1
|
Specht CA, Wang R, Oliveira LVN, Hester MM, Gomez C, Mou Z, Carlson D, Lee CK, Hole CR, Lam WC, Upadhya R, Lodge JK, Levitz SM. Immunological correlates of protection mediated by a whole organism, Cryptococcus neoformans, vaccine deficient in chitosan. mBio 2024; 15:e0174624. [PMID: 38980038 PMCID: PMC11323574 DOI: 10.1128/mbio.01746-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
The global burden of infections due to the pathogenic fungus Cryptococcus is substantial in persons with low CD4+ T-cell counts. Previously, we deleted three chitin deacetylase genes from Cryptococcus neoformans to create a chitosan-deficient, avirulent strain, designated as cda1∆2∆3∆, which, when used as a vaccine, protected mice from challenge with virulent C. neoformans strain KN99. Here, we explored the immunological basis for protection. Vaccine-mediated protection was maintained in mice lacking B cells or CD8+ T cells. In contrast, protection was lost in mice lacking α/β T cells or CD4+ T cells. Moreover, CD4+ T cells from vaccinated mice conferred protection upon adoptive transfer to naive mice. Importantly, while monoclonal antibody-mediated depletion of CD4+ T cells just prior to vaccination resulted in complete loss of protection, significant protection was retained in mice depleted of CD4+ T cells after vaccination but prior to challenge. Vaccine-mediated protection was lost in mice genetically deficient in interferon-γ (IFNγ), tumor necrosis factor alpha (TNFα), or interleukin (IL)-23p19. A robust influx of leukocytes and IFNγ- and TNFα-expressing CD4+ T cells was seen in the lungs of vaccinated and challenged mice. Finally, a higher level of IFNγ production by lung cells stimulated ex vivo correlated with lower fungal burden in the lungs. Thus, while B cells and CD8+ T cells are dispensable, IFNγ and CD4+ T cells have overlapping roles in generating protective immunity prior to cda1∆2∆3∆ vaccination. However, once vaccinated, protection becomes less dependent on CD4+ T cells, suggesting a strategy for vaccinating HIV+ persons prior to loss of CD4+ T cells. IMPORTANCE The fungus Cryptococcus neoformans is responsible for >100,000 deaths annually, mostly in persons with impaired CD4+ T-cell function such as AIDS. There are no approved human vaccines. We previously created a genetically engineered avirulent strain of C. neoformans, designated as cda1∆2∆3∆. When used as a vaccine, cda1∆2∆3∆ protects mice against a subsequent challenge with a virulent C. neoformans strain. Here, we defined components of the immune system responsible for vaccine-mediated protection. We found that while B cells and CD8+ T cells were dispensible, protection was lost in mice genetically deficient in CD4+ T cells and the cytokines IFNγ, TNFα, or IL-23. A robust influx of cytokine-producing CD4+ T cells was seen in the lungs of vaccinated mice following infection. Importantly, protection was retained in mice depleted of CD4+ T cells following vaccination, suggesting a strategy to protect persons who are at risk of future CD4+ T-cell dysfunction.
Collapse
Affiliation(s)
- Charles A. Specht
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ruiying Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lorena V. N. Oliveira
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Maureen M. Hester
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Christina Gomez
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Zhongming Mou
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Diana Carlson
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Chrono K. Lee
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Camaron R. Hole
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Woei C. Lam
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajendra Upadhya
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer K. Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stuart M. Levitz
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Dao A, Kim HY, Garnham K, Kidd S, Sati H, Perfect J, Sorrell TC, Harrison T, Rickerts V, Gigante V, Alastruey-Izquierdo A, Alffenaar JW, Morrissey CO, Chen SCA, Beardsley J. Cryptococcosis-a systematic review to inform the World Health Organization Fungal Priority Pathogens List. Med Mycol 2024; 62:myae043. [PMID: 38935902 PMCID: PMC11210623 DOI: 10.1093/mmy/myae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/01/2023] [Accepted: 04/27/2024] [Indexed: 06/29/2024] Open
Abstract
Cryptococcosis causes a high burden of disease worldwide. This systematic review summarizes the literature on Cryptococcus neoformans and C. gattii infections to inform the World Health Organization's first Fungal Priority Pathogen List. PubMed and Web of Science were used to identify studies reporting on annual incidence, mortality, morbidity, antifungal resistance, preventability, and distribution/emergence in the past 10 years. Mortality rates due to C. neoformans were 41%-61%. Complications included acute renal impairment, raised intracranial pressure needing shunts, and blindness. There was moderate evidence of reduced susceptibility (MIC range 16-32 mg/l) of C. neoformans to fluconazole, itraconazole, ketoconazole, voriconazole, and amphotericin B. Cryptococcus gattii infections comprised 11%-33% of all cases of invasive cryptococcosis globally. The mortality rates were 10%-23% for central nervous system (CNS) and pulmonary infections, and ∼43% for bloodstream infections. Complications described included neurological sequelae (17%-27% in C. gattii infections) and immune reconstitution inflammatory syndrome. MICs were generally low for amphotericin B (MICs: 0.25-0.5 mg/l), 5-flucytosine (MIC range: 0.5-2 mg/l), itraconazole, posaconazole, and voriconazole (MIC range: 0.06-0.5 mg/l). There is a need for increased surveillance of disease phenotype and outcome, long-term disability, and drug susceptibility to inform robust estimates of disease burden.
Collapse
Affiliation(s)
- Aiken Dao
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Westmead Institute for Medical Research, Westmead, Sydney, Australia
- Westmead Clinical School, Westmead Hospital, Sydney, Australia
| | - Hannah Yejin Kim
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, Australia
| | - Katherine Garnham
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Sunshine Coast University Hospital, Birtinya, Qld 4575, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, Microbiology and Infectious Diseases, SA Pathology, Adelaide, Australia
| | - Hatim Sati
- AMR Division, World Health Organization, Geneva, Switzerland
| | | | - Tania C Sorrell
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Westmead Institute for Medical Research, Westmead, Sydney, Australia
- Westmead Clinical School, Westmead Hospital, Sydney, Australia
| | - Thomas Harrison
- Institute of Infection and Immunity, St George’s University London, London, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | | | - Valeria Gigante
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Jan-Willem Alffenaar
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Westmead Clinical School, Westmead Hospital, Sydney, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Health, Melbourne, Australia
- Monash University, Department of Infectious Diseases, Melbourne, Victoria, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, Sydney, Australia
| | - Justin Beardsley
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Westmead Institute for Medical Research, Westmead, Sydney, Australia
- Westmead Clinical School, Westmead Hospital, Sydney, Australia
| |
Collapse
|
3
|
Specht CA, Wang R, Oliveira LVN, Hester MM, Gomez C, Mou Z, Carlson D, Lee CK, Hole CR, Lam WC, Upadhya R, Lodge JK, Levitz SM. Immunological correlates of protection mediated by a whole organism Cryptococcus neoformans vaccine deficient in chitosan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598760. [PMID: 38915489 PMCID: PMC11195286 DOI: 10.1101/2024.06.12.598760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The global burden of infections due to the pathogenic fungus Cryptococcus is substantial in persons with low CD4 + T cell counts. Previously, we deleted three chitin deacetylase genes from C. neoformans to create a chitosan-deficient, avirulent strain, designated cda1Δ2Δ3Δ which, when used as a vaccine, protected mice from challenge with virulent C. neoformans strain KN99. Here, we explored the immunological basis for protection. Vaccine-mediated protection was maintained in mice lacking B cells or CD8 + T cells. In contrast, protection was lost in mice lacking α/β T cells or CD4 + T cells. Moreover, CD4 + T cells from vaccinated mice conferred protection upon adoptive transfer to naive mice. Importantly, while monoclonal antibody-mediated depletion of CD4 + T cells just prior to vaccination resulted in complete loss of protection, significant protection was retained in mice depleted of CD4 + T cells after vaccination, but prior to challenge. Vaccine-mediated protection was lost in mice genetically deficient in IFNγ, TNFα, or IL-23p19. A robust influx of leukocytes and IFNγ- and TNFα-expressing CD4 + T cells was seen in the lungs of vaccinated and challenged mice. Finally, a higher level of IFNγ production by lung cells stimulated ex vivo correlated with lower fungal burden in the lungs. Thus, while B cells and CD8 + T cells are dispensable, IFNγ and CD4 + T cells have overlapping roles in generating protective immunity prior to cda1Δ2Δ3Δ vaccination. However, once vaccinated, protection becomes less dependent on CD4 + T cells, suggesting a strategy for vaccinating HIV + persons prior to loss of CD4 + T cells. Importance The fungus Cryptococcus neoformans is responsible for >100,000 deaths annually, mostly in persons with impaired CD4 + T cell function such as AIDS. There are no approved human vaccines. We previously created a genetically engineered avirulent strain of C. neoformans , designated cda1Δ2Δ3Δ . When used as a vaccine, cda1Δ2Δ3Δ protects mice against a subsequent challenge with a virulent C. neoformans strain. Here, we defined components of the immune system responsible for vaccine-mediated protection. We found that while B cells and CD8 + T cells were dispensible, protection was lost in mice genetically deficient in CD4 + T cells, and the cytokines IFNγ, TNFα, or IL-23. A robust influx of cytokine-producing CD4 + T cells was seen in the lungs of vaccinated mice following infection. Importantly, protection was retained in mice depleted of CD4 + T cells following vaccination, suggesting a strategy to protect persons who are at risk for future CD4 + T cell dysfunction.
Collapse
|
4
|
Kausar MA, Narayan J, Mishra N, Akhter Y, Singh R, Khalifa AM, El-Hag ABM, Ahmed RME, Tyagi N, Mahfooz S. Studying Human Pathogenic Cryptococcus Gattii Lineages by Utilizing Simple Sequence Repeats to Create Diagnostic Markers and Analyzing Diversity. Biochem Genet 2024:10.1007/s10528-024-10812-7. [PMID: 38773043 DOI: 10.1007/s10528-024-10812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/11/2024] [Indexed: 05/23/2024]
Abstract
In this study, we compared the occurrence, relative abundance (RA), and density (RD) of simple sequence repeats (SSRs) among the lineages of human pathogenic Cryptococcus gattii using an in-silico approach to gain a deeper understanding of the structure and evolution of their genomes. C. gattii isolate MF34 showed the highest RA and RD of SSRs in both the genomic and transcriptomic sequences, followed by isolate WM276. In both the genomic (50%) and transcriptomic (65%) sequences, trinucleotide SSRs were the most common SSR class. A motif conservation study found that the isolates had stronger conservation (56.1%) of motifs, with isolate IND107 having the most (5.7%) unique motifs. We discovered the presence of SSRs in genes that are directly or indirectly associated with disease using gene enrichment analysis. Isolate-specific unique motifs identified in this study could be utilized as molecular probes for isolate identification. To improve genetic resources among C. gattii isolates, 6499 primers were developed. These genomic resources developed in this study could help with diversity analysis and the development of isolate-specific markers.
Collapse
Affiliation(s)
- Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Ha'il, Hail, 2440, Saudi Arabia.
| | - Jitendra Narayan
- CSIR- Institute of Genomics and Integrative Biology, Mall Road, New Delhi, 110007, India
| | - Nishtha Mishra
- Department of Chemistry, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia Central University, New Delhi, 110025, India
| | - Amany Mohammed Khalifa
- Department of Pathology, College of Medicine, University of Ha'il, Hail, 2440, Saudi Arabia
| | | | | | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, University of Louisville, Louisville, USA
| | - Sahil Mahfooz
- Department of Industrial Microbiology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, India.
| |
Collapse
|
5
|
Omura M, Satoh K, Tamura T, Komori A, Makimura K. Molecular epidemiological investigation of Cryptococcus spp. carried by captive koalas ( Phascolarctos cinereus) in Japan. Microbiol Spectr 2024; 12:e0290323. [PMID: 38411053 PMCID: PMC11210188 DOI: 10.1128/spectrum.02903-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii cause cryptococcosis, a systemic mycosis that infects a wide range of species. Recent molecular biological investigations have allowed for the genotyping of these species, providing more detailed information on their pathogenicity and infection routes. Koalas (Phascolarctos cinereus) are frequently colonized by Cryptococcus spp., but molecular epidemiological studies have yet to be conducted in Japan. Here, we conducted multi-locus sequence typing (MLST) analysis on Cryptococcus spp. colonization isolates obtained from all koalas kept in seven parks across Japan. Out of 46 koalas examined, 10 (22%) were positive for C. gattii and 3 (6.5%) were positive for C. neoformans. All C. gattii isolates belonged to molecular type VGI and were either sequence type (ST) 51 or a novel ST, and all C. neoformans isolates belonged to molecular type VNI and ST23. Despite the frequent movement of koalas between parks, the STs were relatively park-specific, suggesting that the floor of the rearing barns is a source of infection and may act as a reservoir. MLST analysis confirmed that C. gattii was transported, established, and spread by koalas in areas where C. gattii was not originally present. MLST analysis is considered useful in assessing the pathogenicity and tracing the transmission routes of Cryptococcus spp. carried by koalas.IMPORTANCEThis is the first study to conduct a multi-locus sequence typing analysis on Cryptococcus spp. carried by captive koalas in Japan. Cryptococcosis remains a globally high-fatality fungal infection in humans, and captive koalas are known to carry a high percentage of Cryptococcus spp. Through this research, the molecular types and transmission routes of Cryptococcus spp. carried by koalas have been elucidated, revealing the potential role of enclosure flooring as a reservoir. It has been confirmed that Cryptococcus gattii, which is not endemic in Japan, has become established through koalas and is spreading to new individuals in Japan. This study is believed to provide valuable insights into koala conservation and contribute to the One Health approach for Cryptococcosis, a zoonotic infection.
Collapse
Affiliation(s)
- Miki Omura
- Laboratory of Medical Mycology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Kazuo Satoh
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
| | - Takashi Tamura
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
| | - Aya Komori
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
| | - Koichi Makimura
- Laboratory of Medical Mycology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
| |
Collapse
|
6
|
Hester MM, Carlson D, Lodge JK, Levitz SM, Specht CA. Immune evasion by Cryptococcus gattii in vaccinated mice coinfected with C. neoformans. Front Immunol 2024; 15:1356651. [PMID: 38469300 PMCID: PMC10925662 DOI: 10.3389/fimmu.2024.1356651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Cryptococcus neoformans and C. gattii, the etiologic agents of cryptococcosis, cause over 100,000 deaths worldwide every year, yet no cryptococcal vaccine has progressed to clinical trials. In preclinical studies, mice vaccinated with an attenuated strain of C. neoformans deleted of three cryptococcal chitin deacetylases (Cn-cda1Δ2Δ3Δ) were protected against a lethal challenge with C. neoformans strain KN99. While Cn-cda1Δ2Δ3Δ extended the survival of mice infected with C. gattii strain R265 compared to unvaccinated groups, we were unable to demonstrate fungal clearance as robust as that seen following KN99 challenge. In stark contrast to vaccinated mice challenged with KN99, we also found that R265-challenged mice failed to induce the production of protection-associated cytokines and chemokines in the lungs. To investigate deficiencies in the vaccine response to R265 infection, we developed a KN99-R265 coinfection model. In unvaccinated mice, the strains behaved in a manner which mirrored single infections, wherein only KN99 disseminated to the brain and spleen. We expanded the coinfection model to Cn-cda1Δ2Δ3Δ-vaccinated mice. Fungal burden, cytokine production, and immune cell infiltration in the lungs of vaccinated, coinfected mice were indicative of immune evasion by C. gattii R265 as the presence of R265 neither compromised the immunophenotype established in response to KN99 nor inhibited clearance of KN99. Collectively, these data indicate that R265 does not dampen a protective vaccine response, but rather suggest that R265 remains largely undetected by the immune system.
Collapse
Affiliation(s)
- Maureen M. Hester
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Diana Carlson
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Jennifer K. Lodge
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Stuart M. Levitz
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Charles A. Specht
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
7
|
Santi L, Berger M, Guimarães JA, Calegari-Alves YP, Vainstein MH, Yates JR, Beys-da-Silva WO. Proteomic profile of Cryptococcus gattii biofilm: Metabolic shift and the potential activation of electron chain transport. J Proteomics 2024; 290:105022. [PMID: 37838096 DOI: 10.1016/j.jprot.2023.105022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Cryptococcus gattii is a primary pathogenic fungus that causes pneumonia. This species is also responsible for an outbreak in Vancouver, Canada, and spreading to the mainland and United States. The use of medical devices is often complicated by infections with biofilm-forming microbes with increased resistance to antimicrobial agents and host defense mechanisms. This study investigated the comparative proteome of C. gattii R265 (VGIIa) grown under planktonic and biofilm conditions. A brief comparison with C. neoformans H99 biofilm and the use of different culture medium and surface were also evaluated. Using Multidimensional Protein Identification Technology (MudPIT), 1819 proteins were identified for both conditions, where 150 (8.2%) were considered differentially regulated (up- or down-regulated and unique in biofilm cells). Overall, the proteomic approach suggests that C. gattii R265 biofilm cells are maintained by the induction of electron transport chain for reoxidation, and by alternative energy metabolites, such as succinate and acetate. SIGNIFICANCE: Since C. gattii is considered a primary pathogen and is one of the most virulent and less susceptible to antifungals, understanding how biofilms are maintained is fundamental to search for new targets to control this important mode of growth that is difficult to eradicate.
Collapse
Affiliation(s)
- Lucélia Santi
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-Graduation Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil.
| | - Markus Berger
- Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil; Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Jorge A Guimarães
- Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil
| | - Yohana Porto Calegari-Alves
- Post-Graduation Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marilene H Vainstein
- Post-Graduation Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, United States
| | - Walter O Beys-da-Silva
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-Graduation Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Castro-Lopez N, Wormley FL. Models for Inducing Experimental Cryptococcosis in Mice. Methods Mol Biol 2024; 2775:29-46. [PMID: 38758309 DOI: 10.1007/978-1-0716-3722-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the predominant etiological agents of cryptococcosis, a particularly problematic disease in immunocompromised individuals. The increased clinical use of immunosuppressive drugs, the inherent ability of Cryptococcus species to suppress and evade host immune responses, and the emergence of drug-resistant yeast support the need for model systems that facilitate the design of novel immunotherapies and antifungals to combat disease progression. The mouse model of cryptococcosis is a widely used system to study Cryptococcus pathogenesis and the efficacy of antifungal drugs in vivo. In this chapter, we describe three commonly used strategies to establish cryptococcosis in mice: intranasal, intratracheal, and intravenous inoculations. Also, we discuss the methodology for delivering drugs to mice via intraperitoneal injection.
Collapse
Affiliation(s)
| | - Floyd L Wormley
- Department of Biology, Texas Christian University, Fort Worth, TX, USA.
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
9
|
Specht CA, Lam WC, Hester MM, Lourenco D, Levitz SM, Lodge JK, Upadhya R. Chitosan-Deficient Cryptococcus as Whole-Cell Vaccines. Methods Mol Biol 2024; 2775:393-410. [PMID: 38758333 PMCID: PMC11521572 DOI: 10.1007/978-1-0716-3722-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Creating a safe and effective vaccine against infection by the fungal pathogen Cryptococcus neoformans is an appealing option that complements the discovery of new small molecule antifungals. Recent animal studies have yielded promising results for a variety of vaccines that include live-attenuated and heat-killed whole-cell vaccines, as well as subunit vaccines formulated around recombinant proteins. Some of the recombinantly engineered cryptococcal mutants in the chitosan biosynthesis pathway are avirulent and very effective at conferring protective immunity. Mice vaccinated with these avirulent chitosan-deficient strains are protected from a lethal pulmonary infection with C. neoformans strain KN99. Heat-killed derivatives of the vaccination strains are likewise effective in a murine model of infection. The efficacy of these whole-cell vaccines, however, is dependent on a number of factors, including the inoculation dose, route of vaccination, frequency of vaccination, and the specific mouse strain used in the study. Here, we present detailed methods for identifying and optimizing various factors influencing vaccine potency and efficacy in various inbred mouse strains using a chitosan-deficient cda1Δcda2Δcda3Δ strain as a whole-cell vaccine candidate. This chapter describes the protocols for immunizing three different laboratory mouse strains with vaccination regimens that use intranasal, orotracheal, and subcutaneous vaccination routes after the animals were sedated using two different types of anesthesia.
Collapse
Affiliation(s)
- Charles A Specht
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Woei C Lam
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Pfizer STL, Chesterfield, MO, USA
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Maureen M Hester
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Diana Lourenco
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Stuart M Levitz
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jennifer K Lodge
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Rajendra Upadhya
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
10
|
Zang X, Ke W, Huang Y, Yang C, Song J, Deng H, Zhou M, Wang Q, Zhou Y, Dai B, Qian J, Shen D, Wang L, Xue X. Virulence profiling of Cryptococcus gattii isolates in China: insights from a multi-center study. Microbiol Spectr 2023; 11:e0244323. [PMID: 37905820 PMCID: PMC10714995 DOI: 10.1128/spectrum.02443-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Our study indicates that the molecular typing of Cryptococcus gattii is unrelated to virulence. The integration of animal experiments and clinical prognosis demonstrated that pathogenicity did not exhibit a direct correlation with in vitro virulence phenotypes or molecular genotypes, emphasizing the intricate nature of virulence. In conclusion, our research holds the potential to provide valuable insights into understanding the microbiological attributes of C. gattii in China.
Collapse
Affiliation(s)
- Xuelei Zang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yemei Huang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Capital Medical University, Beijing, China
| | - Chen Yang
- Medical School of Chinese PLA, Beijing, China
- Medical Laboratory Center, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | | | | | - Meng Zhou
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Qiqi Wang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yangyu Zhou
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Capital Medical University, Beijing, China
| | - Bin Dai
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jin Qian
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dingxia Shen
- Medical Laboratory Center, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Weifang Medical University, Weifang, China
| |
Collapse
|
11
|
Andrade-Silva LE, Vilas-Boas A, Ferreira-Paim K, Andrade-Silva J, Santos DDA, Ferreira TB, Borges AS, Mora DJ, Melhem MDSC, Silva-Vergara ML. Genotyping Analysis of Cryptococcus deuterogattii and Correlation with Virulence Factors and Antifungal Susceptibility by the Clinical and Laboratory Standards Institute and the European Committee on Antifungal Susceptibility Testing Methods. J Fungi (Basel) 2023; 9:889. [PMID: 37754997 PMCID: PMC10532325 DOI: 10.3390/jof9090889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
Data about the relationship between their molecular types, virulence factors, clinical presentation, antifungal susceptibility profile, and outcome are still limited for Cryptococcus deuterogattii. This study aimed to evaluate the molecular and phenotypic characteristics of 24 C. deuterogattii isolates from the southeast region of Brazil. The molecular characterization was performed by multilocus sequence typing (MLST). The antifungal susceptibility profile was obtained according to CLSI-M27-A3 and EUCAST-EDef 7.1 methods. The virulence factors were evaluated using classic techniques. The isolates were divided into four populations. The molecular analysis suggests recombinant events in most of the groups evaluated. Resistance and susceptibility dose-dependent to fluconazole were evidenced in four isolates (16%) by EUCAST and in four isolates (16%) by CLSI methods. The agreement at ±two dilutions for both methods was 100% for itraconazole, ketoconazole, and voriconazole, 96% for amphotericin B, and 92% for fluconazole. Significant differences in virulence factor expression and antifungal susceptibility to itraconazole and amphotericin B were found. The mixed infection could be suggested by the presence of variable sequence types, differences in virulence factor production, and decreased antifungal susceptibility in two isolates from the same patient. The data presented herein corroborate previous reports about the molecular diversity of C. deuterogattii around the world.
Collapse
Affiliation(s)
- Leonardo Euripedes Andrade-Silva
- Infectious Diseases Unit, Internal Medicine Department, Federal University of Triangulo Mineiro, Uberaba 38001-170, MG, Brazil; (A.V.-B.); (K.F.-P.); (J.A.-S.); (T.B.F.); (M.L.S.-V.)
| | - Anderson Vilas-Boas
- Infectious Diseases Unit, Internal Medicine Department, Federal University of Triangulo Mineiro, Uberaba 38001-170, MG, Brazil; (A.V.-B.); (K.F.-P.); (J.A.-S.); (T.B.F.); (M.L.S.-V.)
| | - Kennio Ferreira-Paim
- Infectious Diseases Unit, Internal Medicine Department, Federal University of Triangulo Mineiro, Uberaba 38001-170, MG, Brazil; (A.V.-B.); (K.F.-P.); (J.A.-S.); (T.B.F.); (M.L.S.-V.)
| | - Juliana Andrade-Silva
- Infectious Diseases Unit, Internal Medicine Department, Federal University of Triangulo Mineiro, Uberaba 38001-170, MG, Brazil; (A.V.-B.); (K.F.-P.); (J.A.-S.); (T.B.F.); (M.L.S.-V.)
| | - Daniel de Assis Santos
- Microbiology Department, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Thatiana Bragine Ferreira
- Infectious Diseases Unit, Internal Medicine Department, Federal University of Triangulo Mineiro, Uberaba 38001-170, MG, Brazil; (A.V.-B.); (K.F.-P.); (J.A.-S.); (T.B.F.); (M.L.S.-V.)
| | - Aercio Sebastião Borges
- Infectious Diseases Unit, Internal Medicine Department, Federal University of Uberlândia, Uberlândia 38496-017, MG, Brazil
| | - Delio Jose Mora
- Center of Health Sciences, Federal University of Sul da Bahia, Teixeira de Freitas 85866-000, BA, Brazil;
| | | | - Mario Léon Silva-Vergara
- Infectious Diseases Unit, Internal Medicine Department, Federal University of Triangulo Mineiro, Uberaba 38001-170, MG, Brazil; (A.V.-B.); (K.F.-P.); (J.A.-S.); (T.B.F.); (M.L.S.-V.)
| |
Collapse
|
12
|
Tshekiso K, Loeto D, Muzila M, Seetswane E, Kenosi K, Jongman M. Prevalence, molecular and phenotypic profiles of arboreal associated Cryptococcus neoformans in Botswana. Fungal Biol 2023; 127:1129-1135. [PMID: 37495303 DOI: 10.1016/j.funbio.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
Mopane tree (Colophospermum mopane) is one of the main ecological niches of Cryptococcus neoformans, an opportunistic fungal pathogen that causes cryptococcosis primarily on immunocompromised hosts after inhalation of basidiospores from the environment. Hence, we investigated the prevalence, and phenotypically (antifungal resistance and biofilm formation capacity) and genotypically (mating type and genetic structure) characterized C. neoformans isolated from C. mopane, Acacia tortilis, Adansonia digitata and Ziziphus mucronata in Botswana. We report 7.1% and 2.9% prevalence of C. neoformans in C. mopane and other trees, respectively. All tested C. neoformans isolates were determined to be non-WT to fluconazole. Most isolates (65%) of C. neoformans isolates were biofilm producers. Mating type determination revealed a higher proportion of the globally rare MATa allele (53%) and a single MATα/MATa hybrid. The observed genotypeswere VNI (71%), VNB (23%) and VNB/VNB hybrids (6%). Native trees other than C. mopane are alternative ecological niches of antifungal resistant C. neoformans, and this represents a serious public health concern,and this represents a serious public health concern, especially for high-risk populations. Prevalence of C. neoformans on native trees and the observed emergence of hybrids (evidence of sexual recombination) highlight the need for increased surveillance and risk assessment within a One Health paradigm.
Collapse
Affiliation(s)
- Kgomotso Tshekiso
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Daniel Loeto
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Mbaki Muzila
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Eunicah Seetswane
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Kebabonye Kenosi
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Mosimanegape Jongman
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana.
| |
Collapse
|
13
|
Efimochkina NR, Markova YM, Smotrina YV, Stetsenko VV, Sheveleva SA. Improvement of Methods for Safety Control of Microbial Producers and Food Produced Therewith. Bull Exp Biol Med 2023; 175:393-398. [PMID: 37561374 DOI: 10.1007/s10517-023-05874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Indexed: 08/11/2023]
Abstract
The study substantiates the necessity to implement the algorithm of molecular-genetic assessment of biosafety of the genetically modified microorganisms (GMM) and to develop standardized methods to test the genetically modified strains producing enzymes, bioactive substances, and other products of microbial synthesis prior to their use in food industry. Analysis of microbial producers and related food products for the presence of GMM-associated DNA revealed high incidence of the marker genes amp and lacZ in enzyme preparations and in mycelium of industrial genetically modified producer of Aspergillus genus. The procedure of extraction of DNA from mycelium of mold fungi is optimized by including the stage of additional purification of the extracts, assessment of their purity by PCR with universal ITS primers, and determination of effective DNA concentration in the samples prior to conduction of the molecular genetic assay. For identification and genotyping of mold fungi (the biotechnological producers of enzyme preparations), the Sanger sequencing method was adapted. Using this modified method, we determined the species of five equivocally identified strains of Aspergillus genus. To identify the closely-related micromycetes of Ascomycota division, a genotyping algorithm was developed based on amplification of total DNA with expanded panel of primers and DNA sequencing by capillary electrophoresis.
Collapse
Affiliation(s)
- N R Efimochkina
- Federal Research Centre of Nutrition, Biotechnology, and Food Safety, Moscow, Russia.
| | - Yu M Markova
- Federal Research Centre of Nutrition, Biotechnology, and Food Safety, Moscow, Russia
| | - Yu V Smotrina
- Federal Research Centre of Nutrition, Biotechnology, and Food Safety, Moscow, Russia
| | - V V Stetsenko
- Federal Research Centre of Nutrition, Biotechnology, and Food Safety, Moscow, Russia
| | - S A Sheveleva
- Federal Research Centre of Nutrition, Biotechnology, and Food Safety, Moscow, Russia
| |
Collapse
|
14
|
Characteristics and prognostic risk factors of patients with sequence type 5 lineage-associated cryptococcosis in China. Int J Infect Dis 2023; 128:244-253. [PMID: 36646413 DOI: 10.1016/j.ijid.2023.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES Cryptococcus neoformans sequence type 5 (ST5) lineage could infect immunocompetent hosts and cause a significant medical burden. We sought to identify characteristics and prognostic risk factors of ST5 lineage-associated cryptococcosis. METHODS Multilocus sequence typing and antifungal susceptibility testing were conducted for Cryptococcus isolates. The clinical and laboratory characteristics of cryptococcosis patients were investigated. The multivariable logistic regression identified variables independently associated with 30-day mortality in patients with ST5 lineage-associated cryptococcosis without HIV. RESULTS The infection rate of the ST5 isolates was 89.4% (370/414) in China. The proportion of ST5 isolates with nonwild-type minimum inhibitory concentrations to amphotericin B, 5-flucytosine, voriconazole, posaconazole, itraconazole, and fluconazole were 0%, 5.4%, 0.3%, 1.4%, 0.3%, and 8.1%, respectively. The ST5 lineage-infected group exhibited significantly higher blood platelet count, lower blood cryptococcal antigen (CrAg) titer, lower cerebrospinal fluid (CSF) CrAg titer than the non-ST5 lineage-infected group, and lower hemoglobin and lower CSF CrAg titer than the Cryptococcus gattii isolates-infected group. Seven baseline parameters, including underlying disease, dyskinesia, anemia, high peripheral blood neutrophils, low platelet count, high CSF fungal burden, and high CSF opening pressure, were associated independently with the 30-day mortality of patients with ST5 lineage-associated cryptococcosis without HIV. CONCLUSION Our study has provided an understanding of the ST5 lineage associated with cryptococcosis.
Collapse
|
15
|
Mitochondria in Cryptococcus: an update of mitochondrial transcriptional regulation in Cryptococcus. Curr Genet 2023; 69:1-6. [PMID: 36729179 DOI: 10.1007/s00294-023-01261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Encapsulated Cryptococcus species are responsible for approximately 15% of AIDS-related mortality. Numerous intriguing investigations have demonstrated that mitochondria play a crucial role in the pathogen-host axis of microorganisms. Mitochondria are vital energy-generating organelles, but they also regulate a variety of cellular activities, such as fungal adaptability in the host and drug resistance. Mitochondria are also the source of reactive oxygen species, which serve as intracellular messengers but are harmful when produced in excess. Thus, precise and stringent regulation of mitochondrial activity, including oxidative phosphorylation and the ROS detoxification process, is essential to ensure that only the amount required to maintain basic biological activities and prevent ROS toxicity in the cell is maintained. However, the relationship between mitochondria and the pathogenicity of Cryptococcus remains poorly understood. In this review, we focus on transcription regulation and maintenance of mitochondrial function along the pathogen-host interaction axis, as well as prospective antifungal strategies that target mitochondria.
Collapse
|
16
|
Genome-wide analysis of heat stress-stimulated transposon mobility in the human fungal pathogen Cryptococcus deneoformans. Proc Natl Acad Sci U S A 2023; 120:e2209831120. [PMID: 36669112 PMCID: PMC9942834 DOI: 10.1073/pnas.2209831120] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We recently reported transposon mutagenesis as a significant driver of spontaneous mutations in the human fungal pathogen Cryptococcus deneoformans during murine infection. Mutations caused by transposable element (TE) insertion into reporter genes were dramatically elevated at high temperatures (37° vs. 30°) in vitro, suggesting that heat stress stimulates TE mobility in the Cryptococcus genome. To explore the genome-wide impact of TE mobilization, we generated transposon accumulation lines by in vitro passage of C. deneoformans strain XL280α for multiple generations at both 30° and at the host-relevant temperature of 37°. Utilizing whole-genome sequencing, we identified native TE copies and mapped multiple de novo TE insertions in these lines. Movements of the T1 DNA transposon occurred at both temperatures with a strong bias for insertion between gene-coding regions. By contrast, the Tcn12 retrotransposon integrated primarily within genes and movement occurred exclusively at 37°. In addition, we observed a dramatic amplification in copy number of the Cnl1 (Cryptococcus neoformans LINE-1) retrotransposon in subtelomeric regions under heat-stress conditions. Comparing TE mutations to other sequence variations detected in passaged lines, the increase in genomic changes at elevated temperatures was primarily due to mobilization of the retroelements Tcn12 and Cnl1. Finally, we found multiple TE movements (T1, Tcn12, and Cnl1) in the genomes of single C. deneoformans isolates recovered from infected mice, providing evidence that mobile elements are likely to facilitate microevolution and rapid adaptation during infection.
Collapse
|
17
|
Taverna CG, Arias BA, Firacative C, Vivot ME, Szusz W, Vivot W, Mazza M, Córdoba SB, Canteros CE. Genotypic Diversity and Antifungal Susceptibility of Clinical Isolates of Cryptococcus Gattii Species Complex from Argentina. Mycopathologia 2023; 188:51-61. [PMID: 36609823 DOI: 10.1007/s11046-022-00705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023]
Abstract
The aim of this study was to determine the genotypic diversity of 22 Cryptococcus gattii species complex clinical isolates from Argentina and to place these genotypes within the diversity of clinical, veterinary and environmental isolates from Latin America. Mating type and antifungal susceptibility of the isolates were also determined. By URA5-RFLP, nine isolates were identified as molecular type VGI, 10 as VGII, one as VGIII and two as VGIV. Multilocus sequence typing (MSLT), following the International Society for Human and Animal Mycology (ISHAM) consensus MLST scheme, was used to determine the genotypic diversity. Our results suggest that, in Argentina, VGI isolates have low genetic diversity, while VGII isolates have high genetic diversity. Both isolates identified as VGIV by URA5-RFLP were genotyped by MLST as belonging to the currently named VGVI clade. From all isolates, eight sequence types (STs) were unique for Argentina, while five STs have been reported already in other countries, being of high interest the genotypes ST20 and ST7 since they belong to the subtypes VGIIa and VGIIb, respectively, which are associated with hypervirulent strains responsible for outbreaks in North America. To note, geographical analysis showed that some genotypes may be associated with some regions in Argentina. Most isolates were MATα, but we are reporting one isolate MATa for the first time in the country. Antifungal susceptibility tests showed that itraconazole, voriconazole and posaconazole had high activity against all isolates, while amphotericin B, fluconazole and 5-fluorocytosine were the least active drugs against all studied isolates.
Collapse
Affiliation(s)
- Constanza Giselle Taverna
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina.
| | - Barbara Abigail Arias
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogotá, Colombia
| | - Matías Ezequiel Vivot
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Wanda Szusz
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Walter Vivot
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Mazza
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Susana Beatriz Córdoba
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Cristina Elena Canteros
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
18
|
Suo C, Gao Y, Ding C, Sun T. The function and regulation of heat shock transcription factor in Cryptococcus. Front Cell Infect Microbiol 2023; 13:1195968. [PMID: 37168390 PMCID: PMC10165103 DOI: 10.3389/fcimb.2023.1195968] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Cryptococcus species are opportunistic human fungal pathogens. Survival in a hostile environment, such as the elevated body temperatures of transmitting animals and humans, is crucial for Cryptococcus infection. Numerous intriguing investigations have shown that the Hsf family of thermotolerance transcription regulators plays a crucial role in the pathogen-host axis of Cryptococcus. Although Hsf1 is known to be a master regulator of the heat shock response through the activation of gene expression of heat shock proteins (Hsps). Hsf1 and other Hsfs are multifaceted transcription regulators that regulate the expression of genes involved in protein chaperones, metabolism, cell signal transduction, and the electron transfer chain. In Saccharomyces cerevisiae, a model organism, Hsf1's working mechanism has been intensively examined. Nonetheless, the link between Hsfs and Cryptococcus pathogenicity remains poorly understood. This review will focus on the transcriptional regulation of Hsf function in Cryptococcus, as well as potential antifungal treatments targeting Hsf proteins.
Collapse
Affiliation(s)
- Chenhao Suo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yiru Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
- *Correspondence: Tianshu Sun, ; Chen Ding,
| | - Tianshu Sun
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- *Correspondence: Tianshu Sun, ; Chen Ding,
| |
Collapse
|
19
|
Saidykhan L, Onyishi CU, May RC. The Cryptococcus gattii species complex: Unique pathogenic yeasts with understudied virulence mechanisms. PLoS Negl Trop Dis 2022; 16:e0010916. [PMID: 36520688 PMCID: PMC9754292 DOI: 10.1371/journal.pntd.0010916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Members of Cryptococcus gattii/neoformans species complex are the etiological agents of the potentially fatal human fungal infection cryptococcosis. C. gattii and its sister species cause disease in both immunocompetent and immunocompromised hosts, while the closely related species C. neoformans and C. deneoformans predominantly infect immunocompromised hosts. To date, most studies have focused on similarities in pathogenesis between these two groups, but over recent years, important differences have become apparent. In this review paper, we highlight some of the major phenotypic differences between the C. gattii and neoformans species complexes and justify the need to study the virulence and pathogenicity of the C. gattii species complex as a distinct cryptococcal group.
Collapse
Affiliation(s)
- Lamin Saidykhan
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Division of Physical and Natural Science, University of The Gambia, Brikama Campus, West Coast Region, The Gambia
| | - Chinaemerem U. Onyishi
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Robin C. May
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
20
|
Huang L, Ma Y, Guo H, Tang N, Ouyang S, Nuro-Gyina P, Tao L, Liu Y, O'Brien MC, Langdon WY, Zhang J. Akt-2 Is a Potential Therapeutic Target for Disseminated Candidiasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:991-1000. [PMID: 36130126 PMCID: PMC11141526 DOI: 10.4049/jimmunol.2101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/30/2022] [Indexed: 05/22/2024]
Abstract
Akt-1 and Akt-2 are the major isoforms of the serine/threonine Akt family that play a key role in controlling immune responses. However, the involvement of Akt-1 and Akt-2 isoforms in antifungal innate immunity is completely unknown. In this study, we show that Akt2 -/-, but not Akt1 -/-, mice are protected from lethal Candida albicans infection. Loss of Akt-2 facilitates the recruitment of neutrophils and macrophages to the spleen and increases reactive oxygen species expression in these cells. Treating C57BL/6 mice with a specific inhibitor for Akt-2, but not Akt-1, provides protection from lethal C. albicans infection. Our data demonstrate that Akt-2 inhibits antifungal innate immunity by hampering neutrophil and macrophage recruitment to spleens and suppressing oxidative burst, myeloperoxidase activity, and NETosis. We thus describe a novel role for Akt-2 in the regulation of antifungal innate immunity and unveil Akt-2 as a potential target for the treatment of fungal sepsis.
Collapse
Affiliation(s)
- Ling Huang
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yilei Ma
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Hui Guo
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Na Tang
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Song Ouyang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Department of Neurology, The First Hospital of Changsha City, South China University, Changsha, Hunan, People's Republic of China
| | - Patrick Nuro-Gyina
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; and
| | - Matthew C O'Brien
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Wallace Y Langdon
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jian Zhang
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA;
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| |
Collapse
|
21
|
Phylogenomic Placement of American Southwest-Associated Clinical and Veterinary Isolates Expands Evidence for Distinct Cryptococcus gattii VGVI. Microorganisms 2022; 10:microorganisms10081681. [PMID: 36014098 PMCID: PMC9412296 DOI: 10.3390/microorganisms10081681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Whole-genome sequencing has advanced our understanding of the population structure of the pathogenic species complex Cryptococcus gattii, which has allowed for the phylogenomic specification of previously described major molecular type groupings and novel lineages. Recently, isolates collected in Mexico in the 1960s were determined to be genetically distant from other known molecular types and were classified as VGVI. We sequenced four clinical isolates and one veterinary isolate collected in the southwestern United States and Argentina from 2012 to 2021. Phylogenomic analysis groups these genomes with those of the Mexican VGVI isolates, expanding VGVI into a clade and establishing this molecular type as a clinically important population. These findings also potentially expand the known Cryptococcus ecological range with a previously unrecognized endemic area.
Collapse
|
22
|
Rathore SS, Sathiyamoorthy J, Lalitha C, Ramakrishnan J. A holistic review on Cryptococcus neoformans. Microb Pathog 2022; 166:105521. [DOI: 10.1016/j.micpath.2022.105521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022]
|
23
|
Gene, virulence and related regulatory mechanisms in Cryptococcus gattii. Acta Biochim Biophys Sin (Shanghai) 2022; 54:593-603. [PMID: 35593469 PMCID: PMC9828318 DOI: 10.3724/abbs.2022029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cryptococcus gattii is a kind of basidiomycetous yeast, which grows in human and animal hosts. C. gattii has four distinct genomes, VGI/AFLP4, VGII/AFLP6, VGIII/AFLP5, and VGIV/AFLP7. The virulence of C. gattii is closely associated with genotype and related stress-signaling pathways, but the pathogenic mechanism of C. gattii has not been fully identified. With the development of genomics and transcriptomics, the relationship among genes, regulatory mechanisms, virulence, and treatment is gradually being recognized. In this review, to better understand how C. gattii causes disease and to characterize hypervirulent C. gattii strains, we summarize the current understanding of C. gattii genotypes, phenotypes, virulence, and the regulatory mechanisms.
Collapse
|
24
|
Kakeya H. Medical Mycology Seen Through a One Health Approach. Med Mycol J 2022; 63:11-15. [DOI: 10.3314/mmj.22.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hiroshi Kakeya
- Department of Infection Control Science, Osaka City University Graduate School of Medicine
| |
Collapse
|
25
|
Reis RS, Bonna ICF, Antonio IMDS, Pereira SA, do Nascimento CRS, Ferraris FK, Brito-Santos F, Ferreira Gremião ID, Trilles L. Cryptococcus neoformans VNII as the Main Cause of Cryptococcosis in Domestic Cats from Rio de Janeiro, Brazil. J Fungi (Basel) 2021; 7:jof7110980. [PMID: 34829267 PMCID: PMC8621350 DOI: 10.3390/jof7110980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptococcosis is a systemic fungal disease acquired from contaminated environments with propagules of the basidiomycetous yeasts of the Cryptococcus neoformans and C. gattii species complexes. The C. neoformans species complex classically comprises four major molecular types (VNI, VNII, VNIII, and VNIV), and the C. gattii species complex comprises another four (VGI, VGII, VGIII, and VGIV) and the newly identified molecular type VGV. These major molecular types differ in their epidemiological and ecological features, clinical presentations, and therapeutic outcomes. Generally, the most common isolated types are VNI, VGI, and VGII. The epidemiological profile of cryptococcosis in domestic cats is poorly studied and cats can be the sentinels for human infections. Therefore, the present study aimed to determine the molecular characterization of Cryptococcus spp. isolated from domestic cats and their dwellings in the metropolitan area of Rio de Janeiro, Brazil. A total of 36 Cryptococcus spp. strains, both clinical and environmental, from 19 cats were subtyped using multilocus sequence typing (MLST). The ploidy was identified using flow cytometry and the mating type was determined through amplification with specific pheromone primers. All strains were mating type alpha and 6/36 were diploid (all VNII). Most isolates (63.88%) were identified as VNII, a rare molecular type, leading to the consideration that this genotype is more likely related to skin lesions, since there was a high percentage (68.75%) of cats with skin lesions, which is also considered rare. Further studies regarding the molecular epidemiology of cryptococcosis in felines are still needed to clarify the reason for the large proportion of the rare molecular type VNII causing infections in cats.
Collapse
Affiliation(s)
- Rosani Santos Reis
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (R.S.R.); (I.C.F.B.); (F.B.-S.)
| | - Isabel Cristina Fábregas Bonna
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (R.S.R.); (I.C.F.B.); (F.B.-S.)
| | - Isabela Maria da Silva Antonio
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals (Lapclin-Dermzoo)/INI/Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.M.d.S.A.); (S.A.P.); (I.D.F.G.)
| | - Sandro Antonio Pereira
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals (Lapclin-Dermzoo)/INI/Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.M.d.S.A.); (S.A.P.); (I.D.F.G.)
| | | | - Fausto Klabund Ferraris
- Pharmacology Laboratory/INCQS/Fiocruz. Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil;
| | - Fábio Brito-Santos
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (R.S.R.); (I.C.F.B.); (F.B.-S.)
| | - Isabella Dib Ferreira Gremião
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals (Lapclin-Dermzoo)/INI/Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.M.d.S.A.); (S.A.P.); (I.D.F.G.)
| | - Luciana Trilles
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (R.S.R.); (I.C.F.B.); (F.B.-S.)
- Correspondence:
| |
Collapse
|
26
|
Teman SJ, Gaydos JK, Norman SA, Huggins JL, Lambourn DM, Calambokidis J, Ford JKB, Hanson MB, Haulena M, Zabek E, Cottrell P, Hoang L, Morshed M, Garner MM, Raverty S. Epizootiology of a Cryptococcus gattii outbreak in porpoises and dolphins from the Salish Sea. DISEASES OF AQUATIC ORGANISMS 2021; 146:129-143. [PMID: 34672263 DOI: 10.3354/dao03630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cryptococcus gattii is a fungal pathogen that primarily affects the respiratory and nervous systems of humans and other animals. C. gattii emerged in temperate North America in 1999 as a multispecies outbreak of cryptococcosis in British Columbia (Canada) and Washington State and Oregon (USA), affecting humans, domestic animals, and wildlife. Here we describe the C. gattii epizootic in odontocetes. Cases of C. gattii were identified in 42 odontocetes in Washington and British Columbia between 1997 and 2016. Species affected included harbor porpoises Phocoena phocoena (n = 26), Dall's porpoises Phocoenoides dalli (n = 14), and Pacific white-sided dolphins Lagenorhynchus obliquidens (n = 2). The probable index case was identified in an adult male Dall's porpoise in 1997, 2 yr prior to the initial terrestrial outbreak. The spatiotemporal extent of the C. gattii epizootic was defined, and cases in odontocetes were found to be clustered around terrestrial C. gattii hotspots. Case-control analyses with stranded, uninfected odontocetes revealed that risk factors for infection were species (Dall's porpoises), age class (adult animals), and season (winter). This study suggests that mycoses are an emerging source of mortality for odontocetes, and that outbreaks may be associated with anthropogenic environmental disturbance.
Collapse
Affiliation(s)
- Sarah J Teman
- The SeaDoc Society, Karen C. Drayer Wildlife Health Center - Orcas Island Office, UC Davis School of Veterinary Medicine, Eastsound, WA 98245, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Midiri A, Mancuso G, Lentini G, Famà A, Galbo R, Zummo S, Giardina M, De Gaetano GV, Teti G, Beninati C, Biondo C. Characterization of an immunogenic cellulase secreted by Cryptococcus pathogens. Med Mycol 2021; 58:1138-1148. [PMID: 32246714 DOI: 10.1093/mmy/myaa012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 01/25/2023] Open
Abstract
Members of the C. neoformans/C. gattiii species complex are an important cause of serious humans infections, including meningoencephalitis. We describe here a 45 kDa extracellular cellulase purified from culture supernatants of C. neoformans var. neoformans. The N-terminal sequence obtained from the purified protein was used to isolate a clone containing the full-length coding sequence from a C. neoformans var. neoformans (strain B-3501A) cDNA library. Bioinformatics analysis indicated that this gene is present, with variable homology, in all sequenced genomes of the C. neoformans/C. gattii species complex. The cDNA clone was used to produce a recombinant 45 kDa protein in E. coli that displayed the ability to convert carboxymethyl cellulose and was therefore designated as NG-Case (standing for Neoformans Gattii Cellulase). To explore its potential use as a vaccine candidate, the recombinant protein was used to immunize mice and was found capable of inducing T helper type 1 responses and delayed-type hypersensitivity reactions, but not immune protection against a highly virulent C. neoformans var grubii strain. These data may be useful to better understand the mechanisms underlying the ability C. neoformans/C. gattii to colonize plant habitats and to interact with the human host during infection.
Collapse
Affiliation(s)
- Angelina Midiri
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Giuseppe Mancuso
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | - Roberta Galbo
- Department of Chemical, Biological and Pharmaceutical Sciences, University of Messina, Messina, Italy
| | - Sebastiana Zummo
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Miriam Giardina
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | | | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy.,Scylla Biotech Srl, Messina, Italy
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, Messina, Italy
| |
Collapse
|
28
|
Vilas-Bôas AM, Andrade-Silva LE, Ferreira-Paim K, Mora DJ, Ferreira TB, Santos DDA, Borges AS, Melhem MDSC, Silva-Vergara ML. High genetic variability of clinical and environmental Cryptococcus gattii isolates from Brazil. Med Mycol 2021; 58:1126-1137. [PMID: 32343345 DOI: 10.1093/mmy/myaa019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Among Cryptococcus gattii genotypes, VGII has gained pivotal relevance in epidemiological, clinical and genetic contexts due to its association with several outbreaks in temperate regions and due to the high variability of this genotype. The aim of this study was to compare 25 isolates of C. gattii from the Southeast region of Brazil with previously described isolates from other regions of the country and around the world. Among the 25 isolates, 24 were VGII and one was VGI. All of them were newly identified. Three new allele types (AT) (AT47 for the URA5 locus, AT56 for the LAC1 locus, and AT96 for the IGS1 region) were also described. Compared with other Brazilian isolates, those from the Southeast region presented the greatest haplotype diversity. In general, the regions presented different sequence types (STs), and only nine STs were found in more than one location. GoeBURST analysis showed two large groups among the Brazilian isolates. The largest group consists of 59 STs predominantly from the North and Northeast regions; the other large group includes 57 STs from the Southeast and Midwest regions. In a global context the South American isolates presented the highest genetic diversity (STs = 145, haplotype diversity (Hd) = 0.999 and π = 0.00464), while the African populations showed the lowest genetic diversity (STs = 3, Hd = 0.667 and π = 0.00225). These results confirm that the Brazilian C. gattii VGII population is highly diverse and reinforce the hypothesis of dispersion of this genotype from South America.
Collapse
Affiliation(s)
- Anderson Mançan Vilas-Bôas
- Infectious Diseases Unit, Internal Medicine Department, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Leonardo Euripedes Andrade-Silva
- Infectious Diseases Unit, Internal Medicine Department, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Kennio Ferreira-Paim
- Department of Microbiology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Delio José Mora
- Infectious Diseases Unit, Internal Medicine Department, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thatiana Bragine Ferreira
- Infectious Diseases Unit, Internal Medicine Department, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Daniel de Assis Santos
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aercio Sebastião Borges
- Universidade Federal de Uberlândia, Hospital de Clínicas de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Mario Léon Silva-Vergara
- Infectious Diseases Unit, Internal Medicine Department, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
29
|
Donlin MJ, Lane TR, Riabova O, Lepioshkin A, Xu E, Lin J, Makarov V, Ekins S. Discovery of 5-Nitro-6-thiocyanatopyrimidines as Inhibitors of Cryptococcus neoformans and Cryptococcus gattii. ACS Med Chem Lett 2021; 12:774-781. [PMID: 34055225 DOI: 10.1021/acsmedchemlett.1c00038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022] Open
Abstract
Opportunistic infections from pathogenic fungi present a major challenge to healthcare because of a very limited arsenal of antifungal drugs, an increasing population of immunosuppressed patients, and increased prevalence of resistant clinical strains due to overuse of the few available antifungals. Cryptococcal meningitis is a life-threatening opportunistic fungal infection caused by one of two species in the Cryptococcus genus, Cryptococcus neoformans and Cryptococcus gattii. Eighty percent of cryptococcosis diseases are caused by C. neoformans that is endemic in the environment. The standard of care is limited to old antifungals, and under a high standard of care, mortality remains between 10 and 30%. We have identified a series of 5-nitro-6-thiocyanatopyrimidine antifungal drug candidates using in vitro and computational machine learning approaches. These compounds can inhibit C. neoformans growth at submicromolar levels, are effective against fluconazole-resistant C. neoformans and a clinical strain of C. gattii, and are not antagonistic with currently approved antifungals.
Collapse
Affiliation(s)
- Maureen J. Donlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
- Institute for Drug and Biotherapeutic Development, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina 27606, United States
| | - Olga Riabova
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Alexander Lepioshkin
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Evan Xu
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Jeffrey Lin
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Vadim Makarov
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina 27606, United States
| |
Collapse
|
30
|
van Rhijn N, Bromley M. The Consequences of Our Changing Environment on Life Threatening and Debilitating Fungal Diseases in Humans. J Fungi (Basel) 2021; 7:367. [PMID: 34067211 PMCID: PMC8151111 DOI: 10.3390/jof7050367] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
Human activities have significantly impacted the environment and are changing our climate in ways that will have major consequences for ourselves, and endanger animal, plant and microbial life on Earth. Rising global temperatures and pollution have been highlighted as potential drivers for increases in infectious diseases. Although infrequently highlighted, fungi are amongst the leading causes of infectious disease mortality, resulting in more than 1.5 million deaths every year. In this review we evaluate the evidence linking anthropomorphic impacts with changing epidemiology of fungal disease. We highlight how the geographic footprint of endemic mycosis has expanded, how populations susceptible to fungal infection and fungal allergy may increase and how climate change may select for pathogenic traits and indirectly contribute to the emergence of drug resistance.
Collapse
Affiliation(s)
| | - Michael Bromley
- Manchester Fungal Infection Group, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
31
|
Hong N, Chen M, Xu J. Molecular Markers Reveal Epidemiological Patterns and Evolutionary Histories of the Human Pathogenic Cryptococcus. Front Cell Infect Microbiol 2021; 11:683670. [PMID: 34026667 PMCID: PMC8134695 DOI: 10.3389/fcimb.2021.683670] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/22/2021] [Indexed: 01/02/2023] Open
Abstract
The human pathogenic Cryptococcus species are the main agents of fungal meningitis in humans and the causes of other diseases collectively called cryptococcosis. There are at least eight evolutionary divergent lineages among these agents, with different lineages showing different geographic and/or ecological distributions. In this review, we describe the main strain typing methods that have been used to analyze the human pathogenic Cryptococcus and discuss how molecular markers derived from the various strain typing methods have impacted our understanding of not only cryptococcal epidemiology but also its evolutionary histories. These methods include serotyping, multilocus enzyme electrophoresis, electrophoretic karyotyping, random amplified polymorphic DNA, restriction fragment length polymorphism, PCR-fingerprinting, amplified fragment length polymorphism, multilocus microsatellite typing, single locus and multilocus sequence typing, matrix-assisted laser desorption/ionization time of flight mass spectrometry, and whole genome sequencing. The major findings and the advantages and disadvantages of each method are discussed. Together, while controversies remain, these strain typing methods have helped reveal (i) the broad phylogenetic pattern among these agents, (ii) the centers of origins for several lineages and their dispersal patterns, (iii) the distributions of genetic variation among geographic regions and ecological niches, (iv) recent hybridization among several lineages, and (v) specific mutations during infections within individual patients. However, significant challenges remain. Multilocus sequence typing and whole genome sequencing are emerging as the gold standards for continued strain typing and epidemiological investigations of cryptococcosis.
Collapse
Affiliation(s)
- Nan Hong
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China.,Department of Burn and Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
32
|
Abstract
Self-splicing proteins, called inteins, are present in many human pathogens, including the emerging fungal threats Cryptococcus neoformans (Cne) and Cryptococcus gattii (Cga), the causative agents of cryptococcosis. Inhibition of protein splicing in Cryptococcus sp. interferes with activity of the only intein-containing protein, Prp8, an essential intron splicing factor. Here, we screened a small-molecule library to find addititonal, potent inhibitors of the Cne Prp8 intein using a split-GFP splicing assay. This revealed the compound 6G-318S, with IC50 values in the low micromolar range in the split-GFP assay and in a complementary split-luciferase system. A fluoride derivative of the compound 6G-318S displayed improved cytotoxicity in human lung carcinoma cells, although there was a slight reduction in the inhibition of splicing. 6G-318S and its derivative inhibited splicing of the Cne Prp8 intein in vivo in Escherichia coli and in C. neoformans Moreover, the compounds repressed growth of WT C. neoformans and C. gattii In contrast, the inhibitors were less potent at inhibiting growth of the inteinless Candida albicans Drug resistance was observed when the Prp8 intein was overexpressed in C. neoformans, indicating specificity of this molecule toward the target. No off-target activity was observed, such as inhibition of serine/cysteine proteases. The inhibitors bound covalently to the Prp8 intein and binding was reduced when the active-site residue Cys1 was mutated. 6G-318S showed a synergistic effect with amphotericin B and additive to indifferent effects with a few other clinically used antimycotics. Overall, the identification of these small-molecule intein-splicing inhibitors opens up prospects for a new class of antifungals.
Collapse
|
33
|
Horn C, Vediyappan G. Anticapsular and Antifungal Activity of α-Cyperone. Antibiotics (Basel) 2021; 10:antibiotics10010051. [PMID: 33419126 PMCID: PMC7825567 DOI: 10.3390/antibiotics10010051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 11/23/2022] Open
Abstract
Fungal infections affect 300 million people and cause 1.5 million deaths globally per year. With the number of immunosuppressed patients increasing steadily, there is an increasing number of patients infected with opportunistic fungal infections such as infections caused by the species of Candida and Cryptococcus. In fact, the drug-resistant Can. krusei and the emerging pan-antifungal resistant Can. auris pose a serious threat to human health as the existing limited antifungals are futile. To further complicate therapy, fungi produce capsules and spores that are resistant to most antifungal drugs/host defenses. Novel antifungal drugs are urgently needed to fill unmet medical needs. From screening a collection of medicinal plant sources for antifungal activity, we have identified an active fraction from the rhizome of Cyperus rotundus, the nut grass plant. The fraction contained α-Cyperone, an essential oil that showed fungicidal activity against different species of Candida. Interestingly, the minimal inhibitory concentration of α-Cyperone was reduced 8-fold when combined with a clinical antifungal drug, fluconazole, indicating its antifungal synergistic potential and could be useful for combination therapy. Furthermore, α-Cyperone affected the synthesis of the capsule in Cryp. neoformans, a causative agent of fungal meningitis in humans. Further work on mechanistic understanding of α-Cyperone against fungal virulence could help develop a novel antifungal agent for drug-resistant fungal pathogens.
Collapse
|
34
|
Roth C, Murray D, Scott A, Fu C, Averette AF, Sun S, Heitman J, Magwene PM. Pleiotropy and epistasis within and between signaling pathways defines the genetic architecture of fungal virulence. PLoS Genet 2021; 17:e1009313. [PMID: 33493169 PMCID: PMC7861560 DOI: 10.1371/journal.pgen.1009313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/04/2021] [Accepted: 12/17/2020] [Indexed: 01/11/2023] Open
Abstract
Cryptococcal disease is estimated to affect nearly a quarter of a million people annually. Environmental isolates of Cryptococcus deneoformans, which make up 15 to 30% of clinical infections in temperate climates such as Europe, vary in their pathogenicity, ranging from benign to hyper-virulent. Key traits that contribute to virulence, such as the production of the pigment melanin, an extracellular polysaccharide capsule, and the ability to grow at human body temperature have been identified, yet little is known about the genetic basis of variation in such traits. Here we investigate the genetic basis of melanization, capsule size, thermal tolerance, oxidative stress resistance, and antifungal drug sensitivity using quantitative trait locus (QTL) mapping in progeny derived from a cross between two divergent C. deneoformans strains. Using a "function-valued" QTL analysis framework that exploits both time-series information and growth differences across multiple environments, we identified QTL for each of these virulence traits and drug susceptibility. For three QTL we identified the underlying genes and nucleotide differences that govern variation in virulence traits. One of these genes, RIC8, which encodes a regulator of cAMP-PKA signaling, contributes to variation in four virulence traits: melanization, capsule size, thermal tolerance, and resistance to oxidative stress. Two major effect QTL for amphotericin B resistance map to the genes SSK1 and SSK2, which encode key components of the HOG pathway, a fungal-specific signal transduction network that orchestrates cellular responses to osmotic and other stresses. We also discovered complex epistatic interactions within and between genes in the HOG and cAMP-PKA pathways that regulate antifungal drug resistance and resistance to oxidative stress. Our findings advance the understanding of virulence traits among diverse lineages of Cryptococcus, and highlight the role of genetic variation in key stress-responsive signaling pathways as a major contributor to phenotypic variation.
Collapse
Affiliation(s)
- Cullen Roth
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Debra Murray
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Alexandria Scott
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Anna F. Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Paul M. Magwene
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
35
|
Ghosh PN, Brookes LM, Edwards HM, Fisher MC, Jervis P, Kappel D, Sewell TR, Shelton JM, Skelly E, Rhodes JL. Cross-Disciplinary Genomics Approaches to Studying Emerging Fungal Infections. Life (Basel) 2020; 10:E315. [PMID: 33260763 PMCID: PMC7761180 DOI: 10.3390/life10120315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
Emerging fungal pathogens pose a serious, global and growing threat to food supply systems, wild ecosystems, and human health. However, historic chronic underinvestment in their research has resulted in a limited understanding of their epidemiology relative to bacterial and viral pathogens. Therefore, the untargeted nature of genomics and, more widely, -omics approaches is particularly attractive in addressing the threats posed by and illuminating the biology of these pathogens. Typically, research into plant, human and wildlife mycoses have been largely separated, with limited dialogue between disciplines. However, many serious mycoses facing the world today have common traits irrespective of host species, such as plastic genomes; wide host ranges; large population sizes and an ability to persist outside the host. These commonalities mean that -omics approaches that have been productively applied in one sphere and may also provide important insights in others, where these approaches may have historically been underutilised. In this review, we consider the advances made with genomics approaches in the fields of plant pathology, human medicine and wildlife health and the progress made in linking genomes to other -omics datatypes and sets; we identify the current barriers to linking -omics approaches and how these are being underutilised in each field; and we consider how and which -omics methodologies it is most crucial to build capacity for in the near future.
Collapse
Affiliation(s)
- Pria N. Ghosh
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Lola M. Brookes
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
- Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL9 7TA, UK
| | - Hannah M. Edwards
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Matthew C. Fisher
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Phillip Jervis
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Dana Kappel
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Thomas R. Sewell
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Jennifer M.G. Shelton
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, UK
| | - Emily Skelly
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Johanna L. Rhodes
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| |
Collapse
|
36
|
Stivanelli P, Tararam CA, Trabasso P, Levy LO, Melhem MSC, Schreiber AZ, Moretti ML. Visible DNA microarray and loop-mediated isothermal amplification (LAMP) for the identification of Cryptococcus species recovered from culture medium and cerebrospinal fluid of patients with meningitis. Braz J Med Biol Res 2020; 53:e9056. [PMID: 33053095 PMCID: PMC7561074 DOI: 10.1590/1414-431x20209056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
Cryptococcal meningitis affects normal hosts and immunocompromised patients exhibiting high mortality rates. The objective of this study was to design two molecular assays, visible microarray platforms and loop-mediated isothermal amplification (LAMP), to identify Cryptococcus spp. and the species neoformans and gattii from the cerebral spinal fluid (CSF). To identify Cryptococcus and the two species, we designed two microarrays DNA platforms based on the internal transcribed spacer (ITS) region and CAP59 gene and LAMP assays specific for Cryptococcus species. The assays were tested using CSF from patients with cryptococcal meningitis. CSF from patients with cryptococcal meningitis was cultured in Sabouraud culture medium, and the Cryptococcus spp. grown in the culture medium were also tested for LAMP and microarray platforms. The results were compared to DNA sequencing of the same genetic regions. A total of 133 CSF samples were studied. Eleven CSFs were positive for Cryptococcus (9 C. neoformans and 2 C. gattii), 15 were positive for bacteria, and 107 were negative. The CAP59 platform correctly identified 73% of the CSF samples, while the ITS platform identified 45.5%. CAP59 platform correctly identified 100% of the Cryptococcus isolates, and ITS platform identified 70%. The two sets of LAMP primers correctly identified 100% of the Cryptococcus isolates. However, for CSF samples, the amplification occurred only in 55.5% of C. neoformans. The methodologies were reliable in the identification of Cryptococcus species, mainly for isolates from culture medium, and they might be applied as adjunctive tests to identify Cryptococcus species.
Collapse
Affiliation(s)
- P Stivanelli
- Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - C A Tararam
- Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - P Trabasso
- Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - L O Levy
- Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - M S C Melhem
- Instituto Adolfo Lutz, São Paulo, SP, Brasil.,Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - A Z Schreiber
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - M L Moretti
- Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.,Centro de Pesquisa em Obesidade e Comorbidades (CEPIDI), Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
37
|
Comparative Genomics Analyses of Lifestyle Transitions at the Origin of an Invasive Fungal Pathogen in the Genus Cryphonectria. mSphere 2020; 5:5/5/e00737-20. [PMID: 33055257 PMCID: PMC7565894 DOI: 10.1128/msphere.00737-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Forest and agroecosystems, as well as animal and human health, are threatened by emerging pathogens. Following decimation of chestnuts in the United States, the fungal pathogen Cryphonectria parasitica colonized Europe. After establishment, the pathogen population gave rise to a highly successful lineage that spread rapidly across the continent. Core to our understanding of what makes a successful pathogen is the genetic repertoire enabling the colonization and exploitation of host species. Here, we have assembled >100 genomes across two related genera to identify key genomic determinants leading to the emergence of chestnut blight. We found subtle yet highly specific changes in the transition from saprotrophy to latent pathogenicity mostly determined by enzymes involved in carbohydrate metabolism. Large-scale genomic analyses of genes underlying key nutrition modes can facilitate the detection of species with the potential to emerge as pathogens. Emerging fungal pathogens are a threat to forest and agroecosystems, as well as animal and human health. How pathogens evolve from nonpathogenic ancestors is still poorly understood, making the prediction of future outbreaks challenging. Most pathogens have evolved lifestyle adaptations, which were enabled by specific changes in the gene content of the species. Hence, understanding transitions in the functions encoded by genomes gives valuable insight into the evolution of pathogenicity. Here, we studied lifestyle evolution in the genus Cryphonectria, including the prominent invasive pathogen Cryphonectria parasitica, the causal agent of chestnut blight on Castanea species. We assembled and compared the genomes of pathogenic and putatively nonpathogenic Cryphonectria species, as well as sister group pathogens in the family Cryphonectriaceae (Diaporthales, Ascomycetes), to investigate the evolution of genome size and gene content. We found a striking loss of genes associated with carbohydrate metabolism (CAZymes) in C. parasitica compared to other Cryphonectriaceae. Despite substantial CAZyme gene loss, experimental data suggest that C. parasitica has retained wood colonization abilities shared with other Cryphonectria species. Putative effectors substantially varied in number, cysteine content, and protein length among species. In contrast, secondary metabolite gene clusters show a high degree of conservation within the genus. Overall, our results underpin the recent lifestyle transition of C. parasitica toward a more pathogenic lifestyle. Our findings suggest that a CAZyme loss may have promoted pathogenicity of C. parasitica on Castanea species. Analyzing gene complements underlying key nutrition modes can facilitate the detection of species with the potential to emerge as pathogens. IMPORTANCE Forest and agroecosystems, as well as animal and human health, are threatened by emerging pathogens. Following decimation of chestnuts in the United States, the fungal pathogen Cryphonectria parasitica colonized Europe. After establishment, the pathogen population gave rise to a highly successful lineage that spread rapidly across the continent. Core to our understanding of what makes a successful pathogen is the genetic repertoire enabling the colonization and exploitation of host species. Here, we have assembled >100 genomes across two related genera to identify key genomic determinants leading to the emergence of chestnut blight. We found subtle yet highly specific changes in the transition from saprotrophy to latent pathogenicity mostly determined by enzymes involved in carbohydrate metabolism. Large-scale genomic analyses of genes underlying key nutrition modes can facilitate the detection of species with the potential to emerge as pathogens.
Collapse
|
38
|
Fun(gi)omics: Advanced and Diverse Technologies to Explore Emerging Fungal Pathogens and Define Mechanisms of Antifungal Resistance. mBio 2020; 11:mBio.01020-20. [PMID: 33024032 PMCID: PMC7542357 DOI: 10.1128/mbio.01020-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The landscape of infectious fungal agents includes previously unidentified or rare pathogens with the potential to cause unprecedented casualties in biodiversity, food security, and human health. The influences of human activity, including the crisis of climate change, along with globalized transport, are underlying factors shaping fungal adaptation to increased temperature and expanded geographical regions. Furthermore, the emergence of novel antifungal-resistant strains linked to excessive use of antifungals (in the clinic) and fungicides (in the field) offers an additional challenge to protect major crop staples and control dangerous fungal outbreaks. The landscape of infectious fungal agents includes previously unidentified or rare pathogens with the potential to cause unprecedented casualties in biodiversity, food security, and human health. The influences of human activity, including the crisis of climate change, along with globalized transport, are underlying factors shaping fungal adaptation to increased temperature and expanded geographical regions. Furthermore, the emergence of novel antifungal-resistant strains linked to excessive use of antifungals (in the clinic) and fungicides (in the field) offers an additional challenge to protect major crop staples and control dangerous fungal outbreaks. Hence, the alarming frequency of fungal infections in medical and agricultural settings requires effective research to understand the virulent nature of fungal pathogens and improve the outcome of infection in susceptible hosts. Mycology-driven research has benefited from a contemporary and unified approach of omics technology, deepening the biological, biochemical, and biophysical understanding of these emerging fungal pathogens. Here, we review the current state-of-the-art multi-omics technologies, explore the power of data integration strategies, and highlight discovery-based revelations of globally important and taxonomically diverse fungal pathogens. This information provides new insight for emerging pathogens through an in-depth understanding of well-characterized fungi and provides alternative therapeutic strategies defined through novel findings of virulence, adaptation, and resistance.
Collapse
|
39
|
Rippee-Brooks MD, Marcinczyk RN, Lupfer CR. What came first, the virus or the egg: Innate immunity during viral coinfections. Immunol Rev 2020; 297:194-206. [PMID: 32761626 DOI: 10.1111/imr.12911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Infections with any pathogen can be severe and present with numerous complications caused by the pathogen or the host immune response to the invading microbe. However, coinfections, also called polymicrobial infections or secondary infections, can further exacerbate disease. Coinfections are more common than is often appreciated. In this review, we focus specifically on coinfections between viruses and other viruses, bacteria, parasites, or fungi. Importantly, innate immune signaling and innate immune cells that facilitate clearance of the initial viral infection can affect host susceptibility to coinfections. Understanding these immune imbalances may facilitate better diagnosis, prevention, and treatment of such coinfections.
Collapse
|
40
|
Takashima M, Suh SO, Bai FY, Sugita T. Takashi Nakase's last tweet: what is the current direction of microbial taxonomy research? FEMS Yeast Res 2020; 19:5670643. [PMID: 31816016 DOI: 10.1093/femsyr/foz066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/07/2019] [Indexed: 12/14/2022] Open
Abstract
During the last few decades, type strains of most yeast species have been barcoded using the D1/D2 domain of their LSU rRNA gene and internal transcribed spacer (ITS) region. Species identification using DNA sequences regarding conspecificity in yeasts has also been studied. Most yeast species can be identified according to the sequence divergence of their ITS region or a combination of the D1/D2 and ITS regions. Studies that have examined intraspecific diversity have used multilocus sequence analyses, whereas the marker regions used in this analysis vary depending upon taxa. D1/D2 domain and ITS region sequences have been used as barcodes to develop primers suitable for the detection of the biological diversity of environmental DNA and the microbiome. Using these barcode sequences, it is possible to identify relative lineages and infer their gene products and function, and how they adapt to their environment. If barcode sequence was not variable enough to identify a described species, one could investigate the other biological traits of these yeasts, considering geological distance, environmental circumstances and isolation of reproduction. This article is dedicated to late Dr Takashi Nakase (1939-2018).
Collapse
Affiliation(s)
- Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba 305-0074, Japan.,Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Sung-Oui Suh
- Manufacturing Science and Technology, American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, VA 20110, USA
| | - Feng-Yan Bai
- Institute of Microbiology, State Key Laboratory of Mycology, Chinese Academy of Sciences, Beijing 100101, China
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
41
|
Bertout S, Roger F, Drakulovski P, Martin A, Gouveia T, Kassi F, Menan H, Krasteva D, Delaporte E, Bellet V. African ST173 Cryptococcus deuterogattii strains are commonly less susceptible to fluconazole: An unclear mechanism of resistance. J Glob Antimicrob Resist 2020; 21:262-269. [DOI: 10.1016/j.jgar.2019.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/20/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022] Open
|
42
|
Chybowska AD, Childers DS, Farrer RA. Nine Things Genomics Can Tell Us About Candida auris. Front Genet 2020; 11:351. [PMID: 32351544 PMCID: PMC7174702 DOI: 10.3389/fgene.2020.00351] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Candida auris is a recently emerged multidrug-resistant fungal pathogen causing severe illness in hospitalized patients. C. auris is most closely related to a few environmental or rarely observed but cosmopolitan Candida species. However, C. auris is unique in the concern it is generating among public health agencies for its rapid emergence, difficulty to treat, and the likelihood for further and more extensive outbreaks and spread. To date, five geographically distributed and genetically divergent lineages have been identified, none of which includes isolates that were collected prior to 1996. Indeed, C. auris' ecological niche(s) and emergence remain enigmatic, although a number of hypotheses have been proposed. Recent genomic and transcriptomic work has also identified a variety of gene and chromosomal features that may have conferred C. auris with several important clinical phenotypes including its drug-resistance and growth at high temperatures. In this review we discuss nine major lines of enquiry into C. auris that big-data technologies and analytical approaches are beginning to answer.
Collapse
Affiliation(s)
- Aleksandra D. Chybowska
- School of Medicine, Medical Sciences, and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Delma S. Childers
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Rhys A. Farrer
- Medical Research Council Centre for Medical Mycology at The University of Exeter, Exeter, United Kingdom
| |
Collapse
|
43
|
Jin L, Cao JR, Xue XY, Wu H, Wang LF, Guo L, Shen DX. Clinical and microbiological characteristics of Cryptococcus gattii isolated from 7 hospitals in China. BMC Microbiol 2020; 20:73. [PMID: 32228457 PMCID: PMC7106762 DOI: 10.1186/s12866-020-01752-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background Infection, even outbreak, caused by Cryptococcus gattii (C. gattii) has been reported in Canada and the United States, but there were sparsely-reported cases of C. gattii in China. Our interest in occurrence, clinical manifestation, laboratory identification and molecular characterization of Chinese C. gattii strains leads us to this research. Results Out of 254 clinical isolates, initially identified as Cryptococcus neoformans (C. neoformans), eight strains were re-identified as C. gattii. Multi-locus sequence typing (MLST) showed genotype VGI accounted for the most (6 / 8), the other two strains were genotype VGII (VGIIa and VGIIb respectively) with 3 specific spectra of molecular weight about 4342, 8686, 9611 Da by MALDI-TOF MS. The minimal inhibitory concentrations (MICs) of Fluconazole with Yeast one was 2~4 times higher than that with ATB fungus 3 and MICs of antifungal agents against VGII strains were higher than against VGI strains. Comparative proteome analysis showed that 329 and 180 proteins were highly expressed by C. gattii VGI and VGII respectively. The enrichment of differentially expressed proteins was directed to Golgi complex. Conclusions Infection by C. gattii in China occurred sparsely. Genotype VGI was predominant but VGII was more resistant to antifungal agents. There was significant difference in protein expression profile between isolates of VGI and VGII C. gattii.
Collapse
Affiliation(s)
- Liang Jin
- Medical laboratory center, First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.,Department of Clinical Laboratory, the First Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Jing-Rong Cao
- Department of Clinical Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Xin-Ying Xue
- Medical laboratory center, First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.,Department of Respiratory and Critical Care Medicine, the Affiliated Beijing Shijitan Hospital of Capital Medical University, Beijing, 100038, China
| | - Hua Wu
- Department of Clinical Laboratory, Hainan General Hospital, Haikou, 570311, China
| | - Li-Feng Wang
- Medical laboratory center, First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Ling Guo
- Medical laboratory center, First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Ding-Xia Shen
- Medical laboratory center, First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
44
|
Edouarzin E, Horn C, Paudyal A, Zhang C, Lu J, Tong Z, Giaever G, Nislow C, Veerapandian R, Hua DH, Vediyappan G. Broad-spectrum antifungal activities and mechanism of drimane sesquiterpenoids. MICROBIAL CELL 2020; 7:146-159. [PMID: 32548177 PMCID: PMC7278516 DOI: 10.15698/mic2020.06.719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eight drimane sesquiterpenoids including (-)-drimenol and (+)-albicanol were synthesized from (+)-sclareolide and evaluated for their antifungal activities. Three compounds, (-)-drimenol, (+)-albicanol, and (1R,2R,4aS,8aS)-2-hydroxy-2,5,5,8a-tetramethyl-decahydronaphthalene-1-carbaldehyde (4) showed strong activity against C. albicans. (-)-Drimenol, the strongest inhibitor of the three, (at concentrations of 8 – 64 µg/ml, causing 100% death of various fungi), acts not only against C. albicans in a fungicidal manner, but also inhibits other fungi such as Aspergillus, Cryptococcus, Pneumocystis, Blastomyces, Saksenaea and fluconazole resistant strains of C. albicans, C. glabrata, C. krusei, C. parapsilosis and C. auris. These observations suggest that drimenol is a broad-spectrum antifungal agent. At a high concentration (100 μg/ml) drimenol caused rupture of the fungal cell wall/membrane. In a nematode model of C. albicans infection, drimenol rescued the worms from C. albicans-mediated death, indicating drimenol is tolerable and bioactive in metazoans. Genome-wide fitness profiling assays of both S. cerevisiae (nonessential homozygous and essential heterozygous) and C. albicans (Tn-insertion mutants) collections revealed putative genes and pathways affected by drimenol. Using a C. albicans mutant spot assay, the Crk1 kinase associated gene products, Ret2, Cdc37, and orf19.759, orf19.1672, and orf19.4382 were revealed to be involved in drimenol's mechanism of action. The three orfs identified in this study are novel and appear to be linked with Crk1 function. Further, computational modeling results suggest possible modifications of the structure of drimenol, including the A ring, for improving the antifungal activity.
Collapse
Affiliation(s)
- Edruce Edouarzin
- Department of Chemistry, 1212 Mid Campus Drive North, Kansas State University, Manhattan, KS 66506 USA
| | - Connor Horn
- Division of Biology, 1717 Claflin Road, Kansas State University, Manhattan, KS 66506 USA
| | - Anuja Paudyal
- Division of Biology, 1717 Claflin Road, Kansas State University, Manhattan, KS 66506 USA
| | - Cunli Zhang
- Department of Chemistry, 1212 Mid Campus Drive North, Kansas State University, Manhattan, KS 66506 USA
| | - Jianyu Lu
- Department of Chemistry, 1212 Mid Campus Drive North, Kansas State University, Manhattan, KS 66506 USA
| | - Zongbo Tong
- Department of Chemistry, 1212 Mid Campus Drive North, Kansas State University, Manhattan, KS 66506 USA
| | - Guri Giaever
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC Canada V6T 1Z3
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC Canada V6T 1Z3
| | - Raja Veerapandian
- Division of Biology, 1717 Claflin Road, Kansas State University, Manhattan, KS 66506 USA
| | - Duy H Hua
- Department of Chemistry, 1212 Mid Campus Drive North, Kansas State University, Manhattan, KS 66506 USA
| | - Govindsamy Vediyappan
- Division of Biology, 1717 Claflin Road, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
45
|
Abstract
Cryptococcus gattii R265 is a hypervirulent fungal strain responsible for the recent outbreak of cryptococcosis in Vancouver Island of British Columbia in Canada. It differs significantly from Cryptococcus neoformans in its natural environment, its preferred site in the mammalian host, and its pathogenesis. Our previous studies of C. neoformans have shown that the presence of chitosan, the deacetylated form of chitin, in the cell wall attenuates inflammatory responses in the host, while its absence induces robust immune responses, which in turn facilitate clearance of the fungus and induces a protective response. The results of the present investigation reveal that the cell wall of C. gattii R265 contains a two- to threefold larger amount of chitosan than that of C. neoformans The genes responsible for the biosynthesis of chitosan are highly conserved in the R265 genome; the roles of the three chitin deacetylases (CDAs) have, however, been modified. To deduce their roles, single and double CDA deletion strains and a triple CDA deletion strain were constructed in a R265 background and were subjected to mammalian infection studies. Unlike C. neoformans where Cda1 has a discernible role in fungal pathogenesis, in strain R265, Cda3 is critical for virulence. Deletion of either CDA3 alone or in combination with another CDA (cda1Δ3Δ or cda2Δ3Δ) or both (cda1Δ2Δ3Δ) rendered the fungus avirulent and cleared from the infected host. Moreover, the cda1Δ2Δ3Δ strain of R265 induced a protective response to a subsequent infection with R265. These studies begin to illuminate the regulation of chitosan biosynthesis of C. gattii and its subsequent effect on fungal virulence.IMPORTANCE The fungal cell wall is an essential organelle whose components provide the first line of defense against host-induced antifungal activity. Chitosan is one of the carbohydrate polymers in the cell wall that significantly affects the outcome of host-pathogen interaction. Chitosan-deficient strains are avirulent, implicating chitosan as a critical virulence factor. C. gattii R265 is an important fungal pathogen of concern due to its ability to cause infections in individuals with no apparent immune dysfunction and an increasing geographical distribution. Characterization of the fungal cell wall and understanding the contribution of individual molecules of the cell wall matrix to fungal pathogenesis offer new therapeutic avenues for intervention. In this report, we show that the C. gattii R265 strain has evolved alternate regulation of chitosan biosynthesis under both laboratory growth conditions and during mammalian infection compared to that of C. neoformans.
Collapse
|
46
|
Engelthaler DM, Casadevall A. On the Emergence of Cryptococcus gattii in the Pacific Northwest: Ballast Tanks, Tsunamis, and Black Swans. mBio 2019; 10:e02193-19. [PMID: 31575770 PMCID: PMC6775458 DOI: 10.1128/mbio.02193-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The appearance of Cryptococcus gattii in the North American Pacific Northwest (PNW) in 1999 was an unexpected and is still an unexplained event. Recent phylogenomic analyses strongly suggest that this pathogenic fungus arrived in the PNW approximately 7 to 9 decades ago. In this paper, we theorize that the ancestors of the PNW C. gattii clones arrived in the area by shipborne transport, possibly in contaminated ballast, and established themselves in coastal waters early in the 20th century. In 1964, a tsunami flooded local coastal regions, transporting C. gattii to land. The occurrence of cryptococcosis in animals and humans 3 decades later suggests that adaptation to local environs took time, possibly requiring an increase in virulence and further dispersal. Tsunamis as a mechanism for the seeding of land with pathogenic waterborne microbes may have important implications for our understanding of how infectious diseases emerge in certain regions. This hypothesis suggests experimental work for its validation or refutation.
Collapse
|
47
|
Beardsley J, Sorrell TC, Chen SCA. Central Nervous System Cryptococcal Infections in Non-HIV Infected Patients. J Fungi (Basel) 2019; 5:jof5030071. [PMID: 31382367 PMCID: PMC6787755 DOI: 10.3390/jof5030071] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
Central nervous system (CNS) cryptococcosis in non-HIV infected patients affects solid organ transplant (SOT) recipients, patients with malignancy, rheumatic disorders, other immunosuppressive conditions and immunocompetent hosts. More recently described risks include the use of newer biologicals and recreational intravenous drug use. Disease is caused by Cryptococcus neoformans and Cryptococcus gattii species complex; C. gattii is endemic in several geographic regions and has caused outbreaks in North America. Major virulence determinants are the polysaccharide capsule, melanin and several ‘invasins’. Cryptococcal plb1, laccase and urease are essential for dissemination from lung to CNS and crossing the blood–brain barrier. Meningo-encephalitis is common but intracerebral infection or hydrocephalus also occur, and are relatively frequent in C. gattii infection. Complications include neurologic deficits, raised intracranial pressure (ICP) and disseminated disease. Diagnosis relies on culture, phenotypic identification methods, and cryptococcal antigen detection. Molecular methods can assist. Preferred induction antifungal therapy is a lipid amphotericin B formulation (amphotericin B deoxycholate may be used in non-transplant patients) plus 5-flucytosine for 2–6 weeks depending on host type followed by consolidation/maintenance therapy with fluconazole for 12 months or longer. Control of raised ICP is essential. Clinicians should be vigilant for immune reconstitution inflammatory syndrome.
Collapse
Affiliation(s)
- Justin Beardsley
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia
| | - Tania C Sorrell
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia
- Westmead Institute for Medical Research, Westmead, Sydney 2145, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital and the Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia.
| |
Collapse
|
48
|
Denham ST, Wambaugh MA, Brown JCS. How Environmental Fungi Cause a Range of Clinical Outcomes in Susceptible Hosts. J Mol Biol 2019; 431:2982-3009. [PMID: 31078554 PMCID: PMC6646061 DOI: 10.1016/j.jmb.2019.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
Environmental fungi are globally ubiquitous and human exposure is near universal. However, relatively few fungal species are capable of infecting humans, and among fungi, few exposure events lead to severe systemic infections. Systemic infections have mortality rates of up to 90%, cost the US healthcare system $7.2 billion annually, and are typically associated with immunocompromised patients. Despite this reputation, exposure to environmental fungi results in a range of outcomes, from asymptomatic latent infections to severe systemic infection. Here we discuss different exposure outcomes for five major fungal pathogens: Aspergillus, Blastomyces, Coccidioides, Cryptococcus, and Histoplasma species. These fungi include a mold, a budding yeast, and thermal dimorphic fungi. All of these species must adapt to dramatically changing environments over the course of disease. These dynamic environments include the human lung, which is the first exposure site for these organisms. Fungi must defend themselves against host immune cells while germinating and growing, which risks further exposing microbe-associated molecular patterns to the host. We discuss immune evasion strategies during early infection, from disruption of host immune cells to major changes in fungal cell morphology.
Collapse
Affiliation(s)
- Steven T Denham
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Morgan A Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
49
|
Alves Soares E, Lazera MDS, Wanke B, de Faria Ferreira M, Carvalhaes de Oliveira RV, Oliveira AG, Coutinho ZF. Mortality by cryptococcosis in Brazil from 2000 to 2012: A descriptive epidemiological study. PLoS Negl Trop Dis 2019; 13:e0007569. [PMID: 31356603 PMCID: PMC6687200 DOI: 10.1371/journal.pntd.0007569] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/08/2019] [Accepted: 06/21/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cryptococcosis is a neglected and predominantly opportunistic mycosis that, in Brazil, poses an important public health problem, due to its late diagnosis and high lethality. METHODS The present study analysed cryptococcosis mortality in Brazil from January 2000 to December 2012, based on secondary data (Mortality Information System/SIM-DATASUS and IBGE). RESULTS Out of 5,755 recorded deaths in which cryptococcosis was mentioned as one of the morbid states that contributed to death, two distinct groups emerged: 1,121 (19.5%) registered cryptococcosis as the basic cause of death, and 4,634 (80.5%) registered cryptococcosis associated with risk factors, mainly AIDS (75%), followed by other host risks (5.5%). The mortality rate by cryptococcosis as the basic cause was 6.19/million inhabitants, whereas the mortality rate by cryptococcosis as an associated cause was 25.19/million inhabitants. Meningitis was the predominant clinical form (80%), males were the more affected (69%), and 39.5 years old was the mean age. The highest mortality rate due to cryptococcosis as basic cause occurred in the state of Mato Grosso (10.96/million inhabitants). Mortality rates due to cryptococcosis as associated cause were highest in the states of Santa Catarina (70.41/million inhabitants) and Rio Grande do Sul (64.40/million inhabitants), both in the South Region. Southeast, Northeast and South showed significant time trends in mortality rates. CONCLUSIONS This study is relevant because it shows the magnitude of cryptococcosis mortality linked to AIDS and removes the invisibility of a particular non-AIDS-related disease, accounting for almost 20% of all cryptococcosis deaths. It can also contribute to control and surveillance programs, beyond highlighting the urgent prioritization of early diagnosis and proper treatment to reduce the unacceptable mortality rate of this neglected mycosis in Brazil.
Collapse
Affiliation(s)
- Emmanuel Alves Soares
- Natan Portela Institute of Tropical Diseases, State Secretary of Health of Piauí, Departament of infectious disease, Teresina-PI, Brasil
| | - Márcia dos Santos Lazera
- National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Foundation, Department of Mycology, Rio de Janeiro-RJ, Brazil
| | - Bodo Wanke
- National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Foundation, Department of Mycology, Rio de Janeiro-RJ, Brazil
| | - Marcela de Faria Ferreira
- National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Foundation, Department of Mycology, Rio de Janeiro-RJ, Brazil
| | | | - Adeno Gonçalves Oliveira
- Natan Portela Institute of Tropical Diseases, State Secretary of Health of Piauí, Departament of infectious disease, Teresina-PI, Brasil
| | - Ziadir Francisco Coutinho
- Health Center Germano Sinval Farias, National School of Public Health/Oswaldo Cruz Foundation, Department of Public Health, Rio de Janeiro-RJ, Brazil
| |
Collapse
|
50
|
Hurtado JC, Castillo P, Fernandes F, Navarro M, Lovane L, Casas I, Quintó L, Marco F, Jordao D, Ismail MR, Lorenzoni C, Martinez-Palhares AE, Ferreira L, Lacerda M, Monteiro W, Sanz A, Letang E, Marimon L, Jesri S, Cossa A, Mandomando I, Vila J, Bassat Q, Ordi J, Menéndez C, Carrilho C, Martínez MJ. Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Sci Rep 2019; 9:7493. [PMID: 31097746 PMCID: PMC6522501 DOI: 10.1038/s41598-019-43941-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/03/2019] [Indexed: 01/14/2023] Open
Abstract
Cryptococcosis is a major opportunistic infection and is one of the leading causes of death in adults living with HIV in sub-Saharan Africa. Recent estimates indicate that more than 130,000 people may die annually of cryptococcal meningitis in this region. Although complete diagnostic autopsy (CDA) is considered the gold standard for determining the cause of death, it is seldom performed in low income settings. In this study, a CDA was performed in 284 deceased patients from Mozambique (n = 223) and Brazil (n = 61). In depth histopathological and microbiological analyses were carried out in all cases dying of cryptococcosis. We determined the cryptococcal species, the molecular and sero-mating types and antifungal susceptibility. We also described the organs affected and reviewed the clinical presentation and patient management. Among the 284 cases included, 17 fatal cryptococcal infections were diagnosed. Cryptococcus was responsible for 16 deaths among the 163 HIV-positive patients (10%; 95%CI: 6-15%), including four maternal deaths. One third of the cases corresponded to C. gattii (VGI and VGIV molecular types, Bα and Cα strains) and the remaining infections typed were caused by C. neoformans var. Grubii (all VNI and Aα strains). The level of pre-mortem clinical suspicion was low (7/17, 41%), and 7/17 patients (41%) died within the first 72 hours of admission. Cryptococcosis was responsible for a significant proportion of AIDS-related mortality. The clinical diagnosis and patient management were inadequate, supporting the need for cryptococcal screening for early detection of the disease. This is the first report of the presence of C. gattii infection in Mozambique.
Collapse
Affiliation(s)
- Juan Carlos Hurtado
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Paola Castillo
- Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain.,Department of Pathology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Fabiola Fernandes
- Department of Pathology, Maputo Central Hospital, Maputo, Mozambique
| | - Mireia Navarro
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Lucilia Lovane
- Department of Pathology, Maputo Central Hospital, Maputo, Mozambique
| | - Isaac Casas
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Llorenç Quintó
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Francesc Marco
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Dercio Jordao
- Department of Pathology, Maputo Central Hospital, Maputo, Mozambique
| | - Mamudo R Ismail
- Department of Pathology, Maputo Central Hospital, Maputo, Mozambique.,Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Cesaltina Lorenzoni
- Department of Pathology, Maputo Central Hospital, Maputo, Mozambique.,Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | | | - Luiz Ferreira
- Fundação de Medicina Tropical Doutor Heitor Viera Dourado, Manaus, Amazonas, Brazil
| | - Marcus Lacerda
- Fundação de Medicina Tropical Doutor Heitor Viera Dourado, Manaus, Amazonas, Brazil.,Instituto de Pesquisas Leônidas & Maria Deane, Fiocruz, Manaus, Brazil
| | - Wuelton Monteiro
- Fundação de Medicina Tropical Doutor Heitor Viera Dourado, Manaus, Amazonas, Brazil
| | - Ariadna Sanz
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Emilio Letang
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Hospital del Mar. Service of Infectious Diseases, Hospital del Mar, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Lorena Marimon
- Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain.,Department of Pathology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Susan Jesri
- Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain.,Department of Pathology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Anelsio Cossa
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | | | - Jordi Vila
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,ICREA, Catalan Institution for Research and Advanced Studies, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
| | - Jaume Ordi
- Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain.,Department of Pathology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Clara Menéndez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carla Carrilho
- Department of Pathology, Maputo Central Hospital, Maputo, Mozambique.,Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Miguel J Martínez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain. .,Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|