, antibody escape, and partial vaccine escape ability of the virus and assist in controlling the current pandemic and prepare for the next.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| |
Collapse
|
4
|
Echeverría N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J. In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World J Hepatol 2021; 13:1234-1268. [PMID: 34786164 PMCID: PMC8568586 DOI: 10.4254/wjh.v13.i10.1234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplantation worldwide. Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections, there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility. Indeed, the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected. To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must. The coronavirus disease 19 (COVID-19) pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which has renewed interest on fighting HCV epidemic with vaccination. The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications. We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus, together with some key aspects of HCV immunology which have, so far, hampered the progress in this area. The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches, some of which have been recently and successfully employed for SARS-CoV-2 vaccines. Finally, some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.
Collapse
Affiliation(s)
- Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Victoria Comas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabián Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
5
|
Mutational escape from cellular immunity in viral hepatitis: variations on a theme. Curr Opin Virol 2021; 50:110-118. [PMID: 34454351 DOI: 10.1016/j.coviro.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
Approx. 320 million individuals worldwide are chronically infected with hepatitis viruses, contributing to viral hepatitis being one of the 10 leading causes of death. Cellular adaptive immunity, namely CD4+ and CD8+ T cells, plays an important role in viral clearance and control. Two main mechanisms, however, may lead to failure of the virus-specific T-cell response: T-cell exhaustion and mutational viral escape. Viral escape has been studied in detail in hepatitis C virus (HCV) infection, where it is thought to affect approx. 50% of virus-specific CD8+ T-cell responses in persistent infection, to influence natural infection outcome and to contribute to failure of preventive vaccination strategies. In hepatitis B virus (HBV) as well as HBV/hepatitis D virus (HDV) co-infection, the impact of viral escape has been studied in detail only recently.
Collapse
|
6
|
Bhattacharjee C, Singh M, Das D, Chaudhuri S, Mukhopadhyay A. Current therapeutics against HCV. Virusdisease 2021; 32:228-243. [PMID: 34307769 PMCID: PMC8279913 DOI: 10.1007/s13337-021-00697-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C is a positive stranded enveloped RNA virus belonging to the Flaviviridae family. HCV infection leads to severe liver diseases, cirrhosis and hepatocellular carcinoma worldwide. Although treatments have been available for a while, due to its complexity and genetic diversity, only few are reported to be effective against all HCV genotypes. Here, we review the HCV life cycle and its immunogenic potential and various mechanisms via which the virus interferes in the signalling process. A comprehensive overview of current anti-HCV therapeutics, such as, Direct Acting Antiviral (DAA) as well as Host Targeting Agents (HTA), along with their scope, known mechanism of action and limitations are presented. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00697-0.
Collapse
Affiliation(s)
- Chayan Bhattacharjee
- Department of Life Science, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | - Maitri Singh
- Department of Life Science, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | - Debisukti Das
- Department of Life Science, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | | | - Aparna Mukhopadhyay
- Department of Life Science, Presidency University, 86/1 College Street, Kolkata, 700073 India
| |
Collapse
|
7
|
Hartlage AS, Dravid P, Walker CM, Kapoor A. Adenovirus-vectored T cell vaccine for hepacivirus shows reduced effectiveness against a CD8 T cell escape variant in rats. PLoS Pathog 2021; 17:e1009391. [PMID: 33735321 PMCID: PMC8009437 DOI: 10.1371/journal.ppat.1009391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/30/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
There is an urgent need for a vaccine to prevent chronic infection by hepatitis C virus (HCV) and its many genetic variants. The first human vaccine trial, using recombinant viral vectors that stimulate pan-genotypic T cell responses against HCV non-structural proteins, failed to demonstrate efficacy despite significant preclinical promise. Understanding the factors that govern HCV T cell vaccine success is necessary for design of improved immunization strategies. Using a rat model of chronic rodent hepacivirus (RHV) infection, we assessed the impact of antigenic variation and immune escape upon success of a conceptually analogous RHV T cell vaccine. Naïve Lewis rats were vaccinated with a recombinant human adenovirus expressing RHV non-structural proteins (NS)3-5B and later challenged with a viral variant containing immune escape mutations within major histocompatibility complex (MHC) class I-restricted epitopes (escape virus). Whereas 7 of 11 (64%) rats cleared infection caused by wild-type RHV, only 3 of 12 (25%) were protected against heterologous challenge with escape virus. Uncontrolled replication of escape virus was associated with durable CD8 T cell responses targeting escaped epitopes alone. In contrast, clearance of escape virus correlated with CD4 T cell helper immunity and maintenance of CD8 T cell responses against intact viral epitopes. Interestingly, clearance of wild-type RHV infection after vaccination conferred enhanced protection against secondary challenge with escape virus. These results demonstrate that the efficacy of an RHV T cell vaccine is reduced when challenge virus contains escape mutations within MHC class I-restricted epitopes and that failure to sustain CD8 T cell responses against intact epitopes likely underlies immune failure in this setting. Further investigation of the immune responses that yield protection against diverse RHV challenges in this model may facilitate design of broadly effective HCV vaccines. The hepatitis C virus is one of the leading causes of chronic liver disease and cancer worldwide. A vaccine is not yet available and the first phase II clinical trial in humans using a T cell-based immunization strategy recently failed to prevent chronic infection in high risk individuals for unclear reasons. In this study we evaluated how immune escape mutations at major histocompatibility complex (MHC) class I-restricted viral epitopes influence the effectiveness of an adenoviral-vectored T cell vaccine in a rat model of chronic HCV-related rodent hepacivirus infection, currently the only animal model available for evaluation of HCV vaccine strategies. We show that vaccine efficacy is markedly diminished when challenge virus contains naturally-acquired escape mutations at dominant MHC class I-restricted viral epitopes that render a subset of vaccine-generated CD8 T cell responses ineffective. We also identify CD4 T cell help as a critical correlate of vaccine success against heterologous virus challenge. Our results have important implications for human vaccination programs that aim to induce broad protective immunity against heterogeneous HCV strains.
Collapse
Affiliation(s)
- Alex S. Hartlage
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Piyush Dravid
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Christopher M. Walker
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
8
|
Peña-Asensio J, Calvo H, Torralba M, Miquel J, Sanz-de-Villalobos E, Larrubia JR. Gamma-Chain Receptor Cytokines & PD-1 Manipulation to Restore HCV-Specific CD8 + T Cell Response during Chronic Hepatitis C. Cells 2021; 10:cells10030538. [PMID: 33802622 PMCID: PMC8001543 DOI: 10.3390/cells10030538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV)-specific CD8+ T cell response is essential in natural HCV infection control, but it becomes exhausted during persistent infection. Nowadays, chronic HCV infection can be resolved by direct acting anti-viral treatment, but there are still some non-responders that could benefit from CD8+ T cell response restoration. To become fully reactive, T cell needs the complete release of T cell receptor (TCR) signalling but, during exhaustion this is blocked by the PD-1 effect on CD28 triggering. The T cell pool sensitive to PD-1 modulation is the progenitor subset but not the terminally differentiated effector population. Nevertheless, the blockade of PD-1/PD-L1 checkpoint cannot be always enough to restore this pool. This is due to the HCV ability to impair other co-stimulatory mechanisms and metabolic pathways and to induce a pro-apoptotic state besides the TCR signalling impairment. In this sense, gamma-chain receptor cytokines involved in memory generation and maintenance, such as low-level IL-2, IL-7, IL-15, and IL-21, might carry out a positive effect on metabolic reprogramming, apoptosis blockade and restoration of co-stimulatory signalling. This review sheds light on the role of combinatory immunotherapeutic strategies to restore a reactive anti-HCV T cell response based on the mixture of PD-1 blocking plus IL-2/IL-7/IL-15/IL-21 treatment.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Gene Expression Regulation
- Hepacivirus/immunology
- Hepacivirus/pathogenicity
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/virology
- Host-Pathogen Interactions/drug effects
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Immune Checkpoint Inhibitors/therapeutic use
- Immunity, Cellular/drug effects
- Immunotherapy/methods
- Interleukins/genetics
- Interleukins/immunology
- Interleukins/therapeutic use
- Lymphocyte Activation/drug effects
- Precursor Cells, T-Lymphoid/drug effects
- Precursor Cells, T-Lymphoid/immunology
- Precursor Cells, T-Lymphoid/virology
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Receptors, Antigen, T-Cell, gamma-delta/agonists
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
Collapse
Affiliation(s)
- Julia Peña-Asensio
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Department of Biology of Systems, University of Alcalá, E-28805 Alcalá de Henares, Spain
| | - Henar Calvo
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Section of Gastroenterology & Hepatology, Guadalajara University Hospital, E-19002 Guadalajara, Spain
| | - Miguel Torralba
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Service of Internal Medicine, Guadalajara University Hospital, E-19002 Guadalajara, Spain
- Department of Medicine & Medical Specialties, University of Alcalá, E-28805 Alcalá de Henares, Spain
| | - Joaquín Miquel
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Section of Gastroenterology & Hepatology, Guadalajara University Hospital, E-19002 Guadalajara, Spain
| | - Eduardo Sanz-de-Villalobos
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Section of Gastroenterology & Hepatology, Guadalajara University Hospital, E-19002 Guadalajara, Spain
| | - Juan-Ramón Larrubia
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Section of Gastroenterology & Hepatology, Guadalajara University Hospital, E-19002 Guadalajara, Spain
- Department of Medicine & Medical Specialties, University of Alcalá, E-28805 Alcalá de Henares, Spain
- Correspondence: ; Tel.: +34-949-20-9200
| |
Collapse
|
9
|
Smith S, Honegger JR, Walker C. T-Cell Immunity against the Hepatitis C Virus: A Persistent Research Priority in an Era of Highly Effective Therapy. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036954. [PMID: 32205413 PMCID: PMC7778213 DOI: 10.1101/cshperspect.a036954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Approximately 70% of acute hepatitis C virus (HCV) infections become chronic, indicating that the virus is exceptionally well adapted to persist in humans with otherwise normal immune function. Robust, lifelong replication of this small RNA virus does not require a generalized failure of immunity. HCV effectively subverts innate and adaptive host defenses while leaving immunity against other viruses intact. Here, the role of CD4+ and CD8+ T-cell responses in control of HCV infection and their failure to prevent virus persistence in most individuals are reviewed. Two issues of practical importance remain priorities in an era of highly effective antiviral therapy for chronic hepatitis C. First, the characteristics of successful T-cell responses that promote resolution of HCV infection are considered, as they will underpin development of vaccines that prevent HCV persistence. Second, defects in T-cell immunity that facilitate HCV persistence and whether they are reversed after antiviral cure to provide protection from reinfection are also addressed.
Collapse
Affiliation(s)
- Stephanie Smith
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Jonathan R. Honegger
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Christopher Walker
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| |
Collapse
|
10
|
The Role of ApoE in HCV Infection and Comorbidity. Int J Mol Sci 2019; 20:ijms20082037. [PMID: 31027190 PMCID: PMC6515466 DOI: 10.3390/ijms20082037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is an RNA virus that can efficiently establish chronic infection in humans. The overlap between the HCV replication cycle and lipid metabolism is considered to be one of the primary means by which HCV efficiently develops chronic infections. In the blood, HCV is complex with lipoproteins to form heterogeneous lipo-viro-particles (LVPs). Furthermore, apolipoprotein E (ApoE), which binds to receptors during lipoprotein transport and regulates lipid metabolism, is localized on the surface of LVPs. ApoE not only participate in the attachment and entry of HCV on the cell surface but also the assembly and release of HCV viral particles from cells. Moreover, in the blood, ApoE can also alter the infectivity of HCV and be used by HCV to escape recognition by the host immune system. In addition, because ApoE can also affect the antioxidant and immunomodulatory/anti-inflammatory properties of the host organism, the long-term binding and utilization of host ApoE during chronic HCV infection not only leads to liver lipid metabolic disorders but may also lead to increased morbidity and mortality associated with systemic comorbidities.
Collapse
|
11
|
Hepatitis C Virus Genetic Variability, Human Immune Response, and Genome Polymorphisms: Which Is the Interplay? Cells 2019; 8:cells8040305. [PMID: 30987134 PMCID: PMC6523096 DOI: 10.3390/cells8040305] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection is the main cause of chronic hepatitis, affecting an estimated 150 million people worldwide. Initial exposure to HCV is most often followed by chronic hepatitis, with only a minority of individuals spontaneously clearing the virus. The induction of sustained and broadly directed HCV-specific CD4+ and CD8+ T cell responses, together with neutralizing antibodies (nAb), and specific genetic polymorphism have been associated with spontaneous resolution of the infection. However, due to its high variability, HCV is able to overwhelm the host immune response through the rapid acquisition of mutations in the epitopes targeted by T cells and neutralizing antibodies. In this context, immune-mediated pressure represents the main force in driving HCV evolution. This review summarizes the data on HCV diversity and the current state of knowledge about the contributions of antibodies, T cells, and host genetic polymorphism in driving HCV evolution in vivo.
Collapse
|
12
|
Rodrigo C, Leung P, Lloyd AR, Bull RA, Luciani F, Grebely J, Dore GJ, Applegate T, Page K, Bruneau J, Cox AL, Osburn W, Kim AY, Shoukry NH, Lauer GM, Maher L, Schinkel J, Prins M, Hellard M, Eltahla AA. Genomic variability of within-host hepatitis C variants in acute infection. J Viral Hepat 2019; 26:476-484. [PMID: 30578702 PMCID: PMC6417964 DOI: 10.1111/jvh.13051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/26/2018] [Indexed: 01/04/2023]
Abstract
Interactions between the host immune system and the viral variants determine persistence of hepatitis C virus (HCV) infection after the acute phase of infection. This study describes the genetic variability of within-host HCV viral variants in acute infection and correlates it with host- and virus-related traits and infection outcome. Next generation sequence data (Illumina, MiSeq platform) of viral genomes from 116 incident acute infections (within 180 days of infection) were analysed to determine all the single nucleotide polymorphism (SNP) frequencies above a threshold of 0.1%. The variability of the SNPs for the full open reading frame of the genome as well as for each protein coding region were compared using mean standardized Shannon entropy (SE) values calculated separately for synonymous and nonsynonymous mutations. The envelope glycoproteins regions (E1 and E2) had the highest SE values (indicating greater variability) followed by the NS5B region. Nonsynonymous mutations rather than synonymous mutations were the main contributors to genomic variability in acute infection. The mean difference of Shannon entropy was also compared between subjects after categorizing the samples according to host and virus-related traits. Host IFNL3 allele CC polymorphism at rs12979860 (vs others) and viral genotype 1a (vs 3a) were associated with higher genomic variability across the viral open reading frame. Time since infection, host gender or continent of origin was not associated with the viral genomic variability. Viral genomic variability did not predict spontaneous clearance.
Collapse
Affiliation(s)
| | | | | | - Rowena A. Bull
- School of Medical Sciences, UNSW, NSW, Australia
- The Kirby Institute, UNSW Sydney, NSW, Australia
| | - Fabio Luciani
- School of Medical Sciences, UNSW, NSW, Australia
- The Kirby Institute, UNSW Sydney, NSW, Australia
| | | | | | | | - Kimberly Page
- University of New Mexico, Albuquerque, New Mexico, USA
| | - Julie Bruneau
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Andrea L. Cox
- Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | | | - Lisa Maher
- The Kirby Institute, UNSW Sydney, NSW, Australia
| | - Janke Schinkel
- Academic Medical Center, Amsterdam, The Netherlands
- GGD Public Health Service of Amsterdam
| | - Maria Prins
- Academic Medical Center, Amsterdam, The Netherlands
- GGD Public Health Service of Amsterdam
| | - Margaret Hellard
- Burnet Institute, Melbourne, VIC, Australia
- Monash University, Australia
- Alfred Hospital, Melbourne, Australia
- Doherty Institute and Melbourne School of Population and Global Health, University of Melbourne
| | - Auda A. Eltahla
- School of Medical Sciences, UNSW, NSW, Australia
- University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
13
|
Luxenburger H, Neumann-Haefelin C, Thimme R, Boettler T. HCV-Specific T Cell Responses During and After Chronic HCV Infection. Viruses 2018; 10:v10110645. [PMID: 30453612 PMCID: PMC6265781 DOI: 10.3390/v10110645] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV)-specific T cell responses are closely linked to the clinical course of infection. While T cell responses in self-limiting infection are typically broad and multi-specific, they display several distinct features of functional impairment in the chronic phase. Moreover, HCV readily adapts to immune pressure by developing escape mutations within epitopes targeted by T cells. Much of our current knowledge on HCV-specific T cell responses has been gathered under the assumption that this might eventually pave the way for a therapeutic vaccine. However, with the development of highly efficient direct acting antivirals (DAAs), there is less interest in the development of a therapeutic vaccine for HCV and the scope of T cell research has shifted. Indeed, the possibility to rapidly eradicate an antigen that has persisted over years or decades, and has led to T cell exhaustion and dysfunction, provides the unique opportunity to study potential T cell recovery after antigen cessation in a human in vivo setting. Findings from such studies not only improve our basic understanding of T cell immunity but may also advance immunotherapeutic approaches in cancer or chronic hepatitis B and D infection. Moreover, in order to edge closer to the WHO goal of HCV elimination by 2030, a prophylactic vaccine is clearly required. Thus, in this review, we will summarize our current knowledge on HCV-specific T cell responses and also provide an outlook on the open questions that require answers in this field.
Collapse
Affiliation(s)
- Hendrik Luxenburger
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Robert Thimme
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Tobias Boettler
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
14
|
Iwona BO, Karol P, Kamila CC, Pollak A, Hanna B, Agnieszka P, Andrzej H, Kosińska J, Płoski R, Tomasz L, Marek R. Next-generation sequencing analysis of new genotypes appearing during antiviral treatment of chronic hepatitis C reveals that these are selected from pre-existing minor strains. J Gen Virol 2018; 99:1633-1642. [PMID: 30394872 DOI: 10.1099/jgv.0.001160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coinfection with more than one hepatitis C virus (HCV) genotype is common, but its dynamics, particularly during antiviral treatment, remain largely unknown. We employed next-generation sequencing (NGS) to analyse sequential serum and peripheral blood mononuclear cell (PBMC) samples in seven patients with transient presence or permanent genotype change during antiviral treatment with interferon and ribavirin. Specimens were collected right before the therapy initiation and at 2, 4, 6, 8, 12, 20, 24, 36, 44 and 48 weeks during treatment and 6 months after treatment ceased. A mixture of two different genotypes was detected in the pretreatment samples from five patients and the minor genotype constituted 0.02 to 38 %. A transient or permanent change of the predominant genotype was observed in six patients. In three cases genotype 3 was replaced as the predominant genotype by genotype 4, in two cases genotype 3 was replaced by genotype 1, and in one subject genotype 1 was replaced by genotype 4. The PBMC- and serum-derived sequences were frequently discordant with respect to genotype and/or genotype proportions. In conclusion, pre-existing minor HCV genotypes can be selected rapidly during antiviral treatment and become transiently or permanently predominant. In coinfections involving genotype 3, genotype 3 was eliminated first from both the serum and PBMC compartments. The PBMC- and serum-derived HCV sequences were frequently discordant with respect to genotype and/or genotype proportions, suggesting that they constitute separate compartments with their own dynamics.
Collapse
Affiliation(s)
- Bukowska-Ośko Iwona
- 1Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawinskiego Street, 02-106 Warsaw, Poland
| | - Perlejewski Karol
- 1Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawinskiego Street, 02-106 Warsaw, Poland
| | - Caraballo Cortés Kamila
- 1Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawinskiego Street, 02-106 Warsaw, Poland
| | - Agnieszka Pollak
- 2Institute of Physiology and Pathology of Hearing, 17 Mokra Street, Kajetany 05-830 Nadarzyn, Poland
| | - Berak Hanna
- 3Hospital for Infectious Diseases, 37 Wolska Street, 01-201 Warsaw, Poland
| | - Pawełczyk Agnieszka
- 1Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawinskiego Street, 02-106 Warsaw, Poland
| | - Horban Andrzej
- 3Hospital for Infectious Diseases, 37 Wolska Street, 01-201 Warsaw, Poland
- 4Department of Infectious Diseases, Warsaw Medical University, Warsaw, Poland
| | - Joanna Kosińska
- 5Department of Medical Genetics, Medical University of Warsaw, 3C Pawinskiego Street, 02-106 Warsaw, Poland
| | - Rafał Płoski
- 5Department of Medical Genetics, Medical University of Warsaw, 3C Pawinskiego Street, 02-106 Warsaw, Poland
| | - Laskus Tomasz
- 1Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawinskiego Street, 02-106 Warsaw, Poland
| | - Radkowski Marek
- 1Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
15
|
Dustin LB. Innate and Adaptive Immune Responses in Chronic HCV Infection. Curr Drug Targets 2018; 18:826-843. [PMID: 26302811 DOI: 10.2174/1389450116666150825110532] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) remains a public health problem of global importance, even in the era of potent directly-acting antiviral drugs. In this chapter, I discuss immune responses to acute and chronic HCV infection. The outcome of HCV infection is influenced by viral strategies that limit or delay the initiation of innate antiviral responses. This delay may enable HCV to establish widespread infection long before the host mounts effective T and B cell responses. HCV's genetic agility, resulting from its high rate of replication and its error prone replication mechanism, enables it to evade immune recognition. Adaptive immune responses fail to keep up with changing viral epitopes. Neutralizing antibody epitopes may be hidden by decoy structures, glycans, and lipoproteins. T cell responses fail due to changing epitope sequences and due to exhaustion, a phenomenon that may have evolved to limit immune-mediated pathology. Despite these difficulties, innate and adaptive immune mechanisms do impact HCV replication. Immune-mediated clearance of infection is possible, occurring in 20-50% of people who contract the disease. New developments raise hopes for effective immunological interventions to prevent or treat HCV infection.
Collapse
Affiliation(s)
- Lynn B Dustin
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
16
|
Polymer-Based Nanomaterials and Applications for Vaccines and Drugs. Polymers (Basel) 2018; 10:polym10010031. [PMID: 30966075 PMCID: PMC6415012 DOI: 10.3390/polym10010031] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology plays a significant role in drug development. As carriers, polymeric nanoparticles can deliver vaccine antigens, proteins, and drugs to the desired site of action. Polymeric nanoparticles with lower cytotoxicity can protect the delivered antigens or drugs from degradation under unfavorable conditions via a mucosal administration route; further, the uptake of nanoparticles by antigen-presenting cells can increase and induce potent immune responses. Additionally, nanomaterials are widely used in vaccine delivery systems because nanomaterials can make the vaccine antigen long-acting. This review focuses on some biodegradable polymer materials such as natural polymeric nanomaterials, chemically synthesized polymer materials, and biosynthesized polymeric materials, and points out the advantages and the direction of research on degradable polymeric materials. The application and future perspectives of polymeric materials as delivery carriers and vaccine adjuvants in the field of drugs and vaccines are presented. With the increase of knowledge and fundamental understandings of polymer-based nanomaterials, means of integrating some other attractive properties, such as slow release, target delivery, and alternative administration methods and delivery pathways are feasible. Polymer-based nanomaterials have great potential for the development of novel vaccines and drug systems for certain needs, including single-dose and needle-free deliveries of vaccine antigens and drugs in the future.
Collapse
|
17
|
Lythgoe KA, Gardner A, Pybus OG, Grove J. Short-Sighted Virus Evolution and a Germline Hypothesis for Chronic Viral Infections. Trends Microbiol 2017; 25:336-348. [PMID: 28377208 PMCID: PMC5405858 DOI: 10.1016/j.tim.2017.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 12/24/2022]
Abstract
With extremely short generation times and high mutability, many viruses can rapidly evolve and adapt to changing environments. This ability is generally beneficial to viruses as it allows them to evade host immune responses, evolve new behaviours, and exploit ecological niches. However, natural selection typically generates adaptation in response to the immediate selection pressures that a virus experiences in its current host. Consequently, we argue that some viruses, particularly those characterised by long durations of infection and ongoing replication, may be susceptible to short-sighted evolution, whereby a virus' adaptation to its current host will be detrimental to its onward transmission within the host population. Here we outline the concept of short-sighted viral evolution and provide examples of how it may negatively impact viral transmission among hosts. We also propose that viruses that are vulnerable to short-sighted evolution may exhibit strategies that minimise its effects. We speculate on the various mechanisms by which this may be achieved, including viral life history strategies that result in low rates of within-host evolution, or the establishment of a 'germline' lineage of viruses that avoids short-sighted evolution. These concepts provide a new perspective on the way in which some viruses have been able to establish and maintain global pandemics.
Collapse
Affiliation(s)
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Joe Grove
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, WC1E 6BT, UK
| |
Collapse
|
18
|
Modulation of Hepatitis C Virus-Specific CD8 Effector T-Cell Function with Antiviral Effect in Infectious Hepatitis C Virus Coculture Model. J Virol 2017; 91:JVI.02129-16. [PMID: 28275182 DOI: 10.1128/jvi.02129-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/14/2017] [Indexed: 01/03/2023] Open
Abstract
The antiviral effects of hepatitis C virus (HCV)-specific CD8 T cells have been shown in an HCV replicon system but not in an authentic infectious HCV cell culture (HCVcc) system. Here, we developed tools to examine the antigenicity of HCV-infected HLA-A2-positive Huh7.5 hepatoma cells (Huh7.5A2 cells) in activating HCV-specific CD8 T cells and the downstream antiviral effects. Infectious HCV epitope mutants encoding the well-defined genotype 1a-derived HLA-A2-restricted HCV NS3-1073 or NS5-2594 epitope were generated from a genotype 2a-derived HCV clone (Jc1Gluc2A) by site-directed mutagenesis. CD8 T-cell lines specific for NS3-1073 and NS5-2594 were expanded from HCV-seropositive persons by peptide stimulation in vitro or engineered from HCV-seronegative donor T cells by transduction of a lentiviral vector expressing HCV-specific T-cell receptors. HCV-specific CD8 T cells were cocultured with Huh7.5 cells that were pulsed with titrating doses of HCV epitope peptides or infected with HCV epitope mutants. HCV-specific CD8 T-cell activation (CD107a, gamma interferon, macrophage inflammatory protein 1β, tumor necrosis factor alpha) was dependent on the peptide concentrations and the relative percentages of HCV-infected Huh7.5A2 cells. HCV-infected Huh7.5A2 cells activated HCV-specific CD8 T cells at levels comparable to those achieved with 0.1 to 2 μM pulsed peptides, providing a novel estimate of the level at which endogenously processed HCV epitopes are presented on HCV-infected cells. While HCV-specific CD8 T-cell activation with cytolytic and antiviral effects was blunted by PD-L1 expression on HCV-infected Huh7.5A2 cells, resulting in the improved viability of Huh7.5A2 cells, PD-1 blockade reversed this effect, producing enhanced cytolytic elimination of HCV-infected Huh7.5A2 cells. Our findings, obtained using an infectious HCVcc system, show that the HCV-specific CD8 T-cell function is modulated by antigen expression levels, the percentage of HCV-infected cells, and the PD-1/PD-L1 pathways and has antiviral and cytotoxic effects.IMPORTANCE We developed several novel molecular and immunological tools to study the interactions among HCV, HCV-infected hepatocytes, and HCV-specific CD8 T cells. Using these tools, we show the level at which HCV-infected hepatoma cells present endogenously processed HCV epitopes to HCV-specific CD8 T cells with antiviral and cytotoxic effects. We also show the marked protective effect of PD-L1 expression on HCV-infected hepatoma cells against HCV-specific CD8 T cells.
Collapse
|
19
|
Fukuhara T, Yamamoto S, Ono C, Nakamura S, Motooka D, Mori H, Kurihara T, Sato A, Tamura T, Motomura T, Okamoto T, Imamura M, Ikegami T, Yoshizumi T, Soejima Y, Maehara Y, Chayama K, Matsuura Y. Quasispecies of Hepatitis C Virus Participate in Cell-Specific Infectivity. Sci Rep 2017; 7:45228. [PMID: 28327559 PMCID: PMC5361118 DOI: 10.1038/srep45228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/21/2017] [Indexed: 02/08/2023] Open
Abstract
It is well documented that a variety of viral quasispecies are found in the patients with chronic infection of hepatitis C virus (HCV). However, the significance of quasispecies in the specific infectivity to individual cell types remains unknown. In the present study, we analyzed the role of quasispecies of the genotype 2a clone, JFH1 (HCVcc), in specific infectivity to the hepatic cell lines, Huh7.5.1 and Hep3B. HCV RNA was electroporated into Huh7.5.1 cells and Hep3B/miR-122 cells expressing miR-122 at a high level. Then, we adapted the viruses to Huh7 and Hep3B/miR-122 cells by serial passages and termed the resulting viruses HCVcc/Huh7 and HCVcc/Hep3B, respectively. Interestingly, a higher viral load was obtained in the homologous combination of HCVcc/Huh7 in Huh7.5.1 cells or HCVcc/Hep3B in Hep3B/miR-122 cells compared with the heterologous combination. By using a reverse genetics system and deep sequence analysis, we identified several adaptive mutations involved in the high affinity for each cell line, suggesting that quasispecies of HCV participate in cell-specific infectivity.
Collapse
Affiliation(s)
- Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Satomi Yamamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Mori
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kurihara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Asuka Sato
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomokazu Tamura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takashi Motomura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical &Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Toru Ikegami
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Soejima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical &Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
20
|
Izadi F, Rezaei Tavirani M, Honarkar Z, Rostami-Nejad M. Celiac disease and hepatitis C relationships in transcriptional regulatory networks. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:303-310. [PMID: 29379596 PMCID: PMC5758739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AIM we mainly aimed to elucidate potential comorbidities between celiac disease and hepatitis c by means of data and network analysis approaches. BACKGROUND understanding the association among the disorders evidently has important impact on the diagnosis and therapeutic approaches. Celiac disease is the most challenging, common types of autoimmune disorders. On the other hand, hepatitis c virus genome products like some proteins are supposed to be resemble to gliadin types that in turn activates gluten intolerance in people with inclined to gluten susceptibilities. Moreover, a firm support of association between chronic hepatitis and celiac disease remains largely unclear. Henceforth exploring cross-talk among these diseases will apparently lead to the promising discoveries concerning important genes and regulators. METHODS 321 and 1032 genes associated with celiac disease and hepatitis c retrieved from DisGeNET were subjected to build a gene regulatory network. Afterward a network-driven integrative analysis was performed to exploring prognosticates genes and related pathways. RESULTS 105 common genes between these diseases included 11 transcription factors were identified as hallmark molecules where by further screening enriched in biological GO terms and pathways chiefly in immune systems and signaling pathways such as chemokines, cytokines and interleukins. CONCLUSION in silico data analysis approaches indicated that the identified selected combinations of genes covered a wide range of known functions triggering the inflammation implicated in these diseases.
Collapse
Affiliation(s)
- Fereshteh Izadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Honarkar
- Gastroenterology Unit, Modares Hospital, Shahid beheshti University of Medical Sciences, Tehran, Iran ,Gastroenterology Department, Atiyeh Hospital, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Sede M, Parra M, Manrique JM, Laufer N, Jones LR, Quarleri J. Evolution of hepatitis C virus in HIV coinfected patients under antiretroviral therapy. INFECTION GENETICS AND EVOLUTION 2016; 43:186-96. [PMID: 27234841 DOI: 10.1016/j.meegid.2016.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/13/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023]
Abstract
Five patients (P) were followed-up for an average of 7.73years after highly active antiretroviral therapy (HAART) initiation. Patients' immune and virological status were determined by periodical CD4+T-cell counts and HIV and HCV viral load. HCV populations were studied using longitudinal high throughput sequence data obtained in parallel by virological and immunological parameters. Two patients (P7, P28) with sub-optimal responses to HAART presented HCV viral loads significantly higher than those recorded for two patients (P1, P18) that achieved good responses to HAART. Interestingly, HCV populations from P7 and P28 displayed a stable phylogenetic structure, whereas HCV populations from P1 and P18showeda significant increase in their phylogenetic structure, followed by a decrease after achieving acceptable CD4+T-cell counts (>500 cell/μl). The fifth patient (P25) presented high HCV viral loads, preserved CD4+T-cell counts from baseline and all along the follow-up, and displayed a constant viral phylogenetic structure. These results strongly suggest that HAART-induced immune recovery induces a decrease in HCV viral load and an increase in the HCV population phylogenetic structure likely reflecting the virus diversification in response to the afresh immune response. The relatively low HCV viral load observed in the HAART responder patients suggests that once HCV is adapted it reaches a maximum number of haplotypes higher than that achieved during the initial stages of the immune response as inferred from the two recovering patients. Future studies using larger number of patients are needed to corroborate these hypotheses.
Collapse
Affiliation(s)
- Mariano Sede
- Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1083ACA Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155-Piso 11, C1121ABG Buenos Aires, Argentina
| | - Micaela Parra
- Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1083ACA Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155-Piso 11, C1121ABG Buenos Aires, Argentina
| | - Julieta M Manrique
- Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1083ACA Buenos Aires, Argentina; Laboratorio de Virología y Genética Molecular, Facultad de Ciencias Naturales sede Trelew, Universidad Nacional de la Patagonia San Juan Bosco, 9 de Julio y Belgrano S/N, 9100 Trelew, Chubut, Argentina
| | - Natalia Laufer
- Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1083ACA Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155-Piso 11, C1121ABG Buenos Aires, Argentina
| | - Leandro R Jones
- Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1083ACA Buenos Aires, Argentina; Laboratorio de Virología y Genética Molecular, Facultad de Ciencias Naturales sede Trelew, Universidad Nacional de la Patagonia San Juan Bosco, 9 de Julio y Belgrano S/N, 9100 Trelew, Chubut, Argentina.
| | - Jorge Quarleri
- Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1083ACA Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155-Piso 11, C1121ABG Buenos Aires, Argentina.
| |
Collapse
|
22
|
Distinct Escape Pathway by Hepatitis C Virus Genotype 1a from a Dominant CD8+ T Cell Response by Selection of Altered Epitope Processing. J Virol 2015; 90:33-42. [PMID: 26446603 DOI: 10.1128/jvi.01993-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Antiviral CD8(+) T cells are a key component of the adaptive immune response against HCV, but their impact on viral control is influenced by preexisting viral variants in important target epitopes and the development of viral escape mutations. Immunodominant epitopes highly conserved across genotypes therefore are attractive for T cell based prophylactic vaccines. Here, we characterized the CD8(+) T cell response against the highly conserved HLA-B*51-restricted epitope IPFYGKAI1373-1380 located in the helicase domain of NS3 in people who inject drugs (PWID) exposed predominantly to HCV genotypes 1a and 3a. Despite this epitope being conserved in both genotypes, the corresponding CD8(+) T cell response was detected only in PWID infected with genotype 3a and HCV-RNA negative PWID, but not in PWID infected with genotype 1a. In genotype 3a, the detection of strong CD8(+) T cell responses was associated with epitope variants in the autologous virus consistent with immune escape. Analysis of viral sequences from multiple cohorts confirmed HLA-B*51-associated escape mutations inside the epitope in genotype 3a, but not in genotype 1a. Here, a distinct substitution in the N-terminal flanking region located 5 residues upstream of the epitope (S1368P; P = 0.00002) was selected in HLA-B*51-positive individuals. Functional assays revealed that the S1368P substitution impaired recognition of target cells presenting the endogenously processed epitope. The results highlight that, despite an epitope being highly conserved between two genotypes, there are major differences in the selected viral escape pathways and the corresponding T cell responses. IMPORTANCE HCV is able to evolutionary adapt to CD8(+) T cell immune pressure in multiple ways. Beyond selection of mutations inside targeted epitopes, this study demonstrates that HCV inhibits epitope processing by modification of the epitope flanking region under T cell immune pressure. Selection of a substitution five amino acids upstream of the epitope underlines that efficient antigen presentation strongly depends on its larger sequence context and that blocking of the multistep process of antigen processing by mutation is exploited also by HCV. The pathways to mutational escape of HCV are to some extent predictable but are distinct in different genotypes. Importantly, the selected escape pathway of HCV may have consequences for the destiny of antigen-specific CD8(+) T cells.
Collapse
|
23
|
Mutational escape of CD8+ T cell epitopes: implications for prevention and therapy of persistent hepatitis virus infections. Med Microbiol Immunol 2014; 204:29-38. [PMID: 25537849 PMCID: PMC4305108 DOI: 10.1007/s00430-014-0372-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/01/2014] [Indexed: 12/16/2022]
Abstract
Over the past two decades, much has been learned about how human viruses evade T cell immunity to establish persistent infection. The lessons are particularly relevant to two hepatotropic viruses, HBV and HCV, that are very significant global public health problems. Although HCV and HBV are very different, the natural history of persistent infections with these viruses in humans shares some common features including failure of T cell immunity. During recent years, large sequence studies of HCV have characterized intra-host evolution as well as sequence diversity between hosts in great detail. Combined with studies of CD8+ T cell phenotype and function, it is now apparent that the T cell response shapes viral evolution. In turn, HCV sequence diversity influences the quality of the CD8+ T cell response and thus infection outcome. Here, we review published studies of CD8+ T cell selection pressure and mutational escape of the virus. Potential consequences for therapeutic strategies to restore T cell immunity against persistent human viruses, most notably HBV, are discussed.
Collapse
|
24
|
Nivarthi UK, Gras S, Kjer-Nielsen L, Berry R, Lucet IS, Miles JJ, Tracy SL, Purcell AW, Bowden DS, Hellard M, Rossjohn J, McCluskey J, Bharadwaj M. An extensive antigenic footprint underpins immunodominant TCR adaptability against a hypervariable viral determinant. THE JOURNAL OF IMMUNOLOGY 2014; 193:5402-13. [PMID: 25355921 DOI: 10.4049/jimmunol.1401357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations in T cell epitopes are implicated in hepatitis C virus (HCV) persistence and can impinge on vaccine development. We recently demonstrated a narrow bias in the human TCR repertoire targeted at an immunodominant, but highly mutable, HLA-B*0801-restricted epitope ((1395)HSKKKCDEL(1403) [HSK]). To investigate if the narrow TCR repertoire facilitates CTL escape, structural and biophysical studies were undertaken, alongside comprehensive functional analysis of T cells targeted at the natural variants of HLA-B*0801-HSK in different HCV genotypes and quasispecies. Interestingly, within the TCR-HLA-B*0801-HSK complex, the TCR contacts all available surface-exposed residues of the HSK determinant. This broad epitope coverage facilitates cross-genotypic reactivity and recognition of common mutations reported in HCV quasispecies, albeit to a varying degree. Certain mutations did abrogate T cell reactivity; however, natural variants comprising these mutations are reportedly rare and transient in nature, presumably due to fitness costs. Overall, despite a narrow bias, the TCR accommodated frequent mutations by acting like a blanket over the hypervariable epitope, thereby providing effective viral immunity. Our findings simultaneously advance the understanding of anti-HCV immunity and indicate the potential for cross-genotype HCV vaccines.
Collapse
Affiliation(s)
- Usha K Nivarthi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3000, Australia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3000, Australia
| | - Richard Berry
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Isabelle S Lucet
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - John J Miles
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom; Queensland Institute of Medical Research Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Medicine, University of Queensland, Brisbane, Queensland 4006, Australia
| | - Samantha L Tracy
- Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3000, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David S Bowden
- Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3000, Australia
| | - Margaret Hellard
- Centre for Population Health, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3800, Australia; and Centre for Research Excellence into Injecting Drug Use, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom;
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3000, Australia;
| | - Mandvi Bharadwaj
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3000, Australia;
| |
Collapse
|
25
|
Dustin LB, Cashman SB, Laidlaw SM. Immune control and failure in HCV infection--tipping the balance. J Leukoc Biol 2014; 96:535-48. [PMID: 25015956 DOI: 10.1189/jlb.4ri0214-126r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the development of potent antiviral drugs, HCV remains a global health problem; global eradication is a long way off. In this review, we discuss the immune response to HCV infection and particularly, the interplay between viral strategies that delay the onset of antiviral responses and host strategies that limit or even eradicate infected cells but also contribute to pathogenesis. Although HCV can disable some cellular virus-sensing machinery, IFN-stimulated antiviral genes are induced in the infected liver. Whereas epitope evolution contributes to escape from T cell-mediated immunity, chronic high antigen load may also blunt the T cell response by activating exhaustion or tolerance mechanisms. The evasive maneuvers of HCV limit sterilizing humoral immunity through rapid evolution of decoy epitopes, epitope masking, stimulation of interfering antibodies, lipid shielding, and cell-to-cell spread. Whereas the majority of HCV infections progress to chronic hepatitis with persistent viremia, at least 20% of patients spontaneously clear the infection. Most of these are protected from reinfection, suggesting that protective immunity to HCV exists and that a prophylactic vaccine may be an achievable goal. It is therefore important that we understand the correlates of protective immunity and mechanisms of viral persistence.
Collapse
Affiliation(s)
- Lynn B Dustin
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Siobhán B Cashman
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Stephen M Laidlaw
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| |
Collapse
|
26
|
Abdel-Hakeem MS, Shoukry NH. Protective immunity against hepatitis C: many shades of gray. Front Immunol 2014; 5:274. [PMID: 24982656 PMCID: PMC4058636 DOI: 10.3389/fimmu.2014.00274] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022] Open
Abstract
The majority of individuals who become acutely infected with hepatitis C virus (HCV) develop chronic infection and suffer from progressive liver damage while approximately 25% are able to eliminate the virus spontaneously. Despite the recent introduction of new direct-acting antivirals, there is still no vaccine for HCV. As a result, new infections and reinfections will remain a problem in developing countries and among high risk populations like injection drug users who have limited access to treatment and who continue to be exposed to the virus. The outcome of acute HCV is determined by the interplay between the host genetics, the virus, and the virus-specific immune response. Studies in humans and chimpanzees have demonstrated the essential role of HCV-specific CD4 and CD8 T cell responses in protection against viral persistence. Recent data suggest that antibody responses play a more important role than what was previously thought. Individuals who spontaneously resolve acute HCV infection develop long-lived memory T cells and are less likely to become persistently infected upon reexposure. New studies examining high risk cohorts are identifying correlates of protection during real life exposures and reinfections. In this review, we discuss correlates of protective immunity during acute HCV and upon reexposure. We draw parallels between HCV and the current knowledge about protective memory in other models of chronic viral infections. Finally, we discuss some of the yet unresolved questions about key correlates of protection and their relevance for vaccine development against HCV.
Collapse
Affiliation(s)
- Mohamed S Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montréal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal , Montréal, QC , Canada ; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University , Cairo , Egypt
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montréal, QC , Canada ; Département de Médecine, Faculté de Médecine, Université de Montréal , Montréal, QC , Canada
| |
Collapse
|
27
|
Selection of conserved epitopes from hepatitis C virus for pan-populational stimulation of T-cell responses. Clin Dev Immunol 2013; 2013:601943. [PMID: 24348677 PMCID: PMC3856138 DOI: 10.1155/2013/601943] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/19/2013] [Indexed: 12/14/2022]
Abstract
The hepatitis C virus (HCV) is able to persist as a chronic infection, which can lead to cirrhosis and liver cancer. There is evidence that clearance of HCV is linked to strong responses by CD8 cytotoxic T lymphocytes (CTLs), suggesting that eliciting CTL responses against HCV through an epitope-based vaccine could prove an effective means of immunization. However, HCV genomic plasticity as well as the polymorphisms of HLA I molecules restricting CD8 T-cell responses challenges the selection of epitopes for a widely protective vaccine. Here, we devised an approach to overcome these limitations. From available databases, we first collected a set of 245 HCV-specific CD8 T-cell epitopes, all known to be targeted in the course of a natural infection in humans. After a sequence variability analysis, we next identified 17 highly invariant epitopes. Subsequently, we predicted the epitope HLA I binding profiles that determine their potential presentation and recognition. Finally, using the relevant HLA I-genetic frequencies, we identified various epitope subsets encompassing 6 conserved HCV-specific CTL epitopes each predicted to elicit an effective T-cell response in any individual regardless of their HLA I background. We implemented this epitope selection approach for free public use at the EPISOPT web server.
Collapse
|
28
|
Honegger JR, Kim S, Price AA, Kohout JA, McKnight KL, Prasad MR, Lemon SM, Grakoui A, Walker CM. Loss of immune escape mutations during persistent HCV infection in pregnancy enhances replication of vertically transmitted viruses. Nat Med 2013; 19:1529-33. [PMID: 24162814 PMCID: PMC3823809 DOI: 10.1038/nm.3351] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/20/2013] [Indexed: 12/11/2022]
Abstract
Globally, about 1% of pregnant women are persistently infected with the hepatitis C virus (HCV). Mother-to-child transmission of HCV occurs in 3-5% of pregnancies and accounts for most new childhood infections. HCV-specific CD8(+) cytotoxic T lymphocytes (CTLs) are vital in the clearance of acute HCV infections, but in the 60-80% of infections that persist, these cells become functionally exhausted or select for mutant viruses that escape T cell recognition. Increased HCV replication during pregnancy suggests that maternofetal immune tolerance mechanisms may further impair HCV-specific CTLs, limiting their selective pressure on persistent viruses. To assess this possibility, we characterized circulating viral quasispecies during and after consecutive pregnancies in two women. This revealed a loss of some escape mutations in HLA class I epitopes during pregnancy that was associated with emergence of more fit viruses. CTL selective pressure was reimposed after childbirth, at which point escape mutations in these epitopes again predominated in the quasispecies and viral load dropped sharply. Importantly, the viruses transmitted perinatally were those with enhanced fitness due to reversion of escape mutations. Our findings indicate that the immunoregulatory changes of pregnancy reduce CTL selective pressure on HCV class I epitopes, thereby facilitating vertical transmission of viruses with optimized replicative fitness.
Collapse
Affiliation(s)
- Jonathan R Honegger
- 1] The Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, Ohio, USA. [2] Department of Pediatrics, The Ohio State University School of Medicine, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ulsenheimer A, Paranhos-Baccalà G, Komurian-Pradel F, Raziorrouh B, Kurktschiev P, Diepolder HM, Zachoval R, Spannagl M, Jung MC, Gruener NH. Lack of variant specific CD8+ T-cell response against mutant and pre-existing variants leads to outgrowth of particular clones in acute hepatitis C. Virol J 2013; 10:295. [PMID: 24073713 PMCID: PMC3849755 DOI: 10.1186/1743-422x-10-295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/24/2013] [Indexed: 01/27/2023] Open
Abstract
Background CTL escape mutations have been described during acute hepatitis C in patients who developed chronic disease later on. Our aim was to investigate the mutual relationship between HCV specific CD8+ T cells and evolution of the viral sequence during early acute HCV infection. Results We sequenced multiple clones of NS3 1406 epitope in 4 HLA-A*02 patients with acute hepatitis C genotype 1b infection. Pentamers specific for the variants were used to monitor the corresponding CD8+ T cell response. We observed outgrowth of mutations, which induced only a weak and thus potentially insufficient CD8+ T cell response. In one patient we observed outgrowth of variant epitopes with similarities to a different genotype rather than de novo mutations most probably due to a lack of responsiveness to these likely pre-existing variants. We could show that in acute hepatitis C CTL escape mutations occur much earlier than demonstrated in previous studies. Conclusions The adaption of the virus to a new host is characterized by a high and rapid variability in epitopes under CD8+ T cell immune pressure. This adaption takes place during the very early phase of acute infection and strikingly some sequences were reduced below the limit of detection at some time points but were detected at high frequency again at later time points. Independent of the observed variability, HCV-specific CD8+ T cell responses decline and no adaption to different or new antigens during the course of infection could be detected.
Collapse
Affiliation(s)
- Axel Ulsenheimer
- Department of Internal Medicine II, Klinikum Großhadern, University of Munich, Marchioninistrasse 15, Munich, 81377, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hepatitis C virus adaptation to T-cell immune pressure. ScientificWorldJournal 2013; 2013:673240. [PMID: 23554569 PMCID: PMC3608127 DOI: 10.1155/2013/673240] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/17/2013] [Indexed: 01/07/2023] Open
Abstract
Replication of the hepatitis C virus (HCV) is an error-prone process. This high error rate results in the emergence of viral populations (quasispecies) within hosts and contributes to interhost variability. Numerous studies have demonstrated that both viral and host factors contribute to this viral diversity, which can ultimately affect disease outcome. As the host's immune response is an important correlate of infection outcome for HCV, many of these viral variations are strongly influenced by T-cell immune pressure and accordingly constitute an efficient strategy to subvert such pressures (viral adaptations). This paper will review the data on viral diversity observed between and within hosts infected with HCV from the acute to the chronic stage of infection and will focus on viral adaptation to the host's T-cell immune response.
Collapse
|
31
|
Shi C, Ploss A. Hepatitis C virus vaccines in the era of new direct-acting antivirals. Expert Rev Gastroenterol Hepatol 2013; 7:171-85. [PMID: 23363265 DOI: 10.1586/egh.12.72] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) infection is a major global health problem as it has a high propensity for establishing chronicity. Chronic HCV carriers are at risk of developing severe liver disease including fibrosis, cirrhosis and liver cancer. While treatment has considerably improved over the years, therapy is still only partially effective, and is plagued by side effects, which contribute to treatment failure and is expensive to manage. The drug development pipeline contains several compounds that hold promise to achieve the goal of a short and more tolerable therapy, and are also likely to improve treatment response rates. It remains to be seen, however, how potent antiviral drug cocktails will affect the hepatitis C burden worldwide. In resource-poor environments, considerable costs, inadequate infrastructure for medical supervision and distribution may diminish the impact of future therapies. Consequently, development of novel therapeutic and prophylactic strategies is imperative to contain HCV infection globally.
Collapse
Affiliation(s)
- Chao Shi
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
32
|
Velazquez VM, Hon H, Ibegbu C, Knechtle SJ, Kirk AD, Grakoui A. Hepatic enrichment and activation of myeloid dendritic cells during chronic hepatitis C virus infection. Hepatology 2012; 56:2071-81. [PMID: 22711645 PMCID: PMC3747821 DOI: 10.1002/hep.25904] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/04/2012] [Indexed: 02/06/2023]
Abstract
UNLABELLED Chronic hepatitis C virus (HCV) infection is a serious disease that can result in numerous long-term complications leading to liver failure or death. Approximately 80% of people fail to clear their infection, largely as the result of weak, narrowly targeting or waning antiviral T-cell responses. Although professional antigen presenting cells (APCs) like dendritic cells (DCs) might serve as targets for modulation of T-cell immunity, the particular role of DCs in immunity to HCV is not known. Moreover the identity, phenotype, and functional characteristics of such populations in the liver, the site of HCV replication, have proven difficult to elucidate. Using a multicolor flow-based approach, we identified six distinct populations of professional APCs among liver interstitial leukocytes isolated from uninfected and HCV-infected patients. Although a generalized enrichment of DCs in the liver compared to blood was observed for all patients, HCV infection was characterized by a significant increase in the frequency of intrahepatic myeloid DCs (both CD1c+ and CD141+). Phenotypic analyses of liver plasmacytoid (pDC) and myeloid DCs (mDC) further revealed the HCV-induced expression of maturation molecules CD80, CD83, CD40, and programmed death ligand-1. Importantly, pDC and mDCs from HCV-infected liver were capable of secreting effector cytokines, interferon-alpha and interleukin-12, respectively, in response to Toll-like receptor stimulation in vitro. CONCLUSION Chronic HCV infection facilitates the "customized" recruitment of liver DC subsets with established functional roles in antigen presentation. These DCs are characterized by a mature, activated phenotype and are functionally responsive to antigenic stimulation in vitro. Such findings highlight an important paradox surrounding liver DC recruitment during HCV infection, where despite their activation these cells do not provide adequate protection from the virus.
Collapse
Affiliation(s)
| | - Huiming Hon
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Chris Ibegbu
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, 30322
- Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Stuart J. Knechtle
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Allan D. Kirk
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Arash Grakoui
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, 30322
- Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, 30322
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, 30322
| |
Collapse
|
33
|
Guan M, Wang W, Liu X, Tong Y, Liu Y, Ren H, Zhu S, Dubuisson J, Baumert TF, Zhu Y, Peng H, Aurelian L, Zhao P, Qi Z. Three different functional microdomains in the hepatitis C virus hypervariable region 1 (HVR1) mediate entry and immune evasion. J Biol Chem 2012; 287:35631-35645. [PMID: 22927442 PMCID: PMC3471721 DOI: 10.1074/jbc.m112.382341] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/22/2012] [Indexed: 12/29/2022] Open
Abstract
High genetic heterogeneity is an important characteristic of hepatitis C virus (HCV) that contributes to its ability to establish persistent infection. The hypervariable region 1 (HVR1) that includes the first 27 amino acid residues of the E2 envelope glycoprotein is the most variable region within the HCV polyprotein. HVR1 plays a major role in both HCV cell entry and immune evasion, but the respective contribution of specific amino acid residues is still unclear. Our mutagenesis analyses of HCV pseudoparticles and cell culture-derived HCV using the H77 isolate indicate that five residues at positions 14, 15, and 25-27 mediate binding of the E2 protein to the scavenger receptor class B, type I receptor, and any residue herein is indispensable for HCV cell entry. The region spanning positions 16-24 contains the sole neutralizing epitope and is dispensable for HCV entry, but it is involved in heparan binding. More importantly, this region is necessary for the enhancement of HCV entry by high density lipoprotein and interferes with virus neutralization by E2-neutralizing antibodies. Residues at positions 1-13 are also dispensable for HCV entry, but they can affect HCV infectivity by modulating binding of the envelope protein to scavenger receptor class B, type I. Mutations occurring at this site may confer resistance to HVR1 antibodies. These findings further our understanding about the mechanisms of HCV cell entry and the significance of HVR1 variation in HCV immune evasion. They have major implications for the development of HCV entry inhibitors and prophylactic vaccines.
Collapse
Affiliation(s)
- Mo Guan
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Wenbo Wang
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Xiaoqing Liu
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Yimin Tong
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Yuan Liu
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Hao Ren
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Shiying Zhu
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Jean Dubuisson
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université Lille Nord de France, F-59021 Lille, France
| | - Thomas F Baumert
- Unité Inserm U.748, Université de Strasbourg, Nouvel Hôpital Civil, 3 Rue Koeberlé, F-67000 Strasbourg, France
| | - Yongzhe Zhu
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Haoran Peng
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Laure Aurelian
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Ping Zhao
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China.
| | - Zhongtian Qi
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
34
|
Criscione SM. May viral (antigen) load be the real crucial tool leading to anergy in a "micro-evolutionary" model of host/virus interaction? Med Hypotheses 2012; 79:774-8. [PMID: 23031183 DOI: 10.1016/j.mehy.2012.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/24/2012] [Accepted: 08/25/2012] [Indexed: 11/17/2022]
Abstract
HYPOTHESIS The hypothesis in the present work is that in host/virus/tumor (antigens) interactions, leading to anergy of the immune system, the Viral (antigen) load plays a crucial and central role, which all interactions turn around. BACKGROUND Notwithstanding apparent strong favorable evidences, the still prevailing concept of "active virus strategies to escape" may be misleading, since it might hide the cited pivotal role in a wide number of researches. This concept could be easily substituted by a microevolutionary model explaining many unresolved questions and allowing to emerge the role of antigen load conditioned reactions of the host's immune system as motivated choices. EVIDENCES: An anergy induced condition can be detected not only in HCV, but also in the course of persistent viral (e.g. HBV, HIV) and non viral parasitic infections (e.g. Leishmania and Helminths) which share the same host's reactions leading to anergy, independently on the infecting agents. The starting point of those reactions is always time elapsing from the primary infection after a short early (often undetected) period of high viral(antigen) load in the lack of clearance. This latter seems then the only conceivable link between such so different infections determining, as far as HBV and HCV are concerned, also Hepatocarcinoma under indirect facilitating conditions. In a wide majority of studies it seems clearly evident that viral load exerts a main role which contributes to determine host chosen reactions aimed at avoiding dangerous outcomes while controlling viral load. Strong clinical (i.e. both HIV infected patients treated with HAART, and helminths infected people with deworming drugs acting directly on viral and parasitic loads) and experimental studies (i.e. chimpanzees (the only animal model of HCV infection) infected with HBV inocula of different size) are here reported or cited to highlight the crucial role of antigen load also on HIV infection transmission, seroconversion, disease progression, treatment initiation and efficacy. CONCLUDING SUGGESTIONS The new era for antiviral drugs like protease and polymerase inhibitors that seem to be more efficacious and less toxic than Ribavirin, may open the possibility to verify, when administered during the early phase of HCV infection (eventually helped by an immune-stimulant cytokine as IL-2), whether a precocious significant reduction of viral load (threshold) may allow the host to sustain his strong reactions and clear the virus within the due time, confirming the hypothesis about the crucial role of this tool which may be extended to all the cited infections.
Collapse
Affiliation(s)
- S M Criscione
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
35
|
Alvarez-Lajonchere L, Dueñas-Carrera S. Complete definition of immunological correlates of protection and clearance of hepatitis C virus infection: a relevant pending task for vaccine development. Int Rev Immunol 2012; 31:223-42. [PMID: 22587022 DOI: 10.3109/08830185.2012.680552] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) infects approximately 3% of global population. This pathogen is one of the main causes of chronic viral hepatitis, cirrhosis, and liver cancer, as well as the principal reason for liver transplant in Western countries. Therapy against HCV infection is effective in only half of treated patients. There is no vaccine available against HCV. Some vaccine candidates have reached the clinical trials but several factors, including the incomplete definition of immunological correlates of protection and treatment-related clearance have slowed down vaccine development. Precisely, the present review discusses the state of the art in the establishment of parameters related with immunity against HCV. Validity and limitations of the information accumulated from chimpanzees and other animal models, analysis of studies in humans infected with HCV, and relevance of aspects like type, strength, duration, and specificity of immune response related to successful outcome are evaluated in detail. Moreover, the immune responses induced in some clinical trials with vaccine candidates resemble the theoretical immunological correlates, raising questions about the validity of those correlates. When all facts are taken together, complete definition of immunological correlates for protection or treatment-related clearance is an urgent priority. A limited or wrong criterion with respect to this relevant matter might cause incorrect vaccine design and selection of immunization strategies or erroneous clinical evaluation.
Collapse
|
36
|
Brenndörfer ED, Sällberg M. Hepatitis C virus-mediated modulation of cellular immunity. Arch Immunol Ther Exp (Warsz) 2012; 60:315-29. [PMID: 22911132 DOI: 10.1007/s00005-012-0184-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 03/09/2012] [Indexed: 12/14/2022]
Abstract
The hepatitis C virus (HCV) is a major cause of chronic liver disease globally. A chronic infection can result in liver fibrosis, liver cirrhosis, hepatocellular carcinoma and liver failure in a significant ratio of the patients. About 170 million people are currently infected with HCV. Since 80 % of the infected patients develop a chronic infection, HCV has evolved sophisticated escape strategies to evade both the innate and the adaptive immune system. Thus, chronic hepatitis C is characterized by perturbations in the number, subset composition and/or functionality of natural killer cells, natural killer T cells, dendritic cells, macrophages and T cells. The balance between HCV-induced immune evasion and the antiviral immune response results in chronic liver inflammation and consequent immune-mediated liver injury. This review summarizes our current understanding of the HCV-mediated interference with cellular immunity and of the factors resulting in HCV persistence. A profound knowledge about the intrinsic properties of HCV and its effects on intrahepatic immunity is essential to be able to design effective immunotherapies against HCV such as therapeutic HCV vaccines.
Collapse
Affiliation(s)
- Erwin Daniel Brenndörfer
- Division of Clinical Microbiology F68, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
| | | |
Collapse
|
37
|
Ip PP, Nijman HW, Wilschut J, Daemen T. Therapeutic vaccination against chronic hepatitis C virus infection. Antiviral Res 2012; 96:36-50. [PMID: 22841700 DOI: 10.1016/j.antiviral.2012.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/25/2012] [Accepted: 07/13/2012] [Indexed: 12/12/2022]
Abstract
Approximately 170 million people worldwide are chronic carriers of Hepatitis C virus (HCV). To date, there is no prophylactic vaccine available against HCV. The standard-of-care therapy for HCV infection involves a combination of pegylated interferon-α and ribavirin. This therapy, which is commonly associated with side effects, has a curative rate varying from 43% (HCV genotype 1) to 80% (HCV genotype 2). In 2011, two direct-acting antiviral agents, telaprevir and boceprevir, were approved by the US Food and drug Administration and are now being used in combination with standard-of-care therapy in selected patients infected with HCV genotype 1. Although both drugs are promising, resulting in a shortening of therapy, these drugs also induce additional side effects and have reduced efficacy in patients who did not respond to standard-of-care previously. An alternative approach would be to treat HCV by stimulating the immune system with a therapeutic vaccine ideally aimed at (i) the eradication of HCV-infected cells and (ii) neutralization of infectious HCV particles. The challenge is to develop therapeutic vaccination strategies that are either at least as effective as antiviral drugs but with lower side effects, or vaccines that, when combined with antiviral drugs, can circumvent long-term use of these drugs thereby reducing their side effects. In this review, we summarize and discuss recent preclinical developments in the area of therapeutic vaccination against chronic HCV infection. Although neutralizing antibodies have been described to exert protective immunity, clinical studies on the induction of neutralizing antibodies in therapeutic settings are limited. Therefore, we will primarily discuss therapeutic vaccines which aim to induce effective cellular immune response against HCV.
Collapse
Affiliation(s)
- Peng Peng Ip
- Department of Medical Microbiology, Molecular Virology Section, University of Groningen, University Medical Center Groningen, The Netherlands
| | | | | | | |
Collapse
|
38
|
FOFANA ISABEL, FAFI–KREMER SAMIRA, CAROLLA PATRIC, FAUVELLE CATHERINE, ZAHID MUHAMMADNAUMAN, TUREK MARINE, HEYDMANN LAURA, CURY KARINE, HAYER JULIETTE, COMBET CHRISTOPHE, COSSET FRANÇOIS, PIETSCHMANN THOMAS, HIET MARIE, BARTENSCHLAGER RALF, HABERSETZER FRANÇOIS, DOFFOËL MICHEL, KECK ZHEN, FOUNG STEVENKH, ZEISEL MIRJAMB, STOLL–KELLER FRANÇOISE, BAUMERT THOMASF. Mutations that alter use of hepatitis C virus cell entry factors mediate escape from neutralizing antibodies. Gastroenterology 2012; 143:223-233.e9. [PMID: 22503792 PMCID: PMC5295797 DOI: 10.1053/j.gastro.2012.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 03/14/2012] [Accepted: 04/06/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The development of vaccines and other strategies to prevent hepatitis C virus (HCV) infection is limited by rapid viral evasion. HCV entry is the first step of infection; this process involves several viral and host factors and is targeted by host-neutralizing responses. Although the roles of host factors in HCV entry have been well characterized, their involvement in evasion of immune responses is poorly understood. We used acute infection of liver graft as a model to investigate the molecular mechanisms of viral evasion. METHODS We studied factors that contribute to evasion of host immune responses using patient-derived antibodies, HCV pseudoparticles, and cell culture-derived HCV that express viral envelopes from patients who have undergone liver transplantation. These viruses were used to infect hepatoma cell lines that express different levels of HCV entry factors. RESULTS By using reverse genetic analyses, we identified altered use of host-cell entry factors as a mechanism by which HCV evades host immune responses. Mutations that alter use of the CD81 receptor also allowed the virus to escape neutralizing antibodies. Kinetic studies showed that these mutations affect virus-antibody interactions during postbinding steps of the HCV entry process. Functional studies with a large panel of patient-derived antibodies showed that this mechanism mediates viral escape, leading to persistent infection in general. CONCLUSIONS We identified a mechanism by which HCV evades host immune responses, in which use of cell entry factors evolves with escape from neutralizing antibodies. These findings advance our understanding of the pathogenesis of HCV infection and might be used to develop antiviral strategies and vaccines.
Collapse
Affiliation(s)
- ISABEL FOFANA
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - SAMIRA FAFI–KREMER
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
,Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - PATRIC CAROLLA
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - CATHERINE FAUVELLE
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | | | - MARINE TUREK
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - LAURA HEYDMANN
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - KARINE CURY
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - JULIETTE HAYER
- Bases Moléculaires et Structurales des Systèmes Infectieux, UMR 5086, Centre National de la Recherche Scientifique, Université de Lyon, Institut de Biologie et Chimie des Proteines, Lyon, France
| | - CHRISTOPHE COMBET
- Bases Moléculaires et Structurales des Systèmes Infectieux, UMR 5086, Centre National de la Recherche Scientifique, Université de Lyon, Institut de Biologie et Chimie des Proteines, Lyon, France
| | - FRANÇOIS–LOÏC COSSET
- Université de Lyon, Université Claude Bernard Lyon1, IFR 128, Inserm U758; Ecole Normale Supérieure de Lyon, 69364 Lyon, France
| | - THOMAS PIETSCHMANN
- Division of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - MARIE–SOPHIE HIET
- The Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - RALF BARTENSCHLAGER
- The Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - FRANÇOIS HABERSETZER
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
,Pôle Hepato-Digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - MICHEL DOFFOËL
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
,Pôle Hepato-Digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - ZHEN–YONG KECK
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - STEVEN K. H. FOUNG
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - MIRJAM B. ZEISEL
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - FRANÇOISE STOLL–KELLER
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
,Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - THOMAS F. BAUMERT
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
,Pôle Hepato-Digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
39
|
Systems Biology Analyses to Define Host Responses to HCV Infection and Therapy. Curr Top Microbiol Immunol 2012; 363:143-67. [DOI: 10.1007/82_2012_251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Darling JM, Lemon SM, Fried MW. Hepatitis C. SCHIFF'S DISEASES OF THE LIVER 2011:582-652. [DOI: 10.1002/9781119950509.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
41
|
Petrovic D, Dempsey E, Doherty DG, Kelleher D, Long A. Hepatitis C virus--T-cell responses and viral escape mutations. Eur J Immunol 2011; 42:17-26. [PMID: 22125159 DOI: 10.1002/eji.201141593] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/15/2011] [Accepted: 10/05/2011] [Indexed: 01/25/2023]
Abstract
Hepatitis C virus (HCV) is a small, enveloped RNA virus and the number of HCV-infected individuals worldwide is estimated to be approximately 170 million. Most HCV infections persist, with up to 80% of all cases leading to chronic hepatitis associated with liver fibrosis, cirrhosis, and hepatocellular carcinoma. HCV-host interactions have a crucial role in viral survival, persistence, pathogenicity of infection, and disease progression. Maintenance of a vigorous, sustained cellular immune response recognizing multiple epitopes is essential for viral clearance. To escape immune surveillance, HCV alters its epitopes so that they are no-longer recognized by T cells and neutralizing antibodies, in addition to interfering with host cell cellular components and signaling pathways. The generation of escape variants is one of the most potent immune evasion strategies utilized by HCV. A large body of evidence suggests that single or multiple mutations within HLA-restricted epitopes contribute to viral immune escape and establishment of viral persistence. Further elucidation of the molecular mechanisms underlying immune escape will aid in the design of novel vaccines and therapeutics for the disease.
Collapse
Affiliation(s)
- Danijela Petrovic
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
42
|
Escape from a dominant HLA-B*15-restricted CD8+ T cell response against hepatitis C virus requires compensatory mutations outside the epitope. J Virol 2011; 86:991-1000. [PMID: 22072759 DOI: 10.1128/jvi.05603-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antiviral CD8(+) T cells are a key component of the adaptive immune system against hepatitis C virus (HCV). For the development of immune therapies, it is essential to understand how CD8(+) T cells contribute to clearance of infection and why they fail so often. A mechanism for secondary failure is mutational escape of the virus. However, some substitutions in viral epitopes are associated with fitness costs and often require compensatory mutations. We hypothesized that compensatory mutations may point toward epitopes under particularly strong selection pressure that may be beneficial for vaccine design because of a higher genetic barrier to escape. We previously identified two HLA-B*15-restricted CD8(+) epitopes in NS5B (LLRHHNMVY(2450-2458) and SQRQKKVTF(2466-2474)), based on sequence analysis of a large HCV genotype 1b outbreak. Both epitopes are targeted in about 70% of HLA-B*15-positive individuals exposed to HCV. Reproducible selection of escape mutations was confirmed in an independent multicenter cohort in the present study. Interestingly, mutations were also selected in the epitope flanking region, suggesting that compensatory evolution may play a role. Covariation analysis of sequences from the database confirmed a significant association between escape mutations inside one of the epitopes (H2454R and M2456L) and substitutions in the epitope flanking region (S2439T and K2440Q). Functional analysis with the subgenomic replicon Con1 confirmed that the primary escape mutations impaired viral replication, while fitness was restored by the additional substitutions in the epitope flanking region. We concluded that selection of escape mutations inside an HLA-B*15 epitope requires secondary substitutions in the epitope flanking region that compensate for fitness costs.
Collapse
|
43
|
Roohvand F, Kossari N. Advances in hepatitis C virus vaccines, Part one: Advances in basic knowledge for hepatitis C virus vaccine design. Expert Opin Ther Pat 2011; 21:1811-30. [PMID: 22022980 DOI: 10.1517/13543776.2011.630662] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Around 3% of the world population is infected with HCV, with 3 - 4 million newly infected subjects added to this reservoir every year. At least 10% of these people will develop liver cirrhosis or cancer over time, while no approved vaccine against HCV infection is available to date. AREAS COVERED This paper includes a detailed and correlated patent (selected by HCAPLUS search database) and literature (searched by PubMed) review on the HCV genome, proteins and key epitopes (including underestimated HCV proteins, alternate reading frame proteins), HCV immunology, immunosuppressive mechanisms and protective correlations of immunity in acute and chronic states of infection (features for prophylactic and therapeutic HCV vaccine design), recent HCV cell culture systems (HCV/JFH1) and animal models. In part two of this review, advances in HCV vaccine formulations and modalities as well as a detailed list of the current trials for HCV vaccine and discussion of the pros and cones of different strategies will be provided. EXPERT OPINION By using the advanced basic knowledge and tools obtained about HCV vaccinology in recent years and the application of novel formulations and modalities, at least partially effective vaccines will become available in the near future to prevent (or treat) the chronic (if not the acute) state of HCV infection. A few of such vaccines are already in clinical trials.
Collapse
Affiliation(s)
- Farzin Roohvand
- Pasteur Institute of Iran, Hepatitis & AIDS Department, Pasteur Ave., Tehran, Iran.
| | | |
Collapse
|
44
|
Neumann-Haefelin C, Oniangue-Ndza C, Kuntzen T, Schmidt J, Nitschke K, Sidney J, Caillet-Saguy C, Binder M, Kersting N, Kemper MW, Power KA, Ingber S, Reyor LL, Hills-Evans K, Kim AY, Lauer GM, Lohmann V, Sette A, Henn MR, Bressanelli S, Thimme R, Allen TM. Human leukocyte antigen B27 selects for rare escape mutations that significantly impair hepatitis C virus replication and require compensatory mutations. Hepatology 2011; 54:1157-66. [PMID: 22006856 PMCID: PMC3201753 DOI: 10.1002/hep.24541] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Human leukocyte antigen B27 is associated with spontaneous viral clearance in hepatitis C virus (HCV) infection. Viral escape within the immunodominant, HLA-B27-restricted, HCV-specific, cluster of differentiation (CD)8(+) T-cell epitope, nonstructural protein (NS)5B(2841-2849) (ARMILMTHF), has been shown to be limited by viral fitness costs as well as broad T-cell cross-recognition, suggesting a potential mechanism of protection by HLA-B27. Here, we studied the subdominant HLA-B27-restricted epitope, NS5B(2936-2944) (GRAAICGKY), to further define the mechanisms of protection by HLA-B27. We identified a unique pattern of escape mutations within this epitope in a large cohort of HCV genotype 1a-infected patients. The predominant escape mutations represented conservative substitutions at the main HLA-B27 anchor residue or a T-cell receptor contact site, neither of which impaired viral replication capacity, as assessed in a subgenomic HCV replicon system. In contrast, however, in a subset of HLA-B27(+) subjects, rare escape mutations arose at the HLA-B27 anchor residue, R(2937) , which nearly abolished viral replication. Notably, these rare mutations only occurred in conjunction with the selection of two equally rare, and structurally proximal, upstream mutations. Coexpression of these upstream mutations with the rare escape mutations dramatically restored viral replication capacity from <5% to ≥ 70% of wild-type levels. CONCLUSION The selection of rare CTL escape mutations in this HLA-B27-restricted epitope dramatically impairs viral replicative fitness, unless properly compensated. These data support a role for the targeting of highly constrained regions by HLA-B27 in its ability to assert immune control of HCV and other highly variable pathogens.
Collapse
Affiliation(s)
- Christoph Neumann-Haefelin
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA,Department of Medicine II, University of Freiburg, Freiburg, Germany,Centre of Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | | | - Thomas Kuntzen
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA,Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Julia Schmidt
- Department of Medicine II, University of Freiburg, Freiburg, Germany,Centre of Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katja Nitschke
- Department of Medicine II, University of Freiburg, Freiburg, Germany,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Célia Caillet-Saguy
- Laboratoire de Virologie Moléculaire et Structurale, CNRS UPR3296, Centre de Recherche de Gif, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Marco Binder
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
| | - Nadine Kersting
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | | - Karen A. Power
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Susan Ingber
- Gastrointestinal Unit and Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | | | | | | | - Georg M. Lauer
- Gastrointestinal Unit and Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Matthew R. Henn
- Gastrointestinal Unit and Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Stéphane Bressanelli
- Laboratoire de Virologie Moléculaire et Structurale, CNRS UPR3296, Centre de Recherche de Gif, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Robert Thimme
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | - Todd M. Allen
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA,Corresponding author:Todd M. Allen, MGH-East, CNY 6625, Bldg 149 13th Street, Charlestown, MA 02129, Phone: (617) 726-7846, Fax: (617) 724-8586,
| |
Collapse
|
45
|
Transmission of clonal hepatitis C virus genomes reveals the dominant but transitory role of CD8⁺ T cells in early viral evolution. J Virol 2011; 85:11833-45. [PMID: 21900166 DOI: 10.1128/jvi.02654-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The RNA genome of the hepatitis C virus (HCV) diversifies rapidly during the acute phase of infection, but the selective forces that drive this process remain poorly defined. Here we examined whether Darwinian selection pressure imposed by CD8(+) T cells is a dominant force driving early amino acid replacement in HCV viral populations. This question was addressed in two chimpanzees followed for 8 to 10 years after infection with a well-defined inoculum composed of a clonal genotype 1a (isolate H77C) HCV genome. Detailed characterization of CD8(+) T cell responses combined with sequencing of recovered virus at frequent intervals revealed that most acute-phase nonsynonymous mutations were clustered in class I epitopes and appeared much earlier than those in the remainder of the HCV genome. Moreover, the ratio of nonsynonymous to synonymous mutations, a measure of positive selection pressure, was increased 50-fold in class I epitopes compared with the rest of the HCV genome. Finally, some mutation of the clonal H77C genome toward a genotype 1a consensus sequence considered most fit for replication was observed during the acute phase of infection, but the majority of these amino acid substitutions occurred slowly over several years of chronic infection. Together these observations indicate that during acute hepatitis C, virus evolution was driven primarily by positive selection pressure exerted by CD8(+) T cells. This influence of immune pressure on viral evolution appears to subside as chronic infection is established and genetic drift becomes the dominant evolutionary force.
Collapse
|
46
|
Compensatory mutations restore the replication defects caused by cytotoxic T lymphocyte escape mutations in hepatitis C virus polymerase. J Virol 2011; 85:11883-90. [PMID: 21880756 DOI: 10.1128/jvi.00779-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
While human leukocyte antigen B57 (HLA-B57) is associated with the spontaneous clearance of hepatitis C virus (HCV), the mechanisms behind this control remain unclear. Immunodominant CD8(+) T cell responses against the B57-restricted epitopes comprised of residues 2629 to 2637 of nonstructural protein 5B (NS5B(2629-2637)) (KSKKTPMGF) and E2(541-549) (NTRPPLGNW) were recently shown to be crucial in the control of HCV infection. Here, we investigated whether the selection of deleterious cytotoxic T lymphocyte (CTL) escape mutations in the NS5B KSKKTPMGF epitope might impair viral replication and contribute to the B57-mediated control of HCV. Common CTL escape mutations in this epitope were identified from a cohort of 374 HCV genotype 1a-infected subjects, and their impact on HCV replication assessed using a transient HCV replicon system. We demonstrate that while escape mutations at residue 2633 (position 5) of the epitope had little or no impact on HCV replication in vitro, mutations at residue 2629 (position 1) substantially impaired replication. Notably, the deleterious mutations at position 2629 were tightly linked in vivo to upstream mutations at residue 2626, which functioned to restore the replicative defects imparted by the deleterious escape mutations. These data suggest that the selection of costly escape mutations within the immunodominant NS5B KSKKTPMGF epitope may contribute in part to the control of HCV replication in B57-positive individuals and that persistence of HCV in B57-positive individuals may involve the development of specific secondary compensatory mutations. These findings are reminiscent of the selection of deleterious CTL escape and compensatory mutations by HLA-B57 in HIV-1 infection and, thus, may suggest a common mechanism by which alleles like HLA-B57 mediate protection against these highly variable pathogens.
Collapse
|
47
|
Universal peptide vaccines - optimal peptide vaccine design based on viral sequence conservation. Vaccine 2011; 29:8745-53. [PMID: 21875632 DOI: 10.1016/j.vaccine.2011.07.132] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 01/06/2023]
Abstract
Rapidly mutating viruses such as the hepatitis C virus (HCV), the human immunodeficiency virus (HIV), or influenza viruses (Flu) call for highly effective universal peptide vaccines, i.e. vaccines that do not only yield broad population coverage but also broad coverage of various viral strains. The efficacy of such vaccines is determined by multiple properties of the epitopes they comprise. Beyond the specific properties of each epitope, properties of the corresponding source antigens are of great importance. If a response is mounted against viral proteins with a low copy number within the cell or against proteins expressed very late, this response may fail to induce lysis of the infected cells before budding can take place. We here propose a novel methodology to optimize the epitope composition and assembly in order to induce maximum protection. In order for a peptide vaccine to yield the best possible universal protection, several conditions should be met: (a) an optimal choice of target antigens, (b) an optimal choice of highly conserved epitopes, (c) maximum coverage of the target population, and (d) the proper ordering of the epitopes in the final vaccine to ensure favorable cleavage. We propose a mathematical formalism for epitope selection and ordering that balances the constraints imposed by these different conditions. Focusing on HCV, HIV, and Flu, we show that not all of the conditions can be satisfied for all viruses. Depending on the virus, different constraints are harder to fulfill: for Flu, the conservation constraint is violated first, while for HIV, it is difficult to focus the response at the optimal target antigens. The proposed methodology can be applied to any virus to assess the feasibility of optimally combining the above-mentioned constraints.
Collapse
|
48
|
Saeed M, Shiina M, Date T, Akazawa D, Watanabe N, Murayama A, Suzuki T, Watanabe H, Hiraga N, Imamura M, Chayama K, Choi Y, Krawczynski K, Liang TJ, Wakita T, Kato T. In vivo adaptation of hepatitis C virus in chimpanzees for efficient virus production and evasion of apoptosis. Hepatology 2011; 54:425-33. [PMID: 21538444 PMCID: PMC3145027 DOI: 10.1002/hep.24399] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/18/2011] [Indexed: 02/02/2023]
Abstract
UNLABELLED Hepatitis C virus (HCV) employs various strategies to establish persistent infection that can cause chronic liver disease. Our previous study showed that both the original patient serum from which the HCV JFH-1 strain was isolated and the cell culture-generated JFH-1 virus (JFH-1cc) established infection in chimpanzees, and that infected JFH-1 strains accumulated mutations after passage through chimpanzees. The aim of this study was to compare the in vitro characteristics of JFH-1 strains emerged in each chimpanzee at early and late stages of infection, as it could provide an insight into the phenomenon of viral persistence. We generated full-genome JFH-1 constructs with the mutations detected in patient serum-infected (JFH-1/S1 and S2) and JFH-1cc-infected (JFH-1/C) chimpanzees, and assessed their effect on replication, infectious virus production, and regulation of apoptosis in cell culture. The extracellular HCV core antigen secreted from JFH-1/S1-, S2-, and C-transfected HuH-7 cells was 2.5, 8.9, and 2.1 times higher than that from JFH-1 wild-type (JFH-1/wt) transfected cells, respectively. Single cycle virus production assay with a CD81-negative cell line revealed that the strain JFH-1/S2, isolated from the patient serum-infected chimpanzee at a later time point of infection, showed lower replication and higher capacity to assemble infectious virus particles. This strain also showed productive infection in human hepatocyte-transplanted mice. Furthermore, the cells harboring this strain displayed lower susceptibility to the apoptosis induced by tumor necrosis factor α or Fas ligand compared with the cells replicating JFH-1/wt. CONCLUSION The ability of lower replication, higher virus production, and less susceptibility to cytokine-induced apoptosis may be important for prolonged infection in vivo. Such control of viral functions by specific mutations may be a key strategy for establishing persistent infection.
Collapse
Affiliation(s)
- Mohsan Saeed
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Department of Infection and Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masaaki Shiina
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Tomoko Date
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Daisuke Akazawa
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Noriyuki Watanabe
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tetsuro Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Haruo Watanabe
- Department of Infection and Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Nobuhiko Hiraga
- Department of Medicine and Molecular Science, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Michio Imamura
- Department of Medicine and Molecular Science, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Kazuaki Chayama
- Department of Medicine and Molecular Science, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Youkyung Choi
- Division of Viral Hepatitis, Center for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Krzysztof Krawczynski
- Division of Viral Hepatitis, Center for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
49
|
Ruhl M, Knuschke T, Schewior K, Glavinic L, Neumann-Haefelin C, Chang DI, Klein M, Heinemann FM, Tenckhoff H, Wiese M, Horn PA, Viazov S, Spengler U, Roggendorf M, Scherbaum N, Nattermann J, Hoffmann D, Timm J. CD8+ T-cell response promotes evolution of hepatitis C virus nonstructural proteins. Gastroenterology 2011; 140:2064-73. [PMID: 21376049 DOI: 10.1053/j.gastro.2011.02.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/21/2011] [Accepted: 02/18/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) acquires mutations that allow it to escape the CD8+ T-cell response, although the extent to which this process contributes to viral evolution at the population level is not clear. We studied viral adaptation using data from a large outbreak of HCV genotype 1b infection that occurred among women immunized with contaminated immunoglobulin from 1977 to 1978. METHODS The HCV nonstructural protein coding regions NS3-NS5B were sequenced from 78 patients, and mutations were mapped according to their location inside or outside previously described CD8+ T-cell epitopes. A statistical approach was developed to identify sites/regions under reproducible selection pressure associated with HLA class I. RESULTS The frequency of nonsynonymous mutations was significantly higher inside previously described CD8+ T-cell epitopes than outside-particularly in NS3/4A and NS5B. We identified new regions that are under selection pressure, indicating that not all CD8+ T-cell epitopes have been identified; 6 new epitopes that interact with CD8+ T cells were identified and confirmed in vitro. In some CD8+ T-cell epitopes mutations were reproducibly identified in patients that shared the relevant HLA allele, indicating immune pressure at the population level. There was statistical support for selection of mutations in 18 individual epitopes. Interestingly, 14 of these were restricted by HLA-B allele. CONCLUSIONS HLA class I-associated selection pressure on the nonstructural proteins and here predominantly on NS3/4A and NS5B promotes evolution of HCV. HLA-B alleles have a dominant effect in this selection process. Adaptation of HCV to the CD8+ T-cell response at the population level creates challenges for vaccine design.
Collapse
Affiliation(s)
- Marianne Ruhl
- Institute of Virology, University of Duisburg-Essen, and Addiction Research Group, Department of Psychiatry and Psychotherapy, LVR-Hospital Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zeisel MB, Fofana I, Fafi-Kremer S, Baumert TF. Hepatitis C virus entry into hepatocytes: molecular mechanisms and targets for antiviral therapies. J Hepatol 2011; 54:566-76. [PMID: 21146244 DOI: 10.1016/j.jhep.2010.10.014] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma. Preventive modalities are absent and the current antiviral treatment is limited by resistance, toxicity, and high costs. Viral entry is required for initiation, spread, and maintenance of infection, and thus is a promising target for antiviral therapy. HCV entry is a highly orchestrated process involving viral and host cell factors. These include the viral envelope glycoproteins E1 and E2, CD81, scavenger receptor BI, and tight junction proteins claudin-1 and occludin. Recent studies in preclinical models and HCV-infected patients have demonstrated that the virus has developed multiple strategies to escape host immune responses during viral entry. These include evasion from neutralizing antibodies and viral spread by cell-cell transmission. These challenges have to be taken into account for the design of efficient antiviral strategies. Thus, a detailed understanding of the mechanisms of viral entry and escape is a prerequisite to define viral and cellular targets and develop novel preventive and therapeutic antivirals. This review summarizes the current knowledge about the molecular mechanisms of HCV entry into hepatocytes, highlights novel targets and reviews the current preclinical and clinical development of compounds targeting entry. Proof-of-concept studies suggest that HCV entry inhibitors are a novel and promising class of antivirals widening the preventive and therapeutic arsenal against HCV infection.
Collapse
|