1
|
Zhang S, Anang S, Zhang Z, Nguyen HT, Ding H, Kappes JC, Sodroski J. Conformations of membrane human immunodeficiency virus (HIV-1) envelope glycoproteins solubilized in Amphipol A18 lipid-nanodiscs. J Virol 2024; 98:e0063124. [PMID: 39248459 PMCID: PMC11495050 DOI: 10.1128/jvi.00631-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
Upon binding to the host cell receptor, CD4, the pretriggered (State-1) conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer undergoes transitions to downstream conformations important for virus entry. State 1 is targeted by most broadly neutralizing antibodies (bNAbs), whereas downstream conformations elicit immunodominant, poorly neutralizing antibody (pNAb) responses. Extraction of Env from the membranes of viruses or Env-expressing cells disrupts the metastable State-1 Env conformation, even when detergent-free approaches like styrene-maleic acid lipid nanoparticles (SMALPs) are used. Here, we combine three strategies to solubilize and purify mature membrane Envs that are antigenically native (i.e., recognized by bNAbs and not pNAbs): (1) solubilization of Env with a novel amphipathic copolymer, Amphipol A18; (2) use of stabilized pretriggered Env mutants; and (3) addition of the State-1-stabilizing entry inhibitor, BMS-806. Amphipol A18 was superior to the other amphipathic copolymers tested (SMA and AASTY 11-50) for preserving a native Env conformation. A native antigenic profile of A18 Env-lipid-nanodiscs was maintained for at least 7 days at 4°C and 2 days at 37°C in the presence of BMS-806 and was also maintained for at least 1 h at 37°C in a variety of adjuvants. The damaging effects of a single cycle of freeze-thawing on the antigenic profile of the A18 Env-lipid-nanodiscs could be prevented by the addition of 10% sucrose or 10% glycerol. These results underscore the importance of the membrane environment to the maintenance of a pretriggered (State-1) Env conformation and provide strategies for the preparation of lipid-nanodiscs containing native membrane Envs.IMPORTANCEThe human immunodeficiency virus (HIV-1) envelope glycoproteins (Envs) mediate virus entry into the host cell and are targeted by neutralizing antibodies elicited by natural infection or vaccines. Detailed studies of membrane proteins like Env rely on purification procedures that maintain their natural conformation. In this study, we show that an amphipathic copolymer A18 can directly extract HIV-1 Env from a membrane without the use of detergents. A18 promotes the formation of nanodiscs that contain Env and membrane lipids. Env in A18-lipid nanodiscs largely preserves features recognized by broadly neutralizing antibodies (bNAbs) and conceals features potentially recognized by poorly neutralizing antibodies (pNAbs). Our results underscore the importance of the membrane environment to the native conformation of HIV-1 Env. Purification methods that bypass the need for detergents could be useful for future studies of HIV-1 Env structure, interaction with receptors and antibodies, and immunogenicity.
Collapse
Affiliation(s)
- Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
D’Addabbo A, Tong T, Crooks ET, Osawa K, Xu J, Thomas A, Allen JD, Crispin M, Binley JM. Impact of glycan depletion, glycan debranching and increased glycan charge on HIV-1 neutralization sensitivity and immunogenicity. Glycobiology 2024; 34:cwae063. [PMID: 39115361 PMCID: PMC11442005 DOI: 10.1093/glycob/cwae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 10/02/2024] Open
Abstract
Broadly neutralizing antibodies (bNAbs) isolated from HIV-1 infected donors are vaccine paradigms. These bNAbs recognize envelope glycoprotein trimers that carry 75-90 oligomannose and complex-type glycans. Although bNAbs and their precursors must navigate past glycans, they usually also make some glycan contacts. Glycan-modified vaccines may therefore be useful to initiate and guide bNAb development. Here, we describe two ways to modify Env glycans for possible vaccine use: 1) using a cocktail of glycosidases (termed "NGAF3" (Neuraminidase, β-Galactosidase, N-Acetylglucosaminidase, endoglycosidase F3 (endo F3)) to deplete complex glycans to try to minimize bNAb-glycan clashes and 2) co-expressing β-1,4-galactosyltransferase 1 (B4G) and β-galactoside α-2,6 sialyltransferase 1 (ST6) during Env biosynthesis, creating bNAb-preferred glycan structures. Mass spectrometry revealed that NGAF3 removed glycan heads at 3/7 sites occupied by complex glycans. B4G overexpression resulted in hybrid glycan development whenever complex glycans were closely spaced. The glycan at position 611 in of Env's gp41 transmembrane subunit was uniquely isolated from the effects of both endo F3 and B4G. B4G and ST6 co-expression increased hybrid and sialylated glycan abundance, reducing glycan complexity. In rabbit vaccinations, B4G + ST6 virus-like particles (VLPs) induced less frequent, weaker titer NAbs, implying that ST6-mediated increased Env charge dampens vaccine antibodies. In some cases, vaccine sera preferentially neutralized B4G + ST6-modified pseudovirus. HIV-1+ donor plasma NAbs were generally more effective against B4G + ST6 modified pseudovirus, suggesting a preference for less complex and/or α-2,6 sialylated Env trimers. Collectively, our data suggest that B4G and ST6 Env modifications are best suited for intermediate or late vaccine shots.
Collapse
Affiliation(s)
- Alessio D’Addabbo
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Tommy Tong
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Emma T Crooks
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Keiko Osawa
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Jiamin Xu
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Alyssa Thomas
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - James M Binley
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| |
Collapse
|
3
|
Zhang Z, Anang S, Nguyen HT, Fritschi C, Smith AB, Sodroski JG. Membrane HIV-1 envelope glycoproteins stabilized more strongly in a pretriggered conformation than natural virus Envs. iScience 2024; 27:110141. [PMID: 38979012 PMCID: PMC11228805 DOI: 10.1016/j.isci.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
The pretriggered conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ((gp120/gp41)3) is targeted by virus entry inhibitors and broadly neutralizing antibodies (bNAbs). The lability of pretriggered Env has hindered its characterization. Here, we produce membrane Env variants progressively stabilized in pretriggered conformations, in some cases to a degree beyond that found in natural HIV-1 strains. Pretriggered Env stability correlated with stronger trimer subunit association, increased virus sensitivity to bNAb neutralization, and decreased capacity to mediate cell-cell fusion and virus entry. For some highly stabilized Env mutants, after virus-host cell engagement, the normally inaccessible gp120 V3 region on an Env intermediate became targetable by otherwise poorly neutralizing antibodies. Thus, evolutionary pressure on HIV-1 Env to maintain trimer integrity, responsiveness to the CD4 receptor, and resistance to antibodies modulates pretriggered Env stability. The strongly stabilized pretriggered membrane Envs reported here will facilitate further characterization of this functionally important conformation.
Collapse
Affiliation(s)
- Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Fritschi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Becerra JC, Hitchcock L, Vu K, Gach JS. Neutralizing the threat: harnessing broadly neutralizing antibodies against HIV-1 for treatment and prevention. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:207-220. [PMID: 38975023 PMCID: PMC11224682 DOI: 10.15698/mic2024.07.826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024]
Abstract
Broadly neutralizing antibodies (bnAbs) targeting the human immunodeficiency virus-1 (HIV-1) have played a crucial role in elucidating and characterizing neutralization-sensitive sites on the HIV-1 envelope spike and in informing vaccine development. Continual advancements in identifying more potent bnAbs, along with their capacity to trigger antibody-mediated effector functions, coupled with modifications to extend their half-life, position them as promising candidates for both HIV-1 treatment and prevention. While current pharmacological interventions have made significant progress in managing HIV-1 infection and enhancing quality of life, no definitive cure or vaccines have been developed thus far. Standard treatments involve daily oral anti-retroviral therapy, which, despite its efficacy, can lead to notable long-term side effects. Recent clinical trial data have demonstrated encouraging therapeutic and preventive potential for bnAb therapies in both HIV-1-infected individuals and those without the infection. This review provides an overview of the advancements in HIV-1-specific bnAbs and discusses the insights gathered from recent clinical trials regarding their application in treating and preventing HIV-1 infection.
Collapse
Affiliation(s)
- Juan C Becerra
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Lauren Hitchcock
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Khoa Vu
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Johannes S Gach
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| |
Collapse
|
5
|
Gai Y, Gao N, Mou Z, Yang C, Wang L, Ji W, Gu T, Yu B, Wang C, Yu X, Gao F. Recapitulation of HIV-1 Neutralization Breadth in Plasma by the Combination of Two Broadly Neutralizing Antibodies from Different Lineages in the Same SHIV-Infected Rhesus Macaque. Int J Mol Sci 2024; 25:7200. [PMID: 39000308 PMCID: PMC11240982 DOI: 10.3390/ijms25137200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Viral infection generally induces polyclonal neutralizing antibody responses. However, how many lineages of antibody responses can fully represent the neutralization activities in sera has not been well studied. Using the newly designed stable HIV-1 Env trimer as hook, we isolated two distinct broadly neutralizing antibodies (bnAbs) from Chinese rhesus macaques infected with SHIV1157ipd3N4 for 5 years. One lineage of neutralizing antibodies (JT15 and JT16) targeted the V2-apex in the Env trimers, similar to the J038 lineage bnAbs identified in our previous study. The other lineage neutralizing antibody (JT18) targeted the V3 crown region in the Env, which strongly competed with human 447-52D. Each lineage antibody neutralized a different set of viruses. Interestingly, when the two neutralizing antibodies from different lineages isolated from the same macaque were combined, the mixture had a neutralization breath very similar to that from the cognate sera. Our study demonstrated that a minimum of two different neutralizing antibodies can fully recapitulate the serum neutralization breadth. This observation can have important implications in AIDS vaccine design.
Collapse
Affiliation(s)
- Yanxin Gai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Nan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhaoyang Mou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chumeng Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Libian Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wanshan Ji
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Tiejun Gu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
6
|
Wieczorek L, Chang D, Sanders-Buell E, Zemil M, Martinez E, Schoen J, Chenine AL, Molnar S, Barrows B, Poltavee K, Charurat ME, Abimiku A, Blattner W, Iroezindu M, Kokogho A, Michael NL, Crowell TA, Ake JA, Tovanabutra S, Polonis VR. Differences in neutralizing antibody sensitivities and envelope characteristics indicate distinct antigenic properties of Nigerian HIV-1 subtype G and CRF02_AG. Virol J 2024; 21:148. [PMID: 38951814 PMCID: PMC11218331 DOI: 10.1186/s12985-024-02394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/19/2024] [Indexed: 07/03/2024] Open
Abstract
The magnitude of the HIV-1 epidemic in Nigeria is second only to the subtype C epidemic in South Africa, yet the subtypes prevalent in Nigeria require further characterization. A panel of 50 subtype G and 18 CRF02_AG Nigerian HIV-1 pseudoviruses (PSV) was developed and envelope coreceptor usage, neutralization sensitivity and cross-clade reactivity were characterized. These PSV were neutralized by some antibodies targeting major neutralizing determinants, but potentially important differences were observed in specific sensitivities (eg. to sCD4, MPER and V2/V3 monoclonal antibodies), as well as in properties such as variable loop lengths, number of potential N-linked glycans and charge, demonstrating distinct antigenic characteristics of CRF02_AG and subtype G. There was preferential neutralization of the matched CRF/subtype when PSV from subtype G or CRF02_AG were tested using pooled plasma. These novel Nigerian PSV will be useful to study HIV-1 CRF- or subtype-specific humoral immune responses for subtype G and CRF02_AG.
Collapse
Affiliation(s)
- Lindsay Wieczorek
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - David Chang
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
- Present address: Office of AIDS Research, National Institutes of Health, Rockville, MD, 20852, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Elizabeth Martinez
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Jesse Schoen
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes-Laurence Chenine
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
- Present address: Integrated Biotherapeutics, Rockville, MD, 20850, USA
| | - Sebastian Molnar
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Brittani Barrows
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
- Present address: Lentigen Technology, Gaithersburg, MD, 20878, USA
| | - Kultida Poltavee
- SEARCH, Insititute of HIV Research and Innovation (IHRI), Bangkok, Thailand
| | - Man E Charurat
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alash'le Abimiku
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William Blattner
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael Iroezindu
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- HJF Medical Research International, Abuja, Nigeria
| | - Afoke Kokogho
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- HJF Medical Research International, Abuja, Nigeria
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
| | - Trevor A Crowell
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Julie A Ake
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA.
| |
Collapse
|
7
|
Roark RS, Habib R, Gorman J, Li H, Connell AJ, Bonsignori M, Guo Y, Hogarty MP, Olia AS, Sowers K, Zhang B, Bibollet-Ruche F, Callaghan S, Carey JW, Cerutti G, Harris DR, He W, Lewis E, Liu T, Mason RD, Park Y, Rando JM, Singh A, Wolff J, Lei QP, Louder MK, Doria-Rose NA, Andrabi R, Saunders KO, Seaman MS, Haynes BF, Kulp DW, Mascola JR, Roederer M, Sheng Z, Hahn BH, Shaw GM, Kwong PD, Shapiro L. HIV-1 neutralizing antibodies in SHIV-infected macaques recapitulate structurally divergent modes of human V2 apex recognition with a single D gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598384. [PMID: 38903070 PMCID: PMC11188099 DOI: 10.1101/2024.06.11.598384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Broadly neutralizing antibodies targeting the V2 apex of the HIV-1 envelope trimer are among the most common specificities elicited in HIV-1-infected humans and simian-human immunodeficiency virus (SHIV)-infected macaques. To gain insight into the prevalent induction of these antibodies, we isolated and characterized 11 V2 apex-directed neutralizing antibody lineages from SHIV-infected rhesus macaques. Remarkably, all SHIV-induced V2 apex lineages were derived from reading frame two of the rhesus DH3-15*01 gene. Cryo-EM structures of envelope trimers in complex with antibodies from nine rhesus lineages revealed modes of recognition that mimicked three canonical human V2 apex-recognition modes. Notably, amino acids encoded by DH3-15*01 played divergent structural roles, inserting into a hole at the trimer apex, H-bonding to an exposed strand, or forming part of a loop scaffold. Overall, we identify a DH3-15*01-signature for rhesus V2 apex broadly neutralizing antibodies and show that highly selected genetic elements can play multiple roles in antigen recognition. Highlights Isolated 11 V2 apex-targeted HIV-neutralizing lineages from 10 SHIV-infected Indian-origin rhesus macaquesCryo-EM structures of Fab-Env complexes for nine rhesus lineages reveal modes of recognition that mimic three modes of human V2 apex antibody recognitionAll SHIV-elicited V2 apex lineages, including two others previously published, derive from the same DH3-15*01 gene utilizing reading frame twoThe DH3-15*01 gene in reading frame two provides a necessary, but not sufficient, signature for V2 apex-directed broadly neutralizing antibodiesStructural roles played by DH3-15*01-encoded amino acids differed substantially in different lineages, even for those with the same recognition modePropose that the anionic, aromatic, and extended character of DH3-15*01 in reading frame two provides a selective advantage for V2 apex recognition compared to B cells derived from other D genes in the naïve rhesus repertoireDemonstrate that highly selected genetic elements can play multiple roles in antigen recognition, providing a structural means to enhance recognition diversity.
Collapse
|
8
|
Moyo-Gwete T, Ayres F, Mzindle NB, Makhado Z, Manamela NP, Richardson SI, Kitchin D, van Graan S, van Heerden J, Parbhoo N, Chege GK, Moore PL. Evaluating the antibody response elicited by diverse HIV envelope immunogens in the African green monkey (Vervet) model. Sci Rep 2024; 14:13311. [PMID: 38858452 PMCID: PMC11164991 DOI: 10.1038/s41598-024-63703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
African Green (Vervet) monkeys have been extensively studied to understand the pathogenesis of infectious diseases. Using vervet monkeys as pre-clinical models may be an attractive option for low-resourced areas as they are found abundantly and their maintenance is more cost-effective than bigger primates such as rhesus macaques. We assessed the feasibility of using vervet monkeys as animal models to examine the immunogenicity of HIV envelope trimer immunogens in pre-clinical testing. Three groups of vervet monkeys were subcutaneously immunized with either the BG505 SOSIP.664 trimer, a novel subtype C SOSIP.664 trimer, CAP255, or a combination of BG505, CAP255 and CAP256.SU SOSIP.664 trimers. All groups of vervet monkeys developed robust binding antibodies by the second immunization with the peak antibody response occurring after the third immunization. Similar to binding, antibody dependent cellular phagocytosis was also observed in all the monkeys. While all animals developed potent, heterologous Tier 1 neutralizing antibody responses, autologous neutralization was limited with only half of the animals in each group developing responses to their vaccine-matched pseudovirus. These data suggest that the vervet monkey model may yield distinct antibody responses compared to other models. Further study is required to further determine the utility of this model in HIV immunization studies.
Collapse
Affiliation(s)
- Thandeka Moyo-Gwete
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa.
| | - Frances Ayres
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Nonkululeko B Mzindle
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Zanele Makhado
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Nelia P Manamela
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Simone I Richardson
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Dale Kitchin
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Strauss van Graan
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Joritha van Heerden
- Primate Unit and Delft Animal Centre, Centre and Platform Office, South African Medical Research Council, Cape Town, South Africa
| | - Nishal Parbhoo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, South Africa
| | - Gerald K Chege
- Primate Unit and Delft Animal Centre, Centre and Platform Office, South African Medical Research Council, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Penny L Moore
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| |
Collapse
|
9
|
Altman PX, Parren M, Sang H, Ozorowski G, Lee WH, Smider VV, Wilson IA, Ward AB, Mwangi W, Burton DR, Sok D. HIV envelope trimers and gp120 as immunogens to induce broadly neutralizing antibodies in cows. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585065. [PMID: 38585787 PMCID: PMC10996456 DOI: 10.1101/2024.03.20.585065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The study of immunogens capable of eliciting broadly neutralizing antibodies (bnAbs) is crucial for the development of an HIV vaccine. To date, only cows, making use of their ultralong CDRH3 loops, have reliably elicited bnAbs following immunization with HIV Envelope trimers. Antibody responses to the CD4 binding site have been readily elicited by immunization of cows with a stabilized Env trimer of the BG505 strain and, with more difficulty, to the V2-apex region of Env with a cocktail of trimers. Here, we sought to determine whether the BG505 Env trimer could be engineered to generate new bnAb specificities in cows. Since the cow CD4 binding site bnAbs bind to monomeric BG505 gp120, we also sought to determine whether gp120 immunization alone might be sufficient to induce bnAbs. We found that engineering the CD4 binding site by mutation of a key binding residue of BG505 HIV Env resulted in a reduced bnAb response that took more immunizations to develop. Monoclonal antibodies isolated from one animal were directed to the V2-apex, suggesting a re-focusing of the bnAb response. Immunization with monomeric BG505 g120 generated no serum bnAb responses, indicating that the ultralong CDRH3 bnAbs are only elicited in the context of the trimer in the absence of many other less restrictive epitopes presented on monomeric gp120. The results support the notion of a hierarchy of epitopes on HIV Env and suggest that, even with the presence in the cow repertoire of ultralong CDRH3s, bnAb epitopes are relatively disfavored.
Collapse
Affiliation(s)
- Pilar X. Altman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medical, Kansas State University, Manhattan, Kansas 66506, USA
| | - Gabriel Ozorowski
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vaughn V. Smider
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Applied Biomedical Science Institute, San Diego, CA, 92127, USA
| | - Ian A. Wilson
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew B. Ward
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medical, Kansas State University, Manhattan, Kansas 66506, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Devin Sok
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative, New York, NY 10004, USA
- Lead contact
| |
Collapse
|
10
|
Wang Q, Zhang S, Nguyen HT, Sodroski J. Inhibition of human immunodeficiency virus (HIV-1) infectivity by expression of poorly or broadly neutralizing antibodies against Env in virus-producing cells. J Virol 2024; 98:e0159423. [PMID: 38289101 PMCID: PMC10878270 DOI: 10.1128/jvi.01594-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein precursor (gp160) trimerizes, is modified by high-mannose glycans in the endoplasmic reticulum, and is transported via Golgi and non-Golgi secretory pathways to the infected cell surface. In the Golgi, gp160 is partially modified by complex carbohydrates and proteolytically cleaved to produce the mature functional Env trimer, which is preferentially incorporated into virions. Broadly neutralizing antibodies (bNAbs) generally recognize the cleaved Env trimer, whereas poorly neutralizing antibodies (pNAbs) bind the conformationally flexible gp160. We found that expression of bNAbs, pNAbs, or soluble/membrane forms of the receptor, CD4, in cells producing HIV-1 all decreased viral infectivity. Four patterns of co-expressed ligand:Env were observed: (i) ligands (CD4, soluble CD4-Ig, and some pNAbs) that specifically recognize the CD4-bound Env conformation resulted in uncleaved Envs lacking complex glycans that were not incorporated into virions; (ii) other pNAbs produced Envs with some complex carbohydrates and severe defects in cleavage, which were relieved by brefeldin A treatment; (iii) bNAbs that recognize gp160 as well as mature Envs resulted in Envs with some complex carbohydrates and moderate decreases in virion Env cleavage; and (iv) bNAbs that preferentially recognize mature Envs produced cleaved Envs with complex glycans in cells and on virions. The low infectivity observed upon co-expression of pNAbs or CD4 could be explained by disruption of Env trafficking, reducing the level of Env and/or increasing the fraction of uncleaved Env on virions. In addition to bNAb effects on virion Env cleavage, the secreted bNAbs neutralized the co-expressed viruses.IMPORTANCEThe Env trimers on the HIV-1 mediate virus entry into host cells. Env is synthesized in infected cells, modified by complex sugars, and cleaved to form a mature, functional Env, which is incorporated into virus particles. Env elicits antibodies in infected individuals, some of which can neutralize the virus. We found that antibodies co-expressed in the virus-producing cell can disrupt Env transit to the proper compartment for cleavage and sugar modification and, in some cases, block incorporation into viruses. These studies provide insights into the processes by which Env becomes functional in the virus-producing cell and may assist attempts to interfere with these events to inhibit HIV-1 infection.
Collapse
Affiliation(s)
- Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Sanchez-Merino V, Martin-Serrano M, Beltran M, Lazaro-Martin B, Cervantes E, Oltra M, Sainz T, Garcia F, Navarro ML, Yuste E. The Association of HIV-1 Neutralization in Aviremic Children and Adults with Time to ART Initiation and CD4+/CD8+ Ratios. Vaccines (Basel) 2023; 12:8. [PMID: 38276667 PMCID: PMC10820134 DOI: 10.3390/vaccines12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Broadly neutralizing antibodies (bnAbs) bind and neutralize diverse HIV isolates and demonstrate protective effects in primate models and humans against specific isolates. To develop an effective HIV vaccine, it is widely believed that inducing these antibodies is crucial. However, the high somatic hypermutation in bnAbs and the limited affinity of HIV Env proteins for bnAb germline precursors suggest that extended antigen exposure is necessary for their production. Consequently, HIV vaccine research is exploring complex sequential vaccination strategies to guide the immune response through maturation stages. In this context, the exploration of the factors linked to the generation of these antibodies across diverse age groups becomes critical. In this study, we assessed the anti-HIV-1 neutralization potency and breadth in 108 aviremic adults and 109 aviremic children under 15 years of age who were receiving ART. We used a previously described minipanel of recombinant viruses and investigated the factors associated with neutralization in these individuals. We identified individuals in both groups who were capable of neutralizing viruses from three different subtypes, with greater cross-neutralization observed in the adult group (49.0% vs. 9.2%). In both groups, we observed an inverse association between neutralization breadth and the CD4+/CD8+ ratio, as well as a direct association with the time to ART initiation. However, we found no association with time post-infection, cumulative ART duration, or CD8+ cell levels. The present study demonstrates that children receiving antiretroviral therapy generate broadly neutralizing responses to HIV-1, albeit with lower magnitude compared to adults. We also observed that neutralization breadth is associated with CD4+/CD8+ levels and time to treatment initiation in both children and adults living with HIV-1. Our interpretation of these results is that a delay in ART initiation could have prolonged the antigenic stimulation associated with viral replication and thus facilitate the capacity to elicit long-lasting broadly neutralizing responses. These results corroborate prior findings that show that HIV-1-neutralizing responses can persist for years, even at low antigen levels, implying an HIV-1 vaccine may induce lasting neutralizing antibody response.
Collapse
Affiliation(s)
- Victor Sanchez-Merino
- National Microbiology Center, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (M.M.-S.); (M.B.)
- Faculty of Health Sciences, Alfonso X el Sabio University, 28691 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
| | - Miguel Martin-Serrano
- National Microbiology Center, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (M.M.-S.); (M.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Manuela Beltran
- National Microbiology Center, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (M.M.-S.); (M.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
| | - Beatriz Lazaro-Martin
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, 28009 Madrid, Spain;
| | - Eloisa Cervantes
- Sección de Infectología Pediátrica, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain;
| | - Manuel Oltra
- Sección de Patologia Infecciosa Infantil, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain;
| | - Talia Sainz
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
- Department of Pediatrics, Infectious and Tropical Diseases, La Paz Research Institute (IdiPAZ), La Paz University Hospital, 28046 Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Felipe Garcia
- Infectious Diseases Department, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain;
| | - Maria Luisa Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, 28009 Madrid, Spain;
| | - Eloisa Yuste
- National Microbiology Center, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (M.M.-S.); (M.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
| |
Collapse
|
12
|
Kreer C, Lupo C, Ercanoglu MS, Gieselmann L, Spisak N, Grossbach J, Schlotz M, Schommers P, Gruell H, Dold L, Beyer A, Nourmohammad A, Mora T, Walczak AM, Klein F. Probabilities of developing HIV-1 bNAb sequence features in uninfected and chronically infected individuals. Nat Commun 2023; 14:7137. [PMID: 37932288 PMCID: PMC10628170 DOI: 10.1038/s41467-023-42906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
HIV-1 broadly neutralizing antibodies (bNAbs) are able to suppress viremia and prevent infection. Their induction by vaccination is therefore a major goal. However, in contrast to antibodies that neutralize other pathogens, HIV-1-specific bNAbs frequently carry uncommon molecular characteristics that might prevent their induction. Here, we perform unbiased sequence analyses of B cell receptor repertoires from 57 uninfected and 46 chronically HIV-1- or HCV-infected individuals and learn probabilistic models to predict the likelihood of bNAb development. We formally show that lower probabilities for bNAbs are predictive of higher HIV-1 neutralization activity. Moreover, ranking bNAbs by their probabilities allows to identify highly potent antibodies with superior generation probabilities as preferential targets for vaccination approaches. Importantly, we find equal bNAb probabilities across infected and uninfected individuals. This implies that chronic infection is not a prerequisite for the generation of bNAbs, fostering the hope that HIV-1 vaccines can induce bNAb development in uninfected people.
Collapse
Affiliation(s)
- Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Cosimo Lupo
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma I, 00185, Rome, Italy
| | - Meryem S Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany
| | - Natanael Spisak
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Jan Grossbach
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases & Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931, Cologne, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Leona Dold
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Andreas Beyer
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases & Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany
| | - Armita Nourmohammad
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany
- Department of Physics, University of Washington, 3910 15th Ave Northeast, Seattle, WA, 98195, USA
- Department of Applied Mathematics, University of Washington, 4182 W Stevens Way NE, Seattle, WA, 98105, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 85 E Stevens Way NE, Seattle, WA, 98195, USA
- Fred Hutchinson Cancer Center, 1241 Eastlake Ave E, Seattle, WA, 98102, USA
| | - Thierry Mora
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
13
|
He W, Ou T, Skamangas N, Bailey CC, Bronkema N, Guo Y, Yin Y, Kobzarenko V, Zhang X, Pan A, Liu X, Xu J, Zhang L, Allwardt AE, Mitra D, Quinlan B, Sanders RW, Choe H, Farzan M. Heavy-chain CDR3-engineered B cells facilitate in vivo evaluation of HIV-1 vaccine candidates. Immunity 2023; 56:2408-2424.e6. [PMID: 37531955 PMCID: PMC11092302 DOI: 10.1016/j.immuni.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
V2-glycan/apex broadly neutralizing antibodies (bnAbs) recognize a closed quaternary epitope of the HIV-1 envelope glycoprotein (Env). This closed structure is necessary to elicit apex antibodies and useful to guide the maturation of other bnAb classes. To compare antigens designed to maintain this conformation, we evaluated apex-specific responses in mice engrafted with a diverse repertoire of B cells expressing the HCDR3 of the apex bnAb VRC26.25. Engineered B cells affinity matured, guiding the improvement of VRC26.25 itself. We found that soluble Env (SOSIP) variants differed significantly in their ability to raise anti-apex responses. A transmembrane SOSIP (SOSIP-TM) delivered as an mRNA-lipid nanoparticle elicited more potent neutralizing responses than multimerized SOSIP proteins. Importantly, SOSIP-TM elicited neutralizing sera from B cells engineered with the predicted VRC26.25-HCDR3 progenitor, which also affinity matured. Our data show that HCDR3-edited B cells facilitate efficient in vivo comparisons of Env antigens and highlight the potential of an HCDR3-focused vaccine approach.
Collapse
Affiliation(s)
- Wenhui He
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Tianling Ou
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Nickolas Skamangas
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Charles C Bailey
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Naomi Bronkema
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Yan Guo
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Yiming Yin
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Kobzarenko
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Xia Zhang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Andi Pan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Xin Liu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jinge Xu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lizhou Zhang
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Ava E Allwardt
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Debasis Mitra
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Brian Quinlan
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Farzan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Zhang Z, Wang Q, Nguyen HT, Chen HC, Chiu TJ, Smith Iii AB, Sodroski JG. Alterations in gp120 glycans or the gp41 fusion peptide-proximal region modulate the stability of the human immunodeficiency virus (HIV-1) envelope glycoprotein pretriggered conformation. J Virol 2023; 97:e0059223. [PMID: 37696048 PMCID: PMC10537687 DOI: 10.1128/jvi.00592-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 09/13/2023] Open
Abstract
The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer mediates entry into host cells by binding receptors, CD4 and CCR5/CXCR4, and fusing the viral and cell membranes. In infected cells, cleavage of the gp160 Env precursor yields the mature Env trimer, with gp120 exterior and gp41 transmembrane Env subunits. Env cleavage stabilizes the State-1 conformation, which is the major target for broadly neutralizing antibodies, and decreases the spontaneous sampling of more open Env conformations that expose epitopes for poorly neutralizing antibodies. During HIV-1 entry into cells, CD4 binding drives the metastable Env from a pretriggered (State-1) conformation into more "open," lower-energy states. Here, we report that changes in two dissimilar elements of the HIV-1 Env trimer, namely particular gp120 glycans and the gp41 fusion peptide-proximal region (FPPR), can independently modulate the stability of State 1. Individual deletion of several gp120 glycans destabilized State 1, whereas removal of a V1 glycan resulted in phenotypes indicative of a more stable pretriggered Env conformation. Likewise, some alterations of the gp41 FPPR decreased the level of spontaneous shedding of gp120 from the Env trimer and stabilized the pretriggered State-1 Env conformation. State-1-stabilizing changes were additive and could suppress the phenotypes associated with State-1-destabilizing alterations in Env. Our results support a model in which multiple protein and carbohydrate elements of the HIV-1 Env trimer additively contribute to the stability of the pretriggered (State-1) conformation. The Env modifications identified in this study will assist efforts to characterize the structure and immunogenicity of the metastable State-1 conformation. IMPORTANCE The elicitation of antibodies that neutralize multiple strains of HIV-1 is an elusive goal that has frustrated the development of an effective vaccine. The pretriggered shape of the HIV-1 envelope glycoprotein (Env) spike on the virus surface is the major target for such broadly neutralizing antibodies. The "closed" pretriggered Env shape resists the binding of most antibodies but is unstable and often assumes "open" shapes that elicit ineffective antibodies. We identified particular changes in both the protein and the sugar components of the Env trimer that stabilize the pretriggered shape. Combinations of these changes were even more effective at stabilizing the pretriggered Env than the individual changes. Stabilizing changes in Env could counteract the effect of Env changes that destabilize the pretriggered shape. Locking Env in its pretriggered shape will assist efforts to understand the Env spike on the virus and to incorporate this shape into vaccines.
Collapse
Affiliation(s)
- Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Ta-Jung Chiu
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Amos B Smith Iii
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Joseph G Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| |
Collapse
|
15
|
Molinos-Albert LM, Baquero E, Bouvin-Pley M, Lorin V, Charre C, Planchais C, Dimitrov JD, Monceaux V, Vos M, Hocqueloux L, Berger JL, Seaman MS, Braibant M, Avettand-Fenoël V, Sáez-Cirión A, Mouquet H. Anti-V1/V3-glycan broadly HIV-1 neutralizing antibodies in a post-treatment controller. Cell Host Microbe 2023; 31:1275-1287.e8. [PMID: 37433296 DOI: 10.1016/j.chom.2023.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
HIV-1 broadly neutralizing antibodies (bNAbs) can decrease viremia but are usually unable to counteract autologous viruses escaping the antibody pressure. Nonetheless, bNAbs may contribute to natural HIV-1 control in individuals off antiretroviral therapy (ART). Here, we describe a bNAb B cell lineage elicited in a post-treatment controller (PTC) that exhibits broad seroneutralization and show that a representative antibody from this lineage, EPTC112, targets a quaternary epitope in the glycan-V3 loop supersite of the HIV-1 envelope glycoprotein. The cryo-EM structure of EPTC112 complexed with soluble BG505 SOSIP.664 envelope trimers revealed interactions with N301- and N156-branched N-glycans and the 324GDIR327 V3 loop motif. Although the sole contemporaneous virus circulating in this PTC was resistant to EPTC112, it was potently neutralized by autologous plasma IgG antibodies. Our findings illuminate how cross-neutralizing antibodies can alter the HIV-1 infection course in PTCs and may control viremia off-ART, supporting their role in functional HIV-1 cure strategies.
Collapse
Affiliation(s)
- Luis M Molinos-Albert
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris 75015, France
| | - Eduard Baquero
- NanoImaging Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Université Paris Cité, Institut Pasteur, Paris 75015, France
| | | | - Valérie Lorin
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris 75015, France
| | - Caroline Charre
- Université Cité, Faculté de Médecine, Paris 75014, France; INSERM U1016, CNRS UMR8104, Institut Cochin, Paris 75014, France; AP-HP, Service de Virologie, Hôpital Cochin, Paris 75014, France
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris 75015, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris 75006, France
| | - Valérie Monceaux
- Viral Reservoirs and Immune control Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France; HIV, Inflammation and Persistence Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France
| | - Matthijn Vos
- NanoImaging Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Université Paris Cité, Institut Pasteur, Paris 75015, France
| | - Laurent Hocqueloux
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire d'Orléans La Source, Orléans 45067, France
| | - Jean-Luc Berger
- Department of Internal Medicine, Clinical Immunology and Infectious Diseases, Reims University Hospital, Reims 51100, France
| | | | | | - Véronique Avettand-Fenoël
- Université Cité, Faculté de Médecine, Paris 75014, France; INSERM U1016, CNRS UMR8104, Institut Cochin, Paris 75014, France; AP-HP, Service de Virologie, Hôpital Cochin, Paris 75014, France
| | - Asier Sáez-Cirión
- Viral Reservoirs and Immune control Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France; HIV, Inflammation and Persistence Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris 75015, France.
| |
Collapse
|
16
|
Holt GT, Gorman J, Wang S, Lowegard AU, Zhang B, Liu T, Lin BC, Louder MK, Frenkel MS, McKee K, O'Dell S, Rawi R, Shen CH, Doria-Rose NA, Kwong PD, Donald BR. Improved HIV-1 neutralization breadth and potency of V2-apex antibodies by in silico design. Cell Rep 2023; 42:112711. [PMID: 37436900 PMCID: PMC10528384 DOI: 10.1016/j.celrep.2023.112711] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV can reduce viral transmission in humans, but an effective therapeutic will require unusually high breadth and potency of neutralization. We employ the OSPREY computational protein design software to engineer variants of two apex-directed bNAbs, PGT145 and PG9RSH, resulting in increases in potency of over 100-fold against some viruses. The top designed variants improve neutralization breadth from 39% to 54% at clinically relevant concentrations (IC80 < 1 μg/mL) and improve median potency (IC80) by up to 4-fold over a cross-clade panel of 208 strains. To investigate the mechanisms of improvement, we determine cryoelectron microscopy structures of each variant in complex with the HIV envelope trimer. Surprisingly, we find the largest increases in breadth to be a result of optimizing side-chain interactions with highly variable epitope residues. These results provide insight into mechanisms of neutralization breadth and inform strategies for antibody design and improvement.
Collapse
Affiliation(s)
- Graham T Holt
- Department of Computer Science, Duke University, Durham, NC, USA; Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Siyu Wang
- Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Anna U Lowegard
- Department of Computer Science, Duke University, Durham, NC, USA; Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Bruce R Donald
- Department of Computer Science, Duke University, Durham, NC, USA; Department of Biochemistry, Duke University, Durham, NC, USA; Department of Mathematics, Duke University, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
17
|
Radford CE, Schommers P, Gieselmann L, Crawford KHD, Dadonaite B, Yu TC, Dingens AS, Overbaugh J, Klein F, Bloom JD. Mapping the neutralizing specificity of human anti-HIV serum by deep mutational scanning. Cell Host Microbe 2023; 31:1200-1215.e9. [PMID: 37327779 PMCID: PMC10351223 DOI: 10.1016/j.chom.2023.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/18/2023]
Abstract
Understanding the specificities of human serum antibodies that broadly neutralize HIV can inform prevention and treatment strategies. Here, we describe a deep mutational scanning system that can measure the effects of combinations of mutations to HIV envelope (Env) on neutralization by antibodies and polyclonal serum. We first show that this system can accurately map how all functionally tolerated mutations to Env affect neutralization by monoclonal antibodies. We then comprehensively map Env mutations that affect neutralization by a set of human polyclonal sera that neutralize diverse strains of HIV and target the site engaging the host receptor CD4. The neutralizing activities of these sera target different epitopes, with most sera having specificities reminiscent of individual characterized monoclonal antibodies, but one serum targeting two epitopes within the CD4-binding site. Mapping the specificity of the neutralizing activity in polyclonal human serum will aid in assessing anti-HIV immune responses to inform prevention strategies.
Collapse
Affiliation(s)
- Caelan E Radford
- Molecular and Cellular Biology Graduate Program, University of Washington and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timothy C Yu
- Molecular and Cellular Biology Graduate Program, University of Washington and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
18
|
Zhou R, Zhang S, Nguyen HT, Ding H, Gaffney A, Kappes JC, Smith AB, Sodroski JG. Conformations of Human Immunodeficiency Virus Envelope Glycoproteins in Detergents and Styrene-Maleic Acid Lipid Particles. J Virol 2023; 97:e0032723. [PMID: 37255444 PMCID: PMC10308955 DOI: 10.1128/jvi.00327-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
The mature human immunodeficiency virus (HIV) envelope glycoprotein (Env) trimer, which consists of noncovalently associated gp120 exterior and gp41 transmembrane subunits, mediates virus entry into cells. The pretriggered (State-1) Env conformation is the major target for broadly neutralizing antibodies (bNAbs), whereas receptor-induced downstream Env conformations elicit immunodominant, poorly neutralizing antibody (pNAb) responses. To examine the contribution of membrane anchorage to the maintenance of the metastable pretriggered Env conformation, we compared wild-type and State-1-stabilized Envs solubilized in detergents or in styrene-maleic acid (SMA) copolymers. SMA directly incorporates membrane lipids and resident membrane proteins into lipid nanoparticles (styrene-maleic acid lipid particles [SMALPs]). The integrity of the Env trimer in SMALPs was maintained at both 4°C and room temperature. In contrast, Envs solubilized in Cymal-5, a nonionic detergent, were unstable at room temperature, although their stability was improved at 4°C and/or after incubation with the entry inhibitor BMS-806. Envs solubilized in ionic detergents were relatively unstable at either temperature. Comparison of Envs solubilized in Cymal-5 and SMA at 4°C revealed subtle differences in bNAb binding to the gp41 membrane-proximal external region, consistent with these distinct modes of Env solubilization. Otherwise, the antigenicity of the Cymal-5- and SMA-solubilized Envs was remarkably similar, both in the absence and in the presence of BMS-806. However, both solubilized Envs were recognized differently from the mature membrane Env by specific bNAbs and pNAbs. Thus, detergent-based and detergent-free solubilization at 4°C alters the pretriggered membrane Env conformation in consistent ways, suggesting that Env assumes default conformations when its association with the membrane is disrupted. IMPORTANCE The human immunodeficiency virus (HIV) envelope glycoproteins (Envs) in the viral membrane mediate virus entry into the host cell and are targeted by neutralizing antibodies elicited by natural infection or vaccines. Detailed studies of membrane proteins rely on purification procedures that allow the proteins to maintain their natural conformation. In this study, we show that a styrene-maleic acid (SMA) copolymer can extract HIV-1 Env from a membrane without the use of detergents. The Env in SMA is more stable at room temperature than Env in detergents. The purified Env in SMA maintains many but not all of the characteristics expected of the natural membrane Env. Our results underscore the importance of the membrane environment to the native conformation of HIV-1 Env. Purification methods that bypass the need for detergents could be useful tools for future studies of HIV-1 Env structure and its interaction with receptors and antibodies.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Althea Gaffney
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Adeoye B, Nakiyingi L, Moreau Y, Nankya E, Olson AJ, Zhang M, Jacobson KR, Gupta A, Manabe YC, Hosseinipour MC, Kumwenda J, Sagar M. Mycobacterium tuberculosis disease associates with higher HIV-1-specific antibody responses. iScience 2023; 26:106631. [PMID: 37168567 PMCID: PMC10165194 DOI: 10.1016/j.isci.2023.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the most common infection among people with HIV (PWH). Mtb disease-associated inflammation could affect HIV-directed immune responses in PWH. We show that HIV antibodies are broader and more potent in PWH in the presence as compared to the absence of Mtb disease. With co-existing Mtb disease, the virus in PWH also encounters unique antibody selection pressure. The Mtb-linked HIV antibody enhancement associates with specific mediators important for B cell and antibody development. This Mtb humoral augmentation does not occur due to cross-reactivity, a generalized increase in all antibodies, or differences in duration or amount of antigen exposure. We speculate that the co-localization of Mtb and HIV in lymphatic tissues leads to the emergence of potent HIV antibodies. PWH's Mtb disease status has implications for the future use of HIV broadly neutralizing antibodies as prophylaxis or treatment and the induction of better humoral immunity.
Collapse
Affiliation(s)
- Bukola Adeoye
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Lydia Nakiyingi
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Yvetane Moreau
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Ethel Nankya
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alex J. Olson
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Mo Zhang
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Karen R. Jacobson
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Amita Gupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yukari C. Manabe
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Manish Sagar
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - AIDS Clinical Trials Group A5274 (REMEMBER) Study Team
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
- University of Malawi College of Medicine, Blantyre, Malawi
| |
Collapse
|
20
|
Zhang YN, Paynter J, Antanasijevic A, Allen JD, Eldad M, Lee YZ, Copps J, Newby ML, He L, Chavez D, Frost P, Goodroe A, Dutton J, Lanford R, Chen C, Wilson IA, Crispin M, Ward AB, Zhu J. Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimmers as HIV-1 vaccine candidates. Nat Commun 2023; 14:1985. [PMID: 37031217 PMCID: PMC10082823 DOI: 10.1038/s41467-023-37742-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Uncleaved prefusion-optimized (UFO) design can stabilize diverse HIV-1 envelope glycoproteins (Envs). Single-component, self-assembling protein nanoparticles (1c-SApNP) can display 8 or 20 native-like Env trimers as vaccine candidates. We characterize the biophysical, structural, and antigenic properties of 1c-SApNPs that present the BG505 UFO trimer with wildtype and modified glycans. For 1c-SApNPs, glycan trimming improves recognition of the CD4 binding site without affecting broadly neutralizing antibodies (bNAbs) to major glycan epitopes. In mice, rabbits, and nonhuman primates, glycan trimming increases the frequency of vaccine responders (FVR) and steers antibody responses away from immunodominant glycan holes and glycan patches. The mechanism of vaccine-induced immunity is examined in mice. Compared with the UFO trimer, the multilayered E2p and I3-01v9 1c-SApNPs show 420 times longer retention in lymph node follicles, 20-32 times greater presentation on follicular dendritic cell dendrites, and up-to-4 times stronger germinal center reactions. These findings can inform future HIV-1 vaccine development.
Collapse
Affiliation(s)
- Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jennifer Paynter
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joel D Allen
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mor Eldad
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Maddy L Newby
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Deborah Chavez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Pat Frost
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Anna Goodroe
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - John Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert Lanford
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Christopher Chen
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Max Crispin
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
21
|
Nguyen HT, Wang Q, Anang S, Sodroski JG. Characterization of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Conformational States on Infectious Virus Particles. J Virol 2023; 97:e0185722. [PMID: 36815832 PMCID: PMC10062176 DOI: 10.1128/jvi.01857-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells involves triggering of the viral envelope glycoprotein (Env) trimer ([gp120/gp41]3) by the primary receptor, CD4, and coreceptors, CCR5 or CXCR4. The pretriggered (State-1) conformation of the mature (cleaved) Env is targeted by broadly neutralizing antibodies (bNAbs), which are inefficiently elicited compared with poorly neutralizing antibodies (pNAbs). Here, we characterize variants of the moderately triggerable HIV-1AD8 Env on virions produced by an infectious molecular proviral clone; such virions contain more cleaved Env than pseudotyped viruses. We identified three types of cleaved wild-type AD8 Env trimers on virions: (i) State-1-like trimers preferentially recognized by bNAbs and exhibiting strong subunit association; (ii) trimers recognized by pNAbs directed against the gp120 coreceptor-binding region and exhibiting weak, detergent-sensitive subunit association; and (iii) a minor gp41-only population. The first Env population was enriched and the other Env populations reduced by introducing State-1-stabilizing changes in the AD8 Env or by treatment of the virions with crosslinker or the State-1-preferring entry inhibitor, BMS-806. These stabilized AD8 Envs were also more resistant to gp120 shedding induced by a CD4-mimetic compound or by incubation on ice. Conversely, a State-1-destabilized, CD4-independent AD8 Env variant exhibited weaker bNAb recognition and stronger pNAb recognition. Similar relationships between Env triggerability and antigenicity/shedding propensity on virions were observed for other HIV-1 strains. State-1 Envs on virions can be significantly enriched by minimizing the adventitious incorporation of uncleaved Env; stabilizing the pretriggered conformation by Env modification, crosslinking or BMS-806 treatment; strengthening Env subunit interactions; and using CD4-negative producer cells. IMPORTANCE Efforts to develop an effective HIV-1 vaccine have been frustrated by the inability to elicit broad neutralizing antibodies that recognize multiple virus strains. Such antibodies can bind a particular shape of the HIV-1 envelope glycoprotein trimer, as it exists on a viral membrane but before engaging receptors on the host cell. Here, we establish simple yet powerful assays to characterize the envelope glycoproteins in a natural context on virus particles. We find that, depending on the HIV-1 strain, some envelope glycoproteins change shape and fall apart, creating decoys that can potentially divert the host immune response. We identify requirements to keep the relevant envelope glycoprotein target for broad neutralizing antibodies intact on virus-like particles. These studies suggest strategies that should facilitate efforts to produce and use virus-like particles as vaccine immunogens.
Collapse
Affiliation(s)
- Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Marichannegowda MH, Zemil M, Wieczorek L, Sanders-Buell E, Bose M, O'Sullivan AM, King D, Francisco L, Diaz-Mendez F, Setua S, Chomont N, Phanuphak N, Ananworanich J, Hsu D, Vasan S, Michael NL, Eller LA, Tovanabutra S, Tagaya Y, Robb ML, Polonis VR, Song H. Tracking coreceptor switch of the transmitted/founder HIV-1 identifies co-evolution of HIV-1 antigenicity, coreceptor usage and CD4 subset targeting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.21.525033. [PMID: 36712089 PMCID: PMC9882280 DOI: 10.1101/2023.01.21.525033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The CCR5 (R5) to CXCR4 (X4) coreceptor switch in natural HIV-1 infection is associated with faster progression to AIDS, but the underlying mechanisms remain unclear. The difficulty in capturing the earliest moment of coreceptor switch in vivo limits our understanding of this phenomenon. Here, by tracking the evolution of the transmitted/founder (T/F) HIV-1 in a prospective cohort of individuals at risk for HIV-1 infection identified very early in acute infection, we investigated this process with high resolution. The earliest X4 variants evolved from the R5 tropic T/F strains. Strong X4 usage can be conferred by a single mutation. The mutations responsible for coreceptor switch can confer escape to neutralization and drive X4 variants to replicate mainly in the central memory and naïve CD4+ T cells. We propose a novel concept to explain the co-evolution of virus antigenicity and entry tropism termed "escape by shifting". This concept posits that for viruses with receptor or coreceptor flexibility, entry tropism alteration represents a mechanism of immune evasion in vivo .
Collapse
|
23
|
Fernandez N, Hayes P, Makinde J, Hare J, King D, Xu R, Rehawi O, Mezzell AT, Kato L, Mugaba S, Serwanga J, Chemweno J, Nduati E, Price MA, Osier F, Ochsenbauer C, Yue L, Hunter E, Gilmour J. Assessment of a diverse panel of transmitted/founder HIV-1 infectious molecular clones in a luciferase based CD8 T-cell mediated viral inhibition assay. Front Immunol 2022; 13:1029029. [PMID: 36532063 PMCID: PMC9751811 DOI: 10.3389/fimmu.2022.1029029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Immunological protection against human immunodeficiency virus-1 (HIV-1) infection is likely to require both humoral and cell-mediated immune responses, the latter involving cytotoxic CD8 T-cells. Characterisation of CD8 T-cell mediated direct anti-viral activity would provide understanding of potential correlates of immune protection and identification of critical epitopes associated with HIV-1 control. Methods The present report describes a functional viral inhibition assay (VIA) to assess CD8 T-cell-mediated inhibition of replication of a large and diverse panel of 45 HIV-1 infectious molecular clones (IMC) engineered with a Renilla reniformis luciferase reporter gene (LucR), referred to as IMC-LucR. HIV-1 IMC replication in CD4 T-cells and CD8 T-cell mediated inhibition was characterised in both ART naive subjects living with HIV-1 covering a broad human leukocyte antigen (HLA) distribution and compared with uninfected subjects. Results & discussion CD4 and CD8 T-cell lines were established from subjects vaccinated with a candidate HIV-1 vaccine and provided standard positive controls for both assay quality control and facilitating training and technology transfer. The assay was successfully established across 3 clinical research centres in Kenya, Uganda and the United Kingdom and shown to be reproducible. This IMC-LucR VIA enables characterisation of functional CD8 T-cell responses providing a tool for rational T-cell immunogen design of HIV-1 vaccine candidates and evaluation of vaccine-induced T-cell responses in HIV-1 clinical trials.
Collapse
Affiliation(s)
- Natalia Fernandez
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom,*Correspondence: Natalia Fernandez, ; Peter Hayes,
| | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom,*Correspondence: Natalia Fernandez, ; Peter Hayes,
| | - Julia Makinde
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom,IAVI, New York, NY, United States
| | - Deborah King
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Rui Xu
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Ola Rehawi
- University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Laban Kato
- Uganda Virus Research Institute, Entebbe, Uganda,Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Susan Mugaba
- Uganda Virus Research Institute, Entebbe, Uganda,Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Jennifer Serwanga
- Uganda Virus Research Institute, Entebbe, Uganda,Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - James Chemweno
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Eunice Nduati
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Matt A. Price
- IAVI, New York, NY, United States,Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, United States
| | - Faith Osier
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | | | - Ling Yue
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Jill Gilmour
- Department of Infectious Diseases, Imperial College, London, United Kingdom
| | | |
Collapse
|
24
|
Knudsen ML, Agrawal P, MacCamy A, Parks KR, Gray MD, Takushi BN, Khechaduri A, Salladay KR, Coler RN, LaBranche CC, Montefiori D, Stamatatos L. Adjuvants influence the maturation of VRC01-like antibodies during immunization. iScience 2022; 25:105473. [PMID: 36405776 PMCID: PMC9667313 DOI: 10.1016/j.isci.2022.105473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Once naive B cells expressing germline VRC01-class B cell receptors become activated by germline-targeting immunogens, they enter germinal centers and undergo affinity maturation. Booster immunizations with heterologous Envs are required for the full maturation of VRC01-class antibodies. Here, we examined whether and how three adjuvants, Poly(I:C), GLA-LSQ, or Rehydragel, that activate different pathways of the innate immune system, influence the rate and type of somatic mutations accumulated by VRC01-class BCRs that become activated by the germline-targeting 426c.Mod.Core immunogen and the heterologous HxB2.WT.Core booster immunogen. We report that although the adjuvant used had no influence on the durability of plasma antibody responses after the prime, it influenced the plasma VRC01 antibody titers after the boost and the accumulation of somatic mutations on the elicited VRC01 antibodies.
Collapse
Affiliation(s)
- Maria L. Knudsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Parul Agrawal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anna MacCamy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - K. Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Matthew D. Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Brittany N. Takushi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Arineh Khechaduri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kelsey R. Salladay
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rhea N. Coler
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | | | - David Montefiori
- Division of Surgical Sciences, Duke University, Durham, NC 27710, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
25
|
Melzi E, Willis JR, Ma KM, Lin YC, Kratochvil S, Berndsen ZT, Landais EA, Kalyuzhniy O, Nair U, Warner J, Steichen JM, Kalyuzhniy A, Le A, Pecetta S, Perez M, Kirsch K, Weldon SR, Falcone S, Himansu S, Carfi A, Sok D, Ward AB, Schief WR, Batista FD. Membrane-bound mRNA immunogens lower the threshold to activate HIV Env V2 apex-directed broadly neutralizing B cell precursors in humanized mice. Immunity 2022; 55:2168-2186.e6. [PMID: 36179690 PMCID: PMC9671093 DOI: 10.1016/j.immuni.2022.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/31/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
Eliciting broadly neutralizing antibodies (bnAbs) is the core of HIV vaccine design. bnAbs specific to the V2-apex region of the HIV envelope acquire breadth and potency with modest somatic hypermutation, making them attractive vaccination targets. To evaluate Apex germline-targeting (ApexGT) vaccine candidates, we engineered knockin (KI) mouse models expressing the germline B cell receptor (BCR) of the bnAb PCT64. We found that high affinity of the ApexGT immunogen for PCT64-germline BCRs was necessary to specifically activate KI B cells at human physiological frequencies, recruit them to germinal centers, and select for mature bnAb mutations. Relative to protein, mRNA-encoded membrane-bound ApexGT immunization significantly increased activation and recruitment of PCT64 precursors to germinal centers and lowered their affinity threshold. We have thus developed additional models for HIV vaccine research, validated ApexGT immunogens for priming V2-apex bnAb precursors, and identified mRNA-LNP as a suitable approach to substantially improve the B cell response.
Collapse
Affiliation(s)
- Eleonora Melzi
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jordan R Willis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Krystal M Ma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ying-Cing Lin
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Sven Kratochvil
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zachary T Berndsen
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elise A Landais
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Usha Nair
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - John Warner
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jon M Steichen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anton Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amber Le
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Simone Pecetta
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Manfredo Perez
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kathrin Kirsch
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | | | | | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William R Schief
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Facundo D Batista
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Willis JR, Berndsen ZT, Ma KM, Steichen JM, Schiffner T, Landais E, Liguori A, Kalyuzhniy O, Allen JD, Baboo S, Omorodion O, Diedrich JK, Hu X, Georgeson E, Phelps N, Eskandarzadeh S, Groschel B, Kubitz M, Adachi Y, Mullin TM, Alavi NB, Falcone S, Himansu S, Carfi A, Wilson IA, Yates JR, Paulson JC, Crispin M, Ward AB, Schief WR. Human immunoglobulin repertoire analysis guides design of vaccine priming immunogens targeting HIV V2-apex broadly neutralizing antibody precursors. Immunity 2022; 55:2149-2167.e9. [PMID: 36179689 PMCID: PMC9671094 DOI: 10.1016/j.immuni.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/01/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022]
Abstract
Broadly neutralizing antibodies (bnAbs) to the HIV envelope (Env) V2-apex region are important leads for HIV vaccine design. Most V2-apex bnAbs engage Env with an uncommonly long heavy-chain complementarity-determining region 3 (HCDR3), suggesting that the rarity of bnAb precursors poses a challenge for vaccine priming. We created precursor sequence definitions for V2-apex HCDR3-dependent bnAbs and searched for related precursors in human antibody heavy-chain ultradeep sequencing data from 14 HIV-unexposed donors. We found potential precursors in a majority of donors for only two long-HCDR3 V2-apex bnAbs, PCT64 and PG9, identifying these bnAbs as priority vaccine targets. We then engineered ApexGT Env trimers that bound inferred germlines for PCT64 and PG9 and had higher affinities for bnAbs, determined cryo-EM structures of ApexGT trimers complexed with inferred-germline and bnAb forms of PCT64 and PG9, and developed an mRNA-encoded cell-surface ApexGT trimer. These methods and immunogens have promise to assist HIV vaccine development.
Collapse
Affiliation(s)
- Jordan R Willis
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zachary T Berndsen
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Krystal M Ma
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jon M Steichen
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Torben Schiffner
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elise Landais
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alessia Liguori
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oleksandr Kalyuzhniy
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oluwarotimi Omorodion
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jolene K Diedrich
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Xiaozhen Hu
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erik Georgeson
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole Phelps
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Saman Eskandarzadeh
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bettina Groschel
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Kubitz
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yumiko Adachi
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tina-Marie Mullin
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nushin B Alavi
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | - Ian A Wilson
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James C Paulson
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Andrew B Ward
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William R Schief
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
27
|
Gorman J, Wang C, Mason RD, Nazzari AF, Welles HC, Zhou T, Bess JW, Bylund T, Lee M, Tsybovsky Y, Verardi R, Wang S, Yang Y, Zhang B, Rawi R, Keele BF, Lifson JD, Liu J, Roederer M, Kwong PD. Cryo-EM structures of prefusion SIV envelope trimer. Nat Struct Mol Biol 2022; 29:1080-1091. [PMID: 36344847 PMCID: PMC10606957 DOI: 10.1038/s41594-022-00852-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/25/2022] [Indexed: 11/09/2022]
Abstract
Simian immunodeficiency viruses (SIVs) are lentiviruses that naturally infect non-human primates of African origin and seeded cross-species transmissions of HIV-1 and HIV-2. Here we report prefusion stabilization and cryo-EM structures of soluble envelope (Env) trimers from rhesus macaque SIV (SIVmac) in complex with neutralizing antibodies. These structures provide residue-level definition for SIV-specific disulfide-bonded variable loops (V1 and V2), which we used to delineate variable-loop coverage of the Env trimer. The defined variable loops enabled us to investigate assembled Env-glycan shields throughout SIV, which we found to comprise both N- and O-linked glycans, the latter emanating from V1 inserts, which bound the O-link-specific lectin jacalin. We also investigated in situ SIVmac-Env trimers on virions, determining cryo-electron tomography structures at subnanometer resolutions for an antibody-bound complex and a ligand-free state. Collectively, these structures define the prefusion-closed structure of the SIV-Env trimer and delineate variable-loop and glycan-shielding mechanisms of immune evasion conserved throughout SIV evolution.
Collapse
Affiliation(s)
- Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Chunyan Wang
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Hugh C Welles
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Julian W Bess
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Yongping Yang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Hoffman HK, Aguilar RS, Clark AR, Groves NS, Pezeshkian N, Bruns MM, van Engelenburg SB. Endocytosed HIV-1 Envelope Glycoprotein Traffics to Rab14 + Late Endosomes and Lysosomes to Regulate Surface Levels in T-Cell Lines. J Virol 2022; 96:e0076722. [PMID: 35770989 PMCID: PMC9327703 DOI: 10.1128/jvi.00767-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
Production of infectious HIV-1 particles requires incorporation of the viral envelope glycoprotein (Env) at the plasma membrane (PM) of infected CD4+ T cells. Env trafficking to the PM exposes viral epitopes that can be exploited by the host immune system; however, HIV-1 can evade this response by endocytosis of excess Env from the PM. The fate of Env after internalization remains unclear, with evidence suggesting several different vesicular trafficking steps may be involved, including recycling pathways. To date, there have been very few studies documenting the trafficking pathways of native Env in infected T cells. Furthermore, it remains unclear whether there are T-cell-specific endosomal pathways regulating the fate of endocytic Env. Here, we use a pulse-labeling approach with a monovalent anti-Env Fab probe to characterize the trafficking of internalized Env within infected CD4+ T-cell lines, together with CRISPR/Cas9-mediated endogenous protein tagging, to assess the role of host cell Rab GTPases in Env trafficking. We show that endocytosed Env traffics to Rab14+ compartments that possess hallmarks of late endosomes and lysosomes. We also demonstrate that Env can recycle back to the PM, although we find that recycling does not occur at high rates when compared to the model recycling protein transferrin. These results help to resolve open questions about the fate and relevance of endocytosed Env in HIV-infected cells and suggest a novel role for Rab14 in a cell-type-specific late-endosomal/lysosomal trafficking pathway in T cells. IMPORTANCE HIV-1 envelope glycoprotein (Env) evades immune neutralization through many mechanisms. One immune evasion strategy may result from the internalization of excess surface-exposed Env to prevent antibody-dependent cellular cytotoxicity or neutralization. Characterization of the fate of endocytosed Env is critical to understand which vesicular pathways could be targeted to promote display of Env epitopes to the immune system. In this study, we characterize the endocytic fate of native Env, expressed from infected human T-cell lines. We demonstrate that Env is rapidly trafficked to a late-endosome/lysosome-like compartment and can be recycled to the cell surface for incorporation into virus assembly sites. This study implicates a novel intracellular compartment, marked by host-cell Rab14 GTPases, for the sequestration of Env. Therapeutic approaches aimed at mobilizing this intracellular pool of Env could lead to stronger immune control of HIV-1 infection via antibody-dependent cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Huxley K. Hoffman
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Rebekah S. Aguilar
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Austin R. Clark
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Nicholas S. Groves
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Nairi Pezeshkian
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Merissa M. Bruns
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Schuyler B. van Engelenburg
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| |
Collapse
|
29
|
Sheward DJ, Hermanus T, Murrell B, Garrett N, Abdool Karim SS, Morris L, Moore PL, Williamson C. HIV Coinfection Provides Insights for the Design of Vaccine Cocktails to Elicit Broadly Neutralizing Antibodies. J Virol 2022; 96:e0032422. [PMID: 35758668 PMCID: PMC9327685 DOI: 10.1128/jvi.00324-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
Induction of broadly neutralizing antibodies (bNAbs) to HIV and other diverse pathogens will likely require the use of multiple immunogens. An understanding of the dynamics of antibody development to multiple diverse but related antigens would facilitate the rational design of immunization strategies. Here, we characterize, in detail, the development of neutralizing antibodies in three individuals coinfected with several divergent HIV variants. Two of these coinfected individuals developed additive or cross-neutralizing antibody responses. However, interference was observed in the third case, with neutralizing antibody responses to one viral variant arising to the near exclusion of neutralizing responses to the other. Longitudinal characterization of the diversity in the Envelope glycoprotein trimer (Env) structure showed that in the individual who developed the broadest neutralizing antibodies, circulating viruses shared a conserved epitope on the trimer apex that was targeted by cross-neutralizing antibodies. In contrast, in the other two individuals, diversity was distributed across Env. Taken together, these data highlight that multiple related immunogens can result in immune interference. However, they also suggest that immunogen cocktails presenting shared, conserved neutralizing epitopes in a variable background may focus broadly neutralizing antibody responses to these targets. IMPORTANCE Despite being the focus of extensive research, we still do not know how to reproducibly elicit cross-neutralizing antibodies against variable pathogens by vaccination. Here, we characterize the antibody responses in people coinfected with more than one HIV variant, providing insights into how the use of antigen "cocktails" might affect the breadth of the elicited neutralizing antibody response and how the relatedness of the antigens may shape this.
Collapse
Affiliation(s)
- Daniel J. Sheward
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tandile Hermanus
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, USA
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Medical Research Council Antibody Immunity Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Medical Research Council Antibody Immunity Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Carolyn Williamson
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- National Health Laboratory Services of South Africa, Johannesburg, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, Observatory, South Africa
| |
Collapse
|
30
|
Welles HC, King HAD, Nettey L, Cavett N, Gorman J, Zhou T, Tsybovsky Y, Du R, Song K, Nguyen R, Ambrozak D, Ransier A, Schramm CA, Doria-Rose NA, Swanstrom AE, Hoxie JA, LaBranche C, Montefiori DC, Douek DC, Kwong PD, Mascola JR, Roederer M, Mason RD. Broad coverage of neutralization-resistant SIV strains by second-generation SIV-specific antibodies targeting the region involved in binding CD4. PLoS Pathog 2022; 18:e1010574. [PMID: 35709309 PMCID: PMC9242510 DOI: 10.1371/journal.ppat.1010574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/29/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Both SIV and SHIV are powerful tools for evaluating antibody-mediated prevention and treatment of HIV-1. However, owing to a lack of rhesus-derived SIV broadly neutralizing antibodies (bnAbs), testing of bnAbs for HIV-1 prevention or treatment has thus far been performed exclusively in the SHIV NHP model using bnAbs from HIV-1-infected individuals. Here we describe the isolation and characterization of multiple rhesus-derived SIV bnAbs capable of neutralizing most isolates of SIV. Eight antibodies belonging to two clonal families, ITS102 and ITS103, which target unique epitopes in the CD4 binding site (CD4bs) region, were found to be broadly neutralizing and together neutralized all SIV strains tested. A rare feature of these bnAbs and two additional antibody families, ITS92 and ITS101, which mediate strain-specific neutralizing activity against SIV from sooty mangabeys (SIVsm), was their ability to achieve near complete (i.e. 100%) neutralization of moderately and highly neutralization-resistant SIV. Overall, these newly identified SIV bnAbs highlight the potential for evaluating HIV-1 prophylactic and therapeutic interventions using fully simian, rhesus-derived bnAbs in the SIV NHP model, thereby circumventing issues related to rapid antibody clearance of human-derived antibodies, Fc mismatch and limited genetic diversity of SHIV compared to SIV.
Collapse
Affiliation(s)
- Hugh C. Welles
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hannah A. D. King
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Leonard Nettey
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicole Cavett
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Renguang Du
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kaimei Song
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard Nguyen
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Ambrozak
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amy Ransier
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chaim A. Schramm
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicole A. Doria-Rose
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adrienne E. Swanstrom
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - James A. Hoxie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Daniel C. Douek
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rosemarie D. Mason
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
31
|
Abstract
The HIV Env glycoprotein is the surface glycoprotein responsible for viral entry into CD4+ immune cells. During infection, Env also serves as a primary target for antibody responses, which are robust but unable to control virus replication. Immune evasion by HIV-1 Env appears to employ complex mechanisms to regulate what antigenic states are presented to the immune system. Immunodominant features appear to be distinct from epitopes that interfere with Env functions in mediating infection. Further, cell-cell transmission studies indicate that vulnerable conformational states are additionally hidden from recognition on infected cells, even though the presence of Env at the cell surface is required for viral infection through the virological synapse. Cell-cell infection studies support that Env on infected cells is presented in distinct conformations from that on virus particles. Here we review data regarding the regulation of conformational states of Env and assess how regulated sorting of Env within the infected cell may underlie mechanisms to distinguish Env on the surface of virus particles versus Env on the surface of infected cells. These mechanisms may allow infected cells to avoid opsonization, providing cell-to-cell infection by HIV with a selective advantage during evolution within an infected individual. Understanding how distinct Env conformations are presented on cells versus viruses may be essential to designing effective vaccine approaches and therapeutic strategies to clear infected cell reservoirs.
Collapse
Affiliation(s)
- Connie Zhao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongru Li
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
32
|
Functional and Highly Cross-Linkable HIV-1 Envelope Glycoproteins Enriched in a Pretriggered Conformation. J Virol 2022; 96:e0166821. [PMID: 35343783 DOI: 10.1128/jvi.01668-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Binding to the receptor, CD4, drives the pretriggered, "closed" (state-1) conformation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer into more "open" conformations (states 2 and 3). Broadly neutralizing antibodies, which are elicited inefficiently, mostly recognize the state-1 Env conformation, whereas the more commonly elicited poorly neutralizing antibodies recognize states 2/3. HIV-1 Env metastability has created challenges for defining the state-1 structure and developing immunogens mimicking this labile conformation. The availability of functional state-1 Envs that can be efficiently cross-linked at lysine and/or acidic amino acid residues might assist these endeavors. To that end, we modified HIV-1AD8 Env, which exhibits an intermediate level of triggerability by CD4. We introduced lysine/acidic residues at positions that exhibit such polymorphisms in natural HIV-1 strains. Env changes that were tolerated with respect to gp120-gp41 processing, subunit association, and virus entry were further combined. Two common polymorphisms, Q114E and Q567K, as well as a known variant, A582T, additively rendered pseudoviruses resistant to cold, soluble CD4, and a CD4-mimetic compound, phenotypes indicative of stabilization of the pretriggered state-1 Env conformation. Combining these changes resulted in two lysine-rich HIV-1AD8 Env variants (E.2 and AE.2) with neutralization- and cold-resistant phenotypes comparable to those of natural, less triggerable tier 2/3 HIV-1 isolates. Compared with these and the parental Envs, the E.2 and AE.2 Envs were cleaved more efficiently and exhibited stronger gp120-trimer association in detergent lysates. These highly cross-linkable Envs enriched in a pretriggered conformation should assist characterization of the structure and immunogenicity of this labile state. IMPORTANCE The development of an efficient vaccine is critical for combating HIV-1 infection worldwide. However, the instability of the pretriggered shape (state 1) of the viral envelope glycoprotein (Env) makes it difficult to raise neutralizing antibodies against HIV-1. Here, by introducing multiple changes in Env, we derived two HIV-1 Env variants that are enriched in state 1 and can be efficiently cross-linked to maintain this shape. These Env complexes are more stable in detergent, assisting their purification. Thus, our study provides a path to a better characterization of the native pretriggered Env, which should assist vaccine development.
Collapse
|
33
|
Walker LM, Shiakolas AR, Venkat R, Liu ZA, Wall S, Raju N, Pilewski KA, Setliff I, Murji AA, Gillespie R, Makoah NA, Kanekiyo M, Connors M, Morris L, Georgiev IS. High-Throughput B Cell Epitope Determination by Next-Generation Sequencing. Front Immunol 2022; 13:855772. [PMID: 35401559 PMCID: PMC8984479 DOI: 10.3389/fimmu.2022.855772] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 01/12/2023] Open
Abstract
Development of novel technologies for the discovery of human monoclonal antibodies has proven invaluable in the fight against infectious diseases. Among the diverse antibody repertoires elicited by infection or vaccination, often only rare antibodies targeting specific epitopes of interest are of potential therapeutic value. Current antibody discovery efforts are capable of identifying B cells specific for a given antigen; however, epitope specificity information is usually only obtained after subsequent monoclonal antibody production and characterization. Here we describe LIBRA-seq with epitope mapping, a next-generation sequencing technology that enables residue-level epitope determination for thousands of single B cells simultaneously. By utilizing an antigen panel of point mutants within the HIV-1 Env glycoprotein, we identified and confirmed antibodies targeting multiple sites of vulnerability on Env, including the CD4-binding site and the V3-glycan site. LIBRA-seq with epitope mapping is an efficient tool for high-throughput identification of antibodies against epitopes of interest on a given antigen target.
Collapse
Affiliation(s)
- Lauren M. Walker
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Andrea R. Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rohit Venkat
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Zhaojing Ariel Liu
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Steven Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kelsey A. Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ian Setliff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Amyn A. Murji
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rebecca Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Nigel A. Makoah
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Mark Connors
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lynn Morris
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
34
|
Timofeeva A, Sedykh S, Nevinsky G. Post-Immune Antibodies in HIV-1 Infection in the Context of Vaccine Development: A Variety of Biological Functions and Catalytic Activities. Vaccines (Basel) 2022; 10:384. [PMID: 35335016 PMCID: PMC8955465 DOI: 10.3390/vaccines10030384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Unlike many other viruses, HIV-1 is highly variable. The structure of the viral envelope changes as the infection progresses and is one of the biggest obstacles in developing an HIV-1 vaccine. HIV-1 infection can cause the production of various natural autoantibodies, including catalytic antibodies hydrolyzing DNA, myelin basic protein, histones, HIV-integrase, HIV-reverse transcriptase, β-casein, serum albumin, and some other natural substrates. Currently, there are various directions for the development of HIV-1 vaccines: stimulation of the immune response on the mucous membranes; induction of cytotoxic T cells, which lyse infected cells and hold back HIV-infection; immunization with recombinant Env proteins or vectors encoding Env; mRNA-based vaccines and some others. However, despite many attempts to develop an HIV-1 vaccine, none have been successful. Here we review the entire spectrum of antibodies found in HIV-infected patients, including neutralizing antibodies specific to various viral epitopes, as well as antibodies formed against various autoantigens, catalytic antibodies against autoantigens, and some viral proteins. We consider various promising targets for developing a vaccine that will not produce unwanted antibodies in vaccinated patients. In addition, we review common problems in the development of a vaccine against HIV-1.
Collapse
Affiliation(s)
- Anna Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
| | - Sergey Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Georgy Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
35
|
Cattin M, Bruxelle JF, Ng K, Blaukopf M, Pantophlet R, Kosma P. Synthetic neoglycoconjugates of hepta- and nonamannoside ligands for eliciting oligomannose-specific HIV-1-neutralizing antibodies. Chembiochem 2022; 23:e202200061. [PMID: 35104013 PMCID: PMC9108342 DOI: 10.1002/cbic.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/01/2022] [Indexed: 11/08/2022]
Abstract
Oligomannose-type glycans on the spike protein of HIV-1 constitute relevant epitopes to elicit broadly neutralizing antibodies (bnAbs). Herein we describe an improved synthesis of α- and β-linked hepta- and nonamannosyl ligands that, subsequently, were converted into BSA and CRM 197 neoglycoconjugates. We assembled the ligands from anomeric 3-azidopropyl spacer glycosides from select 3-O-protected thiocresyl mannoside donors. Chain extensions were achieved using 4+3 or 4+5 block synthesis of thiocresyl and trichloroacetimidate glycosyl donors. Subsequent global deprotection generated the 3-aminopropyl oligosaccharide ligands. ELISA binding data obtained with the β-anomeric hepta- and nonamannosyl conjugates with a selection of HIV-1 bnAbs showed comparable binding of both mannosyl ligands by Fab fragments yet lesser binding of the nonasaccharide conjugate by the corresponding IgG antibodies. These results support previous observations that a complete Man 9 structure might not be the preferred antigenic binding motif for some oligomannose-specific antibodies and have implications for glycoside designs to elicit oligomannose-targeted HIV-1-neutralizing antibodies.
Collapse
Affiliation(s)
- Matteo Cattin
- University of Natural Resources and Life Sciences: Universitat fur Bodenkultur Wien, Chemistry, Muthgasse 18, A 1190, Vienna, AUSTRIA
| | - Jean-François Bruxelle
- Simon Fraser University Faculty of Health Sciences, Molecular Biology and Biochemistry, Burnaby, CANADA
| | - Kurtis Ng
- Simon Fraser University Faculty of Health Sciences, Molecular Biology and Biochemistry, CANADA
| | - Markus Blaukopf
- University of Natural Resources and Life Sciences Vienna: Universitat fur Bodenkultur Wien, Chemistry, AUSTRIA
| | - Ralph Pantophlet
- Simon Fraser University Faculty of Health Sciences, Molecular Biology and Biochemistry, V5A 1S6, Burnaby, CANADA
| | - Paul Kosma
- University of Natural Resources and Life Sciences, Chemistry, Muthgasse 18, A 1190, Vienna, AUSTRIA
| |
Collapse
|
36
|
Ng QR, Tee KK, Binley JM, Tong T. Cross-Neutralizing CRF01_AE-Infected Plasma from Malaysia Targets CD4-Binding Site of Human Immunodeficiency Virus Type-1 Envelope Glycoprotein. AIDS Res Hum Retroviruses 2022; 38:162-172. [PMID: 34006141 PMCID: PMC9206480 DOI: 10.1089/aid.2020.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) antigenic variation poses a great challenge for vaccine immunogen design to elicit broadly neutralizing antibodies (bNAbs). Over the last 10-15 years, great progress has been made to understand the conserved sites of sensitivity on HIV envelope glycoprotein spikes targeted by bNAbs. Plasma neutralization mapping and monoclonal antibody isolation efforts have revealed five major conserved epitope clusters. Most of this work has focused on subtype B and C-infected Caucasian or African donors. It is not clear if the same epitopes and epitope rank order preferences are also true in donors infected with different HIV-1 subtypes and with different racial backgrounds. To investigate this point, in this study we report the first attempt to profile the bNAb specificities of CRF01_AE-infected Malaysian plasmas. We first measured neutralization titers of 21 plasmas against a subtype A, B, and AE pseudovirus panel. This revealed that 14% (3 of 21) plasmas had cross-clade breadth. Focusing on the cross-neutralizing plasma P9, we used AE and JR-FL mutant pseudoviruses, gp120 monomer interference, and native polyacrylamide gel electrophoresis to better understand the neutralization specificity. P9 demonstrates CD4-binding-site specificity with trimer dependence and D368 independence.
Collapse
Affiliation(s)
- Qi Ron Ng
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - James M. Binley
- HIV and Coronavirus Vaccine Development, San Diego Biomedical Research Institute, San Diego, California, USA
| | - Tommy Tong
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia.,Address correspondence to: Tommy Tong, Department of Biological Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| |
Collapse
|
37
|
Duggan NN, Weisgrau KL, Magnani DM, Rakasz EG, Desrosiers RC, Martinez-Navio JM. SOSIP Trimer-Specific Antibodies Isolated from a Simian-Human Immunodeficiency Virus-Infected Monkey with versus without a Pre-blocking Step with gp41. J Virol 2022; 96:e0158221. [PMID: 34730398 PMCID: PMC8791287 DOI: 10.1128/jvi.01582-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
BG505 SOSIP.664 (hereafter referred to as SOSIP), a stabilized trimeric mimic of the HIV-1 envelope spike resembling the native viral spike, is a useful tool for isolating anti-HIV-1 neutralizing antibodies. We screened long-term SHIV-AD8 infected rhesus monkeys for potency and breadth of serum neutralizing activity against autologous and heterologous viruses: SHIV-AD8, HIV-1 YU2, HIV-1 JR-CSF, and HIV-1 NL4-3. Monkey rh2436 neutralized all viruses tested and showed strong reactivity to the SOSIP trimer, suggesting this was a promising candidate for attempts at monoclonal antibody (MAb) isolation. MAbs were isolated by performing single B-cell sorts from peripheral blood mononuclear cells (PBMC) by FACS using the SOSIP trimer as a probe. An initial round of sorted cells revealed the majority of isolated MAbs were directed to the gp41 external domain portion of the SOSIP trimer and were mostly non-neutralizing against tested isolates. A second sort was performed, introducing a gp41 blocking step prior to PBMC staining and FACS sorting. These isolated MAbs bound SOSIP trimer but were no longer directed to the gp41 external domain portion. A significantly higher proportion of MAbs with neutralizing activity were obtained with this strategy. Our data show this pre-blocking step with gp41 greatly increases the yield of non-gp41-reactive, SOSIP-specific MAbs and increases the likelihood of isolating MAbs with neutralizing activity. IMPORTANCE Recent advancements in the field have focused on the isolation and use of broadly neutralizing antibodies for both prophylaxis and therapy. Finding a useful probe to isolate broad potent neutralizing antibodies while avoiding non-neutralizing antibodies is important. The SOSIP trimer has been shown to be a great tool for this purpose because it binds known broadly neutralizing antibodies. However, the SOSIP trimer can isolate non-neutralizing antibodies as well, including gp41-specific MAbs. Introducing a pre-blocking step with gp41 recombinant protein decreased the percent of gp41-specific antibodies isolated with SOSIP probe, as well as increased the number of neutralizing antibodies isolated. This method can be used as a tool to increase the chances of isolating neutralizing antibodies.
Collapse
Affiliation(s)
- Natasha N. Duggan
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Diogo M. Magnani
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ronald C. Desrosiers
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jose M. Martinez-Navio
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
38
|
Marichannegowda MH, Song H. Immune escape mutations selected by neutralizing antibodies in natural HIV-1 infection can alter coreceptor usage repertoire of the transmitted/founder virus. Virology 2022; 568:72-76. [DOI: 10.1016/j.virol.2022.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/20/2022]
|
39
|
Lucier A, Fong Y, Li SH, Dennis M, Eudailey J, Nelson A, Saunders K, Cunningham CK, McFarland E, McKinney R, Moody MA, LaBranche C, Montefiori D, Permar SR, Fouda GG. Frequent Development of Broadly Neutralizing Antibodies in Early Life in a Large Cohort of Children With Human Immunodeficiency Virus. J Infect Dis 2021; 225:1731-1740. [PMID: 34962990 PMCID: PMC9113503 DOI: 10.1093/infdis/jiab629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Recent studies have indicated that broadly neutralizing antibodies (bnAbs) in children may develop earlier after human immunodeficiency virus (HIV) infection compared to adults. METHODS We evaluated plasma from 212 antiretroviral therapy-naive children with HIV (1-3 years old). Neutralization breadth and potency was assessed using a panel of 10 viruses and compared to adults with chronic HIV. The magnitude, epitope specificity, and immunoglobulin (Ig)G subclass distribution of Env-specific antibodies were assessed using a binding antibody multiplex assay. RESULTS One-year-old children demonstrated neutralization breadth comparable to chronically infected adults, whereas 2- and 3-year-olds exhibited significantly greater neutralization breadth (P = .014). Likewise, binding antibody responses increased with age, with levels in 2- and 3-year-old children comparable to adults. Overall, there was no significant difference in antibody specificities or IgG subclass distribution between the pediatric and adult cohorts. It is interesting to note that the neutralization activity was mapped to a single epitope (CD4 binding site, V2 or V3 glycans) in only 5 of 38 pediatric broadly neutralizing samples, which suggests that most children may develop a polyclonal neutralization response. CONCLUSIONS These results contribute to a growing body of evidence suggesting that initiating HIV immunization early in life may present advantages for the development of broadly neutralizing antibody responses.
Collapse
Affiliation(s)
- Amanda Lucier
- Duke University Medical Center, Durham, North Carolina, USA
| | - Youyi Fong
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Shuk Hang Li
- Duke University Medical Center, Durham, North Carolina, USA
| | - Maria Dennis
- Duke University Medical Center, Durham, North Carolina, USA
| | | | - Ashley Nelson
- Duke University Medical Center, Durham, North Carolina, USA
| | - Kevin Saunders
- Duke University Medical Center, Durham, North Carolina, USA
| | - Coleen K Cunningham
- Duke University Medical Center, Durham, North Carolina, USA,University of California, Irvine, California, USA
| | | | - Ross McKinney
- Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | - Sallie R Permar
- Duke University Medical Center, Durham, North Carolina, USA,Weill Cornell School of Medicine, New York, New York, USA
| | - Genevieve G Fouda
- Duke University Medical Center, Durham, North Carolina, USA,Correspondence: Genevieve G. Fouda, MD, PhD, Duke Human Vaccine Institute, 2 genome court MSRBII, DUMC 103020, Durham, NC 27710, USA ()
| |
Collapse
|
40
|
Zhang S, Wang K, Wang WL, Nguyen HT, Chen S, Lu M, Go EP, Ding H, Steinbock RT, Desaire H, Kappes JC, Sodroski J, Mao Y. Asymmetric Structures and Conformational Plasticity of the Uncleaved Full-Length Human Immunodeficiency Virus Envelope Glycoprotein Trimer. J Virol 2021; 95:e0052921. [PMID: 34549974 PMCID: PMC8610584 DOI: 10.1128/jvi.00529-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The functional human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer [(gp120/gp41)3] is produced by cleavage of a conformationally flexible gp160 precursor. gp160 cleavage or the binding of BMS-806, an entry inhibitor, stabilizes the pretriggered, "closed" (state 1) conformation recognized by rarely elicited broadly neutralizing antibodies. Poorly neutralizing antibodies (pNAbs) elicited at high titers during natural infection recognize more "open" Env conformations (states 2 and 3) induced by binding the receptor, CD4. We found that BMS-806 treatment and cross-linking decreased the exposure of pNAb epitopes on cell surface gp160; however, after detergent solubilization, cross-linked and BMS-806-treated gp160 sampled non-state-1 conformations that could be recognized by pNAbs. Cryo-electron microscopy of the purified BMS-806-bound gp160 revealed two hitherto unknown asymmetric trimer conformations, providing insights into the allosteric coupling between trimer opening and structural variation in the gp41 HR1N region. The individual protomer structures in the asymmetric gp160 trimers resemble those of other genetically modified or antibody-bound cleaved HIV-1 Env trimers, which have been suggested to assume state-2-like conformations. Asymmetry of the uncleaved Env potentially exposes surfaces of the trimer to pNAbs. To evaluate the effect of stabilizing a state-1-like conformation of the membrane Env precursor, we treated cells expressing wild-type HIV-1 Env with BMS-806. BMS-806 treatment decreased both gp160 cleavage and the addition of complex glycans, implying that gp160 conformational flexibility contributes to the efficiency of these processes. Selective pressure to maintain flexibility in the precursor of functional Env allows the uncleaved Env to sample asymmetric conformations that potentially skew host antibody responses toward pNAbs. IMPORTANCE The envelope glycoprotein (Env) trimers on the surface of human immunodeficiency virus (HIV-1) mediate the entry of the virus into host cells and serve as targets for neutralizing antibodies. The functional Env trimer is produced by cleavage of the gp160 precursor in the infected cell. We found that the HIV-1 Env precursor is highly plastic, allowing it to assume different asymmetric shapes. This conformational plasticity is potentially important for Env cleavage and proper modification by sugars. Having a flexible, asymmetric Env precursor that can misdirect host antibody responses without compromising virus infectivity would be an advantage for a persistent virus like HIV-1.
Collapse
Affiliation(s)
- Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kunyu Wang
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| | - Wei Li Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
- Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuobing Chen
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| | - Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eden P. Go
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Robert T. Steinbock
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
- Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Zong G, Toonstra C, Yang Q, Zhang R, Wang LX. Chemoenzymatic Synthesis and Antibody Binding of HIV-1 V1/V2 Glycopeptide-Bacteriophage Q β Conjugates as a Vaccine Candidate. Int J Mol Sci 2021; 22:ijms222212538. [PMID: 34830420 PMCID: PMC8617853 DOI: 10.3390/ijms222212538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
The broadly neutralizing antibody PG9 recognizes a unique glycopeptide epitope in the V1V2 domain of HIV-1 gp120 envelope glycoprotein. The present study describes the design, synthesis, and antibody-binding analysis of HIV-1 V1V2 glycopeptide-Qβ conjugates as a mimic of the proposed neutralizing epitope of PG9. The glycopeptides were synthesized using a highly efficient chemoenzymatic method. The alkyne-tagged glycopeptides were then conjugated to the recombinant bacteriophage (Qβ), a virus-like nanoparticle, through a click reaction. Antibody-binding analysis indicated that the synthetic glycoconjugates showed significantly enhanced affinity for antibody PG9 compared with the monomeric glycopeptides. It was also shown that the affinity of the Qβ-conjugates for antibody PG9 was dependent on the density of the glycopeptide antigen display. The glycopeptide-Qβ conjugates synthesized represent a promising candidate of HIV-1 vaccine.
Collapse
|
42
|
Hayes P, Fernandez N, Ochsenbauer C, Dalel J, Hare J, King D, Black L, Streatfield C, Kakarla V, Macharia G, Makinde J, Price M, Hunter E, Gilmour J. Breadth of CD8 T-cell mediated inhibition of replication of diverse HIV-1 transmitted-founder isolates correlates with the breadth of recognition within a comprehensive HIV-1 Gag, Nef, Env and Pol potential T-cell epitope (PTE) peptide set. PLoS One 2021; 16:e0260118. [PMID: 34788349 PMCID: PMC8598018 DOI: 10.1371/journal.pone.0260118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
Full characterisation of functional HIV-1-specific T-cell responses, including identification of recognised epitopes linked with functional antiviral responses, would aid development of effective vaccines but is hampered by HIV-1 sequence diversity. Typical approaches to identify T-cell epitopes utilising extensive peptide sets require subjects' cell numbers that exceed feasible sample volumes. To address this, CD8 T-cells were polyclonally expanded from PBMC from 13 anti-retroviral naïve subjects living with HIV using CD3/CD4 bi-specific antibody. Assessment of recognition of individual peptides within a set of 1408 HIV-1 Gag, Nef, Pol and Env potential T-cell epitope peptides was achieved by sequential IFNγ ELISpot assays using peptides pooled in 3-D matrices followed by confirmation with single peptides. A Renilla reniformis luciferase viral inhibition assay assessed CD8 T-cell-mediated inhibition of replication of a cross-clade panel of 10 HIV-1 isolates, including 9 transmitted-founder isolates. Polyclonal expansion from one frozen PBMC vial provided sufficient CD8 T-cells for both ELISpot steps in 12 of 13 subjects. A median of 33 peptides in 16 epitope regions were recognised including peptides located in previously characterised HIV-1 epitope-rich regions. There was no significant difference between ELISpot magnitudes for in vitro expanded CD8 T-cells and CD8 T-cells directly isolated from PBMCs. CD8 T-cells from all subjects inhibited a median of 7 HIV-1 isolates (range 4 to 10). The breadth of CD8 T-cell mediated HIV-1 inhibition was significantly positively correlated with CD8 T-cell breadth of peptide recognition. Polyclonal CD8 T-cell expansion allowed identification of HIV-1 isolates inhibited and peptides recognised within a large peptide set spanning the major HIV-1 proteins. This approach overcomes limitations associated with obtaining sufficient cell numbers to fully characterise HIV-1-specific CD8 T-cell responses by different functional readouts within the context of extreme HIV-1 diversity. Such an approach will have useful applications in clinical development for HIV-1 and other diseases.
Collapse
Affiliation(s)
- Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Natalia Fernandez
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | | | - Jama Dalel
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Deborah King
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Lucas Black
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Claire Streatfield
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Vanaja Kakarla
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Gladys Macharia
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Julia Makinde
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Matt Price
- IAVI, New York, New York, United States of America
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Atlanta, Georgia, United States of America
| | | | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| |
Collapse
|
43
|
Granger LA, Huettner I, Debeljak F, Kaleebu P, Schechter M, Tambussi G, Weber J, Miro JM, Phillips R, Babiker A, Cooper DA, Fisher M, Ramjee G, Fidler S, Frater J, Fox J, Doores KJ. Broadly neutralizing antibody responses in the longitudinal primary HIV-1 infection Short Pulse Anti-Retroviral Therapy at Seroconversion cohort. AIDS 2021; 35:2073-2084. [PMID: 34127581 PMCID: PMC8505148 DOI: 10.1097/qad.0000000000002988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Development of immunogens that elicit an anti-HIV-1 broadly neutralizing antibody (bnAb) response will be a key step in the development of an effective HIV-1 vaccine. Although HIV-1 bnAb epitopes have been identified and mechanisms of action studied, current HIV-1 envelope-based immunogens do not elicit HIV-1 bnAbs in humans or animal models. A better understanding of how HIV-1 bnAbs arise during infection and the clinical factors associated with bnAb development may be critical for HIV-1 immunogen design efforts. DESIGN AND METHODS Longitudinal plasma samples from the treatment-naive control arm of the Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC) primary HIV-1 infection cohort were used in an HIV-1 pseudotype neutralization assay to measure the neutralization breadth, potency and specificity of bnAb responses over time. RESULTS In the SPARTAC cohort, development of plasma neutralization breadth and potency correlates with duration of HIV infection and high viral loads, and typically takes 3-4 years to arise. bnAb activity was mostly directed to one or two bnAb epitopes per donor and more than 60% of donors with the highest plasma neutralization having bnAbs targeted towards glycan-dependent epitopes. CONCLUSION This study highlights the SPARTAC cohort as an important resource for more in-depth analysis of bnAb developmental pathways.
Collapse
Affiliation(s)
- Luke A. Granger
- Department of Infectious Diseases, King's College London, Guy's Hospital, Great Maze Pond, London, UK
- Department of Infectious Disease, Imperial College London
| | - Isabella Huettner
- Department of Infectious Diseases, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| | - Franka Debeljak
- Department of Infectious Diseases, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Entebbe, Uganda
| | - Mauro Schechter
- Projeto Praça Onze, Hospital Escola São Francisco de Assis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giuseppe Tambussi
- Department of Infectious Diseases, Ospedale San Raffaele, Milan, Italy
| | | | - Jose M. Miro
- Infectious Diseases Service. Hospital Clinic–Institut d’investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Rodney Phillips
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, UK
| | - Abdel Babiker
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology
| | - David A. Cooper
- St Vincent's Centre for Applied Medical Research and The Kirby Institute, UNSW Australia, Sydney, NSW, Australia
| | - Martin Fisher
- Brighton and Sussex University Hospitals, Brighton, UK
| | - Gita Ramjee
- HIV Prevention Research Unit, South African Medical Research Council, Durban, South Africa
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London
- NIHR Imperial Biomedical Research Centre, London
| | - John Frater
- Nuffield Department of Medicine, Oxford University
- Oxford NIHR Biomedical Research Centre, Oxford
| | - Julie Fox
- Department of Infectious Diseases, King's College London, Guy's Hospital, Great Maze Pond, London, UK
- King's College NIHR Research Biomedical Research Centre, London, UK
| | - Katie J. Doores
- Department of Infectious Diseases, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| |
Collapse
|
44
|
Chikaev AN, Chikaev AN, Rudometov AP, Merkulyeva YA, Karpenko LI. Phage display as a tool for identifying HIV-1 broadly neutralizing antibodies. Vavilovskii Zhurnal Genet Selektsii 2021; 25:562-572. [PMID: 34595378 PMCID: PMC8453360 DOI: 10.18699/vj21.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
Combinatorial biology methods offer a good solution for targeting interactions of specif ic molecules
by a high-throughput screening and are widely used for drug development, diagnostics, identif ication of novel
monoclonal antibodies, search for linear peptide mimetics of discontinuous epitopes for the development of
immunogens or vaccine components. Among all currently available techniques, phage display remains one of
the most popular approaches. Despite being a fairly old method, phage display is still widely used for studying
protein-protein, peptide-protein and DNA-protein interactions due to its relative simplicity and versatility. Phage
display allows highly representative libraries of peptides, proteins or their fragments to be created. Each phage
particle in a library displays peptides or proteins fused to its coat protein and simultaneously carries the DNA
sequence encoding the displayed peptide/protein in its genome. The biopanning procedure allows isolation of
specif ic clones for almost any target, and due to the physical link between the genotype and the phenotype of
recombinant phage particles it is possible to determine the structure of selected molecules. Phage display technology
continues to play an important role in HIV research. A major obstacle to the development of an effective
HIV vaccine is an extensive genetic and antigenic variability of the virus. According to recent data, in order to provide
protection against HIV infection, the so-called broadly neutralizing antibodies that are cross-reactive against
multiple viral strains of HIV must be induced, which makes the identif ication of such antibodies a key area of HIV
vaccinology. In this review, we discuss the use of phage display as a tool for identif ication of HIV-specif ic antibodies
with broad neutralizing activity. We provide an outline of phage display technology, brief ly describe the
design of antibody phage libraries and the affinity selection procedure, and discuss the biology of HIV-1-specif ic
broadly neutralizing antibodies. Finally, we summarize the studies aimed at identif ication of broadly neutralizing
antibodies using various types of phage libraries.
Collapse
Affiliation(s)
| | - A N Chikaev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A P Rudometov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - Yu A Merkulyeva
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - L I Karpenko
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
45
|
Neutralizing Antibody Induction Associated with a Germline Immunoglobulin Gene Polymorphism in Neutralization-Resistant SIVsmE543-3 Infection. Viruses 2021; 13:v13061181. [PMID: 34205728 PMCID: PMC8235048 DOI: 10.3390/v13061181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Antibody responses are crucial for the control of virus infection. Understanding of the mechanism of antibody induction is important for the development of a vaccine eliciting effective anti-virus antibodies. Virus-specific B cell receptor (BCR)/antibody repertoires are different among individuals, but determinants for this difference remain largely unclear. We have recently reported that a germline BCR immunoglobulin (IgG) gene polymorphism (VH3.33_ET or VH3.33_VI) in rhesus macaques is the determinant for induction of potent B404-class anti-simian immunodeficiency virus (SIV) neutralizing antibodies in neutralization-sensitive SIVsmH635FC infection. In the present study, we examined whether neutralization-resistant SIVsmE543-3 infection can induce the anti-SIV neutralizing antibodies associated with the germline VH3.33 polymorphism. Anti-SIVsmE543-3 neutralizing antibodies were induced in all the macaques possessing the VH3.33_ET allele, but not in those without VH3.33_ET, in the chronic phase of SIVsmE543-3 infection. Next generation sequencing analysis of BCR VH genes found B404-class antibody sequences only in those with VH3.33_ET. These results indicate that anti-SIVsmE543-3 neutralizing antibody induction associated with the germline BCR IgG gene polymorphism can be triggered by infection with neutralization-resistant SIVsmE543-3. This animal model would be useful for the elucidation of the mechanism of potent antibody induction against neutralization-resistant viruses.
Collapse
|
46
|
Cai F, Chen WH, Wu W, Jones JA, Choe M, Gohain N, Shen X, LaBranche C, Eaton A, Sutherland L, Lee EM, Hernandez GE, Wu NR, Scearce R, Seaman MS, Moody MA, Santra S, Wiehe K, Tomaras GD, Wagh K, Korber B, Bonsignori M, Montefiori DC, Haynes BF, de Val N, Joyce MG, Saunders KO. Structural and genetic convergence of HIV-1 neutralizing antibodies in vaccinated non-human primates. PLoS Pathog 2021; 17:e1009624. [PMID: 34086838 PMCID: PMC8216552 DOI: 10.1371/journal.ppat.1009624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/21/2021] [Accepted: 05/07/2021] [Indexed: 11/19/2022] Open
Abstract
A primary goal of HIV-1 vaccine development is the consistent elicitation of protective, neutralizing antibodies. While highly similar neutralizing antibodies (nAbs) have been isolated from multiple HIV-infected individuals, it is unclear whether vaccination can consistently elicit highly similar nAbs in genetically diverse primates. Here, we show in three outbred rhesus macaques that immunization with Env elicits a genotypically and phenotypically conserved nAb response. From these vaccinated macaques, we isolated four antibody lineages that had commonalities in immunoglobulin variable, diversity, and joining gene segment usage. Atomic-level structures of the antigen binding fragments of the two most similar antibodies showed nearly identical paratopes. The Env binding modes of each of the four vaccine-induced nAbs were distinct from previously known monoclonal HIV-1 neutralizing antibodies, but were nearly identical to each other. The similarities of these antibodies show that the immune system in outbred primates can respond to HIV-1 Env vaccination with a similar structural and genotypic solution for recognizing a particular neutralizing epitope. These results support rational vaccine design for HIV-1 that aims to reproducibly elicit, in genetically diverse primates, nAbs with specific paratope structures capable of binding conserved epitopes.
Collapse
Affiliation(s)
- Fangping Cai
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Weimin Wu
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - Julia A. Jones
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Neelakshi Gohain
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Amanda Eaton
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Esther M. Lee
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Giovanna E. Hernandez
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nelson R. Wu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Richard Scearce
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - M. Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
47
|
Gorman J, Chuang GY, Lai YT, Shen CH, Boyington JC, Druz A, Geng H, Louder MK, McKee K, Rawi R, Verardi R, Yang Y, Zhang B, Doria-Rose NA, Lin B, Moore PL, Morris L, Shapiro L, Mascola JR, Kwong PD. Structure of Super-Potent Antibody CAP256-VRC26.25 in Complex with HIV-1 Envelope Reveals a Combined Mode of Trimer-Apex Recognition. Cell Rep 2021; 31:107488. [PMID: 32268107 DOI: 10.1016/j.celrep.2020.03.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/07/2020] [Accepted: 03/16/2020] [Indexed: 10/24/2022] Open
Abstract
Antibodies targeting the V1V2 apex of the HIV-1 envelope (Env) trimer comprise one of the most commonly elicited categories of broadly neutralizing antibodies. Structures of these antibodies indicate diverse modes of Env recognition typified by antibodies of the PG9 class and the PGT145 class. The mode of recognition, however, has been unclear for the most potent of the V1V2 apex-targeting antibodies, CAP256-VRC26.25 (named for donor-lineage.clone and referred to hereafter as VRC26.25). Here, we determine the cryoelectron microscopy structure at 3.7 Å resolution of the antigen-binding fragment of VRC26.25 in complex with the Env trimer thought to have initiated the lineage. The 36-residue protruding loop of VRC26.25 displays recognition incorporating both strand-C interactions similar to the PG9 class and V1V2 apex insertion similar to the PGT145 class. Structural elements of separate antibody classes can thus intermingle to form a "combined" class, which in this case yields an antibody of extraordinary potency.
Collapse
Affiliation(s)
- Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Penny L Moore
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella 4013, South Africa
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella 4013, South Africa
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
48
|
Corrigan AR, Duan H, Cheng C, Gonelli CA, Ou L, Xu K, DeMouth ME, Geng H, Narpala S, O'Connell S, Zhang B, Zhou T, Basappa M, Boyington JC, Chen SJ, O'Dell S, Pegu A, Stephens T, Tsybovsky Y, van Schooten J, Todd JP, Wang S, Doria-Rose NA, Foulds KE, Koup RA, McDermott AB, van Gils MJ, Kwong PD, Mascola JR. Fusion peptide priming reduces immune responses to HIV-1 envelope trimer base. Cell Rep 2021; 35:108937. [PMID: 33826898 PMCID: PMC8070658 DOI: 10.1016/j.celrep.2021.108937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/02/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Soluble "SOSIP"-stabilized envelope (Env) trimers are promising HIV-vaccine immunogens. However, they induce high-titer responses against the glycan-free trimer base, which is occluded on native virions. To delineate the effect on base responses of priming with immunogens targeting the fusion peptide (FP) site of vulnerability, here, we quantify the prevalence of trimer-base antibody responses in 49 non-human primates immunized with various SOSIP-stabilized Env trimers and FP-carrier conjugates. Trimer-base responses account for ∼90% of the overall trimer response in animals immunized with trimer only, ∼70% in animals immunized with a cocktail of SOSIP trimer and FP conjugate, and ∼30% in animals primed with FP conjugates before trimer immunization. Notably, neutralization breadth in FP-conjugate-primed animals correlates inversely with trimer-base responses. Our data provide methods to quantify the prevalence of trimer-base responses and reveal that FP-conjugate priming, either alone or as part of a cocktail, can reduce the trimer-base response and improve the neutralization outcome.
Collapse
Affiliation(s)
- Angela R Corrigan
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongying Duan
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher A Gonelli
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Xu
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megan E DeMouth
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah O'Connell
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjula Basappa
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven J Chen
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21710, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21710, USA
| | - Jelle van Schooten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105AZ Amsterdam, the Netherlands
| | - John P Todd
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105AZ Amsterdam, the Netherlands
| | - Peter D Kwong
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - John R Mascola
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
A Potent anti-Simian Immunodeficiency Virus Neutralizing Antibody Induction Associated with a Germline Immunoglobulin Gene Polymorphism in Rhesus Macaques. J Virol 2021; 95:JVI.02455-20. [PMID: 33441342 PMCID: PMC8092685 DOI: 10.1128/jvi.02455-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus infection induces B cells with a wide variety of B cell receptor (BCR) repertoires. Patterns of induced BCR repertoires are different in individuals, while the underlying mechanism causing this difference remains largely unclear. In particular, the impact of germ line BCR immunoglobulin (Ig) gene polymorphism on B cell/antibody induction has not fully been determined. In the present study, we found a potent antibody induction associated with a germ line BCR Ig gene polymorphism. B404-class antibodies, which were previously reported as potent anti-simian immunodeficiency virus (SIV) neutralizing antibodies using the germ line VH3.33 gene-derived Ig heavy chain, were induced in five of 10 rhesus macaques after SIVsmH635FC infection. Investigation of VH3.33 genes in B404-class antibody inducers (n = 5) and non-inducers (n = 5) revealed association of B404-class antibody induction with a germ line VH3.33 polymorphism. Analysis of reconstructed antibodies indicated that the VH3.33 residue 38 is the determinant for B404-class antibody induction. B404-class antibodies were induced in all the macaques possessing the B404-associated VH3.33 allele, even under undetectable viremia. Our results show that a single nucleotide polymorphism in germ line VH genes could be a determinant for induction of potent antibodies against virus infection, implying that germ line VH-gene polymorphisms can be a factor restricting effective antibody induction or responsiveness to vaccination.IMPORTANCE Vaccines against a wide variety of infectious diseases have been developed mostly to induce antibodies targeting pathogens. However, small but significant percentage of people fail to mount potent antibody responses after vaccination, while the underlying mechanism of host failure in antibody induction remains largely unclear. In particular, the impact of germ line B cell receptor (BCR)/antibody immunoglobulin (Ig) gene polymorphism on B cell/antibody induction has not fully been determined. In the present study, we found a potent anti-simian immunodeficiency virus neutralizing antibody induction associated with a germ line BCR/antibody Ig gene polymorphism in rhesus macaques. Our results demonstrate that a single nucleotide polymorphism in germ line Ig genes could be a determinant for induction of potent antibodies against virus infection, implying that germ line BCR/antibody Ig gene polymorphisms can be a factor restricting effective antibody induction or responsiveness to vaccination.
Collapse
|
50
|
Dual Pathways of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Trafficking Modulate the Selective Exclusion of Uncleaved Oligomers from Virions. J Virol 2021; 95:JVI.01369-20. [PMID: 33148792 DOI: 10.1128/jvi.01369-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer is transported through the secretory pathway to the infected cell surface and onto virion particles. In the Golgi, the gp160 Env precursor is modified by complex sugars and proteolytically cleaved to produce the mature functional Env trimer, which resists antibody neutralization. We observed mostly uncleaved gp160 and smaller amounts of cleaved gp120 and gp41 Envs on the surface of HIV-1-infected or Env-expressing cells; however, cleaved Envs were relatively enriched in virions and virus-like particles (VLPs). This relative enrichment of cleaved Env in VLPs was observed for wild-type Envs, for Envs lacking the cytoplasmic tail, and for CD4-independent, conformationally flexible Envs. On the cell surface, we identified three distinct populations of Envs: (i) the cleaved Env was transported through the Golgi, was modified by complex glycans, formed trimers that cross-linked efficiently, and was recognized by broadly neutralizing antibodies; (ii) a small fraction of Env modified by complex carbohydrates escaped cleavage in the Golgi; and (iii) the larger population of uncleaved Env lacked complex carbohydrates, cross-linked into diverse oligomeric forms, and was recognized by poorly neutralizing antibodies. This last group of more "open" Env oligomers reached the cell surface in the presence of brefeldin A, apparently bypassing the Golgi apparatus. Relative to Envs transported through the Golgi, these uncleaved Envs were counterselected for virion incorporation. By employing two pathways for Env transport to the surface of infected cells, HIV-1 can misdirect host antibody responses toward conformationally flexible, uncleaved Env without compromising virus infectivity.IMPORTANCE The envelope glycoprotein (Env) trimers on the surface of human immunodeficiency virus type 1 (HIV-1) mediate the entry of the virus into host cells and serve as targets for neutralizing antibodies. The cleaved, functional Env is incorporated into virus particles from the surface of the infected cell. We found that an uncleaved form of Env is transported to the cell surface by an unconventional route, but this nonfunctional Env is mostly excluded from the virus. Thus, only one of the pathways by which Env is transported to the surface of infected cells results in efficient incorporation into virus particles, potentially allowing the uncleaved Env to act as a decoy to the host immune system without compromising virus infectivity.
Collapse
|