1
|
Moreira IDMB, de Sousa NSO, de Almeida JDR, Rosas RLL, Cruz KS, Matsuura ABJ, Melhem MDSC, de Souza ÉS, Frickmann H, Lacerda MVG, de Souza JVB. Fluconazole Resistance and Heteroresistance in Cryptococcus spp.: Mechanisms and Implications. Rev Soc Bras Med Trop 2025; 58:e002002025. [PMID: 40136153 PMCID: PMC11941007 DOI: 10.1590/0037-8682-0328-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/24/2025] [Indexed: 03/27/2025] Open
Abstract
The reference methodology for evaluating antifungal susceptibility is based on determining the minimum inhibitory concentration (MIC), which is the lowest drug concentration capable of inhibiting fungal growth. However, such MIC data are insufficient to measure antifungal susceptibility if a strain is heteroresistant to the tested drug. In such cases, a minority subpopulation of fungal cells, originating from an initially susceptible lineage, can grow at antifungal drug concentrations above the MIC. In studies on fluconazole heteroresistance in Cryptococcus spp., chromosomal disomy has been shown to result in the overexpression of two genes located on chromosome 1 (Chr1) linked to antifungal resistance: ERG11 and AFR1. This review addresses the underlying mechanisms of antifungal resistance, the evolution of methods for determining antifungal susceptibility, and the clinical implications of Cryptococcus heteroresistance to fluconazole. The analysis of the findings indicated a correlation between heteroresistance and adverse clinical outcomes, although this observation still lacks definite confirmation in the literature. This highlights the need to implement more efficient therapeutic strategies and improve antifungal susceptibility and heteroresistance testing.
Collapse
Affiliation(s)
| | | | | | | | - Katia Santana Cruz
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil
| | | | - Márcia de Souza Carvalho Melhem
- Faculdade de Medicina, PPG Doenças Infecciosas e Parasitárias, UFMS, Campo Grande, MS, Brasil
- Faculdade de Medicina, PPG Doenças Tropicais, Unesp, Botucatu, SP, Brasil
- Instituto de Medicina Tropical de São Paulo, LIM 53, São Paulo, SP, Brasil
| | - Érica Simplício de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Manaus, AM, Brasil
| | - Hagen Frickmann
- Bundeswehr Hospital Hamburg, Department of Microbiology and Hospital Hygiene, Germany
- University Medicine Rostock, Institute for Medical Microbiology, Virology and Hygiene, Germany
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil
- Instituto Leônidas & Maria Deane, Fiocruz, Manaus, AM, Brasil
- University of Texas Medical Branch, Galveston, USA
| | - João Vicente Braga de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Manaus, AM, Brasil
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| |
Collapse
|
2
|
Jobson ME, Tomlinson BR, Mustor EM, Felton EA, Weiss A, Caswell CC, Shaw LN. SSR42 is a Novel Regulator of Cytolytic Activity in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.11.603084. [PMID: 39026779 PMCID: PMC11257634 DOI: 10.1101/2024.07.11.603084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
SSR42 is the longest noncoding RNA in the S. aureus cell and the second-most abundant transcript in the stationary phase transcriptome, second only to RNAIII. It is highly conserved across strains and exhibits pronounced stability in stationary phase, however the mechanism behind its regulatory role has yet to be fully elucidated. Herein, we used transcriptomic and proteomic approaches to probe the role of SSR42, revealing that it is a powerful, novel activator of the primary leukocidin LukAB. SSR42 is required for cytotoxicity towards, and escape from within, human neutrophils, and also mediates survival within human blood. We show that SSR42 wields this role via derepression by the peroxide repressor PerR in response to the presence of human neutrophils and governs lukAB induction in this niche. Importantly, this regulation is driven by direct RNA-RNA interaction, as we show binding of the 5' UTR of the lukAB transcript with the 3' end of SSR42, which ultimately modulates transcript stability as well as translational activity. Finally, we demonstrate that this behavior is absolutely required for full virulence of S. aureus in murine models of both pneumonia and sepsis. Collectively, we present SSR42 as a pleiotropic regulatory RNA that acts as a nexus between environmental sensing and the regulation of pathogenesis, responding to environmental stimuli and host immune factors to bolster cytotoxic behavior and facilitate infection in S. aureus . Importance S. aureus is a master pathogen due to its formidable collection of virulence factors. These are tightly controlled by a diverse group of regulators that titrate their abundance to adapt to unique infectious niches. The role of regulatory RNAs in stress adaptation and pathogenesis is becoming increasingly more relevant in S. aureus . In this study, we provide the most comprehensive global analysis to date of just such a factor, SSR42. Specifically, we uncover that SSR42 is required for mediating cytotoxicity - one of the pillars of infection - in response to phagocytosis by human neutrophils. We find that SSR42 is induced by components of the host immune system and facilitates downstream activation of cytotoxic factors via RNA-RNA interactions. This illustrates that SSR42 forms a pivotal link between sensing the external environment and mediating resistance to oxidative stress while promoting virulence, solidifying it as a major global regulator in S. aureus .
Collapse
|
3
|
Montoya MC, Wilhoit K, Murray D, Perfect JR, Magwene PM. Genome restructuring and lineage diversification of Cryptococcus neoformans during chronic infection of human hosts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.17.25320472. [PMID: 40034768 PMCID: PMC11875314 DOI: 10.1101/2025.02.17.25320472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Classified as a critical public health threat by the World Health Organization, Cryptococcus neo-formans infections with significant morbidity and mortality. Reports of cryptococcosis persistence, relapse, and reinfection date back to the 1950s, yet the factors driving chronic infections remain poorly understood. A major challenge is the scarcity of serial patient specimens and detailed medical records to study the simultaneous evolution of the pathogen and host health status. This study provides the first genomic and phenotypic analysis of in-host evolution of C. neoformans during chronic infections lasting over a year in six immunocompromised patients. We find fungal genome evolution during persistent infection is characterized by large-scale genome restructuring and increasing genomic heterogeneity. Phenotypic changes show diversification in virulence traits and antifungal susceptibility. Genotypically and phenotypically distinct sub-lineages arise and co-persist within the same tissues, consistent with a model of diversifying selection and niche partitioning in the complex environment of human hosts.
Collapse
Affiliation(s)
- Marhiah C. Montoya
- Division of Infectious Diseases, Department of Medicine, Duke University, NC, USA
| | - Kayla Wilhoit
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Debra Murray
- Department of Biology, Duke University, Durham, NC, USA
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University, NC, USA
| | | |
Collapse
|
4
|
Su Y, Li Y, Yi Q, Xu Y, Sun T, Li Y. Insight into the Mechanisms and Clinical Relevance of Antifungal Heteroresistance. J Fungi (Basel) 2025; 11:143. [PMID: 39997437 PMCID: PMC11856953 DOI: 10.3390/jof11020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Antifungal resistance poses a critical global health threat, particularly in immuno-compromised patients. Beyond the traditional resistance mechanisms rooted in heritable and stable mutations, a distinct phenomenon known as heteroresistance has been identified, wherein a minority of resistant fungal cells coexist within a predominantly susceptible population. Heteroresistance may be induced by pharmacological factors or non-pharmacological agents. The reversible nature of it presents significant clinical challenges, as it can lead to undetected resistance during standard susceptibility testing. As heteroresistance allows fungal pathogens to survive antifungal treatment, this adaptive strategy often leads to treatment failure and recurring infection. Though extensively studied in bacteria, limited research has explored its occurrence in fungi. This review summarizes the current findings on antifungal heteroresistance mechanisms, highlighting the clinical implications of fungal heteroresistance and the pressing need for deeper mechanism insights. We aim to bring together the latest research advances in the field of antifungal heteroresistance, summarizing in detail its known characteristics, inducing factors, molecular mechanisms, and clinical significance, and describing the similarities and differences between heteroresistance, tolerance and persistence. Further research is needed to understand this phenomenon and develop more effective antifungal therapies to combat fungal infections.
Collapse
Affiliation(s)
- Yanyu Su
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (Y.S.); (Y.L.); (Q.Y.); (Y.X.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
- Graduate School, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yi Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (Y.S.); (Y.L.); (Q.Y.); (Y.X.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Qiaolian Yi
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (Y.S.); (Y.L.); (Q.Y.); (Y.X.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (Y.S.); (Y.L.); (Q.Y.); (Y.X.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Tianshu Sun
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
- Clinical Biobank, Center for Biomedical Technology, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yingxing Li
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
5
|
Johnson RM, Breban MI, Nolan BL, Sodeinde A, Ott IM, Ross PA, Gu X, Grubaugh ND, Perkins TA, Brackney DE, Vogels CBF. Implications of successive blood feeding on Wolbachia-mediated dengue virus inhibition in Aedes aegypti mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636928. [PMID: 39975058 PMCID: PMC11839047 DOI: 10.1101/2025.02.06.636928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Dengue virus (DENV) is a mosquito-borne virus that poses a continued and increasing threat to public health. A promising strategy to mitigate the burden of DENV is introgression of the virus-inhibiting Wolbachia pipientis bacterium into Aedes aegypti populations in the field. While previous studies on Wolbachia-mediated virus inhibition have typically assessed viral replication following a single bloodmeal, the main vector of DENV, Ae. aegypti, feeds frequently, often biting multiple hosts per gonotrophic cycle and promptly attempting to refeed following egg laying. Previously, we demonstrated that successive blood feeding reduces the extrinsic incubation period (EIP) and shortens the time it takes for a mosquito to be able to transmit viruses to a new host. With this in mind, we investigated the impact of successive blood meals on DENV serotype 2 (DENV-2) in Ae. aegypti in the presence or absence of Wolbachia ( w AlbB and w MelM ). We found that both WT and Wolbachia transinfected had increased DENV-2 dissemination 7 days post-infection as well as higher body titers of DENV-2 in the double-fed groups. Using these empirical data in a binomial regression model, we estimated that successive feeding increased the probability of WT and Wolbachia transinfected mosquitoes surviving the EIP. When we estimated the odds of surviving the EIP for mosquitoes with Wolbachia relative to WT mosquitoes, successive feeding increased the chances of WT mosquitoes surviving the EIP more than in mosquitoes with Wolbachia, indicating a strong inhibitory effect of Wolbachia even in the context of natural frequent blood feeding behavior. Our work shows that mosquito feeding behavior should be considered when assessing the inhibitory effects of Wolbachia on DENV.
Collapse
Affiliation(s)
- Rebecca M. Johnson
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Mallery I. Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Braiya L. Nolan
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Afeez Sodeinde
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Isabel M. Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Xinyue Gu
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - T. Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Doug E. Brackney
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
6
|
Kozubowski L, Berman J. The impact of phenotypic heterogeneity on fungal pathogenicity and drug resistance. FEMS Microbiol Rev 2025; 49:fuaf001. [PMID: 39809571 PMCID: PMC11756289 DOI: 10.1093/femsre/fuaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/26/2024] [Accepted: 01/13/2025] [Indexed: 01/16/2025] Open
Abstract
Phenotypic heterogeneity in genetically clonal populations facilitates cellular adaptation to adverse environmental conditions while enabling a return to the basal physiological state. It also plays a crucial role in pathogenicity and the acquisition of drug resistance in unicellular organisms and cancer cells, yet the exact contributing factors remain elusive. In this review, we outline the current state of understanding concerning the contribution of phenotypic heterogeneity to fungal pathogenesis and antifungal drug resistance.
Collapse
Affiliation(s)
- Lukasz Kozubowski
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
7
|
Jackson KM, Kabbale KD, Macchietto M, Meya D, Tiffin P, Nielsen K. Virulence-associated variants in Cryptococcus neoformans sequence type 93 are less likely to be associated with population structure compared to independent rare mutations. Microbiol Spectr 2025; 13:e0170924. [PMID: 39601574 PMCID: PMC11705857 DOI: 10.1128/spectrum.01709-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Cryptococcus neoformans is a pathogenic yeast that is the causative agent of cryptococcal meningitis. While it is well known that the genotype of C. neoformans impacts patient outcomes, the reason for this association has not been well elucidated. In this study, we examined the relationship between two subpopulations in the sequence type 93 clade of C. neoformans: ST93A and ST93B. We found extensive linkage disequilibrium (LD) among the single nucleotide polymorphisms (SNPs) that differentiate ST93A from ST93B. We also found differences in the extent of linkage among SNPs within each subpopulation; LD was more extensive within ST93B than ST93A. SNPs associated with virulence were in long-range linkage disequilibrium with less frequency than recurrent SNPs not associated with virulence. We investigated the karyotype of ST93A and ST93B using contour-clamped gel electrophoresis and long-read sequencing and found that the extensive long-range linkage was not due to chromosomal rearrangements. Overall, we found that the two subpopulations in ST93 are driven by SNPs in LD. We additionally found that recurrent SNPs associated with virulence were less frequently evolutionarily linked and were two times more likely to be independent, congruent mutations rather than tied to phylogeny.IMPORTANCECryptococcus neoformans is an important pathogen that is widely distributed and ubiquitous in the environment. The majority of the human population has a latent, controlled infection suggesting that C. neoformans is uniquely adapted to cause infection. In spite of this, the reason C. neoformans is a pathogen remains unknown; interestingly, most environmental isolates are avirulent but are genetically very similar to disease-causing virulent isolates. Recent evidence from genome-wide association studies shows that small mutations in key virulence-associated genes are associated with the virulence of specific isolates. The data presented here provide an evolutionary framework for those small mutations. The mutations that impact disease are not being collected over long-term evolution. The mutations may instead occur independently during infection. Identifying these genes that are more likely to be mutated during infection will be fundamental for understanding C. neoformans virulence.
Collapse
Affiliation(s)
- Katrina M. Jackson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kisakye Diana Kabbale
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- African Center of Excellence in Bioinformatics and Data Intensive Sciences, Kampala, Uganda
| | - Marissa Macchietto
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Meya
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biomedical Sciences and Pathology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
8
|
Jay A, Jordan DF, Gerstein A, Landry CR. The role of gene copy number variation in antimicrobial resistance in human fungal pathogens. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:1. [PMID: 39781035 PMCID: PMC11703754 DOI: 10.1038/s44259-024-00072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Faced with the burden of increasing resistance to antifungals in many fungal pathogens and the constant emergence of new drug-resistant strains, it is essential to assess the importance of various resistance mechanisms. Fungi have relatively plastic genomes and can tolerate genomic copy number variation (CNV) caused by aneuploidy and gene amplification or deletion. In many cases, these genomic changes lead to adaptation to stressful conditions, including those caused by antifungal drugs. Here, we specifically examine the contribution of CNVs to antifungal resistance. We undertook a thorough literature search, collecting reports of antifungal resistance caused by a CNV, and classifying the examples of CNV-conferred resistance into four main mechanisms. We find that in human fungal pathogens, there is little evidence that gene copy number plays a major role in the emergence of antifungal resistance compared to other types of mutations. We discuss why we might be underestimating their importance and new approaches being used to study them.
Collapse
Affiliation(s)
- Adarsh Jay
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, G1V 0A6 Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, G1V 0A6 Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec City, G1V 0A6 Canada
- Centre de Recherche sur les Données Massives, Université Laval, Québec City, G1V 0A6 Canada
| | - David F. Jordan
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, G1V 0A6 Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, G1V 0A6 Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec City, G1V 0A6 Canada
- Centre de Recherche sur les Données Massives, Université Laval, Québec City, G1V 0A6 Canada
| | - Aleeza Gerstein
- Department of Microbiology, The University of Manitoba, Winnipeg, R3T 2N2 Canada
- Department of Statistics, The University of Manitoba, Winnipeg, R3T 2N2 Canada
| | - Christian R. Landry
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, G1V 0A6 Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, G1V 0A6 Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec City, G1V 0A6 Canada
- Centre de Recherche sur les Données Massives, Université Laval, Québec City, G1V 0A6 Canada
| |
Collapse
|
9
|
Polisetty SD, Bhat K, Das K, Clark I, Hardwick KG, Sanyal K. The dependence of shugoshin on Bub1-kinase activity is dispensable for the maintenance of spindle assembly checkpoint response in Cryptococcus neoformans. PLoS Genet 2025; 21:e1011552. [PMID: 39804939 PMCID: PMC11774493 DOI: 10.1371/journal.pgen.1011552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/28/2025] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
During chromosome segregation, the spindle assembly checkpoint (SAC) detects errors in kinetochore-microtubule attachments. Timely activation and maintenance of the SAC until defects are corrected is essential for genome stability. Here, we show that shugoshin (Sgo1), a conserved tension-sensing protein, ensures the maintenance of SAC signals in response to unattached kinetochores during mitosis in a basidiomycete budding yeast Cryptococcus neoformans. Sgo1 maintains optimum levels of Aurora B kinase Ipl1 and protein phosphatase 1 (PP1) at kinetochores. The absence of Sgo1 results in the loss of Aurora BIpl1 with a concomitant increase in PP1 levels at kinetochores. This leads to a premature reduction in the kinetochore-bound Bub1 levels and early termination of the SAC signals. Intriguingly, the kinase function of Bub1 is dispensable for shugoshin's subcellular localization. Sgo1 is predominantly localized to spindle pole bodies (SPBs) and along the mitotic spindle with a minor pool at kinetochores. In the absence of proper kinetochore-microtubule attachments, Sgo1 reinforces the Aurora B kinaseIpl1-PP1 phosphatase balance, which is critical for prolonged maintenance of the SAC response.
Collapse
Affiliation(s)
- Satya Dev Polisetty
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Krishna Bhat
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Kuladeep Das
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ivan Clark
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin G. Hardwick
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
10
|
Zhang Z, Wei M, Jia B, Yuan Y. Recent Advances in Antimicrobial Resistance: Insights from Escherichia coli as a Model Organism. Microorganisms 2024; 13:51. [PMID: 39858819 PMCID: PMC11767524 DOI: 10.3390/microorganisms13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial resistance (AMR) represents a critical global health threat, and a thorough understanding of resistance mechanisms in Escherichia coli is needed to guide effective treatment interventions. This review explores recent advances for investigating AMR in E. coli, including machine learning for resistance pattern analysis, laboratory evolution to generate resistant mutants, mutant library construction, and genome sequencing for in-depth characterization. Key resistance mechanisms are discussed, including drug inactivation, target modification, altered transport, and metabolic adaptation. Additionally, we highlight strategies to mitigate the spread of AMR, such as dynamic resistance monitoring, innovative therapies like phage therapy and CRISPR-Cas technology, and tighter regulation of antibiotic use in animal production systems. This review provides actionable insights into E. coli resistance mechanisms and identifies promising directions for future antibiotic development and AMR management.
Collapse
Affiliation(s)
| | | | - Bin Jia
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.); (M.W.); (Y.Y.)
| | | |
Collapse
|
11
|
Zaccaron AZ, Stergiopoulos I. The dynamics of fungal genome organization and its impact on host adaptation and antifungal resistance. J Genet Genomics 2024:S1673-8527(24)00284-4. [PMID: 39522682 DOI: 10.1016/j.jgg.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Fungi are a diverse kingdom characterized by remarkable genomic plasticity that facilitates pathogenicity and adaptation to adverse environmental conditions. In this review, we delve into the dynamic organization of fungal genomes and its implications for host adaptation and antifungal resistance. We examine key features and the heterogeneity of genomes across different fungal species, including but not limited to their chromosome content, DNA composition, distribution and arrangement of their content across chromosomes, and other major traits. We further highlight how this variability in genomic traits influences their virulence and adaptation to adverse conditions. Fungal genomes exhibit large variations in size, gene content, and structural features, such as abundance of transposable elements (TEs), compartmentalization into gene-rich and TE-rich regions, and the presence or absence of dispensable chromosomes. Genomic structural variations are equally diverse in fungi, ranging from whole-chromosome duplications that may enhance tolerance to antifungal compounds, to targeted deletion of effector encoding genes that may promote virulence. Finally, the often-overlooked fungal mitochondrial genomes can also affect virulence and resistance to fungicides. Such and other features of fungal genome organization are reviewed and discussed in the context of host-microbe interactions and antifungal resistance.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis (UCD), Davis, CA, USA; Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis (UCD), Davis, CA, USA.
| |
Collapse
|
12
|
Zheng L, Xu Y, Guo L. Unveiling genome plasticity as a mechanism of non-antifungal-induced antifungal resistance in Cryptococcus neoformans. Front Microbiol 2024; 15:1470454. [PMID: 39564485 PMCID: PMC11573520 DOI: 10.3389/fmicb.2024.1470454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Cryptococcus neoformans, a critical priority pathogen designated by the World Health Organization, poses significant therapeutic challenges due to the limited availability of treatment options. The emergence of antifungal resistance, coupled with cross-resistance, further hampers treatment efficacy. Aneuploidy, known for its ability to induce diverse traits, including antifungal resistance, remains poorly understood in C. neoformans. We investigated the impact of tunicamycin, a well-established ER stress inducer, on aneuploidy formation in C. neoformans. Our findings show that both mild and severe ER stress induced by tunicamycin lead to the formation of aneuploid strains in C. neoformans. These aneuploid strains exhibit diverse karyotypes, with some conferring resistance or cross-resistance to antifungal drugs fluconazole and 5-flucytosine. Furthermore, these aneuploid strains display instability, spontaneously losing extra chromosomes in the absence of stress. Transcriptome analysis reveals the simultaneous upregulation of multiple drug resistance-associated genes in aneuploid strains. Our study reveals the genome plasticity of C. neoformans as a major mechanism contributing to non-antifungal-induced antifungal resistance.
Collapse
Affiliation(s)
- Lijun Zheng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Xu
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Liangsheng Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Prusty JS, Kumar A, Kumar A. Anti-fungal peptides: an emerging category with enthralling therapeutic prospects in the treatment of candidiasis. Crit Rev Microbiol 2024:1-37. [PMID: 39440616 DOI: 10.1080/1040841x.2024.2418125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Candida infections, particularly invasive candidiasis, pose a serious global health threat. Candida albicans is the most prevalent species causing candidiasis, and resistance to key antifungal drugs, such as azoles, echinocandins, polyenes, and fluoropyrimidines, has emerged. This growing multidrug resistance (MDR) complicates treatment options, highlighting the need for novel therapeutic approaches. Antifungal peptides (AFPs) are gaining recognition for their potential as new antifungal agents due to their diverse structures and functions. These natural or recombinant peptides can effectively target fungal virulence and viability, making them promising candidates for future antifungal development. This review examines infections caused by Candida species, the limitations of current antifungal treatments, and the therapeutic potential of AFPs. It emphasizes the importance of identifying novel AFP targets and their production for advancing treatment strategies. By discussing the therapeutic development of AFPs, the review aims to draw researchers' attention to this promising field. The integration of knowledge about AFPs could pave the way for novel antifungal agents with broad-spectrum activity, reduced toxicity, targeted action, and mechanisms that limit resistance in pathogenic fungi, offering significant advancements in antifungal therapeutics.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Ashwini Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| |
Collapse
|
14
|
Stott KE, Mohabir JT, Bowers K, Tenor JL, Toffaletti DL, Unsworth J, Jimenez-Valverde A, Ahmadu A, Moyo M, Gondwe E, Chimang’anga W, Chasweka M, Lawrence DS, Jarvis JN, Harrison T, Hope W, Lalloo DG, Mwandumba HC, Perfect JR, Cuomo CA. Integration of genomic and pharmacokinetic data to predict clinical outcomes in HIV-associated cryptococcal meningitis. mBio 2024; 15:e0159224. [PMID: 39189739 PMCID: PMC11481554 DOI: 10.1128/mbio.01592-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
Cryptococcal meningitis causes an estimated 112,000 global deaths per annum. Genomic and phenotypic features of the infecting strain of Cryptococcus spp. have been associated with outcomes from cryptococcal meningitis. Additionally, population-level pharmacokinetic variability is well documented in these patient cohorts. The relative contribution of these factors to clinical outcomes is unknown. Based in Malawi, we conducted a sub-study of the phase 3 Ambition-CM trial (ISRCTN72509687), collecting plasma and cerebrospinal fluid at serial time points during the first 14 days of antifungal therapy. We explored the relative contribution of pathogen genotype, drug resistance phenotype, and pharmacokinetics on clinical outcomes including lumbar opening pressure, pharmacodynamic effect, and mortality. We report remarkable genomic homogeneity among infecting strains of Cryptococcus spp., within and between patients. There was no evidence of acquisition of antifungal resistance in our isolates. Genotypic features of the infecting strain were not consistently associated with adverse or favorable clinical outcomes. However, baseline fungal burden and early fungicidal activity (EFA) were associated with mortality. The strongest predictor of EFA was the level of exposure to amphotericin B. Our analysis suggests the most effective means of improving clinical outcomes from HIV-associated cryptococcal meningitis is to optimize exposure to potent antifungal therapy. IMPORTANCE HIV-associated cryptococcal meningitis is associated with a high burden of mortality. Research into the different strain types causing this disease has yielded inconsistent findings in terms of which strains are associated with worse clinical outcomes. Our study suggests that the exposure of patients to potent anti-cryptococcal drugs has a more significant impact on clinical outcomes than the strain type of the infecting organism. Future research should focus on optimizing drug exposure, particularly in the context of novel anticryptococcal drugs coming into clinical use.
Collapse
Affiliation(s)
- Katharine E. Stott
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Jason T. Mohabir
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Katharine Bowers
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jennifer L. Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dena L. Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jennifer Unsworth
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Ana Jimenez-Valverde
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Ajisa Ahmadu
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Melanie Moyo
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
- Department of Medicine, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Ebbie Gondwe
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Wezi Chimang’anga
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | | | - David S. Lawrence
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine, London, United Kingdom
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Joseph N. Jarvis
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine, London, United Kingdom
- Botswana Harvard Health Partnership, Gaborone, Botswana
| | - Tom Harrison
- Institute of Infection and Immunity, St George’s University London, London, United Kingdom
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - David G. Lalloo
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - The AMBITION Study Group
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine, London, United Kingdom
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Infection and Immunity, St George’s University London, London, United Kingdom
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
15
|
Islam T, Danishuddin, Tamanna NT, Matin MN, Barai HR, Haque MA. Resistance Mechanisms of Plant Pathogenic Fungi to Fungicide, Environmental Impacts of Fungicides, and Sustainable Solutions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2737. [PMID: 39409607 PMCID: PMC11478979 DOI: 10.3390/plants13192737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
The significant reduction in agricultural output and the decline in product quality are two of the most glaring negative impacts caused by plant pathogenic fungi (PPF). Furthermore, contaminated food or transit might introduce mycotoxins produced by PPF directly into the food chain. Eating food tainted with mycotoxin is extremely dangerous for both human and animal health. Using fungicides is the first choice to control PPF or their toxins in food. Fungicide resistance and its effects on the environment and public health are becoming more and more of a concern, despite the fact that chemical fungicides are used to limit PPF toxicity and control growth in crops. Fungicides induce target site alteration and efflux pump activation, and mutations in PPF result in resistance. As a result, global trends are shifting away from chemically manufactured pesticides and toward managing fungal plant diseases using various biocontrol techniques, tactics, and approaches. However, surveillance programs to monitor fungicide resistance and their environmental impact are much fewer compared to bacterial antibiotic resistance surveillance programs. In this review, we discuss the PPF that contributes to disease development in plants, the fungicides used against them, factors causing the spread of PPF and the emergence of new strains, the antifungal resistance mechanisms of PPF, health, the environmental impacts of fungicides, and the use of biocontrol agents (BCAs), antimicrobial peptides (AMPs), and nanotechnologies to control PPF as a safe and eco-friendly alternative to fungicides.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
| | - Noshin Tabassum Tamanna
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Muhammad Nurul Matin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
| |
Collapse
|
16
|
Su M, Hoang KL, Penley M, Davis MH, Gresham JD, Morran LT, Read TD. Host and antibiotic jointly select for greater virulence in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.610628. [PMID: 39257827 PMCID: PMC11383984 DOI: 10.1101/2024.08.31.610628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Widespread antibiotic usage has resulted in the rapid evolution of drug-resistant bacterial pathogens and poses significant threats to public health. Resolving how pathogens respond to antibiotics under different contexts is critical for understanding disease emergence and evolution going forward. The impact of antibiotics has been demonstrated most directly through in vitro pathogen passaging experiments. Independent from antibiotic selection, interactions with hosts have also altered the evolutionary trajectories and fitness landscapes of pathogens, shaping infectious disease outcomes. However, it is unclear how interactions between hosts and antibiotics impact the evolution of pathogen virulence. Here, we evolved and re-sequenced Staphylococcus aureus, a major bacterial pathogen, varying exposure to host and antibiotics to tease apart the contributions of these selective pressures on pathogen adaptation. After 12 passages, S. aureus evolving in Caenorhabditis elegans nematodes exposed to a sub-minimum inhibitory concentration of antibiotic (oxacillin) became highly virulent, regardless of whether the ancestral pathogen was methicillin-resistant (MRSA) or methicillin-sensitive (MSSA). Host and antibiotic exposure selected for reduced drug susceptibility in MSSA lineages while increasing MRSA total growth outside hosts. We identified mutations in genes involved in complex regulatory networks linking virulence and metabolism, including codY , agr , and gdpP , suggesting that rapid adaptation to infect hosts may have pleiotropic effects. In particular, MSSA populations under selection from host and antibiotic accumulated mutations in the global regulator gene codY , which controls biofilm formation in S. aureus. These populations had indeed evolved more robust biofilms-a trait linked to both virulence and antibiotic resistance-suggesting evolution of one trait can confer multiple adaptive benefits. Despite evolving in similar environments, MRSA and MSSA populations proceeded on divergent evolutionary paths, with MSSA populations exhibiting more similarities across replicate populations. Our results underscore the importance of considering multiple and concurrent selective pressures as drivers of pervasive pathogen traits.
Collapse
|
17
|
Diehl C, Pinzan CF, de Castro PA, Delbaje E, García Carnero LC, Sánchez-León E, Bhalla K, Kronstad JW, Kim DG, Doering TL, Alkhazraji S, Mishra NN, Ibrahim AS, Yoshimura M, Vega Isuhuaylas LA, Pham LTK, Yashiroda Y, Boone C, dos Reis TF, Goldman GH. Brilacidin, a novel antifungal agent against Cryptococcus neoformans. mBio 2024; 15:e0103124. [PMID: 38916308 PMCID: PMC11253610 DOI: 10.1128/mbio.01031-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 06/26/2024] Open
Abstract
Cryptococcus neoformans causes cryptococcosis, one of the most prevalent fungal diseases, generally characterized by meningitis. There is a limited and not very effective number of drugs available to combat this disease. In this manuscript, we show the host defense peptide mimetic brilacidin (BRI) as a promising antifungal drug against C. neoformans. BRI can affect the organization of the cell membrane, increasing the fungal cell permeability. We also investigated the effects of BRI against the model system Saccharomyces cerevisiae by analyzing libraries of mutants grown in the presence of BRI. In S. cerevisiae, BRI also affects the cell membrane organization, but in addition the cell wall integrity pathway and calcium metabolism. In vivo experiments show BRI significantly reduces C. neoformans survival inside macrophages and partially clears C. neoformans lung infection in an immunocompetent murine model of invasive pulmonary cryptococcosis. We also observed that BRI interacts with caspofungin (CAS) and amphotericin (AmB), potentiating their mechanism of action against C. neoformans. BRI + CAS affects endocytic movement, calcineurin, and mitogen-activated protein kinases. Our results indicate that BRI is a novel antifungal drug against cryptococcosis. IMPORTANCE Invasive fungal infections have a high mortality rate causing more deaths annually than tuberculosis or malaria. Cryptococcosis, one of the most prevalent fungal diseases, is generally characterized by meningitis and is mainly caused by two closely related species of basidiomycetous yeasts, Cryptococcus neoformans and Cryptococcus gattii. There are few therapeutic options for treating cryptococcosis, and searching for new antifungal agents against this disease is very important. Here, we present brilacidin (BRI) as a potential antifungal agent against C. neoformans. BRI is a small molecule host defense peptide mimetic that has previously exhibited broad-spectrum immunomodulatory/anti-inflammatory activity against bacteria and viruses. BRI alone was shown to inhibit the growth of C. neoformans, acting as a fungicidal drug, but surprisingly also potentiated the activity of caspofungin (CAS) against this species. We investigated the mechanism of action of BRI and BRI + CAS against C. neoformans. We propose BRI as a new antifungal agent against cryptococcosis.
Collapse
Affiliation(s)
- Camila Diehl
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Endrews Delbaje
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Laura C. García Carnero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Eddy Sánchez-León
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kabir Bhalla
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - James W. Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dong-gyu Kim
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sondus Alkhazraji
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
| | - Nagendra N. Mishra
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mami Yoshimura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | | | | | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Charles Boone
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
18
|
Zhang ZH, Sun LL, Fu BQ, Deng J, Jia CL, Miao MX, Yang F, Cao YB, Yan TH. Aneuploidy underlies brefeldin A-induced antifungal drug resistance in Cryptococcus neoformans. Front Cell Infect Microbiol 2024; 14:1397724. [PMID: 38966251 PMCID: PMC11222406 DOI: 10.3389/fcimb.2024.1397724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Cryptococcus neoformans is at the top of the list of "most wanted" human pathogens. Only three classes of antifungal drugs are available for the treatment of cryptococcosis. Studies on antifungal resistance mechanisms are limited to the investigation of how a particular antifungal drug induces resistance to a particular drug, and the impact of stresses other than antifungals on the development of antifungal resistance and even cross-resistance is largely unexplored. The endoplasmic reticulum (ER) is a ubiquitous subcellular organelle of eukaryotic cells. Brefeldin A (BFA) is a widely used chemical inducer of ER stress. Here, we found that both weak and strong selection by BFA caused aneuploidy formation in C. neoformans, mainly disomy of chromosome 1, chromosome 3, and chromosome 7. Disomy of chromosome 1 conferred cross-resistance to two classes of antifungal drugs: fluconazole and 5-flucytosine, as well as hypersensitivity to amphotericin B. However, drug resistance was unstable, due to the intrinsic instability of aneuploidy. We found overexpression of AFR1 on Chr1 and GEA2 on Chr3 phenocopied BFA resistance conferred by chromosome disomy. Overexpression of AFR1 also caused resistance to fluconazole and hypersensitivity to amphotericin B. Furthermore, a strain with a deletion of AFR1 failed to form chromosome 1 disomy upon BFA treatment. Transcriptome analysis indicated that chromosome 1 disomy simultaneously upregulated AFR1, ERG11, and other efflux and ERG genes. Thus, we posit that BFA has the potential to drive the rapid development of drug resistance and even cross-resistance in C. neoformans, with genome plasticity as the accomplice.
Collapse
Affiliation(s)
- Zhi-hui Zhang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu-liu Sun
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bu-qing Fu
- Laboratory Department, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng-lin Jia
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-xing Miao
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Feng Yang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong-bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-hua Yan
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Morgens DW, Gulyas L, Rivera-Madera A, Souza AS, Glaunsinger BA. From enhancers to genome conformation: complex transcriptional control underlies expression of a single herpesviral gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.08.548212. [PMID: 37461644 PMCID: PMC10350069 DOI: 10.1101/2023.07.08.548212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Complex transcriptional control is a conserved feature of both eukaryotes and the viruses that infect them. Here, we illustrate this by combining high-density functional genomics, expression profiling, and viral-specific chromosome conformation capture to define with unprecedented detail the transcriptional regulation of a single gene, ORF68, from Kaposi's sarcoma-associated herpesvirus (KSHV). We first identified seven cis-regulatory regions by densely tiling the ~154 kb KSHV genome with CRISPRi. A parallel Cas9 nuclease screen indicated that three of these regions act as promoters of genes that regulate ORF68. RNA expression profiling demonstrated that three more of these regions act by either repressing or enhancing other distal viral genes involved in ORF68 transcriptional regulation. Finally, we tracked how the 3D structure of the viral genome changes during its lifecycle, revealing that these enhancing regulatory elements are physically closer to their targets when active, and that disrupting some elements caused large-scale changes to the 3D genome. These data enable us to construct a complete model revealing that the mechanistic diversity of this essential regulatory circuit matches that of human genes.
Collapse
Affiliation(s)
- David W Morgens
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| | - Leah Gulyas
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| | | | | | - Britt A Glaunsinger
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, UC Berkeley, CA, USA
- Howard Hughes Medical Institute, UC Berkeley, CA, USA
| |
Collapse
|
20
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
21
|
Lee M, Magante K, Gómez-Garzón C, Payne SM, Smith AT. Structural Determinants of Vibrio cholerae FeoB Nucleotide Promiscuity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595361. [PMID: 38826458 PMCID: PMC11142208 DOI: 10.1101/2024.05.22.595361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Ferrous iron (Fe2+) is required for the growth and virulence of many pathogenic bacteria, including Vibrio cholerae (Vc), the causative agent of the disease cholera. For this bacterium, Feo is the primary system that transports Fe2+ into the cytosol. FeoB, the main component of this system, is regulated by a soluble cytosolic domain termed NFeoB. Recent reanalysis has shown that NFeoBs can be classified as either GTP-specific or NTP-promiscuous, but the structural and mechanistic bases for these differences were not known. To explore this intriguing property of FeoB, we solved the X-ray crystal structures of VcNFeoB in both the apo and GDP-bound forms. Surprisingly, this promiscuous NTPase displayed a canonical NFeoB G-protein fold like GTP-specific NFeoBs. Using structural bioinformatics, we hypothesized that residues surrounding the nucleobase could be important for both nucleotide affinity and specificity. We then solved the X-ray crystal structures of N150T VcNFeoB in the apo and GDP-bound forms to reveal H-bonding differences surround the guanine nucleobase. Interestingly, isothermal titration calorimetry revealed similar binding thermodynamics of the WT and N150T proteins to guanine nucleotides, while the behavior in the presence of adenine nucleotides was dramatically different. AlphaFold models of VcNFeoB in the presence of ADP and ATP showed important conformational changes that contribute to nucleotide specificity among FeoBs. Combined, these results provide a structural framework for understanding FeoB nucleotide promiscuity, which could be an adaptive measure utilized by pathogens to ensure adequate levels of intracellular iron across multiple metabolic landscapes.
Collapse
Affiliation(s)
- Mark Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, 21250 USA
| | - Kate Magante
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, 21250 USA
| | - Camilo Gómez-Garzón
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712 USA
| | - Shelley M. Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712 USA
- John Ring LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, Texas, 78712 USA
| | - Aaron T. Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, 21250 USA
| |
Collapse
|
22
|
Zheng W, Borja M, Dorman L, Liu J, Zhou A, Seng A, Arjyal R, Sunshine S, Nalyvayko A, Pisco A, Rosenberg O, Neff N, Zha BS. How Mycobacterium tuberculosis builds a home: Single-cell analysis reveals M. tuberculosis ESX-1-mediated accumulation of anti-inflammatory macrophages in infected mouse lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590421. [PMID: 38712150 PMCID: PMC11071417 DOI: 10.1101/2024.04.20.590421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mycobacterium tuberculosis (MTB) infects and replicates in lung mononuclear phagocytes (MNPs) with astounding ability to evade elimination. ESX-1, a type VII secretion system, acts as a virulence determinant that contributes to MTB's ability to survive within MNPs, but its effect on MNP recruitment and/or differentiation remains unknown. Here, using single-cell RNA sequencing, we studied the role of ESX-1 in MNP heterogeneity and response in mice and murine bone marrow-derived macrophages (BMDM). We found that ESX-1 is required for MTB to recruit diverse MNP subsets with high MTB burden. Further, MTB induces an anti-inflammatory signature in MNPs and BMDM in an ESX-1 dependent manner. Similarly, spatial transcriptomics revealed an upregulation of anti-inflammatory signals in MTB lesions, where monocyte-derived macrophages concentrate near MTB-infected cells. Together, our findings suggest that MTB ESX-1 mediates the recruitment and differentiation of anti-inflammatory MNPs, which MTB can infect and manipulate for survival.
Collapse
|
23
|
Chang YC, Davis MJ, Kwon-Chung KJ. Determination of Ploidy Levels and Nuclear DNA Content in Cryptococcus neoformans by Flow Cytometry: Drawbacks with Variability. J Fungi (Basel) 2024; 10:296. [PMID: 38667967 PMCID: PMC11051530 DOI: 10.3390/jof10040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Flow cytometry is commonly employed for ploidy determination and cell cycle analysis in cryptococci. The cells are subjected to fixation and staining with DNA-binding fluorescent dyes, most commonly with propidium iodide (PI), before undergoing flow cytometric analysis. In ploidy determination, cell populations are classified according to variations in DNA content, as evidenced by the fluorescence intensity of stained cells. As reported in Saccharomyces cerevisiae, we found drawbacks with PI staining that confounded the accurate analysis of ploidy by flow cytometry when the size of the cryptococci changed significantly. However, the shift in the fluorescence intensity, unrelated to ploidy changes in cells with increased size, could be accurately interpreted by applying the ImageStream system. SYTOX Green or SYBR Green I, reported to enable DNA analysis with a higher accuracy than PI in S. cerevisiae, were nonspecific for nuclear DNA staining in cryptococci. Until dyes or methods capable of reducing the variability inherent in the drastic changes in cell size or shape become available, PI appears to remain the most reliable method for cell cycle or ploidy analysis in Cryptococcus.
Collapse
Affiliation(s)
| | | | - Kyung J. Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.C.C.)
| |
Collapse
|
24
|
Gautier C, Maciel EI, Ene IV. Approaches for identifying and measuring heteroresistance in azole-susceptible Candida isolates. Microbiol Spectr 2024; 12:e0404123. [PMID: 38483474 PMCID: PMC10986555 DOI: 10.1128/spectrum.04041-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
Heteroresistance to antifungal agents poses a significant challenge in the treatment of fungal infections. Currently, the absence of established methods for detecting and measuring heteroresistance impedes progress in understanding this phenomenon in fungal pathogens. In response to this gap, we present a comprehensive set of new and optimized methods designed to detect and quantify azole heteroresistance in Candida albicans. Here, we define two primary assays for measuring heteroresistance: population analysis profiling, based on growth on solid medium, and single-cell assays, based on growth in liquid culture. We observe good correlations between the measurements obtained with liquid and solid assays, validating their utility for studying azole heteroresistance. We also highlight that disk diffusion assays could serve as an additional tool for the rapid detection of heteroresistance. These methods collectively provide a versatile toolkit for researchers seeking to assess heteroresistance in C. albicans. They also serve as a critical step forward in the characterization of antifungal heteroresistance, providing a framework for investigating this phenomenon in diverse fungal species and in the context of other antifungal agents. Ultimately, these advancements will enhance our ability to effectively measure antifungal drug responses and combat fungal infections.IMPORTANCEHeteroresistance involves varying antimicrobial susceptibility within a clonal population. This phenomenon allows the survival of rare resistant subpopulations during drug treatment, significantly complicating the effective management of infections. However, the absence of established detection methods hampers progress in understanding this phenomenon in human fungal pathogens. We propose a comprehensive toolkit to address this gap in the yeast Candida albicans, encompassing population analysis profiling, single-cell assays, and disk diffusion assays. By providing robust and correlated measurements through both solid and liquid assays, this work will provide a framework for broader applications across clinically relevant Candida species. These methods will enhance our ability to understand this phenomenon and the failure of antifungal therapy.
Collapse
Affiliation(s)
- Cécile Gautier
- Fungal Heterogeneity Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Eli I. Maciel
- Fungal Heterogeneity Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Iuliana V. Ene
- Fungal Heterogeneity Group, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
25
|
van Westerhoven AC, Aguilera-Galvez C, Nakasato-Tagami G, Shi-Kunne X, Martinez de la Parte E, Chavarro-Carrero E, Meijer HJG, Feurtey A, Maryani N, Ordóñez N, Schneiders H, Nijbroek K, Wittenberg AHJ, Hofstede R, García-Bastidas F, Sørensen A, Swennen R, Drenth A, Stukenbrock EH, Kema GHJ, Seidl MF. Segmental duplications drive the evolution of accessory regions in a major crop pathogen. THE NEW PHYTOLOGIST 2024; 242:610-625. [PMID: 38402521 DOI: 10.1111/nph.19604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
Many pathogens evolved compartmentalized genomes with conserved core and variable accessory regions (ARs) that carry effector genes mediating virulence. The fungal plant pathogen Fusarium oxysporum has such ARs, often spanning entire chromosomes. The presence of specific ARs influences the host range, and horizontal transfer of ARs can modify the pathogenicity of the receiving strain. However, how these ARs evolve in strains that infect the same host remains largely unknown. We defined the pan-genome of 69 diverse F. oxysporum strains that cause Fusarium wilt of banana, a significant constraint to global banana production, and analyzed the diversity and evolution of the ARs. Accessory regions in F. oxysporum strains infecting the same banana cultivar are highly diverse, and we could not identify any shared genomic regions and in planta-induced effectors. We demonstrate that segmental duplications drive the evolution of ARs. Furthermore, we show that recent segmental duplications specifically in accessory chromosomes cause the expansion of ARs in F. oxysporum. Taken together, we conclude that extensive recent duplications drive the evolution of ARs in F. oxysporum, which contribute to the evolution of virulence.
Collapse
Affiliation(s)
- Anouk C van Westerhoven
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Department of Biology, Theoretical Biology & Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Carolina Aguilera-Galvez
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Giuliana Nakasato-Tagami
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Xiaoqian Shi-Kunne
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Einar Martinez de la Parte
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Edgar Chavarro-Carrero
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Harold J G Meijer
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Department Biointeractions and Plant Health, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Alice Feurtey
- Christian-Albrechts University of Kiel, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306, Plön, Germany
- Plant Pathology, Eidgenössische Technische Hochschule Zürich, Rämistrasse 101, 8092, Zürich, Switzerland
| | - Nani Maryani
- Biology Education, Universitas Sultan Ageng Tirtayasa, Jalan Raya Palka No.Km 3, 42163, Banten, Indonesia
| | - Nadia Ordóñez
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Harrie Schneiders
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | - Koen Nijbroek
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | | | - Rene Hofstede
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | | | - Anker Sørensen
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | - Ronny Swennen
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Catholic University of Leuven, Oude Markt 13, 3000, Leuven, Belgium
- International Institute of Tropical Agriculture, Plot 15 Naguru E Rd, Kampala, PO Box 7878, Uganda
| | - Andre Drenth
- The University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
| | - Eva H Stukenbrock
- Christian-Albrechts University of Kiel, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Gert H J Kema
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Michael F Seidl
- Department of Biology, Theoretical Biology & Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| |
Collapse
|
26
|
Yang F, Berman J. Beyond resistance: antifungal heteroresistance and antifungal tolerance in fungal pathogens. Curr Opin Microbiol 2024; 78:102439. [PMID: 38401284 PMCID: PMC7616270 DOI: 10.1016/j.mib.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/18/2023] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
Fungal infections are increasing globally, causing alarmingly high mortality and economic burden. In addition to antifungal resistance, other more subtle drug responses appear to increase the likelihood of treatment failures. These responses include heteroresistance and tolerance, terms that are more well-defined for antibacterial drugs, but are also evident in pathogenic fungi. Here, we compare these antifungal responses with similarly named antibacterial responses, and we review recent advances in how we understand the routes by which antifungal heteroresistance and tolerance emerge.
Collapse
Affiliation(s)
- Feng Yang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
27
|
Salazar-Hamm P, Torres-Cruz TJ. The Impact of Climate Change on Human Fungal Pathogen Distribution and Disease Incidence. CURRENT CLINICAL MICROBIOLOGY REPORTS 2024; 11:140-152. [DOI: 10.1007/s40588-024-00224-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 01/03/2025]
|
28
|
Narayanan A, Reza MH, Sanyal K. Behind the scenes: Centromere-driven genomic innovations in fungal pathogens. PLoS Pathog 2024; 20:e1012080. [PMID: 38547101 PMCID: PMC10977804 DOI: 10.1371/journal.ppat.1012080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Affiliation(s)
- Aswathy Narayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Md. Hashim Reza
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
29
|
Kohanovski I, Pontz M, Vande Zande P, Selmecki A, Dahan O, Pilpel Y, Yona AH, Ram Y. Aneuploidy Can Be an Evolutionary Diversion on the Path to Adaptation. Mol Biol Evol 2024; 41:msae052. [PMID: 38427813 PMCID: PMC10951435 DOI: 10.1093/molbev/msae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
Aneuploidy is common in eukaryotes, often leading to decreased fitness. However, evidence from fungi and human tumur cells suggests that specific aneuploidies can be beneficial under stressful conditions and facilitate adaptation. In a previous evolutionary experiment with yeast, populations evolving under heat stress became aneuploid, only to later revert to euploidy after beneficial mutations accumulated. It was therefore suggested that aneuploidy is a "stepping stone" on the path to adaptation. Here, we test this hypothesis. We use Bayesian inference to fit an evolutionary model with both aneuploidy and mutation to the experimental results. We then predict the genotype frequency dynamics during the experiment, demonstrating that most of the evolved euploid population likely did not descend from aneuploid cells, but rather from the euploid wild-type population. Our model shows how the beneficial mutation supply-the product of population size and beneficial mutation rate-determines the evolutionary dynamics: with low supply, much of the evolved population descends from aneuploid cells; but with high supply, beneficial mutations are generated fast enough to outcompete aneuploidy due to its inherent fitness cost. Our results suggest that despite its potential fitness benefits under stress, aneuploidy can be an evolutionary "diversion" rather than a "stepping stone": it can delay, rather than facilitate, the adaptation of the population, and cells that become aneuploid may leave less descendants compared to cells that remain diploid.
Collapse
Affiliation(s)
- Ilia Kohanovski
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- School of Computer Science, Reichman University, Herzliya, Israel
| | - Martin Pontz
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Pétra Vande Zande
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Orna Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Avihu H Yona
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Melhem MSC, Leite Júnior DP, Takahashi JPF, Macioni MB, de Oliveira L, de Araújo LS, Fava WS, Bonfietti LX, Paniago AMM, Venturini J, Espinel-Ingroff A. Antifungal Resistance in Cryptococcal Infections. Pathogens 2024; 13:128. [PMID: 38392866 PMCID: PMC10891860 DOI: 10.3390/pathogens13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Antifungal therapy, especially with the azoles, could promote the incidence of less susceptible isolates of Cryptococcus neoformans and C. gattii species complexes (SC), mostly in developing countries. Given that these species affect mostly the immunocompromised host, the infections are severe and difficult to treat. This review encompasses the following topics: 1. infecting species and their virulence, 2. treatment, 3. antifungal susceptibility methods and available categorical endpoints, 4. genetic mechanisms of resistance, 5. clinical resistance, 6. fluconazole minimal inhibitory concentrations (MICs), clinical outcome, 7. environmental influences, and 8. the relevance of host factors, including pharmacokinetic/pharmacodynamic (PK/PD) parameters, in predicting the clinical outcome to therapy. As of now, epidemiologic cutoff endpoints (ECVs/ECOFFs) are the most reliable antifungal resistance detectors for these species, as only one clinical breakpoint (amphotericin B and C. neoformans VNI) is available.
Collapse
Affiliation(s)
- Marcia S. C. Melhem
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil; (D.P.L.J.); (M.B.M.)
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
- Graduate Program in Tropical Diseases, State University of São Paulo, Botucatu 18618-687, SP, Brazil
| | - Diniz Pereira Leite Júnior
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil; (D.P.L.J.); (M.B.M.)
| | - Juliana P. F. Takahashi
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
- Pathology Division, Adolfo Lutz Institute, São Paulo 01246-002, SP, Brazil
| | - Milena Bronze Macioni
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil; (D.P.L.J.); (M.B.M.)
| | | | - Lisandra Siufi de Araújo
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
- Central Public Health Laboratory-LACEN, Mycology Unit, Adolfo Lutz Institut, São Paulo 01246-002, SP, Brazil;
| | - Wellington S. Fava
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
| | - Lucas X. Bonfietti
- Central Public Health Laboratory-LACEN, Mycology Unit, Adolfo Lutz Institut, São Paulo 01246-002, SP, Brazil;
| | - Anamaria M. M. Paniago
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
| | - James Venturini
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
| | - Ana Espinel-Ingroff
- Central Public Health Laboratory-LACEN, Campo Grande 79074-460, MS, Brazil;
- VCU Medical Center, Richmond, VA 23284, USA
| |
Collapse
|
31
|
Yamada T, Maeda M, Nagai H, Salamin K, Chang YT, Guenova E, Feuermann M, Monod M. Two different types of tandem sequences mediate the overexpression of TinCYP51B in azole-resistant Trichophyton indotineae. Antimicrob Agents Chemother 2023; 67:e0093323. [PMID: 37823662 PMCID: PMC10648874 DOI: 10.1128/aac.00933-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/03/2023] [Indexed: 10/13/2023] Open
Abstract
Trichophyton indotineae is an emerging dermatophyte that causes severe tinea corporis and tinea cruris. Numerous cases of terbinafine- and azole-recalcitrant T. indotineae-related dermatophytosis have been observed in India over the past decade, and cases are now being recorded worldwide. Whole genome sequencing of three azole-resistant strains revealed a variable number of repeats of a 2,404 base pair (bp) sequence encoding TinCYP51B in tandem specifically at the CYP51B locus position. However, many other resistant strains (itraconazole MIC ≥0.25 µg/mL; voriconazole MIC ≥0.25 µg/mL) did not contain such duplications. Whole-genome sequencing of three of these strains revealed a variable number of 7,374 bp tandem repeat blocks harboring TinCYP51B. Consequently, two types of T. indotineae azole-resistant strains were found to host TinCYP51B in tandem sequences (type I with 2,404 bp TinCYP51B blocks and type II with 7,374 bp TinCYP51B blocks). Using the CRISPR/Cas9 genome-editing tool, the copy number of TinCYP51B within the genome of types I and II strains was brought back to a single copy. The azole susceptibility of these modified strains was similar to that of strains without TinCYP51B duplication, showing that azole resistance in T. indotineae strains is mediated by one of two types of TinCYP51B amplification. Type II strains were prevalent among 32 resistant strains analyzed using a rapid and reliable PCR test.
Collapse
Affiliation(s)
- Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
- Asia International Institute of Infectious Disease Control, Teikyo University, Tokyo, Japan
| | - Mari Maeda
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
| | | | - Karine Salamin
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Yun-Tsan Chang
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Emmanuella Guenova
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Marc Feuermann
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Michel Monod
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Boyce KJ. The Microevolution of Antifungal Drug Resistance in Pathogenic Fungi. Microorganisms 2023; 11:2757. [PMID: 38004768 PMCID: PMC10673521 DOI: 10.3390/microorganisms11112757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The mortality rates of invasive fungal infections remain high because of the limited number of antifungal drugs available and antifungal drug resistance, which can rapidly evolve during treatment. Mutations in key resistance genes such as ERG11 were postulated to be the predominant cause of antifungal drug resistance in the clinic. However, recent advances in whole genome sequencing have revealed that there are multiple mechanisms leading to the microevolution of resistance. In many fungal species, resistance can emerge through ERG11-independent mechanisms and through the accumulation of mutations in many genes to generate a polygenic resistance phenotype. In addition, genome sequencing has revealed that full or partial aneuploidy commonly occurs in clinical or microevolved in vitro isolates to confer antifungal resistance. This review will provide an overview of the mutations known to be selected during the adaptive microevolution of antifungal drug resistance and focus on how recent advances in genome sequencing technology have enhanced our understanding of this process.
Collapse
Affiliation(s)
- Kylie J Boyce
- School of Science, RMIT University, Melbourne, VIC 3085, Australia
| |
Collapse
|
33
|
Mathur S, Erickson SK, Goldberg LR, Hills S, Radin AGB, Schertzer JW. OprF functions as a latch to direct Outer Membrane Vesicle release in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566662. [PMID: 37986865 PMCID: PMC10659412 DOI: 10.1101/2023.11.12.566662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Bacterial Outer Membrane Vesicles (OMVs) contribute to virulence, competition, immune avoidance and communication. This has led to great interest in how they are formed. To date, investigation has focused almost exclusively on what controls the initiation of OMV biogenesis. Regardless of the mechanism of initiation, all species face a similar challenge before an OMV can be released: How does the OM detach from the underlying peptidoglycan (PG) in regions that will ultimately bulge and then vesiculate? The OmpA family of OM proteins (OprF in P. aeruginosa) is widely conserved and unusually abundant in OMVs across species considering their major role in PG attachment. OmpA homologs also have the interesting ability to adopt both PG-bound (two-domain) and PG-released (one-domain) conformations. Using targeted deletion of the PG-binding domain we showed that loss of cell wall association, and not general membrane destabilization, is responsible for hypervesiculation in OprF-modified strains. We therefore propose that OprF functions as a 'latch', capable of releasing PG in regions destined to become OMVs. To test this hypothesis, we developed a protocol to assess OprF conformation in live cells and purified OMVs. While >90% of OprF proteins exist in the two-domain conformation in the OM of cells, we show that the majority of OprF in OMVs is present in the one-domain conformation. With this work, we take some of the first steps in characterizing late-stage OMV biogenesis and identify a family of proteins whose critical role can be explained by their unique ability to fold into two distinct conformations.
Collapse
Affiliation(s)
- Shrestha Mathur
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902
| | - Susan K Erickson
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902
| | - Leah R Goldberg
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902
| | - Sonia Hills
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902
| | - Abigail G B Radin
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902
| | - Jeffrey W Schertzer
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902
| |
Collapse
|
34
|
Jung KW, Kwon S, Jung JH, Lim S, Bahn YS. Functional Characterization of DNA N-Glycosylase Ogg1 and Ntg1 in DNA Damage Stress of Cryptococcus neoformans. J Microbiol 2023; 61:981-992. [PMID: 38055144 DOI: 10.1007/s12275-023-00092-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
Reactive oxygen species induce DNA strand breaks and DNA oxidation. DNA oxidation leads to DNA mismatches, resulting in mutations in the genome if not properly repaired. Homologous recombination (HR) and non-homologous end-joining (NHEJ) are required for DNA strand breaks, whereas the base excision repair system mainly repairs oxidized DNAs, such as 8-oxoguanine and thymine glycol, by cleaving the glycosidic bond, inserting correct nucleotides, and sealing the gap. Our previous studies revealed that the Rad53-Bdr1 pathway mainly controls DNA strand breaks through the regulation of HR- and NHEJ-related genes. However, the functional roles of genes involved in the base excision repair system remain elusive in Cryptococcus neoformans. In the present study, we identified OGG1 and NTG1 genes in the base excision repair system of C. neoformans, which are involved in DNA oxidation repair. The expression of OGG1 was induced in a Hog1-dependent manner under oxidative stress. On the other hand, the expression of NTG1 was strongly induced by DNA damage stress in a Rad53-independent manner. We demonstrated that the deletion of NTG1, but not OGG1, resulted in elevated susceptibility to DNA damage agents and oxidative stress inducers. Notably, the ntg1Δ mutant showed growth defects upon antifungal drug treatment. Although deletion of OGG1 or NTG1 did not increase mutation rates, the mutation profile of each ogg1Δ and ntg1Δ mutant was different from that of the wild-type strain. Taken together, we found that DNA N-glycosylase Ntg1 is required for oxidative DNA damage stress and antifungal drug resistance in C. neoformans.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
| | - Sunhak Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong-Hyun Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangyong Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
35
|
Rivera A, Young Lim W, Park E, Dome PA, Hoy MJ, Spasojevic I, Sun S, Averette AF, Pina-Oviedo S, Juvvadi PR, Steinbach WJ, Ciofani M, Hong J, Heitman J. Enhanced fungal specificity and in vivo therapeutic efficacy of a C-22-modified FK520 analog against C. neoformans. mBio 2023; 14:e0181023. [PMID: 37737622 PMCID: PMC10653846 DOI: 10.1128/mbio.01810-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Fungal infections cause significant morbidity and mortality globally. The therapeutic armamentarium against these infections is limited, and the development of antifungal drugs has been hindered by the evolutionary conservation between fungi and the human host. With rising resistance to the current antifungal arsenal and an increasing at-risk population, there is an urgent need for the development of new antifungal compounds. The FK520 analogs described in this study display potent antifungal activity as a novel class of antifungals centered on modifying an existing orally active FDA-approved therapy. This research advances the development of much-needed newer antifungal treatment options with novel mechanisms of action.
Collapse
Affiliation(s)
- Angela Rivera
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Won Young Lim
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Eunchong Park
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Patrick A. Dome
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Michael J. Hoy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sergio Pina-Oviedo
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Praveen R. Juvvadi
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - William J. Steinbach
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Maria Ciofani
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jiyong Hong
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
36
|
Vande Zande P, Zhou X, Selmecki A. The Dynamic Fungal Genome: Polyploidy, Aneuploidy and Copy Number Variation in Response to Stress. Annu Rev Microbiol 2023; 77:341-361. [PMID: 37307856 PMCID: PMC10599402 DOI: 10.1146/annurev-micro-041320-112443] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal species have dynamic genomes and often exhibit genomic plasticity in response to stress. This genome plasticity often comes with phenotypic consequences that affect fitness and resistance to stress. Fungal pathogens exhibit genome plasticity in both clinical and agricultural settings and often during adaptation to antifungal drugs, posing significant challenges to human health. Therefore, it is important to understand the rates, mechanisms, and impact of large genomic changes. This review addresses the prevalence of polyploidy, aneuploidy, and copy number variation across diverse fungal species, with special attention to prominent fungal pathogens and model species. We also explore the relationship between environmental stress and rates of genomic changes and highlight the mechanisms underlying genotypic and phenotypic changes. A comprehensive understanding of these dynamic fungal genomes is needed to identify novel solutions for the increase in antifungal drug resistance.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| |
Collapse
|
37
|
Rizzo J, Trottier A, Moyrand F, Coppée JY, Maufrais C, Zimbres ACG, Dang TTV, Alanio A, Desnos-Ollivier M, Mouyna I, Péhau-Arnaude G, Commere PH, Novault S, Ene IV, Nimrichter L, Rodrigues ML, Janbon G. Coregulation of extracellular vesicle production and fluconazole susceptibility in Cryptococcus neoformans. mBio 2023; 14:e0087023. [PMID: 37310732 PMCID: PMC10470540 DOI: 10.1128/mbio.00870-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 06/14/2023] Open
Abstract
Resistance to fluconazole (FLC), the most widely used antifungal drug, is typically achieved by altering the azole drug target and/or drug efflux pumps. Recent reports have suggested a link between vesicular trafficking and antifungal resistance. Here, we identified novel Cryptococcus neoformans regulators of extracellular vesicle (EV) biogenesis that impact FLC resistance. In particular, the transcription factor Hap2 does not affect the expression of the drug target or efflux pumps, yet it impacts the cellular sterol profile. Subinhibitory FLC concentrations also downregulate EV production. Moreover, in vitro spontaneous FLC-resistant colonies showed altered EV production, and the acquisition of FLC resistance was associated with decreased EV production in clinical isolates. Finally, the reversion of FLC resistance was associated with increased EV production. These data suggest a model in which fungal cells can regulate EV production in place of regulating the drug target gene expression as a first line of defense against antifungal assault in this fungal pathogen. IMPORTANCE Extracellular vesicles (EVs) are membrane-enveloped particles that are released by cells into the extracellular space. Fungal EVs can mediate community interactions and biofilm formation, but their functions remain poorly understood. Here, we report the identification of the first regulators of EV production in the major fungal pathogen Cryptococcus neoformans. Surprisingly, we uncover a novel role of EVs in modulating antifungal drug resistance. Disruption of EV production was associated with altered lipid composition and changes in fluconazole susceptibility. Spontaneous azole-resistant mutants were deficient in EV production, while loss of resistance restored initial EV production levels. These findings were recapitulated in C. neoformans clinical isolates, indicating that azole resistance and EV production are coregulated in diverse strains. Our study reveals a new mechanism of drug resistance in which cells adapt to azole stress by modulating EV production.
Collapse
Affiliation(s)
- Juliana Rizzo
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adèle Trottier
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
| | - Frédérique Moyrand
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
- Institut Pasteur, Université Paris Cité, USR 3756 IP CNRS, HUB Bioinformatique et Biostatistique, Paris, France
| | - Ana Claudia G. Zimbres
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thi Tuong Vi Dang
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
| | - Alexandre Alanio
- Institut Pasteur, Université Paris Cité, Centre National de Référence Mycoses Invasives et Antifongiques, Groupe de recherche Mycologie Translationnelle, Département de Mycologie, Paris, France
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Marie Desnos-Ollivier
- Institut Pasteur, Université Paris Cité, Centre National de Référence Mycoses Invasives et Antifongiques, Groupe de recherche Mycologie Translationnelle, Département de Mycologie, Paris, France
| | - Isabelle Mouyna
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
| | - Gérard Péhau-Arnaude
- Institut Pasteur, Université Paris Cité, Plateforme de Bio-Imagerie Ultrastructurale, Paris, France
| | - Pierre-Henri Commere
- Institut Pasteur, Université Paris Cité, Cytometry and Biomarkers, Paris, France
| | - Sophie Novault
- Institut Pasteur, Université Paris Cité, Cytometry and Biomarkers, Paris, France
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
| | - Guilhem Janbon
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
| |
Collapse
|
38
|
Barda O, Sadhasivam S, Gong D, Doron-Faigenboim A, Zakin V, Drott MT, Sionov E. Aneuploidy Formation in the Filamentous Fungus Aspergillus flavus in Response to Azole Stress. Microbiol Spectr 2023; 11:e0433922. [PMID: 37358460 PMCID: PMC10433848 DOI: 10.1128/spectrum.04339-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
Aspergillus flavus is a mycotoxigenic fungus that contaminates many important agricultural crops with aflatoxin B1, the most toxic and carcinogenic natural compound. This fungus is also the second leading cause of human invasive aspergillosis, after Aspergillus fumigatus, a disease that is particularly prevalent in immunocompromised individuals. Azole drugs are considered the most effective compounds in controlling Aspergillus infections both in clinical and agricultural settings. Emergence of azole resistance in Aspergillus spp. is typically associated with point mutations in cyp51 orthologs that encode lanosterol 14α-demethylase, a component of the ergosterol biosynthesis pathway that is also the target of azoles. We hypothesized that alternative molecular mechanisms are also responsible for acquisition of azole resistance in filamentous fungi. We found that an aflatoxin-producing A. flavus strain adapted to voriconazole exposure at levels above the MIC through whole or segmental aneuploidy of specific chromosomes. We confirm a complete duplication of chromosome 8 in two sequentially isolated clones and a segmental duplication of chromosome 3 in another clone, emphasizing the potential diversity of aneuploidy-mediated resistance mechanisms. The plasticity of aneuploidy-mediated resistance was evidenced by the ability of voriconazole-resistant clones to revert to their original level of azole susceptibility following repeated transfers on drug-free media. This study provides new insights into mechanisms of azole resistance in a filamentous fungus. IMPORTANCE Fungal pathogens cause human disease and threaten global food security by contaminating crops with toxins (mycotoxins). Aspergillus flavus is an opportunistic mycotoxigenic fungus that causes invasive and noninvasive aspergillosis, diseases with high rates of mortality in immunocompromised individuals. Additionally, this fungus contaminates most major crops with the notorious carcinogen, aflatoxin. Voriconazole is the drug of choice to treat infections caused by Aspergillus spp. Although azole resistance mechanisms have been well characterized in clinical isolates of Aspergillus fumigatus, the molecular basis of azole resistance in A. flavus remains unclear. Whole-genome sequencing of eight voriconazole-resistant isolates revealed that, among other factors, A. flavus adapts to high concentrations of voriconazole by duplication of specific chromosomes (i.e., aneuploidy). Our discovery of aneuploidy-mediated resistance in a filamentous fungus represents a paradigm shift, as this type of resistance was previously thought to occur only in yeasts. This observation provides the first experimental evidence of aneuploidy-mediated azole resistance in the filamentous fungus A. flavus.
Collapse
Affiliation(s)
- Omer Barda
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Sudharsan Sadhasivam
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Di Gong
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Varda Zakin
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Milton T. Drott
- Cereal Disease Laboratory, USDA-ARS, St. Paul, Minnesota, USA
| | - Edward Sionov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
39
|
Bollen DP, Reddy KC, Kim DH, Colaiácovo MP. Germline mitotic quiescence and programmed cell death are induced in C. elegans by exposure to pathogenic P. aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552522. [PMID: 37609207 PMCID: PMC10441368 DOI: 10.1101/2023.08.08.552522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The impact of exposure to microbial pathogens on animal reproductive capacity and germline physiology is not well understood. The nematode Caenorhabditis elegans is a bacterivore that encounters pathogenic microbes in its natural environment. How pathogenic bacteria affect host reproductive capacity of C. elegans is not well understood. Here, we show that exposure of C. elegans hermaphrodites to the Gram-negative pathogen Pseudomonas aeruginosa causes a marked reduction in brood size with concomitant reduction in the number of nuclei in the germline and gonad size. We define two processes that are induced that contribute to the decrease in the number of germ cell nuclei. First, we observe that infection with P. aeruginosa leads to the induction of programmed germ cell death. Second, we observe that this exposure induces mitotic quiescence in the proliferative zone of the C. elegans gonad. Importantly, these processes appear to be reversible; when animals are removed from the presence of P. aeruginosa, germ cell death is abated, germ cell nuclei numbers increase, and brood sizes recover. The reversible germline dynamics during exposure to P. aeruginosa may represent an adaptive response to improve survival of progeny and may serve to facilitate resource allocation that promotes survival during pathogen infection.
Collapse
Affiliation(s)
- Daniel P. Bollen
- Division of Infectious Diseases and Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kirthi C. Reddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dennis H. Kim
- Division of Infectious Diseases and Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
40
|
Schuck P, Zhao H. Diversity of Short Linear Interaction Motifs in SARS-CoV-2 Nucleocapsid Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551467. [PMID: 37790474 PMCID: PMC10542142 DOI: 10.1101/2023.08.01.551467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Molecular mimicry of short linear interaction motifs has emerged as a key mechanism for viral proteins binding host domains and hijacking host cell processes. Here, we examine the role of RNA-virus sequence diversity in the dynamics of the virus-host interface, by analyzing the uniquely vast sequence record of viable SARS-CoV-2 species with focus on the multi-functional nucleocapsid protein. We observe the abundant presentation of motifs encoding several essential host protein interactions, alongside a majority of possibly non-functional and randomly occurring motif sequences absent in subsets of viable virus species. A large number of motifs emerge ex nihilo through transient mutations relative to the ancestral consensus sequence. The observed mutational landscape implies an accessible motif space that spans at least 25% of known eukaryotic motifs. This reveals motif mimicry as a highly dynamic process with the capacity to broadly explore host motifs, allowing the virus to rapidly evolve the virus-host interface.
Collapse
Affiliation(s)
- Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Sousa NSOD, Almeida JDRD, Frickmann H, Lacerda MVG, Souza JVBD. Searching for new antifungals for the treatment of cryptococcosis. Rev Soc Bras Med Trop 2023; 56:e01212023. [PMID: 37493736 PMCID: PMC10367226 DOI: 10.1590/0037-8682-0121-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/19/2023] [Indexed: 07/27/2023] Open
Abstract
There is a consensus that the antifungal repertoire for the treatment of cryptococcal infections is limited. Standard treatment involves the administration of an antifungal drug derived from natural sources (i.e., amphotericin B) and two other drugs developed synthetically (i.e., flucytosine and fluconazole). Despite treatment, the mortality rates associated with fungal cryptococcosis are high. Amphotericin B and flucytosine are toxic, require intravenous administration, and are usually unavailable in low-income countries because of their high cost. However, fluconazole is cost-effective, widely available, and harmless with regard to its side effects. However, fluconazole is a fungistatic agent that has contributed considerably to the increase in fungal resistance and frequent relapses in patients with cryptococcal meningitis. Therefore, there is an unquestionable need to identify new alternatives or adjuvants to conventional drugs for the treatment of cryptococcosis. A potential antifungal agent should be able to kill cryptococci and "bypass" the virulence mechanism of the yeast. Furthermore, it should have fungicidal action, low toxicity, high selectivity, easily penetrate the central nervous system, and widely available. In this review, we describe cryptococcosis, its conventional therapy, and failures arising from the use of drugs traditionally considered to be the reference standard. Additionally, we present the approaches used for the discovery of new drugs to counteract cryptococcosis, ranging from the conventional screening of natural products to the inclusion of structural modifications to optimize anticryptococcal activity, as well as drug repositioning and combined therapies.
Collapse
Affiliation(s)
| | | | - Hagen Frickmann
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Germany
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil
- Instituto de Pesquisas Leônidas & Maria Deane, Fiocruz, Manaus, AM, Brasil
- University of Texas Medical Branch, Galveston, USA
| | - João Vicente Braga de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Manaus, AM, Brasil
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| |
Collapse
|
42
|
Lee Y, Robbins N, Cowen LE. Molecular mechanisms governing antifungal drug resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:5. [PMID: 38686214 PMCID: PMC11057204 DOI: 10.1038/s44259-023-00007-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/17/2023] [Indexed: 05/02/2024]
Abstract
Fungal pathogens are a severe public health problem. The leading causative agents of systemic fungal infections include species from the Candida, Cryptococcus, and Aspergillus genera. As opportunistic pathogens, these fungi are generally harmless in healthy hosts; however, they can cause significant morbidity and mortality in immunocompromised patients. Despite the profound impact of pathogenic fungi on global human health, the current antifungal armamentarium is limited to only three major classes of drugs, all of which face complications, including host toxicity, unfavourable pharmacokinetics, or limited spectrum of activity. Further exacerbating this issue is the growing prevalence of antifungal-resistant infections and the emergence of multidrug-resistant pathogens. In this review, we discuss the diverse strategies employed by leading fungal pathogens to evolve antifungal resistance, including drug target alterations, enhanced drug efflux, and induction of cellular stress response pathways. Such mechanisms of resistance occur through diverse genetic alterations, including point mutations, aneuploidy formation, and epigenetic changes given the significant plasticity observed in many fungal genomes. Additionally, we highlight recent literature surrounding the mechanisms governing resistance in emerging multidrug-resistant pathogens including Candida auris and Candida glabrata. Advancing our knowledge of the molecular mechanisms by which fungi adapt to the challenge of antifungal exposure is imperative for designing therapeutic strategies to tackle the emerging threat of antifungal resistance.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| |
Collapse
|
43
|
Rivera A, Lim WY, Park E, Dome PA, Hoy MJ, Spasojevic I, Sun S, Averette AF, Pina-Oviedo S, Juvvadi PR, Steinbach WJ, Ciofani M, Hong J, Heitman J. Enhanced fungal specificity and in vivo therapeutic efficacy of a C-22 modified FK520 analog against C. neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543712. [PMID: 37333270 PMCID: PMC10274662 DOI: 10.1101/2023.06.05.543712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Fungal infections are of mounting global concern, and the current limited treatment arsenal poses challenges when treating such infections. In particular, infections by Cryptococcus neoformans are associated with high mortality, emphasizing the need for novel therapeutic options. Calcineurin is a protein phosphatase that mediates fungal stress responses, and calcineurin inhibition by the natural product FK506 blocks C. neoformans growth at 37°C. Calcineurin is also required for pathogenesis. However, because calcineurin is conserved in humans, and inhibition with FK506 results in immunosuppression, the use of FK506 as an anti-infective agent is precluded. We previously elucidated the structures of multiple fungal calcineurin-FK506-FKBP12 complexes and implicated the C-22 position on FK506 as a key point for differential modification of ligand inhibition of the mammalian versus fungal target proteins. Through in vitro antifungal and immunosuppressive testing of FK520 (a natural analog of FK506) derivatives, we identified JH-FK-08 as a lead candidate for further antifungal development. JH-FK-08 exhibited significantly reduced immunosuppressive activity and both reduced fungal burden and prolonged survival of infected animals. JH-FK-08 exhibited additive activity in combination with fluconazole in vivo . These findings further advance calcineurin inhibition as an antifungal therapeutic approach. Importance Fungal infections cause significant morbidity and mortality globally. The therapeutic armamentarium against these infections is limited and development of antifungal drugs has been hindered by the evolutionary conservation between fungi and the human host. With rising resistance to the current antifungal arsenal and an increasing at-risk population, there is an urgent need for the development of new antifungal compounds. The FK520 analogs described in this study display potent antifungal activity as a novel class of antifungals centered on modifying an existing orally-active FDA approved therapy. This research advances the development of much needed newer antifungal treatment options with novel mechanisms of action.
Collapse
|
44
|
Zhu P, Li Y, Guo T, Liu S, Tancer RJ, Hu C, Zhao C, Xue C, Liao G. New antifungal strategies: drug combination and co-delivery. Adv Drug Deliv Rev 2023; 198:114874. [PMID: 37211279 DOI: 10.1016/j.addr.2023.114874] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
The growing occurrence of invasive fungal infections and the mounting rates of drug resistance constitute a significant menace to human health. Antifungal drug combinations have garnered substantial interest for their potential to improve therapeutic efficacy, reduce drug doses, reverse, or ameliorate drug resistance. A thorough understanding of the molecular mechanisms underlying antifungal drug resistance and drug combination is key to developing new drug combinations. Here we discuss the mechanisms of antifungal drug resistance and elucidate how to discover potent drug combinations to surmount resistance. We also examine the challenges encountered in developing such combinations and discuss prospects, including advanced drug delivery strategies.
Collapse
Affiliation(s)
- Ping Zhu
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China
| | - Yan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Ting Guo
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China
| | - Simei Liu
- Department of Traditional Chinese Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, China; Institute of Pharmacology and Toxicology, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Robert J Tancer
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Changhua Hu
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China
| | - Chengzhi Zhao
- Chongqing Health Center for Women and Children, Chongqing, 400700, PR China.
| | - Chaoyang Xue
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Guojian Liao
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China.
| |
Collapse
|
45
|
Zhao Y, Ye L, Zhao F, Zhang L, Lu Z, Chu T, Wang S, Liu Z, Sun Y, Chen M, Liao G, Ding C, Xu Y, Liao W, Wang L. Cryptococcus neoformans, a global threat to human health. Infect Dis Poverty 2023; 12:20. [PMID: 36932414 PMCID: PMC10020775 DOI: 10.1186/s40249-023-01073-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Emerging fungal pathogens pose important threats to global public health. The World Health Organization has responded to the rising threat of traditionally neglected fungal infections by developing a Fungal Priority Pathogens List (FPPL). Taking the highest-ranked fungal pathogen in the FPPL, Cryptococcus neoformans, as a paradigm, we review progress made over the past two decades on its global burden, its clinical manifestation and management of cryptococcal infection, and its antifungal resistance. The purpose of this review is to drive research efforts to improve future diagnoses, therapies, and interventions associated with fungal infections. METHODS We first reviewed trends in the global burden of HIV-associated cryptococcal infection, mainly based on a series of systematic studies. We next conducted scoping reviews in accordance with the guidelines described in the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for Scoping Reviews using PubMed and ScienceDirect with the keyword Cryptococcus neoformans to identify case reports of cryptococcal infections published since 2000. We then reviewed recent updates on the diagnosis and antifungal treatment of cryptococcal infections. Finally, we summarized knowledge regarding the resistance and tolerance of C. neoformans to approved antifungal drugs. RESULTS There has been a general reduction in the estimated global burden of HIV-associated cryptococcal meningitis since 2009, probably due to improvements in highly active antiretroviral therapies. However, cryptococcal meningitis still accounts for 19% of AIDS-related deaths annually. The incidences of CM in Europe and North America and the Latin America region have increased by approximately two-fold since 2009, while other regions showed either reduced or stable numbers of cases. Unfortunately, diagnostic and treatment options for cryptococcal infections are limited, and emerging antifungal resistance exacerbates the public health burden. CONCLUSION The rising threat of C. neoformans is compounded by accumulating evidence for its ability to infect immunocompetent individuals and the emergence of antifungal-resistant variants. Emphasis should be placed on further understanding the mechanisms of pathogenicity and of antifungal resistance and tolerance. The development of novel management strategies through the identification of new drug targets and the discovery and optimization of new and existing diagnostics and therapeutics are key to reducing the health burden.
Collapse
Affiliation(s)
- Youbao Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| | - Leixin Ye
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fujie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Lanyue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhenguo Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Tianxin Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Siyu Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Zhanxiang Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Yukai Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Shanghai, 200003, China
| | - Guojian Liao
- The Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Yingchun Xu
- Department of Laboratory Medicine, and Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Shanghai, 200003, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
46
|
Jackson KM, Ding M, Nielsen K. Importance of Clinical Isolates in Cryptococcus neoformans Research. J Fungi (Basel) 2023; 9:364. [PMID: 36983532 PMCID: PMC10056780 DOI: 10.3390/jof9030364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
The human pathogenic fungus Cryptococcus neoformans is a global health concern. Previous research in the field has focused on studies using reference strains to identify virulence factors, generate mutant libraries, define genomic structures, and perform functional studies. In this review, we discuss the benefits and drawbacks of using reference strains to study C. neoformans, describe how the study of clinical isolates has expanded our understanding of pathogenesis, and highlight how studies using clinical isolates can further develop our understanding of the host-pathogen interaction during C. neoformans infection.
Collapse
Affiliation(s)
| | | | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
47
|
Harwood OE, Matschke LM, Moriarty RV, Balgeman AJ, Weaver AJ, Ellis-Connell AL, Weiler AM, Winchester LC, Fletcher CV, Friedrich TC, Keele BF, O'Connor DH, Lang JD, Reynolds MR, O'Connor SL. CD8+ cells and small viral reservoirs facilitate post-ART control of SIV in Mauritian cynomolgus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530655. [PMID: 36909458 PMCID: PMC10002716 DOI: 10.1101/2023.03.01.530655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Sustainable HIV remission after antiretroviral therapy (ART) withdrawal, or post-treatment control (PTC), remains a top priority for HIV treatment. We observed surprising PTC in an MHC-haplomatched cohort of MHC-M3+ SIVmac239+ Mauritian cynomolgus macaques (MCMs) initiated on ART at two weeks post-infection (wpi). For six months after ART withdrawal, we observed undetectable or transient viremia in seven of eight MCMs. In vivo depletion of CD8α+ cells induced rebound in all animals, indicating the PTC was mediated, at least in part, by CD8α+ cells. We found that MCMs had smaller acute viral reservoirs than a cohort of identically infected rhesus macaques, a population that rarely develops PTC. The mechanisms by which unusually small viral reservoirs and CD8α+ cell-mediated virus suppression enable PTC can be investigated using this MHC-haplomatched MCM model. Further, defining the immunologic mechanisms that engender PTC in this model may identify therapeutic targets for inducing durable HIV remission in humans.
Collapse
Affiliation(s)
- Olivia E Harwood
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Lea M Matschke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711
| | - Ryan V Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Alexis J Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Abigail J Weaver
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Amy L Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Andrea M Weiler
- Wisconsin National Primate Research Center, Madison, WI, 53711
| | - Lee C Winchester
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198
| | | | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711
- Wisconsin National Primate Research Center, Madison, WI, 53711
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
- Wisconsin National Primate Research Center, Madison, WI, 53711
| | - Jessica D Lang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Matthew R Reynolds
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711
- Wisconsin National Primate Research Center, Madison, WI, 53711
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
- Wisconsin National Primate Research Center, Madison, WI, 53711
| |
Collapse
|
48
|
Sun LL, Li H, Yan TH, Fang T, Wu H, Cao YB, Lu H, Jiang YY, Yang F. Aneuploidy Mediates Rapid Adaptation to a Subinhibitory Amount of Fluconazole in Candida albicans. Microbiol Spectr 2023; 11:e0301622. [PMID: 36853047 PMCID: PMC10101127 DOI: 10.1128/spectrum.03016-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/04/2023] [Indexed: 03/01/2023] Open
Abstract
Candida albicans is a prevalent, opportunistic, human fungal pathogen. Antifungal drug resistance and tolerance are two distinct mechanisms of adaptation to drugs. Studies of mechanisms of drug resistance are limited to the applications of high doses of drugs. Few studies have investigated the effects of subinhibitory amounts of drugs on the development of drug resistance or tolerance. In this study, we found that growth in a subinhibitory amount of fluconazole (FLC), a widely used antifungal drug, for just a short time was sufficient to induce aneuploidy in C. albicans. Surprisingly, the aneuploids displayed fitness loss in the presence of subinhibitory FLC, but a subpopulation of cells could tolerate up to 128 μg/mL FLC. Particular aneuploidy (ChrR trisomy) caused tolerance, not resistance, to FLC. In the absence of FLC, the aneuploids were unstable. Depending on the karyotype, aneuploids might become completely euploid or maintain particular aneuploidy, and, accordingly, the tolerance would be lost or maintained. Mechanistically, subinhibitory FLC was sufficient to induce the expression of several ERG genes and as well as the drug efflux gene MDR1. Aneuploids had a constitutive high-level expression of genes on and outside the aneuploid chromosomes, including most of the ERG genes as well as the drug efflux genes MDR1 and CDR2. Therefore, aneuploids were prepared for FLC challenges. In summary, aneuploidy provides a rapid and reversible strategy of adaptation when C. albicans is challenged with subinhibitory concentrations of FLC. IMPORTANCE Genome instability is a hallmark of C. albicans. Aneuploidy usually causes fitness loss in the absence of stress but confers better fitness under particular stress conditions. Therefore, aneuploidy is considered to be a double-edged sword. Here, we extend the understanding of aneuploidy. We found that aneuploidy arose under weak stress conditions but that it did not confer better fitness to the stress. Instead, it was less fit than its euploid counterparts. If the stress was withdrawn, aneuploidy spontaneously reverted to euploidy. If the stress became stronger, aneuploidy enabled subpopulation growth in a dose-independent manner of the stress. Therefore, we posit that aneuploidy enables the rapid and reversible development of drug tolerance in C. albicans. Further studies are required to investigate whether this is a general mechanism in human fungal pathogens.
Collapse
Affiliation(s)
- Liu-liu Sun
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Li
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tian-hua Yan
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Fang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Wu
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong-bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Lu
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan-ying Jiang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Yang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Deng H, Song J, Huang Y, Yang C, Zang X, Zhou Y, Li H, Dai B, Xue X. Combating increased antifungal drug resistance in Cryptococcus, what should we do in the future? Acta Biochim Biophys Sin (Shanghai) 2023; 55:540-547. [PMID: 36815374 PMCID: PMC10195138 DOI: 10.3724/abbs.2023011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/08/2022] [Indexed: 02/05/2023] Open
Abstract
Few therapeutic drugs and increased drug resistance have aggravated the current treatment difficulties of Cryptococcus in recent years. To better understand the antifungal drug resistance mechanism and treatment strategy of cryptococcosis. In this review, by combining the fundamental features of Cryptococcus reproduction leading to changes in its genome, we review recent research into the mechanism of four current anti-cryptococcal agents, coupled with new therapeutic strategies and the application of advanced technologies WGS and CRISPR-Cas9 in this field, hoping to provide a broad idea for the future clinical therapy of cryptococcosis.
Collapse
Affiliation(s)
- Hengyu Deng
- Affiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifang261053China
| | - Jialin Song
- Affiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifang261053China
| | - Yemei Huang
- of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical University; Peking University Ninth School of Clinical MedicineBeijing100089China
| | - Chen Yang
- Department of Laboratory Medicinethe First Medical CentreChinese PLA General HospitalBeijing100853China
| | - Xuelei Zang
- of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical University; Peking University Ninth School of Clinical MedicineBeijing100089China
| | - Yangyu Zhou
- of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical University; Peking University Ninth School of Clinical MedicineBeijing100089China
| | - Hongli Li
- Affiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifang261053China
| | - Bin Dai
- of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical University; Peking University Ninth School of Clinical MedicineBeijing100089China
| | - Xinying Xue
- Affiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifang261053China
- of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical University; Peking University Ninth School of Clinical MedicineBeijing100089China
| |
Collapse
|
50
|
Gusa A, Yadav V, Roth C, Williams JD, Shouse EM, Magwene P, Heitman J, Jinks-Robertson S. Genome-wide analysis of heat stress-stimulated transposon mobility in the human fungal pathogen Cryptococcus deneoformans. Proc Natl Acad Sci U S A 2023; 120:e2209831120. [PMID: 36669112 PMCID: PMC9942834 DOI: 10.1073/pnas.2209831120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/16/2022] [Indexed: 01/21/2023] Open
Abstract
We recently reported transposon mutagenesis as a significant driver of spontaneous mutations in the human fungal pathogen Cryptococcus deneoformans during murine infection. Mutations caused by transposable element (TE) insertion into reporter genes were dramatically elevated at high temperatures (37° vs. 30°) in vitro, suggesting that heat stress stimulates TE mobility in the Cryptococcus genome. To explore the genome-wide impact of TE mobilization, we generated transposon accumulation lines by in vitro passage of C. deneoformans strain XL280α for multiple generations at both 30° and at the host-relevant temperature of 37°. Utilizing whole-genome sequencing, we identified native TE copies and mapped multiple de novo TE insertions in these lines. Movements of the T1 DNA transposon occurred at both temperatures with a strong bias for insertion between gene-coding regions. By contrast, the Tcn12 retrotransposon integrated primarily within genes and movement occurred exclusively at 37°. In addition, we observed a dramatic amplification in copy number of the Cnl1 (Cryptococcus neoformans LINE-1) retrotransposon in subtelomeric regions under heat-stress conditions. Comparing TE mutations to other sequence variations detected in passaged lines, the increase in genomic changes at elevated temperatures was primarily due to mobilization of the retroelements Tcn12 and Cnl1. Finally, we found multiple TE movements (T1, Tcn12, and Cnl1) in the genomes of single C. deneoformans isolates recovered from infected mice, providing evidence that mobile elements are likely to facilitate microevolution and rapid adaptation during infection.
Collapse
Affiliation(s)
- Asiya Gusa
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC27710
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC27710
| | - Cullen Roth
- Department of Biology, Duke University, Durham, NC27710
| | - Jonathan D. Williams
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC27710
| | - Eva Mei Shouse
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC27710
| | - Paul Magwene
- Department of Biology, Duke University, Durham, NC27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC27710
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC27710
| |
Collapse
|