1
|
Han Y, Yuan Z, Yi Z. Identification of a membrane-associated element (MAE) in the C-terminal region of SARS-CoV-2 nsp6 that is essential for viral replication. J Virol 2024; 98:e0034924. [PMID: 38639488 PMCID: PMC11092323 DOI: 10.1128/jvi.00349-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel coronavirus severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has rapidly spread worldwide since its emergence in late 2019. Its ongoing evolution poses challenges for antiviral drug development. Coronavirus nsp6, a multiple-spanning transmembrane protein, participates in the biogenesis of the viral replication complex, which accommodates the viral replication-transcription complex. The roles of its structural domains in viral replication are not well studied. Herein, we predicted the structure of the SARS-CoV-2 nsp6 protein using AlphaFold2 and identified a highly folded C-terminal region (nsp6C) downstream of the transmembrane helices. The enhanced green fluorescent protein (EGFP)-fused nsp6C was found to cluster in the cytoplasm and associate with membranes. Functional mapping identified a minimal membrane-associated element (MAE) as the region from amino acids 237 to 276 (LGV-KLL), which is mainly composed of the α-helix H1 and the α-helix H2; the latter exhibits characteristics of an amphipathic helix (AH). Mutagenesis studies and membrane flotation experiments demonstrate that AH-like H2 is required for MAE-mediated membrane association. This MAE was functionally conserved across MERS-CoV, HCoV-OC43, HCoV-229E, HCoV-HKU1, and HCoV-NL63, all capable of mediating membrane association. In a SARS-CoV-2 replicon system, mutagenesis studies of H2 and replacements of H1 and H2 with their homologous counterparts demonstrated requirements of residues on both sides of the H2 and properly paired H1-H2 for MAE-mediated membrane association and viral replication. Notably, mutations I266A and K274A significantly attenuated viral replication without dramatically affecting membrane association, suggesting a dual role of the MAE in viral replication: mediating membrane association as well as participating in protein-protein interactions.IMPORTANCESevere acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) assembles a double-membrane vesicle (DMV) by the viral non-structural proteins for viral replication. Understanding the mechanisms of the DMV assembly is of paramount importance for antiviral development. Nsp6, a multiple-spanning transmembrane protein, plays an important role in the DMV biogenesis. Herein, we predicted the nsp6 structure of SARS-CoV-2 and other human coronaviruses using AlphaFold2 and identified a putative membrane-associated element (MAE) in the highly conserved C-terminal regions of nsp6. Experimentally, we verified a functionally conserved minimal MAE composed of two α-helices, the H1, and the amphipathic helix-like H2. Mutagenesis studies confirmed the requirement of H2 for MAE-mediated membrane association and viral replication and demonstrated a dual role of the MAE in viral replication, by mediating membrane association and participating in residue-specific interactions. This functionally conserved MAE may serve as a novel anti-viral target.
Collapse
Affiliation(s)
- Yuying Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Zhigang Yi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
2
|
He R, Li Y, Bernards MA, Wang A. Manipulation of the Cellular Membrane-Cytoskeleton Network for RNA Virus Replication and Movement in Plants. Viruses 2023; 15:744. [PMID: 36992453 PMCID: PMC10056259 DOI: 10.3390/v15030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Viruses infect all cellular life forms and cause various diseases and significant economic losses worldwide. The majority of viruses are positive-sense RNA viruses. A common feature of infection by diverse RNA viruses is to induce the formation of altered membrane structures in infected host cells. Indeed, upon entry into host cells, plant-infecting RNA viruses target preferred organelles of the cellular endomembrane system and remodel organellar membranes to form organelle-like structures for virus genome replication, termed as the viral replication organelle (VRO) or the viral replication complex (VRC). Different viruses may recruit different host factors for membrane modifications. These membrane-enclosed virus-induced replication factories provide an optimum, protective microenvironment to concentrate viral and host components for robust viral replication. Although different viruses prefer specific organelles to build VROs, at least some of them have the ability to exploit alternative organellar membranes for replication. Besides being responsible for viral replication, VROs of some viruses can be mobile to reach plasmodesmata (PD) via the endomembrane system, as well as the cytoskeleton machinery. Viral movement protein (MP) and/or MP-associated viral movement complexes also exploit the endomembrane-cytoskeleton network for trafficking to PD where progeny viruses pass through the cell-wall barrier to enter neighboring cells.
Collapse
Affiliation(s)
- Rongrong He
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark A. Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| |
Collapse
|
3
|
Sathanantham P, Zhao W, He G, Murray A, Fenech E, Diaz A, Schuldiner M, Wang X. A conserved viral amphipathic helix governs the replication site-specific membrane association. PLoS Pathog 2022; 18:e1010752. [PMID: 36048900 PMCID: PMC9473614 DOI: 10.1371/journal.ppat.1010752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/14/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Positive-strand RNA viruses assemble their viral replication complexes (VRCs) on specific host organelle membranes, yet it is unclear how viral replication proteins recognize and what motifs or domains in viral replication proteins determine their destinations. We show here that an amphipathic helix, helix B in replication protein 1a of brome mosaic virus (BMV), is necessary for 1a’s localization to the nuclear endoplasmic reticulum (ER) membrane where BMV assembles its VRCs. Helix B is also sufficient to target soluble proteins to the nuclear ER membrane in yeast and plant cells. We further show that an equivalent helix in several plant- and human-infecting viruses of the Alsuviricetes class targets fluorescent proteins to the organelle membranes where they form their VRCs, including ER, vacuole, and Golgi membranes. Our work reveals a conserved helix that governs the localization of VRCs among a group of viruses and points to a possible target for developing broad-spectrum antiviral strategies. Positive-strand RNA viruses [(+)RNA viruses] are the largest viral class that include numerous pathogens causing important diseases in humans, animals, and plants. During their infections, (+)RNA viruses assemble their viral replication complexes (VRCs), where they multiply themselves, at specific organelle membranes. An initial step to form VRCs is to target viral replication proteins to the designated organelle membranes. For brome mosaic virus (BMV), its replication protein 1a is responsible for the VRC formation at the nuclear endoplasmic reticulum (ER) membrane. We show that an amphipathic alpha-helix, helix B, in BMV 1a is necessary for the association of BMV 1a with the nuclear ER membrane and for BMV genome amplification. In addition, Helix B is sufficient to target several soluble proteins to the nuclear ER membrane in yeast and plant cells. BMV belongs to the Alsuviricetes class that includes viruses infecting humans, animals, and plants. We further show that the helix B across members of the Alsuviricetes class is sufficient to target fluorescence proteins to the designated organelle membranes. Our results reveal a conserved feature among a group of viruses in governing the associations with replication site-specific organelle membranes and point to a target to develop broad-spectrum antivirals.
Collapse
Affiliation(s)
- Preethi Sathanantham
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Wenhao Zhao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Guijuan He
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Austin Murray
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Emma Fenech
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Arturo Diaz
- Department of Biology, La Sierra University, Riverside, California, United States of America
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
4
|
Jiang X, Luan Y, Chai M, Yang Y, Wang Y, Deng W, Li Y, Cheng X, Wu X. The N-Terminal α-Helix of Potato Virus X-Encoded RNA-Dependent RNA Polymerase Is Required for Membrane Association and Multimerization. Viruses 2022; 14:v14091907. [PMID: 36146714 PMCID: PMC9504981 DOI: 10.3390/v14091907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Positive-sense single-stranded RNA viruses replicate in virus-induced membranous organelles for maximum efficiency and immune escaping. The replication of potato virus X (PVX) takes place on the endoplasmic reticulum (ER); however, how PVX-encoded RNA-dependent RNA polymerase (RdRp) is associated with the ER is still unknown. A proline-kinked amphipathic α-helix was recently found in the MET domain of RdRp. In this study, we further illustrate that the first α-helix of the MET domain is also required for ER association. Moreover, we found that the MET domain forms multimers on ER and the first α-helix is essential for multimerization. These results suggest that the RdRp of PVX adopts more than one hydrophobic motif for membrane association and for multimerization.
Collapse
Affiliation(s)
- Xue Jiang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yameng Luan
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Mengzhu Chai
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yingshuai Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yuting Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Wenjia Deng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yonggang Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaofei Cheng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.C.); (X.W.)
| | - Xiaoyun Wu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.C.); (X.W.)
| |
Collapse
|
5
|
Galibert L, Hyvönen A, Eriksson RAE, Mattola S, Aho V, Salminen S, Albers JD, Peltola SK, Weman S, Nieminen T, Ylä-Herttuala S, Lesch HP, Vihinen-Ranta M, Airenne KJ. Functional roles of the membrane-associated AAV protein MAAP. Sci Rep 2021; 11:21698. [PMID: 34737404 PMCID: PMC8568889 DOI: 10.1038/s41598-021-01220-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
With a limited coding capacity of 4.7 kb, adeno-associated virus (AAV) genome has evolved over-lapping genes to maximise the usage of its genome. An example is the recently found ORF in the cap gene, encoding membrane-associated accessory protein (MAAP), located in the same genomic region as the VP1/2 unique domain, but in a different reading frame. This 13 KDa protein, unique to the dependovirus genus, is not homologous to any known protein. Our studies confirm that MAAP translation initiates from the first CTG codon found in the VP1 ORF2. We have further observed MAAP localised in the plasma membrane, in the membranous structures in close proximity to the nucleus and to the nuclear envelope by co-transfecting with plasmids encoding the wild-type AAV (wt-AAV) genome and adenovirus (Ad) helper genes. While keeping VP1/2 protein sequence identical, both inactivation and truncation of MAAP translation affected the emergence and intracellular distribution of the AAV capsid proteins. We have demonstrated that MAAP facilitates AAV replication and has a role in controlling Ad infection. Additionally, we were able to improve virus production and capsid integrity through a C-terminal truncation of MAAP while other modifications led to increased packaging of contaminating, non-viral DNA. Our results show that MAAP plays a significant role in AAV infection, with profound implications for the production of therapeutic AAV vectors.
Collapse
Affiliation(s)
| | - Amira Hyvönen
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland ,grid.511728.8FinVector, Kuopio, Finland
| | - Reetta A. E. Eriksson
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland ,grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Salla Mattola
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | - Vesa Aho
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | - Sami Salminen
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | | | | | - Saija Weman
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Tiina Nieminen
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland ,grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland ,grid.410705.70000 0004 0628 207XGene Therapy Unit and Research Center, Kuopio University Hospital, Kuopio, Finland
| | - Hanna P. Lesch
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Maija Vihinen-Ranta
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | | |
Collapse
|
6
|
Agaoua A, Bendahmane A, Moquet F, Dogimont C. Membrane Trafficking Proteins: A New Target to Identify Resistance to Viruses in Plants. PLANTS 2021; 10:plants10102139. [PMID: 34685948 PMCID: PMC8541145 DOI: 10.3390/plants10102139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Replication cycles from most simple-stranded positive RNA viruses infecting plants involve endomembrane deformations. Recent published data revealed several interactions between viral proteins and plant proteins associated with vesicle formation and movement. These plant proteins belong to the COPI/II, SNARE, clathrin and ESCRT endomembrane trafficking mechanisms. In a few cases, variations of these plant proteins leading to virus resistance have been identified. In this review, we summarize all known interactions between these plant cell mechanisms and viruses and highlight strategies allowing fast identification of variant alleles for membrane-associated proteins.
Collapse
Affiliation(s)
- Aimeric Agaoua
- INRAE Génétique et Amélioration des Fruits et Légumes (GAFL), 84140 Montfavet, France;
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences-Paris-Saclay (IPS2), Université Paris-Saclay, INRAE, CNRS, Univ Evry, 91405 Orsay, France;
| | | | - Catherine Dogimont
- INRAE Génétique et Amélioration des Fruits et Légumes (GAFL), 84140 Montfavet, France;
- Correspondence:
| |
Collapse
|
7
|
Komatsu K, Sasaki N, Yoshida T, Suzuki K, Masujima Y, Hashimoto M, Watanabe S, Tochio N, Kigawa T, Yamaji Y, Oshima K, Namba S, Nelson RS, Arie T. Identification of a Proline-Kinked Amphipathic α-Helix Downstream from the Methyltransferase Domain of a Potexvirus Replicase and Its Role in Virus Replication and Perinuclear Complex Formation. J Virol 2021; 95:e0190620. [PMID: 34346768 PMCID: PMC8475525 DOI: 10.1128/jvi.01906-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 07/25/2021] [Indexed: 11/20/2022] Open
Abstract
Characterized positive-strand RNA viruses replicate in association with intracellular membranes. Regarding viruses in the genus Potexvirus, the mechanism by which their RNA-dependent RNA polymerase (replicase) associates with membranes is understudied. Here, by membrane flotation analyses of the replicase of Plantago asiatica mosaic potexvirus (PlAMV), we identified a region in the methyltransferase (MET) domain as a membrane association determinant. An amphipathic α-helix was predicted downstream from the core region of the MET domain, and hydrophobic amino acid residues were conserved in the helical sequences in replicases of other potexviruses. Nuclear magnetic resonance (NMR) analysis confirmed the amphipathic α-helical configuration and unveiled a kink caused by a highly conserved proline residue in the α-helix. Substitution of this proline residue and other hydrophobic and charged residues in the amphipathic α-helix abolished PlAMV replication. Ectopic expression of a green fluorescent protein (GFP) fusion with the entire MET domain resulted in the formation of a large perinuclear complex, where virus replicase and RNA colocated during virus infection. Except for the proline substitution, the amino acid substitutions in the α-helix that abolished virus replication also prevented the formation of the large perinuclear complex by the respective GFP-MET fusion. Small intracellular punctate structures were observed for all GFP-MET fusions, and in vitro high-molecular-weight complexes were formed by both replication-competent and -incompetent viral replicons and thus were not sufficient for replication competence. We discuss the roles of the potexvirus-specific, proline-kinked amphipathic helical structure in virus replication and intracellular large complex and punctate structure formation. IMPORTANCE RNA viruses characteristically associate with intracellular membranes during replication. Although virus replicases are assumed to possess membrane-targeting properties, their membrane association domains generally remain unidentified or poorly characterized. Here, we identified a proline-kinked amphipathic α-helix structure downstream from the methyltransferase core domain of PlAMV replicase as a membrane association determinant. This helical sequence, which includes the proline residue, was conserved among potexviruses and related viruses in the order Tymovirales. Substitution of the proline residue, but not the other residues necessary for replication, allowed formation of a large perinuclear complex within cells resembling those formed by PlAMV replicase and RNA during virus replication. Our results demonstrate the role of the amphipathic α-helix in PlAMV replicase in a perinuclear complex formation and virus replication and that perinuclear complex formation by the replicase alone will not necessarily indicate successful virus replication.
Collapse
Affiliation(s)
- Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Nobumitsu Sasaki
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Gene Research Center, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Tetsuya Yoshida
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiro Suzuki
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Yuki Masujima
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoru Watanabe
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Naoya Tochio
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Takanori Kigawa
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenro Oshima
- Faculty of Bioscience, Department of Clinical Plant Science, Hosei University, Koganei, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Richard S. Nelson
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tsutomu Arie
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| |
Collapse
|
8
|
Oetter KM, Kühn J, Meyers G. Charged Residues in the Membrane Anchor of the Pestiviral E rns Protein Are Important for Processing and Secretion of E rns and Recovery of Infectious Viruses. Viruses 2021; 13:v13030444. [PMID: 33801849 PMCID: PMC8002126 DOI: 10.3390/v13030444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 12/28/2022] Open
Abstract
The pestivirus envelope protein Erns is anchored in membranes via a long amphipathic helix. Despite the unusual membrane topology of the Erns membrane anchor, it is cleaved from the following glycoprotein E1 by cellular signal peptidase. This was proposed to be enabled by a salt bridge-stabilized hairpin structure (so-called charge zipper) formed by conserved charged residues in the membrane anchor. We show here that the exchange of one or several of these charged residues reduces processing at the Erns carboxy-terminus to a variable extend, but reciprocal mutations restoring the possibility to form salt bridges did not necessarily restore processing efficiency. When introduced into an Erns-only expression construct, these mutations enhanced the naturally occurring Erns secretion significantly, but again to varying extents that did not correlate with the number of possible salt bridges. Equivalent effects on both processing and secretion were also observed when the proteins were expressed in avian cells, which points at phylogenetic conservation of the underlying principles. In the viral genome, some of the mutations prevented recovery of infectious viruses or immediately (pseudo)reverted, while others were stable and neutral with regard to virus growth.
Collapse
|
9
|
Varkey J, Zhang J, Kim J, George G, He G, Belov G, Langen R, Wang X. An Amphipathic Alpha-Helix Domain from Poliovirus 2C Protein Tubulate Lipid Vesicles. Viruses 2020; 12:v12121466. [PMID: 33353144 PMCID: PMC7766222 DOI: 10.3390/v12121466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 02/01/2023] Open
Abstract
Positive-strand RNA viruses universally remodel host intracellular membranes to form membrane-bound viral replication complexes, where viral offspring RNAs are synthesized. In the majority of cases, viral replication proteins are targeted to and play critical roles in the modulation of the designated organelle membranes. Many viral replication proteins do not have transmembrane domains, but contain single or multiple amphipathic alpha-helices. It has been conventionally recognized that these helices serve as an anchor for viral replication protein to be associated with membranes. We report here that a peptide representing the amphipathic α-helix at the N-terminus of the poliovirus 2C protein not only binds to liposomes, but also remodels spherical liposomes into tubules. The membrane remodeling ability of this amphipathic alpha-helix is similar to that recognized in other amphipathic alpha-helices from cellular proteins involved in membrane remodeling, such as BAR domain proteins. Mutations affecting the hydrophobic face of the amphipathic alpha-helix severely compromised membrane remodeling of vesicles with physiologically relevant phospholipid composition. These mutations also affected the ability of poliovirus to form plaques indicative of reduced viral replication, further underscoring the importance of membrane remodeling by the amphipathic alpha-helix in possible relation to the formation of viral replication complexes.
Collapse
Affiliation(s)
- Jobin Varkey
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA; (J.V.); (G.G.)
| | - Jiantao Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (J.Z.); (G.H.)
| | - Junghyun Kim
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA; (J.K.); (G.B.)
| | - Gincy George
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA; (J.V.); (G.G.)
| | - Guijuan He
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (J.Z.); (G.H.)
| | - George Belov
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA; (J.K.); (G.B.)
| | - Ralf Langen
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA; (J.V.); (G.G.)
- Correspondence: (R.L.); (X.W.); Tel.: +1-323-442-1323 (R.L.); +1-540-231-1868 (X.W.)
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (J.Z.); (G.H.)
- Correspondence: (R.L.); (X.W.); Tel.: +1-323-442-1323 (R.L.); +1-540-231-1868 (X.W.)
| |
Collapse
|
10
|
Determination of Protein Interactions among Replication Components of Apple Necrotic Mosaic Virus. Viruses 2020; 12:v12040474. [PMID: 32331324 PMCID: PMC7232516 DOI: 10.3390/v12040474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022] Open
Abstract
Apple mosaic disease is one of the most widely distributed and destructive diseases in apple cultivation worldwide, especially in China, whose apple yields account for more than 50% of the global total. Apple necrotic mosaic virus (ApNMV) is a newly identified ilarvirus that is closely associated with apple mosaic disease in China; however, basic viral protein interactions that play key roles in virus replication and the viral life cycle have not been determined in ApNMV. Here, we first identify an ApNMV–Lw isolate that belongs to subgroup 3 in the genus Ilarvirus. ApNMV–Lw was used to investigate interactions among viral components. ApNMV 1a and 2apol, encoded by RNA1 and RNA2, respectively, were co-localized in plant cell cytoplasm. ApNMV 1a interacted with itself at both the inter- and intramolecular levels, and its N-terminal portion played a key role in these interactions. 1a also interacted with 2apol, and 1a’s C-terminal, together with 2apol’s N-terminal, was required for this interaction. Moreover, the first 115 amino acids of 2apol were sufficient for permitting the 1a–2apol interaction. This study provides insight into the protein interactions among viral replication components of ApNMV, facilitating future investigations on its pathogenicity, as well as the development of strategies to control the virus and disease.
Collapse
|
11
|
He G, Zhang Z, Sathanantham P, Zhang X, Wu Z, Xie L, Wang X. An engineered mutant of a host phospholipid synthesis gene inhibits viral replication without compromising host fitness. J Biol Chem 2019; 294:13973-13982. [PMID: 31362985 DOI: 10.1074/jbc.ra118.007051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Viral infections universally rely on numerous hijacked host factors to be successful. It is therefore possible to control viral infections by manipulating host factors that are critical for viral replication. Given that host genes may play essential roles in certain cellular processes, any successful manipulations for virus control should cause no or mild effects on host fitness. We previously showed that a group of positive-strand RNA viruses enrich phosphatidylcholine (PC) at the sites of viral replication. Specifically, brome mosaic virus (BMV) replication protein 1a interacts with and recruits a PC synthesis enzyme, phosphatidylethanolamine methyltransferase, Cho2p, to the viral replication sites that are assembled on the perinuclear endoplasmic reticulum (ER) membrane. Deletion of the CHO2 gene inhibited BMV replication by 5-fold; however, it slowed down host cell growth as well. Here, we show that an engineered Cho2p mutant supports general PC synthesis and normal cell growth but blocks BMV replication. This mutant interacts and colocalizes with BMV 1a but prevents BMV 1a from localizing to the perinuclear ER membrane. The mislocalized BMV 1a fails to induce the formation of viral replication complexes. Our study demonstrates an effective antiviral strategy in which a host lipid synthesis gene is engineered to control viral replication without comprising host growth.
Collapse
Affiliation(s)
- Guijuan He
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Zhenlu Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061.,National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Preethi Sathanantham
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Xin Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lianhui Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| |
Collapse
|
12
|
Zhang Y, Zhao X, Zou J, Yuan Z, Yi Z. Dual role of the amphipathic helix of hepatitis C virus NS5A in the viral polyprotein cleavage and replicase assembly. Virology 2019; 535:283-296. [PMID: 31369938 DOI: 10.1016/j.virol.2019.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Assembling a viral replicase on host intracellular membranes is a common strategy for viral replication of almost all of the positive-strand RNA viruses. Understanding how the key modules of the replicase are involved in the replicase assembly may provide insights into the pathway of the replicase assembly. Herein, by using HCV as a model, we dissect the roles of the amphipathic helix (AH) of NS5A, a key repilcase component, in the viral replicase assembly. The results show that the AH is dispensable for membrane anchoring of NS5A. Instead, AH plays a dual role in the viral replicase assembly: positions a replicase module properly for efficient polyprotein processing and participates in protein-protein interactions within the replicase. This property of AH may serve as an attractive direct anti-viral target.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaomin Zhao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyi Zou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhigang Yi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China; Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Zhang Z, He G, Filipowicz NA, Randall G, Belov GA, Kopek BG, Wang X. Host Lipids in Positive-Strand RNA Virus Genome Replication. Front Microbiol 2019; 10:286. [PMID: 30863375 PMCID: PMC6399474 DOI: 10.3389/fmicb.2019.00286] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022] Open
Abstract
Membrane association is a hallmark of the genome replication of positive-strand RNA viruses [(+)RNA viruses]. All well-studied (+)RNA viruses remodel host membranes and lipid metabolism through orchestrated virus-host interactions to create a suitable microenvironment to survive and thrive in host cells. Recent research has shown that host lipids, as major components of cellular membranes, play key roles in the replication of multiple (+)RNA viruses. This review focuses on how (+)RNA viruses manipulate host lipid synthesis and metabolism to facilitate their genomic RNA replication, and how interference with the cellular lipid metabolism affects viral replication.
Collapse
Affiliation(s)
- Zhenlu Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Guijuan He
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, IL, United States
| | - George A. Belov
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | | | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
14
|
Cowpea chlorotic mottle bromovirus replication proteins support template-selective RNA replication in Saccharomyces cerevisiae. PLoS One 2018; 13:e0208743. [PMID: 30586378 PMCID: PMC6306254 DOI: 10.1371/journal.pone.0208743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/22/2018] [Indexed: 11/19/2022] Open
Abstract
Positive-strand RNA viruses generally assemble RNA replication complexes on rearranged host membranes. Alphaviruses, other members of the alpha-like virus superfamily, and many other positive-strand RNA viruses invaginate host membrane into vesicular RNA replication compartments, known as spherules, whose interior is connected to the cytoplasm. Brome mosaic virus (BMV) and its close relative, cowpea chlorotic mottle virus (CCMV), form spherules along the endoplasmic reticulum. BMV spherule formation and RNA replication can be fully reconstituted in S. cerevisiae, enabling many studies identifying host factors and viral interactions essential for these processes. To better define and understand the conserved, core pathways of bromovirus RNA replication, we tested the ability of CCMV to similarly support spherule formation and RNA replication in yeast. Paralleling BMV, we found that CCMV RNA replication protein 1a was the only viral factor necessary to induce spherule membrane rearrangements and to recruit the viral 2a polymerase (2apol) to the endoplasmic reticulum. CCMV 1a and 2apol also replicated CCMV and BMV genomic RNA2, demonstrating core functionality of CCMV 1a and 2apol in yeast. However, while BMV and CCMV 1a/2apol strongly replicate each others’ genomic RNA3 in plants, neither supported detectable CCMV RNA3 replication in yeast. Moreover, in contrast to plant cells, in yeast CCMV 1a/2apol supported only limited replication of BMV RNA3 (<5% of that by BMV 1a/2apol). In keeping with this, we found that in yeast CCMV 1a was significantly impaired in recruiting BMV or CCMV RNA3 to the replication complex. Overall, we show that many 1a and 2apol functions essential for replication complex assembly, and their ability to be reconstituted in yeast, are conserved between BMV and CCMV. However, restrictions of CCMV RNA replication in yeast reveal previously unknown 1a-linked, RNA-selective host contributions to the essential early process of recruiting viral RNA templates to the replication complex.
Collapse
|
15
|
Cabanillas DG, Jiang J, Movahed N, Germain H, Yamaji Y, Zheng H, Laliberté JF. Turnip Mosaic Virus Uses the SNARE Protein VTI11 in an Unconventional Route for Replication Vesicle Trafficking. THE PLANT CELL 2018; 30:2594-2615. [PMID: 30150314 PMCID: PMC6241277 DOI: 10.1105/tpc.18.00281] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/17/2018] [Accepted: 08/25/2018] [Indexed: 05/11/2023]
Abstract
Infection of plant cells by RNA viruses leads to the generation of organelle-like subcellular structures that contain the viral replication complex. During Turnip mosaic virus (TuMV) infection of Nicotiana benthamiana, the viral membrane protein 6K2 plays a key role in the release of motile replication vesicles from the host endoplasmic reticulum (ER). Here, we demonstrate that 6K2 contains a GxxxG motif within its predicted transmembrane domain that is vital for TuMV infection. Replacement of the Gly with Val within this motif inhibited virus production, and this was due to a relocation of the viral protein to the Golgi apparatus and the plasma membrane. This indicated that passage of 6K2 through the Golgi apparatus is a dead-end avenue for virus infection. Impairing the fusion of transport vesicles between the ER and the Golgi apparatus by overexpression of the SNARE Sec22 protein resulted in enhanced intercellular virus movement. Likewise, expression of nonfunctional, Golgi-located synaptotagmin during infection enhanced TuMV intercellular movement. 6K2 copurified with VTI11, a prevacuolar compartment SNARE protein. An Arabidopsis thaliana vti11 mutant was completely resistant to TuMV infection. We conclude that TuMV replication vesicles bypass the Golgi apparatus and take an unconventional pathway that may involve prevacuolar compartments/multivesicular bodies for virus infection.
Collapse
Affiliation(s)
- Daniel Garcia Cabanillas
- Institut National de la Recherche Scientifique, Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| | - Jun Jiang
- Institut National de la Recherche Scientifique, Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| | - Nooshin Movahed
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | - Yasuyuki Yamaji
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan
| | - Huanquan Zheng
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Jean-François Laliberté
- Institut National de la Recherche Scientifique, Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
16
|
Zhang Z, He G, Han GS, Zhang J, Catanzaro N, Diaz A, Wu Z, Carman GM, Xie L, Wang X. Host Pah1p phosphatidate phosphatase limits viral replication by regulating phospholipid synthesis. PLoS Pathog 2018; 14:e1006988. [PMID: 29649282 PMCID: PMC5916857 DOI: 10.1371/journal.ppat.1006988] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/24/2018] [Accepted: 03/24/2018] [Indexed: 11/20/2022] Open
Abstract
Replication of positive-strand RNA viruses [(+)RNA viruses] takes place in membrane-bound viral replication complexes (VRCs). Formation of VRCs requires virus-mediated manipulation of cellular lipid synthesis. Here, we report significantly enhanced brome mosaic virus (BMV) replication and much improved cell growth in yeast cells lacking PAH1 (pah1Δ), the sole yeast ortholog of human LIPIN genes. PAH1 encodes Pah1p (phosphatidic acid phosphohydrolase), which converts phosphatidate (PA) to diacylglycerol that is subsequently used for the synthesis of the storage lipid triacylglycerol. Inactivation of Pah1p leads to altered lipid composition, including high levels of PA, total phospholipids, ergosterol ester, and free fatty acids, as well as expansion of the nuclear membrane. In pah1Δ cells, BMV replication protein 1a and double-stranded RNA localized to the extended nuclear membrane, there was a significant increase in the number of VRCs formed, and BMV genomic replication increased by 2-fold compared to wild-type cells. In another yeast mutant that lacks both PAH1 and DGK1 (encodes diacylglycerol kinase converting diacylglycerol to PA), which has a normal nuclear membrane but maintains similar lipid compositional changes as in pah1Δ cells, BMV replicated as efficiently as in pah1Δ cells, suggesting that the altered lipid composition was responsible for the enhanced BMV replication. We further showed that increased levels of total phospholipids play an important role because the enhanced BMV replication required active synthesis of phosphatidylcholine, the major membrane phospholipid. Moreover, overexpression of a phosphatidylcholine synthesis gene (CHO2) promoted BMV replication. Conversely, overexpression of PAH1 or plant PAH1 orthologs inhibited BMV replication in yeast or Nicotiana benthamiana plants. Competing with its host for limited resources, BMV inhibited host growth, which was markedly alleviated in pah1Δ cells. Our work suggests that Pah1p promotes storage lipid synthesis and thus represses phospholipid synthesis, which in turn restricts both viral replication and cell growth during viral infection.
Collapse
Affiliation(s)
- Zhenlu Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Guijuan He
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States of America
| | - Jiantao Zhang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Nicholas Catanzaro
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Arturo Diaz
- Department of Biology, La Sierra University, Riverside, VA, United States of America
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
| | - George M. Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States of America
| | - Lianhui Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
| | - Xiaofeng Wang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
17
|
Garcia-Ruiz H, Diaz A, Ahlquist P. Intermolecular RNA Recombination Occurs at Different Frequencies in Alternate Forms of Brome Mosaic Virus RNA Replication Compartments. Viruses 2018; 10:v10030131. [PMID: 29543718 PMCID: PMC5869524 DOI: 10.3390/v10030131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/27/2023] Open
Abstract
Positive-strand RNA viruses replicate their genomes in membrane-bound replication compartments. Brome mosaic virus (BMV) replicates in vesicular invaginations of the endoplasmic reticulum membrane. BMV has served as a productive model system to study processes like virus-host interactions, RNA replication and recombination. Here we present multiple lines of evidence showing that the structure of the viral RNA replication compartments plays a fundamental role and that recruitment of parental RNAs to a common replication compartment is a limiting step in intermolecular RNA recombination. We show that a previously defined requirement for an RNA recruitment element on both parental RNAs is not to function as a preferred crossover site, but in order for individual RNAs to be recruited into the replication compartments. Moreover, modulating the form of the replication compartments from spherular vesicles (spherules) to more expansive membrane layers increased intermolecular RNA recombination frequency by 200- to 1000-fold. We propose that intermolecular RNA recombination requires parental RNAs to be recruited into replication compartments as monomers, and that recruitment of multiple RNAs into a contiguous space is much more common for layers than for spherules. These results could explain differences in recombination frequencies between viruses that replicate in association with smaller spherules versus larger double-membrane vesicles and convoluted membranes.
Collapse
Affiliation(s)
- Hernan Garcia-Ruiz
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Nebraska Center for Virology, Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| | - Arturo Diaz
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Department of Biology, La Sierra University, Riverside, CA 92515, USA.
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Howard Hughes Medical Institute and Morgridge Institute for Research, University of Wisconsin-Madison, MadisonWI 53706, USA.
| |
Collapse
|
18
|
Jin X, Jiang Z, Zhang K, Wang P, Cao X, Yue N, Wang X, Zhang X, Li Y, Li D, Kang BH, Zhang Y. Three-Dimensional Analysis of Chloroplast Structures Associated with Virus Infection. PLANT PHYSIOLOGY 2018; 176:282-294. [PMID: 28821590 PMCID: PMC5761806 DOI: 10.1104/pp.17.00871] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/15/2017] [Indexed: 05/18/2023]
Abstract
Chloroplasts are multifunctional organelles whose morphology is affected by environmental stresses. Although the three-dimensional (3D) architecture of thylakoid membranes has been reported previously, a 3D visualization of chloroplast under stress has not been explored. In this work, we used a positive-strand RNA ((+)RNA) virus, barley stripe mosaic virus (BSMV) to observe chloroplast structural changes during infection by electron tomography. The analyses revealed remodeling of the chloroplast membranes, characterized by the clustering of outer membrane-invaginated spherules in inner membrane-derived packets. Diverse morphologies of cytoplasmic invaginations (CIs) were evident with spherules at the periphery and different sized openings connecting the CIs to the cytoplasm. Immunoelectron microscopy of these viral components verified that the aberrant membrane structures were sites for BSMV replication. The BSMV αa replication protein localized at the surface of the chloroplasts and played a prominent role in eliciting chloroplast membrane rearrangements. In sum, our results have revealed the 3D structure of the chloroplasts induced by BSMV infection. These findings contribute to our understanding of chloroplast morphological changes under stress conditions and during assembly of plant (+)RNA virus replication complexes.
Collapse
Affiliation(s)
- Xuejiao Jin
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Zhihao Jiang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Kun Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Pengfei Wang
- School of Life Sciences, Center for Cell and Developmental Biology and State Key Laboratory of Agro-biotechnology, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Xiuling Cao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Ning Yue
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Xueting Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Xuan Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Yunqin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Byung-Ho Kang
- School of Life Sciences, Center for Cell and Developmental Biology and State Key Laboratory of Agro-biotechnology, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
19
|
Nishikiori M, Ahlquist P. Organelle luminal dependence of (+)strand RNA virus replication reveals a hidden druggable target. SCIENCE ADVANCES 2018; 4:eaap8258. [PMID: 29387794 PMCID: PMC5787378 DOI: 10.1126/sciadv.aap8258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/19/2017] [Indexed: 05/08/2023]
Abstract
Positive-strand RNA viruses replicate their genomes in membrane-bounded cytoplasmic complexes. We show that endoplasmic reticulum (ER)-linked genomic RNA replication by brome mosaic virus (BMV), a well-studied member of the alphavirus superfamily, depends on the ER luminal thiol oxidase ERO1. We further show that BMV RNA replication protein 1a, a key protein for the formation and function of vesicular BMV RNA replication compartments on ER membranes, permeabilizes these membranes to release oxidizing potential from the ER lumen. Conserved amphipathic sequences in 1a are sufficient to permeabilize liposomes, and mutations in these sequences simultaneously block membrane permeabilization, formation of a disulfide-linked, oxidized 1a multimer, 1a's RNA capping function, and productive genome replication. These results reveal new transmembrane complexities in positive-strand RNA virus replication, show that-as previously reported for certain picornaviruses and flaviviruses-some alphavirus superfamily members encode viroporins, identify roles for such viroporins in genome replication, and provide a potential new foundation for broad-spectrum antivirals.
Collapse
Affiliation(s)
- Masaki Nishikiori
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
- Corresponding author.
| |
Collapse
|
20
|
Jin X, Cao X, Wang X, Jiang J, Wan J, Laliberté JF, Zhang Y. Three-Dimensional Architecture and Biogenesis of Membrane Structures Associated with Plant Virus Replication. FRONTIERS IN PLANT SCIENCE 2018; 9:57. [PMID: 29441085 PMCID: PMC5797596 DOI: 10.3389/fpls.2018.00057] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/11/2018] [Indexed: 05/20/2023]
Abstract
Positive-sense (+) RNA viruses represent the most abundant group of viruses and are dependent on the host cell machinery to replicate. One remarkable feature that occurs after (+) RNA virus entry into cells is the remodeling of host endomembranes, leading to the formation of viral replication factories. Recently, rapid progress in three-dimensional (3D) imaging technologies, such as electron tomography (ET) and focused ion beam-scanning electron microscopy (FIB-SEM), has enabled researchers to visualize the novel membrane structures induced by viruses at high resolution. These 3D imaging technologies provide new mechanistic insights into the viral infection cycle. In this review, we summarize the latest reports on the cellular remodeling that occurs during plant virus infection; in particular, we focus on studies that provide 3D architectural information on viral replication factories. We also outline the mechanisms underlying the formation of these membranous structures and discuss possible future research directions.
Collapse
Affiliation(s)
- Xuejiao Jin
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiuling Cao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueting Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jun Jiang
- Institut National de la Recherche Scientifique—Institut Armand-Frappier, Laval, QC, Canada
| | - Juan Wan
- Institut National de la Recherche Scientifique—Institut Armand-Frappier, Laval, QC, Canada
| | - Jean-François Laliberté
- Institut National de la Recherche Scientifique—Institut Armand-Frappier, Laval, QC, Canada
- *Correspondence: Jean-François Laliberté
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Yongliang Zhang
| |
Collapse
|
21
|
Kozieł E, Bujarski JJ, Otulak K. Molecular Biology of Prune Dwarf Virus-A Lesser Known Member of the Bromoviridae but a Vital Component in the Dynamic Virus-Host Cell Interaction Network. Int J Mol Sci 2017; 18:E2733. [PMID: 29258199 PMCID: PMC5751334 DOI: 10.3390/ijms18122733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/21/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022] Open
Abstract
Prune dwarf virus (PDV) is one of the members of Bromoviridae family, genus Ilarvirus. Host components that participate in the regulation of viral replication or cell-to-cell movement via plasmodesmata are still unknown. In contrast, viral infections caused by some other Bromoviridae members are well characterized. Bromoviridae can be distinguished based on localization of their replication process in infected cells, cell-to-cell movement mechanisms, and plant-specific response reactions. Depending upon the genus, "genome activation" and viral replication are linked to various membranous structures ranging from endoplasmic reticulum, to tonoplast. In the case of PDV, there is still no evidence of natural resistance sources in the host plants susceptible to virus infection. Apparently, PDV has a great ability to overcome the natural defense responses in a wide spectrum of plant hosts. The first manifestations of PDV infection are specific cell membrane alterations, and the formation of replicase complexes that support PDV RNA replication inside the spherules. During each stage of its life cycle, the virus uses cell components to replicate and to spread in whole plants, within the largely suppressed cellular immunity environment. This work presents the above stages of the PDV life cycle in the context of current knowledge about other Bromoviridae members.
Collapse
Affiliation(s)
- Edmund Kozieł
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| | - Józef J Bujarski
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA.
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | - Katarzyna Otulak
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| |
Collapse
|
22
|
Partially Uncleaved Alphavirus Replicase Forms Spherule Structures in the Presence and Absence of RNA Template. J Virol 2017; 91:JVI.00787-17. [PMID: 28701392 DOI: 10.1128/jvi.00787-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022] Open
Abstract
Alphaviruses are positive-strand RNA viruses expressing their replicase as a polyprotein, P1234, which is cleaved to four final products, nonstructural proteins nsP1 to nsP4. The replicase proteins together with viral RNA and host factors form membrane invaginations termed spherules, which act as the replication complexes producing progeny RNAs. We have previously shown that the wild-type alphavirus replicase requires a functional RNA template and active polymerase to generate spherule structures. However, we now find that specific partially processed forms of the replicase proteins alone can give rise to membrane invaginations in the absence of RNA or replication. The minimal requirement for spherule formation was the expression of properly cleaved nsP4, together with either uncleaved P123 or with the combination of nsP1 and uncleaved P23. These inactive spherules were morphologically less regular than replication-induced spherules. In the presence of template, nsP1 plus uncleaved P23 plus nsP4 could efficiently assemble active replication spherules producing both negative-sense and positive-sense RNA strands. P23 alone did not have membrane affinity, but could be recruited to membrane sites in the presence of nsP1 and nsP4. These results define the set of viral components required for alphavirus replication complex assembly and suggest the possibility that it could be reconstituted from separately expressed nonstructural proteins.IMPORTANCE All positive-strand RNA viruses extensively modify host cell membranes to serve as efficient platforms for viral RNA replication. Alphaviruses and several other groups induce protective membrane invaginations (spherules) as their genome factories. Most positive-strand viruses produce their replicase as a polyprotein precursor, which is further processed through precise and regulated cleavages. We show here that specific cleavage intermediates of the alphavirus replicase can give rise to spherule structures in the absence of viral RNA. In the presence of template RNA, the same intermediates yield active replication complexes. Thus, partially cleaved replicase proteins play key roles that connect replication complex assembly, membrane deformation, and the different stages of RNA synthesis.
Collapse
|
23
|
Gushchin VA, Karlin DG, Makhotenko AV, Khromov AV, Erokhina TN, Solovyev AG, Morozov SY, Agranovsky AA. A conserved region in the Closterovirus 1a polyprotein drives extensive remodeling of endoplasmic reticulum membranes and induces motile globules in Nicotiana benthamiana cells. Virology 2017; 502:106-113. [PMID: 28027478 DOI: 10.1016/j.virol.2016.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 11/29/2022]
Abstract
In infected plant cells, closterovirus replicative polyproteins 1a and 1ab drive membrane remodeling and formation of multivesicular replication platforms. Polyprotein 1a contains a variable Central Region (CR) between the methyltransferase and helicase domains. In a previous study, we have found that transient expression of the Beet yellows virus CR-2 segment (aa 1305-1494) in Nicotiana benthamiana induces the formation of ~1µm mobile globules originating from the ER membranes. In the present study, sequence analysis has shown that a part of the CR named the "Zemlya region" (overlapping the CR-2), is conserved in all members of the Closterovirus genus and contains a predicted amphipathic helix (aa 1368-1385). By deletion analysis, the CR-2 region responsible for the induction of 1-μm globules has been mapped to aa 1368-1432. We suggest that the conserved membrane-modifying region of the BYV 1a may be involved in the biogenesis of closterovirus replication platforms.
Collapse
Affiliation(s)
- V A Gushchin
- Faculty of Biology, Moscow State University, Moscow 119991, Russia; N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Russia
| | - D G Karlin
- 25, rue de Cassis, 13008 Marseille, France
| | - A V Makhotenko
- Faculty of Biology, Moscow State University, Moscow 119991, Russia
| | - A V Khromov
- Faculty of Biology, Moscow State University, Moscow 119991, Russia
| | - T N Erokhina
- M.M. Shemyakin and Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - A G Solovyev
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow 119991, Russia
| | - S Yu Morozov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | - A A Agranovsky
- Faculty of Biology, Moscow State University, Moscow 119991, Russia; Center of Bioengineering, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
24
|
Parvez MK. Mutational analysis of hepatitis E virus ORF1 "Y-domain": Effects on RNA replication and virion infectivity. World J Gastroenterol 2017; 23:590-602. [PMID: 28216965 PMCID: PMC5292332 DOI: 10.3748/wjg.v23.i4.590] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of non-structural open reading frame 1 “Y-domain” sequences in the hepatitis E virus (HEV) life cycle.
METHODS Sequences of human HEV Y-domain (amino acid sequences 216-442) and closely-related viruses were analyzed in silico. Site-directed mutagenesis of the Y-domain (HEV SAR55) was carried out and studied in the replicon-baculovirus-hepatoma cell model. In vitro transcribed mRNA (pSK-GFP) constructs were transfected into S10-3 cells and viral RNA replicating GFP-positive cells were scored by flow cytometry. Mutant virions’ infectivity was assayed on naïve HepG2/C3A cells.
RESULTS In silico analysis identified a potential palmitoylation-site (C336C337) and an α-helix segment (L410Y411S412W413L414F415E416) in the HEV Y-domain. Molecular characterization of C336A, C337A and W413A mutants of the three universally conserved residues showed non-viability. Further, of the 10 consecutive saturation mutants covering the entire Y-domain nucleotide sequences (nts 650-1339), three constructs (nts 788-994) severely affected virus replication. This revealed the indispensability of the internal sequences but not of the up- or downstream sequences at the transcriptional level. Interestingly, the three mutated residues corresponded to the downstream codons that tolerated saturation mutation, indicating their post-translational functional/structural essentiality. In addition, RNA secondary structure prediction revealed formation of stable hairpins (nts 788-994) where saturation mutation drastically inhibited virion infectivity.
CONCLUSION This is the first demonstration of the critical role of Y-domain sequences in HEV life cycle, which may involve gene regulation and/or membrane binding in intracellular replication complexes.
Collapse
|
25
|
Moriceau L, Jomat L, Bressanelli S, Alcaide-Loridan C, Jupin I. Identification and Molecular Characterization of the Chloroplast Targeting Domain of Turnip yellow mosaic virus Replication Proteins. FRONTIERS IN PLANT SCIENCE 2017; 8:2138. [PMID: 29312393 PMCID: PMC5742235 DOI: 10.3389/fpls.2017.02138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/04/2017] [Indexed: 05/20/2023]
Abstract
Turnip yellow mosaic virus (TYMV) is a positive-strand RNA virus infecting plants. The TYMV 140K replication protein is a key organizer of viral replication complex (VRC) assembly, being responsible for recruitment of the viral polymerase and for targeting the VRCs to the chloroplast envelope where viral replication takes place. However, the structural requirements determining the subcellular localization and membrane association of this essential viral protein have not yet been defined. In this study, we investigated determinants for the in vivo chloroplast targeting of the TYMV 140K replication protein. Subcellular localization studies of deletion mutants identified a 41-residue internal sequence as the chloroplast targeting domain (CTD) of TYMV 140K; this sequence is sufficient to target GFP to the chloroplast envelope. The CTD appears to be located in the C-terminal extension of the methyltransferase domain-a region shared by 140K and its mature cleavage product 98K, which behaves as an integral membrane protein during infection. We predicted the CTD to fold into two amphipathic α-helices-a folding that was confirmed in vitro by circular dichroism spectroscopy analyses of a synthetic peptide. The importance for subcellular localization of the integrity of these amphipathic helices, and the function of 140K/98K, was demonstrated by performing amino acid substitutions that affected chloroplast targeting, membrane association and viral replication. These results establish a short internal α-helical peptide as an unusual signal for targeting proteins to the chloroplast envelope membrane, and provide new insights into membrane targeting of viral replication proteins-a universal feature of positive-strand RNA viruses.
Collapse
Affiliation(s)
- Lucille Moriceau
- Laboratory of Molecular Virology, Institut Jacques Monod, CNRS, Université Paris-Diderot, Paris, France
- Université Paris-Sud – Université Paris-Saclay, Orsay, France
| | - Lucile Jomat
- Laboratory of Molecular Virology, Institut Jacques Monod, CNRS, Université Paris-Diderot, Paris, France
| | - Stéphane Bressanelli
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud – Université Paris-Saclay, Gif-sur-Yvette, France
| | - Catherine Alcaide-Loridan
- Laboratory of Molecular Virology, Institut Jacques Monod, CNRS, Université Paris-Diderot, Paris, France
| | - Isabelle Jupin
- Laboratory of Molecular Virology, Institut Jacques Monod, CNRS, Université Paris-Diderot, Paris, France
- *Correspondence: Isabelle Jupin,
| |
Collapse
|
26
|
Li J, Fuchs S, Zhang J, Wellford S, Schuldiner M, Wang X. An unrecognized function for COPII components in recruiting the viral replication protein BMV 1a to the perinuclear ER. J Cell Sci 2016; 129:3597-3608. [PMID: 27539921 DOI: 10.1242/jcs.190082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/13/2016] [Indexed: 01/05/2023] Open
Abstract
Positive-strand RNA viruses invariably assemble their viral replication complexes (VRCs) by remodeling host intracellular membranes. How viral replication proteins are targeted to specific organelle membranes to initiate VRC assembly remains elusive. Brome mosaic virus (BMV), whose replication can be recapitulated in Saccharomyces cerevisiae, assembles its VRCs by invaginating the outer perinuclear endoplasmic reticulum (ER) membrane. Remarkably, BMV replication protein 1a (BMV 1a) is the only viral protein required for such membrane remodeling. We show that ER-vesicle protein of 14 kD (Erv14), a cargo receptor of coat protein complex II (COPII), interacts with BMV 1a. Moreover, the perinuclear ER localization of BMV 1a is disrupted in cells lacking ERV14 or expressing dysfunctional COPII coat components (Sec13, Sec24 or Sec31). The requirement of Erv14 for the localization of BMV 1a is bypassed by addition of a Sec24-recognizable sorting signal to BMV 1a or by overexpressing Sec24, suggesting a coordinated effort by both Erv14 and Sec24 for the proper localization of BMV 1a. The COPII pathway is well known for being involved in protein secretion; our data suggest that a subset of COPII coat proteins have an unrecognized role in targeting proteins to the perinuclear ER membrane.
Collapse
Affiliation(s)
- Jianhui Li
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Shai Fuchs
- Department of Molecular Genetics, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Jiantao Zhang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sebastian Wellford
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Xiaofeng Wang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
27
|
Wieczorek P, Obrępalska-Stęplowska A. The N-terminal fragment of the tomato torrado virus RNA1-encoded polyprotein induces a hypersensitive response (HR)-like reaction in Nicotiana benthamiana. Arch Virol 2016; 161:1849-58. [PMID: 27072852 PMCID: PMC4908173 DOI: 10.1007/s00705-016-2841-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/19/2016] [Indexed: 11/30/2022]
Abstract
The hypersensitive response (HR) is a defence reaction observed during incompatible plant-pathogen interactions in plants infected with a wide range of fungi, bacteria and viruses. Here, we show that an N-terminal polyprotein fragment encoded by tomato torrado virus RNA1, located between the first ATG codon and the protease cofactor (ProCo) motif, induces an HR-like reaction in Nicotiana benthamiana. Agrobacterium tumefaciens-mediated transient expression of the first 105 amino acids (the calculated molecular weight of the fragment was ca. 11.33 kDa, hereafter refered to as the 11K domain) from ToTV RNA1 induced an HR-like phenotype in infiltrated leaves. To investigate whether the 11K domain could influence the virulence and pathogenicity of a recombinant virus, we created a potato virus X (PVX) with the 11K coding sequence inserted under a duplicated coat protein promoter. We found that 11K substantially increased the virulence of the recombinant virus. Disease phenotype induced in N. benthamiana by PVX-11K was characterized by strong local and systemic necrosis. This was not observed when the 11K domain was expressed from PVX in an antisense orientation. Further analyses revealed that the 11K domain could not suppress posttranscriptional gene silencing (PTGS) of green fluorescent protein (GFP) in the N. benthamiana 16c line. In silico analysis of the predicted secondary structure of the 11K domain indicated the presence of two putative helices that are highly conserved in tomato-infecting representatives of the genus Torradovirus.
Collapse
Affiliation(s)
- Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318, Poznan, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318, Poznan, Poland.
| |
Collapse
|
28
|
Hyodo K, Okuno T. Pathogenesis mediated by proviral host factors involved in translation and replication of plant positive-strand RNA viruses. Curr Opin Virol 2016; 17:11-18. [DOI: 10.1016/j.coviro.2015.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/05/2015] [Accepted: 11/11/2015] [Indexed: 01/04/2023]
|
29
|
Hiruma-Shimizu K, Shimizu H, Thompson GS, Kalverda AP, Patching SG. Deuterated detergents for structural and functional studies of membrane proteins: Properties, chemical synthesis and applications. Mol Membr Biol 2016; 32:139-55. [DOI: 10.3109/09687688.2015.1125536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Hiroki Shimizu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido, Japan,
| | - Gary S. Thompson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK,
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK, and
| | - Arnout P. Kalverda
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK,
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK, and
| | | |
Collapse
|
30
|
Positive-strand RNA viruses stimulate host phosphatidylcholine synthesis at viral replication sites. Proc Natl Acad Sci U S A 2016; 113:E1064-73. [PMID: 26858414 DOI: 10.1073/pnas.1519730113] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
All positive-strand RNA viruses reorganize host intracellular membranes to assemble their viral replication complexes (VRCs); however, how these viruses modulate host lipid metabolism to accommodate such membrane proliferation and rearrangements is not well defined. We show that a significantly increased phosphatidylcholine (PC) content is associated with brome mosaic virus (BMV) replication in both natural host barley and alternate host yeast based on a lipidomic analysis. Enhanced PC levels are primarily associated with the perinuclear ER membrane, where BMV replication takes place. More specifically, BMV replication protein 1a interacts with and recruits Cho2p (choline requiring 2), a host enzyme involved in PC synthesis, to the site of viral replication. These results suggest that PC synthesized at the site of VRC assembly, not the transport of existing PC, is responsible for the enhanced accumulation. Blocking PC synthesis by deleting the CHO2 gene resulted in VRCs with wider diameters than those in wild-type cells; however, BMV replication was significantly inhibited, highlighting the critical role of PC in VRC formation and viral replication. We further show that enhanced PC levels also accumulate at the replication sites of hepatitis C virus and poliovirus, revealing a conserved feature among a group of positive-strand RNA viruses. Our work also highlights a potential broad-spectrum antiviral strategy that would disrupt PC synthesis at the sites of viral replication but would not alter cellular processes.
Collapse
|
31
|
Role of Mitochondrial Membrane Spherules in Flock House Virus Replication. J Virol 2016; 90:3676-83. [PMID: 26792749 DOI: 10.1128/jvi.03080-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/14/2016] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Viruses that generate double-stranded RNA (dsRNA) during replication must overcome host defense systems designed to detect this infection intermediate. All positive-sense RNA viruses studied to date modify host membranes to help facilitate the sequestration of dsRNA from host defenses and concentrate replication factors to enhance RNA production. Flock House virus (FHV) is an attractive model for the study of these processes since it is well characterized and infects Drosophila cells, which are known to have a highly effective RNA silencing system. During infection, FHV modifies the outer membrane of host mitochondria to form numerous membrane invaginations, called spherules, that are ∼50 nm in diameter and known to be the site of viral RNA replication. While previous studies have outlined basic structural features of these invaginations, very little is known about the mechanism underlying their formation. Here we describe the optimization of an experimental system for the analysis of FHV host membrane modifications using crude mitochondrial preparations from infected Drosophila cells. These preparations can be programmed to synthesize both single- and double-stranded FHV RNA. The system was used to demonstrate that dsRNA is protected from nuclease digestion by virus-induced membrane invaginations and that spherules play an important role in stimulating RNA replication. Finally, we show that spherules generated during FHV infection appear to be dynamic as evidenced by their ability to form or disperse based on the presence or absence of RNA synthesis. IMPORTANCE It is well established that positive-sense RNA viruses induce significant membrane rearrangements in infected cells. However, the molecular mechanisms underlying these rearrangements, particularly membrane invagination and spherule formation, remain essentially unknown. How the formation of spherules enhances viral RNA synthesis is also not understood, although it is assumed to be partly a result of evading host defense pathways. To help interrogate some of these issues, we optimized a cell-free replication system consisting of mitochondria isolated from Flock House virus-infected Drosophila cells for use in biochemical and structural studies. Our data suggest that spherules generated during Flock House virus replication are dynamic, protect double-stranded RNA, and enhance RNA replication in general. Cryo-electron microscopy suggests that the samples are amenable to detailed structural analyses of spherules engaged in RNA synthesis. This system thus provides a foundation for understanding the molecular mechanisms underlying spherule formation, maintenance, and function during positive-sense viral RNA replication.
Collapse
|
32
|
Aberle D, Oetter KM, Meyers G. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns. PLoS One 2015; 10:e0135680. [PMID: 26270479 PMCID: PMC4536213 DOI: 10.1371/journal.pone.0135680] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/26/2015] [Indexed: 01/30/2023] Open
Abstract
Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.
Collapse
Affiliation(s)
- Daniel Aberle
- Institut für Immunologie, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Kay-Marcus Oetter
- Institut für Immunologie, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
- * E-mail:
| |
Collapse
|
33
|
Hashimoto M, Komatsu K, Iwai R, Keima T, Maejima K, Shiraishi T, Ishikawa K, Yoshida T, Kitazawa Y, Okano Y, Yamaji Y, Namba S. Cell Death Triggered by a Putative Amphipathic Helix of Radish mosaic virus Helicase Protein Is Tightly Correlated With Host Membrane Modification. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:675-88. [PMID: 25650831 DOI: 10.1094/mpmi-01-15-0004-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Systemic necrosis is one of the most severe symptoms caused by plant RNA viruses. Recently, systemic necrosis has been suggested to have similar features to a defense response referred to as the hypersensitive response (HR), a form of programmed cell death. In virus-infected plant cells, host intracellular membrane structures are changed dramatically for more efficient viral replication. However, little is known about whether this replication-associated membrane modification is the cause of the symptoms. In this study, we identified an amino-terminal amphipathic helix of the helicase encoded by Radish mosaic virus (RaMV) (genus Comovirus) as an elicitor of cell death in RaMV-infected plants. Cell death caused by the amphipathic helix had features similar to HR, such as SGT1-dependence. Mutational analyses and inhibitor assays using cerulenin demonstrated that the amphipathic helix-induced cell death was tightly correlated with dramatic alterations in endoplasmic reticulum (ER) membrane structures. Furthermore, the cell death-inducing activity of the amphipathic helix was conserved in Cowpea mosaic virus (genus Comovirus) and Tobacco ringspot virus (genus Nepovirus), both of which are classified in the family Secoviridae. Together, these results indicate that ER membrane modification associated with viral intracellular replication may be recognized to prime defense responses against plant viruses.
Collapse
Affiliation(s)
- Masayoshi Hashimoto
- 1 Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ken Komatsu
- 2 Laboratory of Plant Pathology, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Ryo Iwai
- 1 Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Keima
- 1 Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kensaku Maejima
- 1 Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Shiraishi
- 1 Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuya Ishikawa
- 1 Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuya Yoshida
- 1 Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yugo Kitazawa
- 1 Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukari Okano
- 1 Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuyuki Yamaji
- 1 Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigetou Namba
- 1 Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
34
|
Ahola T, Karlin DG. Sequence analysis reveals a conserved extension in the capping enzyme of the alphavirus supergroup, and a homologous domain in nodaviruses. Biol Direct 2015; 10:16. [PMID: 25886938 PMCID: PMC4392871 DOI: 10.1186/s13062-015-0050-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/24/2015] [Indexed: 12/16/2022] Open
Abstract
Background Members of the alphavirus supergroup include human pathogens such as chikungunya virus, hepatitis E virus and rubella virus. They encode a capping enzyme with methyltransferase-guanylyltransferase (MTase-GTase) activity, which is an attractive drug target owing to its unique mechanism. However, its experimental study has proven very difficult. Results We examined over 50 genera of viruses by sequence analyses. Earlier studies showed that the MTase-GTase contains a “Core” region conserved in sequence. We show that it is followed by a long extension, which we termed “Iceberg” region, whose secondary structure, but not sequence, is strikingly conserved throughout the alphavirus supergroup. Sequence analyses strongly suggest that the minimal capping domain corresponds to the Core and Iceberg regions combined, which is supported by earlier experimental data. The Iceberg region contains all known membrane association sites that contribute to the assembly of viral replication factories. We predict that it may also contain an overlooked, widely conserved membrane-binding amphipathic helix. Unexpectedly, we detected a sequence homolog of the alphavirus MTase-GTase in taxa related to nodaviruses and to chronic bee paralysis virus. The presence of a capping enzyme in nodaviruses is biologically consistent, since they have capped genomes but replicate in the cytoplasm, where no cellular capping enzyme is present. The putative MTase-GTase domain of nodaviruses also contains membrane-binding sites that may drive the assembly of viral replication factories, revealing an unsuspected parallel with the alphavirus supergroup. Conclusions Our work will guide the functional analysis of the alphaviral MTase-GTase and the production of domains for structure determination. The identification of a homologous domain in a simple model system, nodaviruses, which replicate in numerous eukaryotic cell systems (yeast, flies, worms, mammals, and plants), can further help crack the function and structure of the enzyme. Reviewers This article was reviewed by Valerian Dolja, Eugene Koonin and Sebastian Maurer-Stroh. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0050-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tero Ahola
- Department of Food and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
| | - David G Karlin
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK. .,The Division of Structural Biology, Henry Wellcome Building, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
35
|
Prosser SW, Xiao H, Li C, Nelson RS, Meng B. Subcellular localization and membrane association of the replicase protein of grapevine rupestris stem pitting-associated virus, family Betaflexiviridae. J Gen Virol 2015; 96:921-932. [PMID: 25502653 DOI: 10.1099/jgv.0.000019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As a member of the newly established Betaflexiviridae family, grapevine rupestris stem pitting-associated virus (GRSPaV) has an RNA genome containing five ORFs. ORF1 encodes a putative replicase polyprotein typical of the alphavirus superfamily of positive-strand ssRNA viruses. Several viruses of this superfamily have been demonstrated to replicate in structures designated viral replication complexes associated with intracellular membranes. However, structure and cellular localization of the replicase complex have not been studied for members of Betaflexiviridae, a family of mostly woody plant viruses. As a first step towards the elucidation of the replication complex of GRSPaV, we investigated the subcellular localization of full-length and truncated versions of its replicase polyprotein via fluorescent tagging, followed by fluorescence microscopy. We found that the replicase polyprotein formed distinctive punctate bodies in both Nicotiana benthamiana leaf cells and tobacco protoplasts. We further mapped a region of 76 amino acids in the methyl-transferase domain responsible for the formation of these punctate structures. The punctate structures are distributed in close proximity to the endoplasmic reticulum network. Membrane flotation and biochemical analyses demonstrate that the N-terminal region responsible for punctate structure formation associated with cellular membrane is likely through an amphipathic α helix serving as an in-plane anchor. The identity of this membrane is yet to be determined. This is, to our knowledge, the first report on the localization and membrane association of the replicase proteins of a member of the family Betaflexiviridae.
Collapse
Affiliation(s)
- Sean W Prosser
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada N1G2W1
| | - Huogen Xiao
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada N1G2W1
| | - Caihong Li
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada N1G2W1
| | - Richard S Nelson
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73410, USA
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada N1G2W1
| |
Collapse
|
36
|
Harak C, Lohmann V. Ultrastructure of the replication sites of positive-strand RNA viruses. Virology 2015; 479-480:418-33. [PMID: 25746936 PMCID: PMC7111692 DOI: 10.1016/j.virol.2015.02.029] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/06/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
Abstract
Positive strand RNA viruses replicate in the cytoplasm of infected cells and induce intracellular membranous compartments harboring the sites of viral RNA synthesis. These replication factories are supposed to concentrate the components of the replicase and to shield replication intermediates from the host cell innate immune defense. Virus induced membrane alterations are often generated in coordination with host factors and can be grouped into different morphotypes. Recent advances in conventional and electron microscopy have contributed greatly to our understanding of their biogenesis, but still many questions remain how viral proteins capture membranes and subvert host factors for their need. In this review, we will discuss different representatives of positive strand RNA viruses and their ways of hijacking cellular membranes to establish replication complexes. We will further focus on host cell factors that are critically involved in formation of these membranes and how they contribute to viral replication.
Collapse
Affiliation(s)
- Christian Harak
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany.
| |
Collapse
|
37
|
Diaz A, Zhang J, Ollwerther A, Wang X, Ahlquist P. Host ESCRT proteins are required for bromovirus RNA replication compartment assembly and function. PLoS Pathog 2015; 11:e1004742. [PMID: 25748299 PMCID: PMC4351987 DOI: 10.1371/journal.ppat.1004742] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 02/10/2015] [Indexed: 11/18/2022] Open
Abstract
Positive-strand RNA viruses genome replication invariably is associated with vesicles or other rearranged cellular membranes. Brome mosaic virus (BMV) RNA replication occurs on perinuclear endoplasmic reticulum (ER) membranes in ~70 nm vesicular invaginations (spherules). BMV RNA replication vesicles show multiple parallels with membrane-enveloped, budding retrovirus virions, whose envelopment and release depend on the host ESCRT (endosomal sorting complexes required for transport) membrane-remodeling machinery. We now find that deleting components of the ESCRT pathway results in at least two distinct BMV phenotypes. One group of genes regulate RNA replication and the frequency of viral replication complex formation, but had no effect on spherule size, while a second group of genes regulate RNA replication in a way or ways independent of spherule formation. In particular, deleting SNF7 inhibits BMV RNA replication > 25-fold and abolishes detectable BMV spherule formation, even though the BMV RNA replication proteins accumulate and localize normally on perinuclear ER membranes. Moreover, BMV ESCRT recruitment and spherule assembly depend on different sets of protein-protein interactions from those used by multivesicular body vesicles, HIV-1 virion budding, or tomato bushy stunt virus (TBSV) spherule formation. These and other data demonstrate that BMV requires cellular ESCRT components for proper formation and function of its vesicular RNA replication compartments. The results highlight growing but diverse interactions of ESCRT factors with many viruses and viral processes, and potential value of the ESCRT pathway as a target for broad-spectrum antiviral resistance. Positive-strand RNA {(+)RNA} viruses cause numerous human, animal, and plant diseases. (+)RNA viruses reorganize host intracellular membranes to assemble their RNA replication compartments, which are mini-organelles featuring the close association of both viral and host components. To further understand the role of host components in forming such RNA replication compartments, we used brome mosaic virus (BMV), a well characterized model virus, to study some common features of (+)RNA virus RNA replication. We show that knocking out several components of the cellular Endosomal Complex Required for Transport (ESCRT) machinery resulted in parallel defects in BMV RNA replication and replication compartment formation, whereas other ESCRT components affected RNA replication independently of replication compartment formation. Deleting a subset of ESCRT proteins altered the frequency of replication compartment formation but had no effect on the size of these compartments, whereas a second subset affected RNA replication independently of replication compartment formation. Moreover, BMV’s interaction with the ESCRT machinery appears to be distinct from that reported for other viruses and from the ESCRT requirements for forming vesicles in cellular multivesicular bodies. These findings further illuminate the remarkable abilities of positive-strand RNA viruses to integrate viral and host protein functions to remodel membranes, and suggest potentially potent new ways to control such viruses.
Collapse
Affiliation(s)
- Arturo Diaz
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jiantao Zhang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech University, Blacksburg, Virginia, United States of America
| | - Abigail Ollwerther
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiaofeng Wang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech University, Blacksburg, Virginia, United States of America
- * E-mail: (XW); (PA)
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (XW); (PA)
| |
Collapse
|
38
|
Greninger AL. Picornavirus–Host Interactions to Construct Viral Secretory Membranes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 129:189-212. [DOI: 10.1016/bs.pmbts.2014.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Affiliation(s)
- Jean-François Laliberté
- INRS–Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada;
| | - Huanquan Zheng
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada;
| |
Collapse
|
40
|
Ghoshal K, Theilmann J, Reade R, Sanfacon H, Rochon D. The Cucumber leaf spot virus p25 auxiliary replicase protein binds and modifies the endoplasmic reticulum via N-terminal transmembrane domains. Virology 2014; 468-470:36-46. [PMID: 25129437 PMCID: PMC7112066 DOI: 10.1016/j.virol.2014.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 06/28/2014] [Accepted: 07/13/2014] [Indexed: 11/23/2022]
Abstract
Cucumber leaf spot virus (CLSV) is a member of the Aureusvirus genus, family Tombusviridae. The auxiliary replicase of Tombusvirids has been found to localize to endoplasmic reticulum (ER), peroxisomes or mitochondria; however, localization of the auxiliary replicase of aureusviruses has not been determined. We have found that the auxiliary replicase of CLSV (p25) fused to GFP colocalizes with ER and that three predicted transmembrane domains (TMDs) at the N-terminus of p25 are sufficient for targeting, although the second and third TMDs play the most prominent roles. Confocal analysis of CLSV infected 16C plants shows that the ER becomes modified including the formation of punctae at connections between ER tubules and in association with the nucleus. Ultrastructural analysis shows that the cytoplasm contains numerous vesicles which are also found between the perinuclear ER and nuclear membrane. It is proposed that these vesicles correspond to modified ER used as sites for CLSV replication.
Collapse
Affiliation(s)
- Kankana Ghoshal
- University of British Columbia, Faculty of Land and Food Systems, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jane Theilmann
- Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, British Columbia, Canada V0H 1Z0
| | - Ron Reade
- Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, British Columbia, Canada V0H 1Z0
| | - Helene Sanfacon
- Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, British Columbia, Canada V0H 1Z0
| | - D'Ann Rochon
- University of British Columbia, Faculty of Land and Food Systems, Vancouver, British Columbia, Canada V6T 1Z4; Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, British Columbia, Canada V0H 1Z0.
| |
Collapse
|
41
|
Diaz A, Wang X. Bromovirus-induced remodeling of host membranes during viral RNA replication. Curr Opin Virol 2014; 9:104-10. [PMID: 25462441 DOI: 10.1016/j.coviro.2014.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
Abstract
With its high yield, small genome, and ability to replicate in the yeast Saccharomyces cerevisiae, Brome mosaic virus (BMV) has served as a productive model to study the general features of positive-strand RNA virus infection. BMV RNA is replicated in spherules, vesicle-like invaginations of the outer perinuclear endoplasmic reticulum membrane that remain connected to the cytoplasm via a neck-like opening. Each spherule contains the viral replicase proteins as well as genomic RNAs. Recent advances indicate that multiple interactions between the viral proteins with themselves, cellular membranes, and host factors play crucial roles in BMV-mediated spherule formation. These findings are probably applicable to other positive-strand RNA viruses and might potentially provide new targets for antiviral treatments.
Collapse
Affiliation(s)
- Arturo Diaz
- Department of Biology, La Sierra University, Riverside, CA 92505, United States.
| | - Xiaofeng Wang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech University, Blacksburg, VA 24061, United States.
| |
Collapse
|
42
|
Chasman D, Gancarz B, Hao L, Ferris M, Ahlquist P, Craven M. Inferring host gene subnetworks involved in viral replication. PLoS Comput Biol 2014; 10:e1003626. [PMID: 24874113 PMCID: PMC4038467 DOI: 10.1371/journal.pcbi.1003626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 02/06/2014] [Indexed: 12/16/2022] Open
Abstract
Systematic, genome-wide loss-of-function experiments can be used to identify host factors that directly or indirectly facilitate or inhibit the replication of a virus in a host cell. We present an approach that combines an integer linear program and a diffusion kernel method to infer the pathways through which those host factors modulate viral replication. The inputs to the method are a set of viral phenotypes observed in single-host-gene mutants and a background network consisting of a variety of host intracellular interactions. The output is an ensemble of subnetworks that provides a consistent explanation for the measured phenotypes, predicts which unassayed host factors modulate the virus, and predicts which host factors are the most direct interfaces with the virus. We infer host-virus interaction subnetworks using data from experiments screening the yeast genome for genes modulating the replication of two RNA viruses. Because a gold-standard network is unavailable, we assess the predicted subnetworks using both computational and qualitative analyses. We conduct a cross-validation experiment in which we predict whether held-aside test genes have an effect on viral replication. Our approach is able to make high-confidence predictions more accurately than several baselines, and about as well as the best baseline, which does not infer mechanistic pathways. We also examine two kinds of predictions made by our method: which host factors are nearest to a direct interaction with a viral component, and which unassayed host genes are likely to be involved in viral replication. Multiple predictions are supported by recent independent experimental data, or are components or functional partners of confirmed relevant complexes or pathways. Integer program code, background network data, and inferred host-virus subnetworks are available at http://www.biostat.wisc.edu/~craven/chasman_host_virus/.
Collapse
Affiliation(s)
- Deborah Chasman
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Brandi Gancarz
- Luminex Corporation, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Linhui Hao
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Michael Ferris
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Mark Craven
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
43
|
Aberle D, Muhle-Goll C, Bürck J, Wolf M, Reißer S, Luy B, Wenzel W, Ulrich AS, Meyers G. Structure of the membrane anchor of pestivirus glycoprotein E(rns), a long tilted amphipathic helix. PLoS Pathog 2014; 10:e1003973. [PMID: 24586172 PMCID: PMC3937272 DOI: 10.1371/journal.ppat.1003973] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 01/20/2014] [Indexed: 01/02/2023] Open
Abstract
E(rns) is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These findings explain the strong membrane binding of the protein and provide clues to establishing the E(rns) membrane contact, processing and secretion.
Collapse
Affiliation(s)
- Daniel Aberle
- Institut für Immunologie, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Claudia Muhle-Goll
- Karlsruhe Institute of Technology, Institut für Organische Chemie, Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology, Institut für Biologische Grenzflächen (IBG-2), Karlsruhe, Germany
| | - Moritz Wolf
- Karlsruhe Institute of Technology, Institut für Nanotechnologie, Karlsruhe, Germany
| | - Sabine Reißer
- Karlsruhe Institute of Technology, Institut für Organische Chemie, Karlsruhe, Germany
| | - Burkhard Luy
- Karlsruhe Institute of Technology, Institut für Organische Chemie, Karlsruhe, Germany
- Karlsruhe Institute of Technology, Institut für Biologische Grenzflächen (IBG-2), Karlsruhe, Germany
| | - Wolfgang Wenzel
- Karlsruhe Institute of Technology, Institut für Nanotechnologie, Karlsruhe, Germany
| | - Anne S. Ulrich
- Karlsruhe Institute of Technology, Institut für Organische Chemie, Karlsruhe, Germany
- Karlsruhe Institute of Technology, Institut für Biologische Grenzflächen (IBG-2), Karlsruhe, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| |
Collapse
|
44
|
Sun Z, Yang D, Xie L, Sun L, Zhang S, Zhu Q, Li J, Wang X, Chen J. Rice black-streaked dwarf virus P10 induces membranous structures at the ER and elicits the unfolded protein response in Nicotiana benthamiana. Virology 2013; 447:131-9. [PMID: 24210107 DOI: 10.1016/j.virol.2013.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/13/2013] [Accepted: 09/01/2013] [Indexed: 01/07/2023]
Abstract
Endoplasmic reticular (ER) membrane modifications play an important role in viral RNA replication and virion assembly but little is known about the involvement of ER-membrane remodeling in the infection cycle of fijiviruses in plant cells. The subcellular localization of Rice black-streaked dwarf virus outer capsid P10 was therefore examined using live-cell imaging. P10 fused to eGFP formed vesicular structures associated with ER membranes in Nicotiana benthamiana epidermal cells and in rice protoplasts. Subcellular fractionation experiments confirmed that P10 is an integral membrane protein. Three predicted transmembrane domains and two less-well-defined domains were each able to target eGFP to the ER. Disruption of the actin cytoskeleton with LatB, indicated that the maintenance of P10-induced membrane structures required the intact actin cytoskeleton. P10 induced the expression of ER stress marker genes, including ER stress-related chaperones and transcription factor, indicating that RBSDV P10 triggers ER stress and the unfolded protein response.
Collapse
Affiliation(s)
- Zongtao Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial key laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Template RNA length determines the size of replication complex spherules for Semliki Forest virus. J Virol 2013; 87:9125-34. [PMID: 23760239 DOI: 10.1128/jvi.00660-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The replication complexes of positive-strand RNA viruses are always associated with cellular membranes. The morphology of the replication-associated membranes is altered in different ways in different viral systems, but many viruses induce small membrane invaginations known as spherules as their replication sites. We show here that for Semliki Forest virus (SFV), an alphavirus, the size of the spherules is tightly connected with the length of the replicating RNA template. Cells with different model templates, expressed in trans and copied by the viral replicase, were analyzed with correlative light and electron microscopy. It was demonstrated that the viral-genome-sized template of 11.5 kb induced spherules that were ∼58 nm in diameter, whereas a template of 6 kb yielded ∼39-nm spherules. Different sizes of viral templates were replicated efficiently in trans, as assessed by radioactive labeling and Northern blotting. The replication of two different templates, in cis and trans, yielded two size classes of spherules in the same cell. These results indicate that RNA plays a crucial determining role in spherule assembly for SFV, in direct contrast with results from other positive-strand RNA viruses, in which either the presence of viral RNA or the RNA size do not contribute to spherule formation.
Collapse
|
46
|
Sun L, Andika IB, Kondo H, Chen J. Identification of the amino acid residues and domains in the cysteine-rich protein of Chinese wheat mosaic virus that are important for RNA silencing suppression and subcellular localization. MOLECULAR PLANT PATHOLOGY 2013; 14:265-78. [PMID: 23458485 PMCID: PMC6638639 DOI: 10.1111/mpp.12002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cysteine-rich proteins (CRPs) encoded by some plant viruses in diverse genera function as RNA silencing suppressors. Within the N-terminal portion of CRPs encoded by furoviruses, there are six conserved cysteine residues and a Cys-Gly-X-X-His motif (Cys, cysteine; Gly, glycine; His, histidine; X, any amino acid residue) with unknown function. The central domains contain coiled-coil heptad amino acid repeats that usually mediate protein dimerization. Here, we present evidence that the conserved cysteine residues and Cys-Gly-X-X-His motif in the CRP of Chinese wheat mosaic virus (CWMV) are critical for protein stability and silencing suppression activity. Mutation of a leucine residue in the third coiled-coil heptad impaired CWMV CRP activity for suppression of local silencing, but not for the promotion of cell-to-cell movement of Potato virus X (PVX). In planta and in vitro analysis of wild-type and mutant proteins indicated that the ability of the CRP to self-interact was correlated with its suppression activity. Deletion of up to 40 amino acids at the C-terminus did not abolish suppression activity, but disrupted the association of CRP with endoplasmic reticulum (ER), and reduced its activity in the enhancement of PVX symptom severity. Interestingly, a short region in the C-terminal domain, predicted to form an amphipathic α-helical structure, was responsible for the association of CWMV CRP with ER. Overall, our results demonstrate that the N-terminal and central regions are the functional domains for suppression activity, whereas the C-terminal region primarily functions to target CWMV CRP to the ER.
Collapse
Affiliation(s)
- Liying Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | | | | |
Collapse
|
47
|
Gushchin VA, Solovyev AG, Erokhina TN, Morozov SY, Agranovsky AA. Beet yellows virus replicase and replicative compartments: parallels with other RNA viruses. Front Microbiol 2013; 4:38. [PMID: 23508802 PMCID: PMC3589766 DOI: 10.3389/fmicb.2013.00038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 02/14/2013] [Indexed: 11/25/2022] Open
Abstract
In eukaryotic virus systems, infection leads to induction of membranous compartments in which replication occurs. Virus-encoded subunits of the replication complex mediate its interaction with membranes. As replication platforms, RNA viruses use the cytoplasmic surfaces of different membrane compartments, e.g., endoplasmic reticulum (ER), Golgi, endo/lysosomes, mitochondria, chloroplasts, and peroxisomes. Closterovirus infections are accompanied by formation of multivesicular complexes from cell membranes of ER or mitochondrial origin. So far the mechanisms for vesicles formation have been obscure. In the replication-associated 1a polyprotein of Beet yellows virus (BYV) and other closteroviruses, the region between the methyltransferase and helicase domains (1a central region (CR), 1a CR) is marginally conserved. Computer-assisted analysis predicts several putative membrane-binding domains in the BYV 1a CR. Transient expression of a hydrophobic segment (referred to here as CR-2) of the BYV 1a in Nicotiana benthamiana led to reorganization of the ER and formation of ~1-μm mobile globules. We propose that the CR-2 may be involved in the formation of multivesicular complexes in BYV-infected cells. This provides analogy with membrane-associated proteins mediating the build-up of “virus factories” in cells infected with diverse positive-strand RNA viruses (alpha-like viruses, picorna-like viruses, flaviviruses, and nidoviruses) and negative-strand RNA viruses (bunyaviruses).
Collapse
|
48
|
Mine A, Okuno T. Composition of plant virus RNA replicase complexes. Curr Opin Virol 2012; 2:669-75. [DOI: 10.1016/j.coviro.2012.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/18/2012] [Accepted: 09/27/2012] [Indexed: 01/26/2023]
|
49
|
Kusumanegara K, Mine A, Hyodo K, Kaido M, Mise K, Okuno T. Identification of domains in p27 auxiliary replicase protein essential for its association with the endoplasmic reticulum membranes in Red clover necrotic mosaic virus. Virology 2012; 433:131-41. [PMID: 22898643 DOI: 10.1016/j.virol.2012.07.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 06/22/2012] [Accepted: 07/19/2012] [Indexed: 11/18/2022]
Abstract
Positive-strand RNA viruses require host intracellular membranes for replicating their genomic RNAs. In this study, we determined the domains and critical amino acids in p27 of Red clover necrotic mosaic virus (RCNMV) required for its association with and targeting of ER membranes in Nicotiana benthamiana plants using a C-terminally GFP-fused and biologically functional p27. Confocal microscopy and membrane-flotation assays using an Agrobacterium-mediated expression system showed that a stretch of 20 amino acids in the N-terminal region of p27 is essential for the association of p27 with membranes. We identified the amino acids in this domain required for the association of p27 with membranes using alanine-scanning mutagenesis. We also found that this domain contains amino acids not critical for the membrane association but required for the formation of viral RNA replication complexes and negative-strand RNA synthesis. Our results extend our understanding of the multifunctional role of p27 in RCNMV replication.
Collapse
Affiliation(s)
- Kusumawaty Kusumanegara
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Fentress SJ, Steinfeldt T, Howard JC, Sibley LD. The arginine-rich N-terminal domain of ROP18 is necessary for vacuole targeting and virulence of Toxoplasma gondii. Cell Microbiol 2012; 14:1921-33. [PMID: 22906355 DOI: 10.1111/cmi.12022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/03/2012] [Accepted: 08/16/2012] [Indexed: 11/29/2022]
Abstract
Toxoplasma gondii uses specialized secretory organelles called rhoptries to deliver virulence determinants into the host cell during parasite invasion. One such determinant called rhoptry protein 18 (ROP18) is a polymorphic serine/threonine kinase that phosphorylates host targets to modulate acute virulence. Following secretion into the host cell, ROP18 traffics to the parasitophorous vacuole membrane (PVM) where it is tethered to the cytosolic face of this host-pathogen interface. However, the functional consequences of PVM association are not known. In this report, we show that ROP18 mutants altered in an arginine-rich domain upstream of the kinase domain fail to associate to the PVM following secretion from rhoptries. During infection, host cells upregulate immunity-related GTPases that localize to and destroy the PVM surrounding the parasites. ROP18 disarms this host innate immune pathway by phosphorylating IRGs in a critical GTPase domain and preventing loading on the PVM. Vacuole-targeting mutants of ROP18 failed to phosphorylate Irga6 and were unable to divert IRGs from the PVM, despite retaining intrinsic kinase activity. As a consequence, these mutants were avirulent in a mouse model of acute toxoplasmosis. Thus, the association of ROP18 with the PVM, mediated by its N-terminal arginine-rich domain, is critical to its function as a virulence determinant.
Collapse
Affiliation(s)
- Sarah J Fentress
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | |
Collapse
|