1
|
Nennig K, Murthy S, Maloney S, Shaw TM, Sharobim M, Matkovic E, Fadiran S, Larsen M, Ramuta MD, Kim AS, Teijaro JR, Grove J, Stremlau M, Sharma H, Trivedi S, Blum MJ, O’Connor DH, Hyde JL, Stapleton JT, Kapoor A, Bailey AL. Determinants of pegivirus persistence, cross-species infection, and adaptation in the laboratory mouse. PLoS Pathog 2024; 20:e1012436. [PMID: 39196893 PMCID: PMC11355568 DOI: 10.1371/journal.ppat.1012436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/22/2024] [Indexed: 08/30/2024] Open
Abstract
Viruses capable of causing persistent infection have developed sophisticated mechanisms for evading host immunity, and understanding these processes can reveal novel features of the host immune system. One such virus, human pegivirus (HPgV), infects ~15% of the global human population, but little is known about its biology beyond the fact that it does not cause overt disease. We passaged a pegivirus isolate of feral brown rats (RPgV) in immunodeficient laboratory mice to develop a mouse-adapted virus (maPgV) that established persistent high-titer infection in a majority of wild-type laboratory mice. maRPgV viremia was detected in the blood of mice for >300 days without apparent disease, closely recapitulating the hallmarks of HPgV infection in humans. We found a pro-viral role for type-I interferon in chronic infection; a lack of PD-1-mediated tolerance to PgV infection; and multiple mechanisms by which PgV immunity can be achieved by an immunocompetent host. These data indicate that the PgV immune evasion strategy has aspects that are both common and unique among persistent viral infections. The creation of maPgV represents the first PgV infection model in wild-type mice, thus opening the entire toolkit of the mouse host to enable further investigation of this persistent RNA virus infections.
Collapse
Affiliation(s)
- Kylie Nennig
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sara Maloney
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Teressa M. Shaw
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Mark Sharobim
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Eduard Matkovic
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Simi Fadiran
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Malorie Larsen
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Mitchell D. Ramuta
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Arthur S. Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, California, United States of America
- Department of Chemistry, The Scripps Research Institute, San Diego, California, United States of America
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, California, United States of America
| | - Joe Grove
- MRC-University of Glasgow Center for Virus Research, Glasgow, United Kingdom
| | - Matthew Stremlau
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Himanshu Sharma
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Michael J. Blum
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Jennifer L. Hyde
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Jack T. Stapleton
- Department of Internal Medicine, Microbiology & Immunology, University of Iowa and Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa, United States of America
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, Ohio State University, Columbus, Ohio, United States of America
| | - Adam L. Bailey
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Carella F, Prado P, De Vico G, Palić D, Villari G, García-March JR, Tena-Medialdea J, Cortés Melendreras E, Giménez-Casalduero F, Sigovini M, Aceto S. A widespread picornavirus affects the hemocytes of the noble pen shell ( Pinna nobilis), leading to its immunosuppression. Front Vet Sci 2023; 10:1273521. [PMID: 38164394 PMCID: PMC10758234 DOI: 10.3389/fvets.2023.1273521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The widespread mass mortality of the noble pen shell (Pinna nobilis) has occurred in several Mediterranean countries in the past 7 years. Single-stranded RNA viruses affecting immune cells and leading to immune dysfunction have been widely reported in human and animal species. Here, we present data linking P. nobilis mass mortality events (MMEs) to hemocyte picornavirus (PV) infection. This study was performed on specimens from wild and captive populations. Methods We sampled P. nobilis from two regions of Spain [Catalonia (24 animals) and Murcia (four animals)] and one region in Italy [Venice (6 animals)]. Each of them were analyzed using transmission electron microscopy (TEM) to describe the morphology and self-assembly of virions. Illumina sequencing coupled to qPCR was performed to describe the identified virus and part of its genome. Results and discussion In 100% of our samples, ultrastructure revealed the presence of a virus (20 nm diameter) capable of replicating within granulocytes and hyalinocytes, leading to the accumulation of complex vesicles of different dimensions within the cytoplasm. As the PV infection progressed, dead hemocytes, infectious exosomes, and budding of extracellular vesicles were visible, along with endocytic vesicles entering other cells. The THC (total hemocyte count) values observed in both captive (eight animals) (3.5 × 104-1.60 × 105 ml-1 cells) and wild animals (14 samples) (1.90-2.42 × 105 ml-1 cells) were lower than those reported before MMEs. Sequencing of P. nobilis (six animals) hemocyte cDNA libraries revealed the presence of two main sequences of Picornavirales, family Marnaviridae. The highest number of reads belonged to animals that exhibited active replication phases and abundant viral particles from transmission electron microscopy (TEM) observations. These sequences correspond to the genus Sogarnavirus-a picornavirus identified in the marine diatom Chaetoceros tenuissimus (named C. tenuissimus RNA virus type II). Real-time PCR performed on the two most abundant RNA viruses previously identified by in silico analysis revealed positive results only for sequences similar to the C. tenuissimus RNA virus. These results may not conclusively identify picornavirus in noble pen shell hemocytes; therefore, further study is required. Our findings suggest that picornavirus infection likely causes immunosuppression, making individuals prone to opportunistic infections, which is a potential cause for the MMEs observed in the Mediterranean.
Collapse
Affiliation(s)
- Francesca Carella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Patricia Prado
- Institute of Agrifood Research and Technology (IRTA)-Sant Carles de la Ràpita, Tarragona, Spain
| | - Gionata De Vico
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Grazia Villari
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - José Rafael García-March
- Instituto de Investigación en Medio Ambiente y Ciencia Marina, Universidad Católica de Valencia, Calpe, Spain
| | - José Tena-Medialdea
- Instituto de Investigación en Medio Ambiente y Ciencia Marina, Universidad Católica de Valencia, Calpe, Spain
| | | | - Francisca Giménez-Casalduero
- Department of Marine Science and Applied Biology, Research Marine Centre in Santa Pola (CIMAR), University of Alicante, Alicante, Spain
| | - Marco Sigovini
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Venice, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Santiago-Olivares C, Martínez-Alvarado E, Rivera-Toledo E. Persistence of RNA Viruses in the Respiratory Tract: An Overview. Viral Immunol 2023; 36:3-12. [PMID: 36367976 DOI: 10.1089/vim.2022.0135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Respiratory RNA viruses are a major cause of acute lower respiratory tract infections and contribute substantially to hospitalization among infants, elderly, and immunocompromised. Complete viral clearance from acute infections is not always achieved, leading to persistence. Certain chronic respiratory diseases like asthma and chronic obstructive pulmonary disease have been associated with persistent infection by human respiratory syncytial virus and human rhinovirus, but it is still not clear whether RNA viruses really establish long-term infections as it has been recognized for DNA viruses as human bocavirus and adenoviruses. Herein, we summarize evidence of RNA virus persistence in the human respiratory tract, as well as in some animal models, to highlight how long-term infections might be related to development and/or maintenance of chronic respiratory symptoms.
Collapse
Affiliation(s)
- Carlos Santiago-Olivares
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Eber Martínez-Alvarado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Evelyn Rivera-Toledo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
4
|
Abstract
Infectious diseases pose two main compelling issues. First, the identification of the molecular factors that allow chronic infections, that is, the often completely asymptomatic coexistence of infectious agents with the human host. Second, the definition of the mechanisms that allow the switch from pathogen dormancy to pathologic (re)activation. Furthering previous studies, the present study (1) analyzed the frequency of occurrence of synonymous codons in coding DNA, that is, codon usage, as a genetic tool that rules protein expression; (2) described how human codon usage can inhibit protein expression of infectious agents during latency, so that pathogen genes the codon usage of which does not conform to the human codon usage cannot be translated; and (3) framed human codon usage among the front-line instruments of the innate immunity against infections. In parallel, it was shown that, while genetics can account for the molecular basis of pathogen latency, the changes of the quantitative relationship between codon frequencies and isoaccepting tRNAs during cell proliferation offer a biochemical mechanism that explains the pathogen switching to (re)activation. Immunologically, this study warns that using codon optimization methodologies can (re)activate, potentiate, and immortalize otherwise quiescent, asymptomatic pathogens, thus leading to uncontrollable pandemics.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
5
|
Blockade of Autocrine CCL5 Responses Inhibits Zika Virus Persistence and Spread in Human Brain Microvascular Endothelial Cells. mBio 2021; 12:e0196221. [PMID: 34399621 PMCID: PMC8406327 DOI: 10.1128/mbio.01962-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is a neurovirulent flavivirus that uniquely causes fetal microcephaly, is sexually transmitted, and persists in patients for up to 6 months. ZIKV persistently infects human brain microvascular endothelial cells (hBMECs) that form the blood-brain barrier (BBB) and enables viral spread to neuronal compartments. We found that CCL5, a chemokine with prosurvival effects on immune cells, was highly secreted by ZIKV-infected hBMECs. Although roles for CCL5 in endothelial cell (EC) survival remain unknown, the presence of the CCL5 receptors CCR3 and CCR5 on ECs suggested that CCL5 could promote ZIKV persistence in hBMECs. We found that exogenous CCL5 induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in hBMECs and that ERK1/2 cell survival signaling was similarly activated by ZIKV infection. Neutralizing antibodies to CCL5, CCR3, or CCR5 inhibited persistent ZIKV infection of hBMECs. While knockout (KO) of CCL5 failed to prevent ZIKV infection of hBMECs, at 3 days postinfection (dpi), we observed a >90% reduction in ZIKV-infected CCL5-KO hBMECs and a multilog reduction in ZIKV titers. In contrast, the addition of CCL5 to CCL5-KO hBMECs dose-dependently rescued ZIKV persistence in hBMECs. Inhibiting CCL5 responses using CCR3 (UCB35625) and CCR5 (maraviroc) receptor antagonists reduced the number of ZIKV-infected hBMECs and ZIKV titers (50% inhibitory concentrations [IC50s] of 2.5 to 12 μM), without cytotoxicity (50% cytotoxic concentration [CC50] of >80 μM). These findings demonstrate that ZIKV-induced CCL5 directs autocrine CCR3/CCR5 activation of ERK1/2 survival responses that are required for ZIKV to persistently infect hBMECs. Our results establish roles for CCL5 in ZIKV persistence and suggest the potential for CCL5 receptor antagonists to therapeutically inhibit ZIKV spread and neurovirulence.
Collapse
|
6
|
Rodríguez-Martín D, Louloudes-Lázaro A, Avia M, Martín V, Rojas JM, Sevilla N. The Interplay between Bluetongue Virus Infections and Adaptive Immunity. Viruses 2021; 13:1511. [PMID: 34452376 PMCID: PMC8402766 DOI: 10.3390/v13081511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Viral infections have long provided a platform to understand the workings of immunity. For instance, great strides towards defining basic immunology concepts, such as MHC restriction of antigen presentation or T-cell memory development and maintenance, have been achieved thanks to the study of lymphocytic choriomeningitis virus (LCMV) infections. These studies have also shaped our understanding of antiviral immunity, and in particular T-cell responses. In the present review, we discuss how bluetongue virus (BTV), an economically important arbovirus from the Reoviridae family that affects ruminants, affects adaptive immunity in the natural hosts. During the initial stages of infection, BTV triggers leucopenia in the hosts. The host then mounts an adaptive immune response that controls the disease. In this work, we discuss how BTV triggers CD8+ T-cell expansion and neutralizing antibody responses, yet in some individuals viremia remains detectable after these adaptive immune mechanisms are active. We present some unpublished data showing that BTV infection also affects other T cell populations such as CD4+ T-cells or γδ T-cells, as well as B-cell numbers in the periphery. This review also discusses how BTV evades these adaptive immune mechanisms so that it can be transmitted back to the arthropod host. Understanding the interaction of BTV with immunity could ultimately define the correlates of protection with immune mechanisms that would improve our knowledge of ruminant immunology.
Collapse
Affiliation(s)
| | | | | | | | | | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (D.R.-M.); (A.L.-L.); (M.A.); (V.M.); (J.M.R.)
| |
Collapse
|
7
|
Nath A, Johnson TP. Mechanisms of viral persistence in the brain and therapeutic approaches. FEBS J 2021; 289:2145-2161. [PMID: 33844441 DOI: 10.1111/febs.15871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
There is growing recognition of the diversity of viruses that can infect the cells of the central nervous system (CNS). While the majority of CNS infections are successfully cleared by the immune response, some viral infections persist in the CNS. As opposed to resolved infections, persistent viruses can contribute to ongoing tissue damage and neuroinflammatory processes. In this manuscript, we provide an overview of the current understanding of factors that lead to viral persistence in the CNS including how viruses enter the brain, how these pathogens evade antiviral immune system responses, and how viruses survive and transmit within the CNS. Further, as the CNS may serve as a unique viral reservoir, we examine the ways in which persistent viruses in the CNS are being targeted therapeutically.
Collapse
Affiliation(s)
- Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
8
|
Simmonds P, Cuypers L, Irving WL, McLauchlan J, Cooke GS, Barnes E, Ansari MA. Impact of virus subtype and host IFNL4 genotype on large-scale RNA structure formation in the genome of hepatitis C virus. RNA (NEW YORK, N.Y.) 2020; 26:1541-1556. [PMID: 32747607 PMCID: PMC7566573 DOI: 10.1261/rna.075465.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/29/2020] [Indexed: 05/03/2023]
Abstract
Mechanisms underlying the ability of hepatitis C virus (HCV) to establish persistent infections and induce progressive liver disease remain poorly understood. HCV is one of several positive-stranded RNA viruses capable of establishing persistence in their immunocompetent vertebrate hosts, an attribute previously associated with formation of large-scale RNA structure in their genomic RNA. We developed novel methods to analyze and visualize genome-scale ordered RNA structure (GORS) predicted from the increasingly large data sets of complete genome sequences of HCV. Structurally conserved RNA secondary structure in coding regions of HCV localized exclusively to polyprotein ends (core, NS5B). Coding regions elsewhere were also intensely structured based on elevated minimum folding energy difference (MFED) values, but the actual stem-loop elements involved in genome folding were structurally poorly conserved, even between subtypes 1a and 1b. Dynamic remodeling was further evident from comparison of HCV strains in different host genetic backgrounds. Significantly higher MFED values, greater suppression of UpA dinucleotide frequencies, and restricted diversification were found in subjects with the TT genotype of the rs12979860 SNP in the IFNL4 gene compared to the CC (nonexpressing) allele. These structural and compositional associations with expression of interferon-λ4 were recapitulated on a larger scale by higher MFED values and greater UpA suppression of genotype 1 compared to genotype 3a, associated with previously reported HCV genotype-associated differences in hepatic interferon-stimulated gene induction. Associations between innate cellular responses with HCV structure and further evolutionary constraints represent an important new element in RNA virus evolution and the adaptive interplay between virus and host.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, OX1 3SY, Oxford, United Kingdom
| | - Lize Cuypers
- University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Research, BE 3000, Leuven, Belgium
| | - Will L Irving
- Faculty of Medicine and Health Sciences, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, NG7 2UH, United Kingdom
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, United Kingdom
| | | | - Ellie Barnes
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, OX1 3SY, Oxford, United Kingdom
| | - M Azim Ansari
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, OX1 3SY, Oxford, United Kingdom
| |
Collapse
|
9
|
Sidler X, Sydler T, Mateos JM, Klausmann S, Brugnera E. Porcine Circovirus Type 2 Pathogenicity Alters Host's Central Tolerance for Propagation. Pathogens 2020; 9:pathogens9100839. [PMID: 33066216 PMCID: PMC7602090 DOI: 10.3390/pathogens9100839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) infections and resulting diseases are a worldwide threat to pig production. PCV2 bears a uniqueness that allows for us to understand more about chronic infections and the immune system in general. The virus can be phylogenetically subdivided into PCV2a to PCV2h genotypes. Although vaccination against PCV2 has been seen to prevent the manifestation of PCV disease, PCV2 still lingers as subclinical infections in all developmental stages of pigs. The “slow and low” tactic gives PCV2 a particular advantage in a host’s immune surveillance. Since the inception of the PCV2 associated panzootic, research scientists have been trying to understand the pathogenicity of PCV2. Different research groups found that one genotype group member was more pathogenic than others. We found, in our weaner infection model with in vivo transfection of different recombinant PCV2 genotype group members that these viruses alter T cell maturation in the thymus, including host’s central tolerance. Here, we extend these original observations by showing that PCV2 infected cells were also found in proximity within the female and male reproductive organs of stillborn pig fetuses. These PCV2 pools were sufficient in infecting three and half-day-old embryos in sows. Furthermore, the dominant PCV2 group member was more pathogenic in our weaner infection model. PCV2 pre-immunocompetence infection makes PCV2 recognized by central immune tolerance as belonging to the host. This also explains why pathogenicity is not a genetically intrinsic characteristic of PCV2; however, the dominance of any one PCV2 genotype group member leads to a more efficient deletion of the T cells against that specific genotype group member in the thymus.
Collapse
Affiliation(s)
- Xaver Sidler
- Department of Farm Animals, Division of Swine Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Correspondence: (X.S.); (E.B.)
| | - Titus Sydler
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - José Maria Mateos
- Center for Microscopy and Image Analysis, University of Zurich, 8057 Zurich, Switzerland;
| | - Stefanie Klausmann
- Department of Farm Animals, Division of Swine Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Enrico Brugnera
- Department of Farm Animals, Division of Swine Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Correspondence: (X.S.); (E.B.)
| |
Collapse
|
10
|
Rouf R, Uddin SJ, Sarker DK, Islam MT, Ali ES, Shilpi JA, Nahar L, Tiralongo E, Sarker SD. Antiviral potential of garlic ( Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci Technol 2020; 104:219-234. [PMID: 32836826 PMCID: PMC7434784 DOI: 10.1016/j.tifs.2020.08.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Garlic (Allium sativum L.) is a common herb consumed worldwide as functional food and traditional remedy for the prevention of infectious diseases since ancient time. Garlic and its active organosulfur compounds (OSCs) have been reported to alleviate a number of viral infections in pre-clinical and clinical investigations. However, so far no systematic review on its antiviral effects and the underlying molecular mechanisms exists. SCOPE AND APPROACH The aim of this review is to systematically summarize pre-clinical and clinical investigations on antiviral effects of garlic and its OSCs as well as to further analyse recent findings on the mechanisms that underpin these antiviral actions. PubMed, Cochrane library, Google Scholar and Science Direct databases were searched and articles up to June 2020 were included in this review. KEY FINDINGS AND CONCLUSIONS Pre-clinical data demonstrated that garlic and its OSCs have potential antiviral activity against different human, animal and plant pathogenic viruses through blocking viral entry into host cells, inhibiting viral RNA polymerase, reverse transcriptase, DNA synthesis and immediate-early gene 1(IEG1) transcription, as well as through downregulating the extracellular-signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) signaling pathway. The alleviation of viral infection was also shown to link with immunomodulatory effects of garlic and its OSCs. Clinical studies further demonstrated a prophylactic effect of garlic in the prevention of widespread viral infections in humans through enhancing the immune response. This review highlights that garlic possesses significant antiviral activity and can be used prophylactically in the prevention of viral infections.
Collapse
Key Words
- AGE, Aged garlic extract
- AIV-H9N2, Avian influenza virus-H9N2
- ALT, Alanine aminotransferase
- ARVI, Acute respiratory viral infection
- AdV-3, Adenovirus-3
- AdV-41, Adenovirus-41
- Allium sativum
- CBV-3, Coxsackie B −3
- CPE, Cytopathic effect
- CoV, Coronavirus
- DADS, Diallyl disulfide
- DAS, Diallyl sulfide
- DATS, Diallyl trisulfide
- DDB, Dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylene dioxybiphenyl-2,2′-dicarboxylate
- ECHO11, Echovirus-11
- ECM, Extracellular matrix
- ERK, Extracellular-signal-regulated kinase
- FDA, Food and drug administration
- Functional food
- GE, Garlic extract
- GLRaV‐2, Grapevine leafroll‐associated virus 2
- GO, Garlic oil
- GRAS, Generally regarded as safe
- HAV, Hepatitis A virus
- HCMV, Human cytomegalovirus
- HIV-1, Human immunodeficiency virus-1
- HPV, Influenza B virus Human papillomavirus
- HRV-2, Human rhinovirus type 2
- HSV-1, Herpes simplex virus-1
- HSV-2, Herpes simplex virus-2
- Hp, Haptoglobin
- IAV-H1N1, IBV Influenza A virus-H1N1
- IEG1, Immediate-early gene 1
- IEGs, Immediate-early genes
- Immunomodulatory
- LGE, Lipid garlic extract
- MAPK, Mitogen activated protein kinase
- MARS-CoV, Middle East respiratory syndrome coronavirus
- MDCK cells, Madin-darby canine kidney cells
- MeV, Measles virus
- NA, Not available
- NDV, Newcastle disease virus
- NK, Natural killer
- OSCs, Organosulfur compounds
- Organosulfur compounds
- PGE, Powdered garlic extract
- PIV- 3, Parainfluenza virus-3
- PRRSV, Porcine reproductive and respiratory syndrome virus
- PRV, Porcine Rotavirus
- PVY, Potato Virus Y
- Pandemic
- RCTs, Randomized clinical trials
- RMCW, Recalcitrant multiple common warts
- RV-SA-11, Rotavirus SA-11
- SAC, Serum antioxidant concentration
- SAMC, S-allyl-mercaptocysteine
- SAMG, S-allyl-mercapto-glutathione
- SARS-CoV, Severe acute respiratory syndrome coronavirus
- SI, Selectivity index
- SRGE, Sustained release garlic extract
- SWV, Spotted wilt virus
- VSV, Vesicular stomatitis virus
- VV, Vaccinia virus
Collapse
Affiliation(s)
- Razina Rouf
- Department of Pharmacy, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj, 8100, Bangladesh
| | - Shaikh Jamal Uddin
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam
| | - Dipto Kumer Sarker
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj, 8100, Bangladesh
| | - Eunus S Ali
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Jamil A Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Lutfun Nahar
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Evelin Tiralongo
- School of Pharmacy and Pharmacology, Griffith University, Southport, Qld, Australia
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
11
|
Schindell BG, Webb AL, Kindrachuk J. Persistence and Sexual Transmission of Filoviruses. Viruses 2018; 10:E683. [PMID: 30513823 PMCID: PMC6316729 DOI: 10.3390/v10120683] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/27/2022] Open
Abstract
There is an increasing frequency of reports regarding the persistence of the Ebola virus (EBOV) in Ebola virus disease (EVD) survivors. During the 2014⁻2016 West African EVD epidemic, sporadic transmission events resulted in the initiation of new chains of human-to-human transmission. Multiple reports strongly suggest that these re-emergences were linked to persistent EBOV infections and included sexual transmission from EVD survivors. Asymptomatic infection and long-term viral persistence in EVD survivors could result in incidental introductions of the Ebola virus in new geographic regions and raise important national and local public health concerns. Alarmingly, although the persistence of filoviruses and their potential for sexual transmission have been documented since the emergence of such viruses in 1967, there is limited knowledge regarding the events that result in filovirus transmission to, and persistence within, the male reproductive tract. Asymptomatic infection and long-term viral persistence in male EVD survivors could lead to incidental transfer of EBOV to new geographic regions, thereby generating widespread outbreaks that constitute a significant threat to national and global public health. Here, we review filovirus testicular persistence and discuss the current state of knowledge regarding the rates of persistence in male survivors, and mechanisms underlying reproductive tract localization and sexual transmission.
Collapse
Affiliation(s)
- Brayden G Schindell
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Andrew L Webb
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Jason Kindrachuk
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
12
|
Luft O, Khattar R, Farrokhi K, Ferri D, Yavorska N, Zhang J, Sadozai H, Adeyi O, Chruscinski A, Levy GA, Selzner N. Inhibition of the Fibrinogen-Like Protein 2:FcγRIIB/RIII immunosuppressive pathway enhances antiviral T-cell and B-cell responses leading to clearance of lymphocytic choriomeningitis virus clone 13. Immunology 2018; 154:476-489. [PMID: 29341118 DOI: 10.1111/imm.12897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/31/2017] [Accepted: 01/10/2018] [Indexed: 12/26/2022] Open
Abstract
Persistent viruses evade immune detection by interfering with virus-specific innate and adaptive antiviral immune responses. Fibrinogen-like protein-2 (FGL2) is a potent effector molecule of CD4+ CD25+ FoxP3+ regulatory T cells and exerts its immunosuppressive activity following ligation to its cognate receptor, FcγRIIB/RIII. The role of FGL2 in the pathogenesis of chronic viral infection caused by lymphocytic choriomeningitis virus clone-13 (LCMV cl-13) was assessed in this study. Chronically infected fgl2+/+ mice had increased plasma levels of FGL2, with reduced expression of the maturation markers, CD80, CD86 and MHC-II on macrophages and dendritic cells and impaired production of neutralizing antibody. In contrast, fgl2-/- mice or fgl2+/+ mice that had been pre-treated with antibodies to FGL2 and FcγRIIB/RIII and then infected with LCMV cl-13 developed a robust CD4+ and CD8+ antiviral T-cell response, produced high titred neutralizing antibody to LCMV and cleared LCMV. Treatment of mice with established chronic infection with antibodies to FGL2 and FcγRIIB/RIII was shown to rescue the number and functionality of virus-specific CD4+ and CD8+ T cells with reduced total and virus-specific T-cell expression of programmed cell death protein 1 leading to viral clearance. These results demonstrate an important role for FGL2 in viral immune evasion and provide a rationale to target FGL2 to treat patients with chronic viral infection.
Collapse
Affiliation(s)
- Olga Luft
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Ramzi Khattar
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Kaveh Farrokhi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Dario Ferri
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nataliya Yavorska
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Jianhua Zhang
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Hassan Sadozai
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Oyedele Adeyi
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Andrzej Chruscinski
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Gary A Levy
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nazia Selzner
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| |
Collapse
|
13
|
Metabolic exhaustion in infection, cancer and autoimmunity. Nat Immunol 2018; 19:213-221. [DOI: 10.1038/s41590-018-0045-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
|
14
|
Randall RE, Griffin DE. Within host RNA virus persistence: mechanisms and consequences. Curr Opin Virol 2017; 23:35-42. [PMID: 28319790 PMCID: PMC5474179 DOI: 10.1016/j.coviro.2017.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022]
Abstract
In a prototypical response to an acute viral infection it would be expected that the adaptive immune response would eliminate all virally infected cells within a few weeks of infection. However many (non-retrovirus) RNA viruses can establish 'within host' persistent infections that occasionally lead to chronic or reactivated disease. Despite the importance of 'within host' persistent RNA virus infections, much has still to be learnt about the molecular mechanisms by which RNA viruses establish persistent infections, why innate and adaptive immune responses fail to rapidly clear these infections, and the epidemiological and potential disease consequences of such infections.
Collapse
Affiliation(s)
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Miller KD, Schnell MJ, Rall GF. Keeping it in check: chronic viral infection and antiviral immunity in the brain. Nat Rev Neurosci 2016; 17:766-776. [PMID: 27811921 DOI: 10.1038/nrn.2016.140] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is becoming clear that the manner by which the immune response resolves or contains infection by a pathogen varies according to the tissue that is affected. Unlike many peripheral cell types, CNS neurons are generally non-renewable. Thus, the cytolytic and inflammatory strategies that are effective in controlling infections in the periphery could be damaging if deployed in the CNS. Perhaps for this reason, the immune response to some CNS viral infections favours maintenance of neuronal integrity and non-neurolytic viral control. This modified immune response - when combined with the unique anatomy and physiology of the CNS - provides an ideal environment for the maintenance of viral genomes, including those of RNA viruses. Therefore, it is possible that such viruses can reactivate long after initial viral exposure, contributing to CNS disease.
Collapse
Affiliation(s)
- Katelyn D Miller
- Program in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Glenn F Rall
- Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
16
|
Generation of Anti-Boa Immunoglobulin Antibodies for Serodiagnostic Applications, and Their Use to Detect Anti-Reptarenavirus Antibodies in Boa Constrictor. PLoS One 2016; 11:e0158417. [PMID: 27355360 PMCID: PMC4927170 DOI: 10.1371/journal.pone.0158417] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/15/2016] [Indexed: 11/19/2022] Open
Abstract
Immunoglobulins (Igs), the key effectors of the adaptive immune system, mediate the specific recognition of foreign structures, i.e. antigens. In mammals, IgM production commonly precedes the production of IgG in the response to an infection. The reptilian counterpart of IgG is IgY, but the exact kinetics of the reptilian immune response are less well known. Boid inclusion body disease (BIBD), an often fatal disease of captive boas and pythons has been linked to reptarenavirus infection, and BIBD is believed to be immunosuppressive. However, so far, the study of the serological response towards reptarenaviruses in BIBD has been hampered by the lack of reagents. Thus we set up a purification protocol for boa constrictor IgY and IgM, which should also be applicable for other snake species. We used centrifugal filter units, poly ethylene glycol precipitation and gel permeation chromatography to purify and separate the IgM and IgY fractions from boa constrictor serum, which we further used to immunise rabbits. We affinity purified IgM and IgY specific reagents from the produced antiserum, and labelled the reagents with horseradish peroxidase. Finally, using the sera of snakes with known exposure to reptarenaviruses we demonstrated that the newly generated reagents can be utilised for serodiagnostic purposes, such as immunoblotting and immunofluorescent staining. To our knowledge, this is the first report to show reptarenavirus-specific antibodies in boa constrictors.
Collapse
|
17
|
Sydler T, Brägger S, Handke M, Hartnack S, Lewis FI, Sidler X, Brugnera E. Latent porcine circovirus type 2-infected domestic pigs: A potential infection model for the effective development of vaccines against latent or chronic virus induced diseases. Vaccine 2016; 34:1047-53. [PMID: 26795369 DOI: 10.1016/j.vaccine.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 09/30/2022]
Abstract
Until recently, knowledge of the pathogenicity of Circoviridae and Anelloviridae family members was limited. Our previous discoveries provided clues toward resolving this issue based on studies of the latent nature of porcine circovirus type 2 (PCV2) genotype group members. We developed a conventional pig infection model that indicated that weaners already harbored latent PCV2 infection in the thymus, which enabled the viruses to specifically modulate the maturation of T-helper cells. This finding raised the possibility that the thymi of normal fetuses were already infected with PCV2. The present findings further substantiate our hypothesis that PCV2 masquerades as the host by infecting fetuses before they acquire immune-competence. We provide the first demonstration that all domestic pig fetuses preferentially harbor latent PCV2-infected cells in their thymi. These PCV2-infected cells are different from thymocytes and are located in the medulla of the fetal thymus. These latent PCV2-infected cells in fetuses are found at the same location and share characteristics with the infected cells observed in adolescent pigs. Moreover, fetuses also harbor these infected cells in other lymph system organs. We provide the first demonstration that the fetal thymus virus pools are minimally affected by sow vaccination, highlighting the immune-privileged character of this organ. Furthermore, we found a striking reduction in virus-infected cells in the fetal spleen and an increase in PCV2-infected cells in the fetal intestine of anti-PCV2-vaccinated mothers. These data indicate that specific immune response interactions occur between mothers and their progeny that are not dependent on the humoral immunity of the mother and cannot be attributed to the rudimentary humoral responses of the fetuses because these pig fetuses do not have any PCV2-specific antibodies. These shifts in our understanding of the PCV2-infected cell pool will lead to different avenues in the search for effective vaccination strategies against latent and chronic pathogens.
Collapse
Affiliation(s)
- Titus Sydler
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Stefanie Brägger
- Division of Swine Medicine of the Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Martin Handke
- Division of Swine Medicine of the Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sonja Hartnack
- Division of Veterinary Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Fraser I Lewis
- Division of Veterinary Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Xaver Sidler
- Division of Swine Medicine of the Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Enrico Brugnera
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland; Division of Swine Medicine of the Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Lukacikova L, Oveckova I, Betakova T, Laposova K, Polcicova K, Pastorekova S, Pastorek J, Tomaskova J. Antiviral Effect of Interferon Lambda Against Lymphocytic Choriomeningitis Virus. J Interferon Cytokine Res 2015; 35:540-53. [PMID: 25830339 DOI: 10.1089/jir.2014.0083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lambda interferons inhibit replication of many viruses, but their role in the inhibition of lymphocytic choriomeningitis virus (LCMV) infection remains unclear. In this study, we examined the antiviral effects of interferon (IFN)-λ2 and IFN-λ3 against LCMV in A549 cells. We found that IFN-λ2 is a more potent inhibitor of LCMV strain MX compared with IFN-λ3, whereas both cytokines have similar antiviral effects against an immunosuppressive variant of LCMV, clone-13. We also demonstrated that the antiviral activity of IFN-λ2 is more effective if it is delivered early rather than after establishment of a long-term infection, suggesting that virus replication is only partially responsive to the cytokine. In agreement with this observation, we showed that LCMV infection significantly reduces IFNLR1 mRNA expression in infected cells. In addition, LCMV infection, to some extent, compromises the signal transduction pathway of IFN-λ2. This implies that IFN receptors as well as their downstream signaling components could be selectively targeted either directly by LCMV proteins or indirectly by cellular factor(s) that are induced or activated by LCMV infection.
Collapse
Affiliation(s)
- Lubomira Lukacikova
- Department of Molecular Medicine, Institute of Virology , Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ingrid Oveckova
- Department of Molecular Medicine, Institute of Virology , Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Tatiana Betakova
- Department of Molecular Medicine, Institute of Virology , Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katarina Laposova
- Department of Molecular Medicine, Institute of Virology , Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katarina Polcicova
- Department of Molecular Medicine, Institute of Virology , Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Silvia Pastorekova
- Department of Molecular Medicine, Institute of Virology , Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jaromir Pastorek
- Department of Molecular Medicine, Institute of Virology , Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jana Tomaskova
- Department of Molecular Medicine, Institute of Virology , Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
19
|
Moalli F, Cupovic J, Thelen F, Halbherr P, Fukui Y, Narumiya S, Ludewig B, Stein JV. Thromboxane A2 acts as tonic immunoregulator by preferential disruption of low-avidity CD4+ T cell-dendritic cell interactions. ACTA ACUST UNITED AC 2014; 211:2507-17. [PMID: 25488981 PMCID: PMC4267235 DOI: 10.1084/jem.20140137] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Interactions between dendritic cells (DCs) and T cells control the decision between activation and tolerance induction. Thromboxane A2 (TXA2) and its receptor TP have been suggested to regulate adaptive immune responses through control of T cell-DC interactions. Here, we show that this control is achieved by selectively reducing expansion of low-avidity CD4(+) T cells. During inflammation, weak tetramer-binding TP-deficient CD4(+) T cells were preferentially expanded compared with TP-proficient CD4(+) T cells. Using intravital imaging of cellular interactions in reactive peripheral lymph nodes (PLNs), we found that TXA2 led to disruption of low- but not high-avidity interactions between DCs and CD4(+) T cells. Lack of TP correlated with higher expression of activation markers on stimulated CD4(+) T cells and with augmented accumulation of follicular helper T cells (TFH), which correlated with increased low-avidity IgG responses. In sum, our data suggest that tonic suppression of weak CD4(+) T cell-DC interactions by TXA2-TP signaling improves the overall quality of adaptive immune responses.
Collapse
Affiliation(s)
- Federica Moalli
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Jovana Cupovic
- Institute of Immunobiology, Cantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland
| | - Flavian Thelen
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Pascal Halbherr
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation and Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation and Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Burkhard Ludewig
- Institute of Immunobiology, Cantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
20
|
Gaona J, Santiago-Olivares C, Ortega E, Gómez B. Respiratory syncytial virus persistence in macrophages upregulates Fcgamma receptors expression. Viruses 2014; 6:624-39. [PMID: 24509813 PMCID: PMC3939475 DOI: 10.3390/v6020624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/29/2013] [Accepted: 01/15/2014] [Indexed: 12/13/2022] Open
Abstract
Viruses can persist in differentiated cells (i.e., macrophages) over long periods of time, altering host cells functions but not inducing their death. We had previously reported that, in early passages (14–40) of a murine macrophage-like cell line persistently infected with respiratory syncytial virus (RSV) (MɸP), FcγR-mediated phagocytosis and expression of FcγRIIB/RIII on the cell membrane were increased with respect to mock-infected macrophages (MɸN). In this work, we explored the mechanism underlying such effects. Increases in FcγR expression and FcγR-mediated phagocytosis are preserved after more than 87 passages of the persistently infected culture. We analyzed the expression of FcγR isoforms at both mRNA and protein levels, and found out that RSV persistence distinctly affects the expression of FcγR isoforms. We also observed that the increase in FcγRs expression results neither from soluble factors (cytokines) or viral products released by the infected cells, nor from an increase in the rate of FcγR internalization. Our results suggest that RSV persistence in macrophages induce intracellular effects that have an impact on FcγRs gene expression at both mRNA and protein levels, and that the characteristics of RSV persistence were preserved for over 87 passages.
Collapse
Affiliation(s)
- Jorge Gaona
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Ciudad Universitaria, D.F. Mexico C.P. 04510, Mexico.
| | - Carlos Santiago-Olivares
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Ciudad Universitaria, D.F. Mexico C.P. 04510, Mexico.
| | - Enrique Ortega
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Ciudad Universitaria, D.F. México C.P. 04510, Mexico.
| | - Beatriz Gómez
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Ciudad Universitaria, D.F. Mexico C.P. 04510, Mexico.
| |
Collapse
|
21
|
Villarreal DO, Talbott KT, Choo DK, Shedlock DJ, Weiner DB. Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev Vaccines 2013; 12:537-54. [PMID: 23659301 DOI: 10.1586/erv.13.33] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human body has developed an elaborate defense system against microbial pathogens and foreign antigens. However, particular microbes have evolved sophisticated mechanisms to evade immune surveillance, allowing persistence within the human host. In an effort to combat such infections, intensive research has focused on the development of effective prophylactic and therapeutic countermeasures to suppress or clear persistent viral infections. To date, popular therapeutic strategies have included the use of live-attenuated microbes, viral vectors and dendritic-cell vaccines aiming to help suppress or clear infection. In recent years, improved DNA vaccines have now re-emerged as a promising candidate for therapeutic intervention due to the development of advanced optimization and delivery technologies. For instance, genetic optimization of synthetic plasmid constructs and their encoded antigens, in vivo electroporation-mediated vaccine delivery, as well as codelivery with molecular adjuvants have collectively enhanced both transgene expression and the elicitation of vaccine-induced immunity. In addition, the development of potent heterologous prime-boost regimens has also provided significant contributions to DNA vaccine immunogenicity. Herein, the authors will focus on these recent improvements to this synthetic platform in relation to their application in combating persistent virus infection.
Collapse
Affiliation(s)
- Daniel O Villarreal
- University of Pennsylvania, Perelman School of Medicine, Department of Pathology & Laboratory Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
22
|
Liverani CA. The four steps in the prevention of human papillomavirus-associated neoplasia: considerations for preventive measures, screening, disease impact, and potential overtreatments in HPV-related pathology. Arch Gynecol Obstet 2013; 288:979-88. [PMID: 23974280 DOI: 10.1007/s00404-013-3011-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 08/09/2013] [Indexed: 12/26/2022]
Abstract
There is no cure currently available for HPV infections, although ablative and excisional treatments of some dysplasias often result in a clinical and virological cure. Effective control measures of HPV-associated cancers rely on the prevention at four different levels. Apart from sexual abstinence, primary prevention is realized through vaccines targeting the most frequent HPV types: negative attitudes towards HPV vaccination and high costs are the main obstacles. The aim of secondary prevention is to detect precancerous changes before they develop into invasive cancer, while tertiary prevention involves actual treatment of high-grade lesions: in many countries routine screening with cytology is being challenged with HPV DNA testing. Quaternary prevention comprehends those actions adopted to mitigate or avoid unnecessary or excessive medical interventions, and may well be addressed in avoiding treatments for low-grade intraepithelial neoplasia. Though some gynecologists commonly recommend treatment for low-grade disease and women tend to prefer active management if not properly informed, harms arising from unnecessary treatments, increased costs, work overload for second-level health services, and induced psychosocial distress are causing on-going problems. Prevention efforts of genital HPV-associated cancers should concentrate in: (1) enhancing primary prevention through vaccination of all eligible subjects, (2) achieving high levels of adherence to routine screening programs, (3) treating precancerous lesions, and (4) monitoring current guidelines recommendations to avoid overtreatments. Novel research projects should be designed to study the delicate mechanisms of immune response to HPV.
Collapse
Affiliation(s)
- Carlo A Liverani
- Gynecologic Oncology Unit, Department of Mother and Infant Sciences, University of Milan, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,
| |
Collapse
|
23
|
Sarhan MA, Chen AY, Michalak TI. Differential expression of candidate virus receptors in human T lymphocytes prone or resistant to infection with patient-derived hepatitis C virus. PLoS One 2013; 8:e62159. [PMID: 23626783 PMCID: PMC3633843 DOI: 10.1371/journal.pone.0062159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/18/2013] [Indexed: 12/17/2022] Open
Abstract
Accumulated evidence implies that hepatitis C virus (HCV) infects not only the liver but also the immune system. A lymphocyte-specific CD5 molecule was recently identified as essential for infection of T cells with native, patient-derived HCV. To assess whether the proposed hepatocyte receptors may also contribute to HCV lymphotropism, expression of scavenger receptor-class B type 1 (SR-B1), claudin-1 (CLDN-1), claudin-6 (CLDN-6), occludin (OCLN), CD5 and CD81 was examined by real-time RT-PCR and the respective proteins quantified by immunoblotting in HCV-prone and resistant T cell lines, peripheral blood mononuclear cells (PBMC), primary T cells and their subsets, and compared to hepatoma Huh7.5 and HepG2 cells. SR-B1 protein was found in T and hepatoma cell lines but not in PBMC or primary T lymphocytes, CLDN-1 in HCV-resistant PM1 T cell line and hepatoma cells only, while CLDN-6 equally in the cells investigated. OCLN protein occurred in HCV-susceptible Molt4 and Jurkat T cells and its traces in primary T cells, but not in PBMC. CD5 was displayed by HCV-prone T cell lines, primary T cells and PBMC, but not by non-susceptible T and hepatoma cell lines, while CD81 in all cell types except HepG2. Knocking-down OCLN in virus-prone T cell line inhibited HCV infection, while de novo infection downregulated OCLN and CD81, and upregulated CD5 without modifying SR-B1 expression. Overall, while no association between SR-B1, CLDN-1 or CLDN-6 and the susceptibility to HCV was found, CD5 and CD81 expression coincided with virus lymphotropism and that of OCLN with permissiveness of T cell lines but unlikely primary T cells. This study narrowed the range of factors potentially utilized by HCV to infect T lymphocytes amongst those uncovered using laboratory HCV and Huh7.5 cells. Together with the demonstrated role for CD5 in HCV lymphotropism, the findings indicate that virus utilizes different molecules to enter hepatocytes and lymphocytes.
Collapse
Affiliation(s)
- Mohammed A. Sarhan
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Center, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | - Annie Y. Chen
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Center, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | - Tomasz I. Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Center, Memorial University, St. John’s, Newfoundland and Labrador, Canada
- * E-mail:
| |
Collapse
|
24
|
A single-amino-acid change in murine norovirus NS1/2 is sufficient for colonic tropism and persistence. J Virol 2012; 87:327-34. [PMID: 23077309 DOI: 10.1128/jvi.01864-12] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human norovirus (HuNoV) is the major cause of acute nonbacterial gastroenteritis worldwide but has no clear animal reservoir. HuNoV can persist after the resolution of symptoms, and this persistence may be essential for viral maintenance within the population. Many strains of the related murine norovirus (MNV) also persist, providing a tractable animal model for studying norovirus (NoV) persistence. We have used recombinant cDNA clones of representative persistent (CR6) and nonpersistent (CW3) strains to identify a domain within the nonstructural gene NS1/2 that is necessary and sufficient for persistence. Furthermore, we found that a single change of aspartic acid to glutamic acid in CW3 NS1/2 was sufficient for persistence. This same conservative change also caused increased growth of CW3 in the proximal colon, which we found to be a major tissue reservoir of MNV persistence, suggesting that NS1/2 determines viral tropism that is necessary for persistence. These findings represent the first identified function for NoV NS1/2 during infection and establish a novel model system for the study of enteric viral persistence.
Collapse
|
25
|
Duley AK, Ploquin MJY, Eksmond U, Ammann CG, Messer RJ, Myers L, Hasenkrug KJ, Kassiotis G. Negative impact of IFN-γ on early host immune responses to retroviral infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:2521-9. [PMID: 22821964 DOI: 10.4049/jimmunol.1201125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The immune system is tasked with defending against a myriad of microbial infections, and its response to a given infectious microbe may be strongly influenced by coinfection with another microbe. It was shown that infection of mice with lactate dehydrogenase-elevating virus (LDV) impairs early adaptive immune responses to Friend virus (FV) coinfection. To investigate the mechanism of this impairment, we examined LDV-induced innate immune responses and found LDV-specific induction of IFN-α and IFN-γ. LDV-induced IFN-α had little effect on FV infection or immune responses, but unexpectedly, LDV-induced IFN-γ production dampened Th1 adaptive immune responses and enhanced FV infection. Two distinct effects were identified. First, LDV-induced IFN-γ signaling indirectly modulated FV-specific CD8+ T cell responses. Second, intrinsic IFN-γ signaling in B cells promoted polyclonal B cell activation and enhanced early FV infection, despite promotion of germinal center formation and neutralizing Ab production. Results from this model reveal that IFN-γ production can have detrimental effects on early adaptive immune responses and virus control.
Collapse
Affiliation(s)
- Amanda K Duley
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Arrevillaga G, Gaona J, Sánchez C, Rosales V, Gómez B. Respiratory syncytial virus persistence in macrophages downregulates intercellular adhesion molecule-1 expression and reduces adhesion of non-typeable Haemophilus influenzae. Intervirology 2012; 55:442-50. [PMID: 22572178 DOI: 10.1159/000335548] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/30/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Persistence of respiratory syncytial virus (RSV) has been associated with episodes of chronic obstructive pulmonary disease (COPD); furthermore, co-infection of RSV with non-typeable Haemophilus influenzae (NTHi) is increasingly recognized as a cause of exacerbations of COPD. OBJECTIVE To study whether RSV persistence in a macrophage (Mφ)-like cell line alters NTHi uptake (adhesion and ingestion). METHODS A murine Mφ-like cell line persistently infected with RSV (MφP) was used. The effects of RSV persistence on NTHi uptake by MφP and mock-infected Mφ (MφN) were determined by flow-cytometric assays with NTHi labelled with either ethidium bromide or FITC. Expression of intercellular adhesion molecule-1 (ICAM-1), a ligand for NTHi, was determined by measuring mRNA through real-time PCR and protein by Western blot assays. RESULTS RSV persistence reduced both the capacity of Mφ to take up bacteria and the expression of ICAM-1 mRNA and protein. Furthermore, when ICAM-1 was blocked with anti-ICAM-1 antibody, the adhesion capacity of NTHi was significantly reduced for MφN, whereas for MφP the effect was less evident, implying that ICAM-1 participates in NTHi adhesion to Mφ. CONCLUSION RSV persistence in murine Mφ diminishes their capacity to adhere and ingest NTHi through downregulation of ICAM-1 expression at the transcriptional level.
Collapse
Affiliation(s)
- Gerardo Arrevillaga
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., México
| | | | | | | | | |
Collapse
|
27
|
Plasmacytoid dendritic cells control T-cell response to chronic viral infection. Proc Natl Acad Sci U S A 2012; 109:3012-7. [PMID: 22315415 DOI: 10.1073/pnas.1117359109] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Infections with persistent viruses are a frequent cause of immunosuppression, autoimmune sequelae, and/or neoplastic disease. Plasmacytoid dendritic cells (pDCs) are innate immune cells that produce type I interferon (IFN-I) and other cytokines in response to virus-derived nucleic acids. Persistent viruses often cause depletion or functional impairment of pDCs, but the role of pDCs in the control of these viruses remains unclear. We used conditional targeting of pDC-specific transcription factor E2-2 to generate mice that constitutively lack pDCs in peripheral lymphoid organs and tissues. The profound impact of pDC deficiency on innate antiviral responses was revealed by the failure to control acute infection with the cytopathic mouse hepatitis virus. Furthermore, pDC-deficient animals failed to clear lymphocytic choriomeningitis virus (LCMV) from hematopoietic organs during persistent LCMV infection. This failure was associated with reduced numbers and functionality of LCMV-specific CD4(+) helper T cells and impaired antiviral CD8(+) T-cell responses. Adoptive transfer of LCMV-specific T cells revealed that both CD4(+) and CD8(+) T cells required IFN-I for expansion, but only CD4(+) T cells required the presence of pDCs. In contrast, mice with pDC-specific loss of MHC class II expression supported normal CD4(+) T-cell response to LCMV. These data suggest that pDCs facilitate CD4(+) helper T-cell responses to persistent viruses independently of direct antigen presentation. Thus pDCs provide an essential link between innate and adaptive immunity to chronic viral infection, likely through the secretion of IFN-I and other cytokines.
Collapse
|
28
|
Yajima T. Viral myocarditis: potential defense mechanisms within the cardiomyocyte against virus infection. Future Microbiol 2011; 6:551-66. [PMID: 21585262 DOI: 10.2217/fmb.11.40] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Virus infection can inflict significant damage on cardiomyocytes through direct injury and secondary immune reactions, leading to myocarditis and dilated cardiomyopathy. While viral myocarditis or cardiomyopathy is a complication of systemic infection of cardiotropic viruses, most individuals infected with the viruses do not develop significant cardiac disease. However, some individuals proceed to develop severe virus-mediated heart disease. Recent studies have shown that viral infection of cardiomyocytes is required for the development of myocarditis and subsequent cardiomyopathy. This suggests that viral infection of cardiomyocytes can be an important step that determines the pathogenesis of viral myocarditis during systemic infection. Accordingly, this article focuses on potential defense mechanisms within the cardiomyocyte against virus infection. Understanding of the cardiomyocyte defense against invading viruses may give us novel insights into the pathophysiology of viral myocarditis, and enable us to develop innovative strategies of diagnosis and treatment for this challenging clinical entity.
Collapse
Affiliation(s)
- Toshitaka Yajima
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, 92093-0613K, USA.
| |
Collapse
|
29
|
Popkin DL, Teijaro JR, Sullivan BM, Urata S, Rutschmann S, de la Torre JC, Kunz S, Beutler B, Oldstone M. Hypomorphic mutation in the site-1 protease Mbtps1 endows resistance to persistent viral infection in a cell-specific manner. Cell Host Microbe 2011; 9:212-222. [PMID: 21402360 DOI: 10.1016/j.chom.2011.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/23/2010] [Accepted: 02/08/2011] [Indexed: 12/12/2022]
Abstract
The prototypic arenavirus lymphocytic choriomeningitis virus (LCMV), which naturally persists in rodents, represents a model for HIV, HBV, and HCV. Cleavage of the viral glycoprotein precursor by membrane-bound transcription factor peptidase, site 1 (Mbtps1 or site-1 protease), is crucial for the life cycle of arenaviruses and therefore represents a potential target for therapy. Recently, we reported a viable hypomorphic allele of Mbtps1 (woodrat) encoding a protease with diminished enzymatic activity. Using the woodrat allele, we examine the role of Mbtps1 during persistent LCMV infection. Surprisingly, Mbtps1 inhibition limits persistent but not acute viral infection and is associated with an organ/cell type-specific decrease in viral titers. Analysis of bone marrow-derived dendritic cells from woodrat mice supports their specific role in resolving persistent viral infection. These results support in vivo targeting of Mbtps1 in the treatment of arenavirus infections and demonstrate a critical role for dendritic cells in persistent viral infections.
Collapse
Affiliation(s)
- Daniel L Popkin
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Genetics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - John R Teijaro
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Brian M Sullivan
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shuzo Urata
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sophie Rutschmann
- Department of Genetics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stefan Kunz
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bruce Beutler
- Department of Genetics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael Oldstone
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
30
|
Kanduc D. HCV: Written in our DNA. SELF NONSELF 2011; 2:108-113. [PMID: 22299062 DOI: 10.4161/self.2.2.15795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 11/19/2022]
Abstract
An inspection of the sequence similarity between the hepatitis C virus (HCV) polyprotein and human proteins revealed a high level of peptide sharing, with a limited number of motifs unique to the virus (i.e., with no counterpart in the human proteome). Using pentapeptide matching, only 214 motifs out of a total of 3,007 (7.11%) identified HCV as nonself compared to the Homo sapiens proteome. However, this virus-versus-human phenetic difference disappeared at the genetic level. Indeed, a BLAST analysis of pentadecameric oligodeoxynucleotide sequences corresponding to the 214 pentapeptides unique to HCV revealed that almost all of them are present in the human genome, located in the non-coding strand, introns, and/or pseudogenes, thus being, as such, untranslatable. The present data warn against using DNA-based vaccines to fight HCV infection and emphasize peptide uniqueness as the molecular basis for designing effective anti-HCV immunotherapeutic approaches.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biochemistry and Molecular Biology; University of Bari; Bari, Italy
| |
Collapse
|
31
|
Abstract
For a virus to establish persistence in the host, it has to exploit the host immune system such that the active T-cell responses against the virus are curbed. On the other hand, the goal of the immune system is to clear the virus, following which the immune responses need to be downregulated, by a process known as immunoregulation. There are multiple known immunoregulatory mechanisms that appear to play a role in persistent viral infections. In the recent past, IL-10 and PD-1 have been identified to be playing a significant role in the regulation of antiviral immune responses. The evidence that viruses can escape immunologic attack by taking advantage of the host's immune system is found in LCMV infection of mice and in humans persistently infected with HIV and HCV. The recent observation that the functionally inactive T-cells during chronic viral infections can be made to regain their cytokine secretion and cytolytic abilities is very encouraging. Thus, it would be likely that neutralization negative immune regulation during persistent viral infection would result in the preservation of effector T-cell responses against the virus, thereby resulting in the elimination of the persistent infection.
Collapse
Affiliation(s)
| | - Ignacio Anegon
- CHU Hotel Dieu, INSERM UMR 643, Bd. Jean Monnet 30, Nantes, 44093 France
| |
Collapse
|
32
|
Fousteri G, Dave A, Juntti T, Morin B, McClure M, Von Herrath M. Minimal effect of CD103 expression on the control of a chronic antiviral immune response. Viral Immunol 2010; 23:285-94. [PMID: 20565292 DOI: 10.1089/vim.2009.0110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Impaired antiviral CD8 and CD4 T-cell responses are often associated with chronic viral infections. Cell-intrinsic as well as cell-extrinsic mechanisms are thought to dampen such responses, for example programmed death 1 receptor (PD-1) expression on T cells, and interleukin (IL)-10 production primarily by dendritic cells (DCs), have been shown to support viral persistence by suppressing immune responses. Here we demonstrate that CD103, an alpha E integrin necessary for T-cell homing and retention in the gut and other epithelia expressed by the majority of naïve CD8(+), and CD4(+)CD25(+) T cells and some DC subsets, is unnecessary for controlling T-cell responses during chronic lymphocytic choriomeningitis virus clone 13 (LCMV cl13) infection. T-cell analysis following viral infection showed that the primary as well as the memory CD8(+) and CD4(+) T-cell responses among CD103-sufficient and CD103-deficient mice were identical. In addition, no rescue of cytokine production by virus-specific T cells or alterations in viral titers in the absence of intrinsic CD103 expression was observed. Interestingly, CD103 levels on the effector CD8(+) T cells became reduced soon after virus infection, with a small proportion of cells co-expressing PD-1 and CD103. In contrast, although no substantial differences in the frequency and number of the CD4(+)CD25(+) cell population were seen, CD103 expression increased significantly over time in this population, correlating with viral persistence. Thus, a lack of CD103 expression does not affect functional impairment of effector T-cell responses during chronic viral infection.
Collapse
Affiliation(s)
- Georgia Fousteri
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
33
|
Kanduc D. Describing the hexapeptide identity platform between the influenza A H5N1 and Homo sapiens proteomes. Biologics 2010; 4:245-61. [PMID: 20859452 PMCID: PMC2943197 DOI: 10.2147/btt.s12097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Indexed: 11/23/2022]
Abstract
We searched the primary sequence of influenza A H5N1 polyprotein for hexamer amino acid sequences shared with human proteins using the Protein International Resource database and the exact peptide matching analysis program. We find that the viral polyprotein shares numerous hexapeptides with the human proteome. The human proteins involved in the viral overlap are represented by antigens associated with basic cell functions such as proliferation, development, and differentiation. Of special importance, many human proteins that share peptide sequences with influenza A polyprotein are antigens such as reelin, neurexin I-α, myosin-IXa, Bardet–Biedl syndrome 10 protein, Williams syndrome transcription factor, disrupted in schizophrenia 1 protein, amyotrophic lateral sclerosis 2 chromosomal region candidate gene 17 protein, fragile X mental retardation 2 protein, and jouberin. That is, the viral-vs-human overlap involves human proteins that, when altered, have been reported to be potentially associated with multiple neurological disorders that can include autism, epilepsy, obesity, dystonia, ataxia–telangiectasia, amyotrophic lateral sclerosis, sensorineural deafness, sudden infant death syndrome, Charcot-Marie-Tooth disease, and myelination. The present data are discussed as a possible molecular basis for understanding influenza A viral escape from immunosurveillance and for defining anti-influenza immune-therapeutic approaches devoid of collateral adverse events.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biochemistry and Molecular Biology, University of Bari, Italy
| |
Collapse
|
34
|
Chronic viral infection and primary central nervous system malignancy. J Neuroimmune Pharmacol 2010; 5:387-403. [PMID: 20387126 PMCID: PMC2914282 DOI: 10.1007/s11481-010-9204-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/05/2010] [Indexed: 01/08/2023]
Abstract
Primary central nervous system (CNS) tumors cause significant morbidity and mortality in both adults and children. While some of the genetic and molecular mechanisms of neuro-oncogenesis are known, much less is known about possible epigenetic contributions to disease pathophysiology. Over the last several decades, chronic viral infections have been associated with a number of human malignancies. In primary CNS malignancies, two families of viruses, namely polyomavirus and herpesvirus, have been detected with varied frequencies in a number of pediatric and adult histological tumor subtypes. However, establishing a link between chronic viral infection and primary CNS malignancy has been an area of considerable controversy, due in part to variations in detection frequencies and methodologies used among researchers. Since a latent viral neurotropism can be seen with a variety of viruses and a widespread seropositivity exists among the population, it has been difficult to establish an association between viral infection and CNS malignancy based on epidemiology alone. While direct evidence of a role of viruses in neuro-oncogenesis in humans is lacking, a more plausible hypothesis of neuro-oncomodulation has been proposed. The overall goals of this review are to summarize the many human investigations that have studied viral infection in primary CNS tumors, discuss potential neuro-oncomodulatory mechanisms of viral-associated CNS disease and propose future research directions to establish a more firm association between chronic viral infections and primary CNS malignancies.
Collapse
|
35
|
Walsh KB, Marsolais D, Welch MJ, Rosen H, Oldstone MBA. Treatment with a sphingosine analog does not alter the outcome of a persistent virus infection. Virology 2009; 397:260-9. [PMID: 19962171 DOI: 10.1016/j.virol.2009.08.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/16/2009] [Accepted: 08/29/2009] [Indexed: 11/30/2022]
Abstract
There is no known antiviral drug treatment that routinely terminates persistent virus infections. A recent provocative report indicated that low dosage of the sphingosine analog FTY720 caused lymphopenia in mice persistently infected with lymphocytic choriomeningitis virus (LCMV)-clone 13 (Cl 13) and induced viral clearance within 30 days post-treatment (Premenko-Lanier et al., 2008). However, we find that low dosage of FTY720 fails to purge LCMV-Cl 13 infection and does not induce lymphopenia in LCMV-Cl 13-infected mice. In fact, infection with non-persistent LCMV-Arm53b or with persistent LCMV-Cl 13 induces an equivalent lymphopenia, demonstrating that the quantity of circulating cells has little bearing on viral persistence. In addition, treatment with FTY720 or the sphingosine-1-phosphate receptor 1 (S1P1)-specific agonist, AUY954, does not alleviate T cell exhaustion and exacerbates disruption of the CD8(+) T cells response following LCMV-Cl 13 infection. Therefore, treatment with a sphingosine analog does not ameliorate persistent LCMV-Cl 13 infection.
Collapse
Affiliation(s)
- Kevin B Walsh
- Department of Immunology and Microbial Science, The Scripps Research Institute, IMM-6, TSRI, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|