1
|
Clancy SM, Whitehead M, Oliver NAM, Huson KM, Kyle J, Demartini D, Irvine A, Santos FG, Kajugu PE, Hanna REB, Huws SA, Morphew RM, Waite JH, Haldenby S, Robinson MW. The Calicophoron daubneyi genome provides new insight into mechanisms of feeding, eggshell synthesis and parasite-microbe interactions. BMC Biol 2025; 23:11. [PMID: 39800692 PMCID: PMC11727788 DOI: 10.1186/s12915-025-02114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The rumen fluke, Calicophoron daubneyi, is the major paramphistome species infecting ruminants within Europe. Adult flukes reside within the rumen where they are in direct contact with a unique collection of microorganisms. Here, we report a 1.76-Gb draft genome for C. daubneyi, the first for any paramphistome species. RESULTS Several gene families have undergone specific expansion in C. daubneyi, including the peptidoglycan-recognition proteins (PGRPs) and DM9 domain-containing proteins, which function as pattern-recognition receptors, as well as the saposin-like proteins with putative antibacterial properties, and are upregulated upon arrival of the fluke in the microbe-rich rumen. We describe the first characterisation of a helminth PGRP and show that a recombinant C. daubneyi PGRP binds to the surface of bacteria, including obligate anaerobes from the rumen, via specific interaction with cell wall peptidoglycan. We reveal that C. daubneyi eggshell proteins lack L-DOPA typically required for eggshell crosslinking in trematodes and propose that C. daubneyi employs atypical eggshell crosslinking chemistry that produces eggs with greater stability. Finally, although extracellular digestion of rumen ciliates occurs within the C. daubneyi gut, unique ultrastructural and biochemical adaptations of the gastrodermal cells suggest that adult flukes also acquire nutrients via uptake of volatile fatty acids from rumen fluid. CONCLUSIONS Our findings suggest that unique selective pressures, associated with inhabiting a host environment so rich in microbial diversity, have driven the evolution of molecular and morphological adaptations that enable C. daubneyi to defend itself against microorganisms, feed and reproduce within the rumen.
Collapse
Affiliation(s)
- Shauna M Clancy
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Mark Whitehead
- Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Nicola A M Oliver
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Kathryn M Huson
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Jake Kyle
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Daniel Demartini
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Allister Irvine
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Fernanda Godoy Santos
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | | | | | - Sharon A Huws
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Russell M Morphew
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales, UK
| | - J Herbert Waite
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Sam Haldenby
- Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK.
| |
Collapse
|
2
|
Fazekas B, Hamon S, De Marco Verissimo C, Cwiklinski K, López Corrales J, Gaughan S, Ryan S, Taggart CC, Weldon S, Griffin MD, Dalton JP, Lalor R. PROTECTION OF MICE AGAINST CECAL LIGATION AND PUNCTURE-INDUCED POLYMICROBIAL SEPSIS BY A FASCIOLA HEPATICA HELMINTH DEFENSE MOLECULE. Shock 2025; 63:132-140. [PMID: 39455069 DOI: 10.1097/shk.0000000000002489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
ABSTRACT Sepsis results from a dysregulated host immune response to infection and is responsible for ~11 million deaths each year. In the laboratory, many aspects of sepsis can be replicated using a cecal ligation and puncture model, which is considered the most clinically relevant rodent model of sepsis. In the present study, histological and biomarker multiplex analyses revealed that the cecal ligation and puncture model initiated a large-scale inflammatory response in mice by 24 h, with evidence of acute organ damage by 48-72 h. While many typical proinflammatory cytokine/chemokines were systemically elevated, a specific array including IL-10, eotaxin, MIP-1α, MIP-1β, MCP-1, and RANTES noticeably increased just prior to animals reaching the humane endpoint. Treatment of mice with 10 μg of a synthetic 68-amino acid peptide derived from an immunomodulatory molecule secreted by a parasitic worm of humans and livestock, F. hepatica , termed F. hepatica helminth defense molecule, potently suppressed the systemic inflammatory profile, protected mice against acute kidney injury, and improved survival between 48 and 72 h after procedure. These results suggest that the anti-inflammatory parasite-derived F. hepatica helminth defense molecule peptide has potential as a biotherapeutic treatment for sepsis.
Collapse
Affiliation(s)
- Barbara Fazekas
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Siobhán Hamon
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Siobhán Gaughan
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Ittiprasert W, Brindley PJ. CRISPR-based functional genomics for schistosomes and related flatworms. Trends Parasitol 2024; 40:1016-1028. [PMID: 39426911 PMCID: PMC11560492 DOI: 10.1016/j.pt.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 10/21/2024]
Abstract
CRISPR genome editing is actively used for schistosomes and other flukes. The ability to genetically manipulate these flatworms enables deeper investigation of their (patho)biological nature. CRISPR gene knockout (KO) demonstrated that a liver fluke growth mediator contributes to disease progression. Genome safe harbor sites have been predicted in Schistosoma mansoni and targeted for transgene insertion. CRISPR-based diagnosis has been demonstrated for infection with schistosomes and Opisthorchis viverrini. This review charts the progress, and the state of play, and posits salient questions for the field to address. Derivation of heritably transgenic loss-of-function or gain-of-function lines is the next milestone.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Paul J Brindley
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
4
|
Ruiz AE, Pond-Tor S, Stuart R, Acosta LP, Coutinho HM, Leenstra T, Fisher S, Fahey O, McDonald EA, Jiz MA, Olveda RM, McGarvey ST, Friedman JF, Wu HW, Kurtis JD. Association of Antibodies to Helminth Defense Molecule 1 With Inflammation, Organomegaly, and Decreased Nutritional Status in Schistosomiasis Japonica. J Infect Dis 2024; 230:1023-1032. [PMID: 38942608 PMCID: PMC11481327 DOI: 10.1093/infdis/jiae330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024] Open
Abstract
Immunomodulation enhances parasite fitness by reducing inflammation-induced morbidity in the mammalian host, as well as by attenuating parasite-targeting immune responses. Using a whole-proteome differential screening method, we identified Schistosoma japonicum helminth defense molecule 1 (SjHDM-1) as a target of antibodies expressed by S. japonicum-resistant but not S. japonicum-susceptible individuals. In a longitudinal cohort study (n = 644) conducted in a S. japonicum-endemic region of the Philippines, antibody levels to SjHDM-1 did not predict resistance to reinfection but were associated with increased measures of inflammation. Individuals with high levels of anti-SjHDM-1 immunoglobulin G had higher levels of C-reactive protein than those with low anti-SjHDM-1. High anti-SjHDM-1 immunoglobulin G responses were also associated with reduced biomarkers of nutritional status (albumin), as well as decreased anthropometric measures of nutritional status (weight-for-age and height-for-age z scores) and increased measures of hepatomegaly. Our results suggest that anti-SjHDM-1 responses inhibit the immunomodulatory function of SjHDM-1, resulting in increased morbidity rates.
Collapse
Affiliation(s)
- Amanda E Ruiz
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, Rhode Island, USA
| | - Sunthorn Pond-Tor
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Ronald Stuart
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Luz P Acosta
- Department of Immunology, Research Institute of Tropical Medicine, Manila, the Philippines
| | - Hannah M Coutinho
- Department of Immunology, Research Institute of Tropical Medicine, Manila, the Philippines
| | - Tjalling Leenstra
- Department of Immunology, Research Institute of Tropical Medicine, Manila, the Philippines
- Department of Pediatrics, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Sydney Fisher
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Owen Fahey
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Emily A McDonald
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pediatrics, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Mario A Jiz
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, Rhode Island, USA
- Department of Immunology, Research Institute of Tropical Medicine, Manila, the Philippines
| | - Remigio M Olveda
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Stephen T McGarvey
- Department of Epidemiology and International Health Institute, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Jennifer F Friedman
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pediatrics, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Hannah Wei Wu
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pediatrics, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Jonathan D Kurtis
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, Rhode Island, USA
| |
Collapse
|
5
|
Bąska P, Majewska A, Zygner W, Długosz E, Wiśniewski M. Fasciola hepatica Excretory-Secretory Products ( Fh-ES) Either Do Not Affect miRNA Expression Profile in THP-1 Macrophages or the Changes Are Undetectable by a Microarray Technique. Pathogens 2024; 13:854. [PMID: 39452725 PMCID: PMC11510385 DOI: 10.3390/pathogens13100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Fasciola hepatica is a liver fluke that resides in the bile ducts of various mammals. The parasitosis leads to economic losses in animal production estimated at USD 3.2 billion annually. It is also considered a zoonosis of great significance and a problem for public health affecting 2.4 million people worldwide. Nevertheless, besides the negative aspects of infestation, the antigens released by the fluke, F. hepatica Excretory-Secretory Products (Fh-ES) contain several immunomodulatory molecules that may be beneficial during the course of type I diabetes, multiple sclerosis, ulcerative colitis, or septic shock. This phenomenon is based on the natural abilities of adult F. hepatica to suppress proinflammatory responses. To underline the molecular basis of these mechanisms and determine the role of microRNA (miRNA) in the process, lipopolysaccharide (LPS)-activated THP-1 macrophages were stimulated with Fh-ES, followed by miRNA microarray analyses. Surprisingly, no results indicating changes in the miRNA expression profile were noted (p < 0.05). We discuss potential reasons for these results, which may be due to insufficient sensitivity to detect slight changes in miRNA expression or the possibility that these changes are not regulated by miRNA. Despite the negative data, this work may contribute to the future planning of experiments by other researchers.
Collapse
Affiliation(s)
- Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Alicja Majewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159b, 02-776 Warsaw, Poland;
| | - Wojciech Zygner
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.Z.); (E.D.); (M.W.)
| | - Ewa Długosz
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.Z.); (E.D.); (M.W.)
| | - Marcin Wiśniewski
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.Z.); (E.D.); (M.W.)
| |
Collapse
|
6
|
Qadeer A, Wajid A, Rafey HA, Nawaz S, Khan S, Rahman SU, Alzahrani KJ, Khan MZ, Alsabi MNS, Ullah H, Safi SZ, Xia Z, Zahoor M. Exploring extracellular vesicles in zoonotic helminth biology: implications for diagnosis, therapeutic and delivery. Front Cell Infect Microbiol 2024; 14:1424838. [PMID: 39165921 PMCID: PMC11333462 DOI: 10.3389/fcimb.2024.1424838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as key intercellular communication and pathogenesis mediators. Parasitic organisms' helminths, cause widespread infections with significant health impacts worldwide. Recent research has shed light on the role of EVs in the lifecycle, immune evasion, and disease progression of these parasitic organisms. These tiny membrane-bound organelles including microvesicles and exosomes, facilitate the transfer of proteins, lipids, mRNAs, and microRNAs between cells. EVs have been isolated from various bodily fluids, offering a potential diagnostic and therapeutic avenue for combating infectious agents. According to recent research, EVs from helminths hold great promise in the diagnosis of parasitic infections due to their specificity, early detection capabilities, accessibility, and the potential for staging and monitoring infections, promote intercellular communication, and are a viable therapeutic tool for the treatment of infectious agents. Exploring host-parasite interactions has identified promising new targets for diagnostic, therapy, and vaccine development against helminths. This literature review delves into EVS's origin, nature, biogenesis, and composition in these parasitic organisms. It also highlights the proteins and miRNAs involved in EV release, providing a comprehensive summary of the latest findings on the significance of EVs in the biology of helminths, promising targets for therapeutic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Hafiz Abdul Rafey
- Shifa College of Pharmaceutical Sciences, Faculty of Pharmaceutical and Allied Health Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sajid Ur Rahman
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Muhammad Zahoor Khan
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Mohammad Nafi Solaiman Alsabi
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Camaya I, Hill M, Sais D, Tran N, O'Brien B, Donnelly S. The Parasite-Derived Peptide, FhHDM-1, Selectively Modulates miRNA Expression in β-Cells to Prevent Apoptotic Pathways Induced by Proinflammatory Cytokines. J Diabetes Res 2024; 2024:8555211. [PMID: 39022651 PMCID: PMC11254460 DOI: 10.1155/2024/8555211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
We have previously identified a parasite-derived peptide, FhHDM-1, that prevented the progression of diabetes in nonobese diabetic (NOD) mice. Disease prevention was mediated by the activation of the PI3K/Akt pathway to promote β-cell survival and metabolism without inducing proliferation. To determine the molecular mechanisms driving the antidiabetogenic effects of FhHDM-1, miRNA:mRNA interactions and in silico predictions of the gene networks were characterised in β-cells, which were exposed to the proinflammatory cytokines that mediate β-cell destruction in Type 1 diabetes (T1D), in the presence and absence of FhHDM-1. The predicted gene targets of miRNAs differentially regulated by FhHDM-1 mapped to the biological pathways that regulate β-cell biology. Six miRNAs were identified as important nodes in the regulation of PI3K/Akt signaling. Additionally, IGF-2 was identified as a miRNA gene target that mediated the beneficial effects of FhHDM-1 on β-cells. The findings provide a putative mechanism by which FhHDM-1 positively impacts β-cells to permanently prevent diabetes. As β-cell death/dysfunction underlies diabetes development, FhHDM-1 opens new therapeutic avenues.
Collapse
Affiliation(s)
- Inah Camaya
- The School of Life SciencesUniversity of Technology Sydney, Ultimo, New South Wales, Australia
| | - Meredith Hill
- School of Biomedical EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology Sydney, Ultimo, New South Wales, Australia
| | - Dayna Sais
- School of Biomedical EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology Sydney, Ultimo, New South Wales, Australia
| | - Nham Tran
- School of Biomedical EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology Sydney, Ultimo, New South Wales, Australia
| | - Bronwyn O'Brien
- The School of Life SciencesUniversity of Technology Sydney, Ultimo, New South Wales, Australia
| | - Sheila Donnelly
- The School of Life SciencesUniversity of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
8
|
Rinaldi G, Loukas A, Sotillo J. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:507-539. [PMID: 39008274 DOI: 10.1007/978-3-031-60121-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematode infections stand out as one of the frequently overlooked tropical diseases, despite their wide global prevalence and remarkable capacity to parasitize diverse host species and tissues. Furthermore, these parasites hold significant socio-economic, medical, veterinary and agricultural implications. Over the past decades, substantial strides have been taken to bridge the information gap concerning various "omic" tools, such as proteomics and genomics, in this field. In this edition of the book, we highlight recent progress in genomics and proteomics concerning trematodes with a particular focus on the advances made in the past 5 years. Additionally, we present insights into cutting-edge technologies employed in studying trematode biology and shed light on the available resources for exploring the molecular facets of this particular group of parasitic helminths.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
9
|
Rand DM, Nunez JCB, Williams S, Rong S, Burley JT, Neil KB, Spierer AN, McKerrow W, Johnson DS, Raynes Y, Fayton TJ, Skvir N, Ferranti DA, Zeff MG, Lyons A, Okami N, Morgan DM, Kinney K, Brown BRP, Giblin AE, Cardon ZG. Parasite manipulation of host phenotypes inferred from transcriptional analyses in a trematode-amphipod system. Mol Ecol 2023; 32:5028-5041. [PMID: 37540037 PMCID: PMC10529729 DOI: 10.1111/mec.17093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Manipulation of host phenotypes by parasites is hypothesized to be an adaptive strategy enhancing parasite transmission across hosts and generations. Characterizing the molecular mechanisms of manipulation is important to advance our understanding of host-parasite coevolution. The trematode (Levinseniella byrdi) is known to alter the colour and behaviour of its amphipod host (Orchestia grillus) presumably increasing predation of amphipods which enhances trematode transmission through its life cycle. We sampled 24 infected and 24 uninfected amphipods from a salt marsh in Massachusetts to perform differential gene expression analysis. In addition, we constructed novel genomic tools for O. grillus including a de novo genome and transcriptome. We discovered that trematode infection results in upregulation of amphipod transcripts associated with pigmentation and detection of external stimuli, and downregulation of multiple amphipod transcripts implicated in invertebrate immune responses, such as vacuolar ATPase genes. We hypothesize that suppression of immune genes and the altered expression of genes associated with coloration and behaviour may allow the trematode to persist in the amphipod and engage in further biochemical manipulation that promotes transmission. The genomic tools and transcriptomic analyses reported provide new opportunities to discover how parasites alter diverse pathways underlying host phenotypic changes in natural populations.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Joaquin C B Nunez
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Shawn Williams
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Stephen Rong
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - John T Burley
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Kimberly B Neil
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Adam N Spierer
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Wilson McKerrow
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA
| | - David S Johnson
- Department of Biological Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA
| | - Yevgeniy Raynes
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Thomas J Fayton
- University of Southern Mississippi, Hattiesburg, Mississippi, USA
- Cornell University, Ithaca, New York, USA
| | - Nicholas Skvir
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - David A Ferranti
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Maya Greenhill Zeff
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Amanda Lyons
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Naima Okami
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - David M Morgan
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | | | - Bianca R P Brown
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Anne E Giblin
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Zoe G Cardon
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
10
|
Serrat J, Francés-Gómez C, Becerro-Recio D, González-Miguel J, Geller R, Siles-Lucas M. Antigens from the Helminth Fasciola hepatica Exert Antiviral Effects against SARS-CoV-2 In Vitro. Int J Mol Sci 2023; 24:11597. [PMID: 37511355 PMCID: PMC10380311 DOI: 10.3390/ijms241411597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
SARS-CoV-2, the causal agent of COVID-19, is a new coronavirus that has rapidly spread worldwide and significantly impacted human health by causing a severe acute respiratory syndrome boosted by a pulmonary hyperinflammatory response. Previous data from our lab showed that the newly excysted juveniles of the helminth parasite Fasciola hepatica (FhNEJ) modulate molecular routes within host cells related to vesicle-mediated transport and components of the innate immune response, which could potentially be relevant during viral infections. Therefore, the aim of the present study was to determine whether FhNEJ-derived molecules influence SARS-CoV-2 infection efficiency in Vero cells. Pre-treatment of Vero cells with a tegument-enriched antigenic extract of FhNEJ (FhNEJ-TEG) significantly reduced infection by both vesicular stomatitis virus particles pseudotyped with the SARS-CoV-2 Spike protein (VSV-S2) and live SARS-CoV-2. Pre-treatment of the virus itself with FhNEJ-TEG prior to infection also resulted in reduced infection efficiency similar to that obtained by remdesivir pre-treatment. Remarkably, treatment of Vero cells with FhNEJ-TEG after VSV-S2 entry also resulted in reduced infection efficiency, suggesting that FhNEJ-TEG may also affect post-entry steps of the VSV replication cycle. Altogether, our results could potentially encourage the production of FhNEJ-derived molecules in a safe, synthetic format for their application as therapeutic agents against SARS-CoV-2 and other related respiratory viruses.
Collapse
Affiliation(s)
- Judit Serrat
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Clara Francés-Gómez
- Institute for Integrative Systems Biology (I2SysBio), Universidad de Valencia-CSIC, 46980 Valencia, Spain
| | - David Becerro-Recio
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Ron Geller
- Institute for Integrative Systems Biology (I2SysBio), Universidad de Valencia-CSIC, 46980 Valencia, Spain
| | - Mar Siles-Lucas
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| |
Collapse
|
11
|
Pakharukova MY, Savina E, Ponomarev DV, Gubanova NV, Zaparina O, Zakirova EG, Cheng G, Tikhonova OV, Mordvinov VA. Proteomic characterization of Opisthorchis felineus exosome-like vesicles and their uptake by human cholangiocytes. J Proteomics 2023; 283-284:104927. [PMID: 37225040 DOI: 10.1016/j.jprot.2023.104927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/18/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
The epidemiologically important food-borne trematode Opisthorchis felineus infests the liver biliary tract of fish-eating mammals and causes disorders, including bile duct neoplasia. Many parasitic species release extracellular vesicles (EVs) that mediate host-parasite interaction. Currently, there is no information on O. felineus EVs. Using gel electrophoresis followed by liquid chromatography coupled with tandem mass spectrometry, we aimed to characterize the proteome of EVs released by the adult O. felineus liver fluke. Differential abundance of proteins between whole adult worms and EVs was assessed by semiquantitative iBAQ (intensity-based absolute quantification). Imaging, flow cytometry, inhibitor assays, and colocalization assays were performed to monitor the uptake of the EVs by H69 human cholangiocytes. The proteomic analysis reliably identified 168 proteins (at least two peptides matched a protein). Among major proteins of EVs were ferritin, tetraspanin CD63, helminth defense molecule 1, globin 3, saposin B type domain-containing protein, 60S ribosomal protein, glutathione S-transferase GST28, tubulin, and thioredoxin peroxidase. Moreover, as compared to the whole adult worm, EVs proved to be enriched with tetraspanin CD63, saposin B, helminth defense molecule 1, and Golgi-associated plant pathogenesis-related protein 1 (GAPR1). We showed that EVs are internalized by human H69 cholangiocytes via clathrin-dependent endocytosis, whereas phagocytosis and caveolin-dependent endocytosis do not play a substantial role in this process. Our study describes for the first time proteomes and differential abundance of proteins in whole adult O. felineus worms and EVs released by this food-borne trematode. Studies elucidating the regulatory role of individual components of EVs of liver flukes should be continued to determine which components of EV cargo play the most important part in the pathogenesis of fluke infection and in a closely linked pathology: bile duct neoplasia. SIGNIFICANCE: The food-borne trematode Opisthorchis felineus is a pathogen that causes hepatobiliary disorders in humans and animals. Our study describes for the first time the release of EVs by the liver fluke O. felineus, their microscopic and proteomic characterization, and internalization pathways by human cholangiocytes. Differential abundance of proteins between whole adult worms and EVs was assessed. EVs are enriched with canonical EV markers as well as parasite specific proteins, i.e. tetraspanin CD63, saposin B, helminth defense molecule 1, and others. Our findings will form the basis of the search for potential immunomodulatory candidates with therapeutic potential in the context of inflammatory diseases, as well as novel vaccine candidates.
Collapse
Affiliation(s)
- Maria Y Pakharukova
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia.
| | - Ekaterina Savina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Dmitry V Ponomarev
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Natalya V Gubanova
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Oxana Zaparina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Elvira G Zakirova
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia; Department of Genetic Technologies, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Guofeng Cheng
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Olga V Tikhonova
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia
| | - Viatcheslav A Mordvinov
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
12
|
Chakraborty P, Aravindhan V, Mukherjee S. Helminth-derived biomacromolecules as therapeutic agents for treating inflammatory and infectious diseases: What lessons do we get from recent findings? Int J Biol Macromol 2023; 241:124649. [PMID: 37119907 DOI: 10.1016/j.ijbiomac.2023.124649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Despite the tremendous progress in healthcare sectors, a number of life-threatening infectious, inflammatory, and autoimmune diseases are continuously challenging mankind throughout the globe. In this context, recent successes in utilizing helminth parasite-derived bioactive macromolecules viz. glycoproteins, enzymes, polysaccharides, lipids/lipoproteins, nucleic acids/nucleotides, and small organic molecules for treating various disorders primarily resulted from inflammation. Among the several parasites that infect humans, helminths (cestodes, nematodes, and trematodes) are known as efficient immune manipulators owing to their explicit ability to modulate and modify the innate and adaptive immune responses of humans. These molecules selectively bind to immune receptors on innate and adaptive immune cells and trigger multiple signaling pathways to elicit anti-inflammatory cytokines, expansion of alternatively activated macrophages, T-helper 2, and immunoregulatory T regulatory cell types to induce an anti-inflammatory milieu. Reduction of pro-inflammatory responses and repair of tissue damage by these anti-inflammatory mediators have been exploited for treating a number of autoimmune, allergic, and metabolic diseases. Herein, the potential and promises of different helminths/helminth-derived products as therapeutic agents in ameliorating immunopathology of different human diseases and their mechanistic insights of function at cell and molecular level alongside the molecular signaling cross-talks have been reviewed by incorporating up-to-date findings achieved in the field.
Collapse
Affiliation(s)
- Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India.
| |
Collapse
|
13
|
Mladineo I, Rončević T, Gerdol M, Tossi A. Helminthic host defense peptides: using the parasite to defend the host. Trends Parasitol 2023; 39:345-357. [PMID: 36890022 DOI: 10.1016/j.pt.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
Parasitic helminths are destined to share niches with a variety of microbiota that inevitably influence their interaction with the host. To modulate the microbiome for their benefit and defend against pathogenic isolates, helminths have developed host defense peptides (HDPs) and proteins as integral elements of their immunity. These often exert a relatively nonspecific membranolytic activity toward bacteria, sometimes with limited or no toxicity toward host cells. With a few exceptions, such as nematode cecropin-like peptides and antibacterial factors (ABFs), helminthic HDPs are largely underexplored. This review scrutinizes current knowledge on the repertoire of such peptides in helminths and promotes their research as potential leads for an anti-infective solution to the burgeoning problem of antibiotic resistance.
Collapse
Affiliation(s)
- Ivona Mladineo
- Laboratory of Functional Helminthology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology BC CAS, Branišovska 31, Česke Budejovice 37005, Czech Republic.
| | - Tomislav Rončević
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, Split 21000, Croatia
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
14
|
Chantree P, Tarasuk M, Prathaphan P, Ruangtong J, Jamklang M, Chumkiew S, Martviset P. Type I Cystatin Derived from Fasciola gigantica Suppresses Macrophage-Mediated Inflammatory Responses. Pathogens 2023; 12:pathogens12030395. [PMID: 36986318 PMCID: PMC10051455 DOI: 10.3390/pathogens12030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
There is an inverse relationship between the high incidence of helminth infection and the low incidence of inflammatory disease. Hence, it may be that helminth molecules have anti-inflammatory effects. Helminth cystatins are being extensively studied for anti-inflammatory potential. Therefore, in this study, the recombinant type I cystatin (stefin-1) of Fasciola gigantica (rFgCyst) was verified to have LPS-activated anti-inflammatory potential, including in human THP-1-derived macrophages and RAW 264.7 murine macrophages. The results from the MTT assay suggest that rFgCyst did not alter cell viability; moreover, it exerted anti-inflammatory activity by decreasing the production of proinflammatory cytokines and mediators, including IL-1β, IL-6, IL-8, TNF-α, iNOS, and COX-2 at the gene transcription and protein expression levels, as determined by qRT-PCR and Western blot analysis, respectively. Further, the secretion levels of IL-1β, IL-6, and TNF-α determined by ELISA and the NO production level determined by the Griess test were decreased. Furthermore, in Western blot analysis, the anti-inflammatory effects involved the downregulation of pIKKα/β, pIκBα, and pNF-κB in the NF-κB signaling pathway, hence reducing the translocation from the cytosol into the nucleus of pNF-κB, which subsequently turned on the gene of proinflammatory molecules. Therefore, cystatin type 1 of F. gigantica is a potential candidate for inflammatory disease treatment.
Collapse
Affiliation(s)
- Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Mayuri Tarasuk
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Parisa Prathaphan
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Mantana Jamklang
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirilak Chumkiew
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Correspondence: ; Tel.: +66-863590511
| |
Collapse
|
15
|
Hodžić A, Dheilly NM, Cabezas-Cruz A, Berry D. The helminth holobiont: a multidimensional host-parasite-microbiota interaction. Trends Parasitol 2023; 39:91-100. [PMID: 36503639 DOI: 10.1016/j.pt.2022.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
Gastrointestinal helminths have developed multiple mechanisms by which they manipulate the host microbiome to make a favorable environment for their long-term survival. While the impact of helminth infections on vertebrate host immunity and its gut microbiota is relatively well studied, little is known about the structure and functioning of microbial populations supported by metazoan parasites. Here we argue that an integrated understanding of the helminth-associated microbiome and its role in the host disease pathogenesis may facilitate the discovery of specific microbial and/or genetic patterns critical for parasite biology and subsequently pave the way for the development of alternative control strategies against parasites and parasitic disease.
Collapse
Affiliation(s)
- Adnan Hodžić
- Centre for Microbiology and Environmental Systems Science (CMESS), Department of Microbiology and Ecosystem Science, Division of Microbial Ecology (DoME), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Nolwenn M Dheilly
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
| | - David Berry
- Centre for Microbiology and Environmental Systems Science (CMESS), Department of Microbiology and Ecosystem Science, Division of Microbial Ecology (DoME), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
16
|
Quinteros SL, von Krusenstiern E, Snyder NW, Tanaka A, O’Brien B, Donnelly S. The helminth derived peptide FhHDM-1 redirects macrophage metabolism towards glutaminolysis to regulate the pro-inflammatory response. Front Immunol 2023; 14:1018076. [PMID: 36761766 PMCID: PMC9905698 DOI: 10.3389/fimmu.2023.1018076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
We have previously identified an immune modulating peptide, termed FhHDM-1, within the secretions of the liver fluke, Fasciola hepatica, which is sufficiently potent to prevent the progression of type 1 diabetes and multiple sclerosis in murine models of disease. Here, we have determined that the FhHDM-1 peptide regulates inflammation by reprogramming macrophage metabolism. Specifically, FhHDM-1 switched macrophage metabolism to a dependence on oxidative phosphorylation fuelled by fatty acids and supported by the induction of glutaminolysis. The catabolism of glutamine also resulted in an accumulation of alpha ketoglutarate (α-KG). These changes in metabolic activity were associated with a concomitant reduction in glycolytic flux, and the subsequent decrease in TNF and IL-6 production at the protein level. Interestingly, FhHDM-1 treated macrophages did not express the characteristic genes of an M2 phenotype, thereby indicating the specific regulation of inflammation, as opposed to the induction of an anti-inflammatory phenotype per se. Use of an inactive derivative of FhHDM-1, which did not modulate macrophage responses, revealed that the regulation of immune responses was dependent on the ability of FhHDM-1 to modulate lysosomal pH. These results identify a novel functional association between the lysosome and mitochondrial metabolism in macrophages, and further highlight the significant therapeutic potential of FhHDM-1 to prevent inflammation.
Collapse
Affiliation(s)
- Susel Loli Quinteros
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Nathaniel W. Snyder
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Akane Tanaka
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bronwyn O’Brien
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia,*Correspondence: Sheila Donnelly,
| |
Collapse
|
17
|
Quinteros SL, O'Brien B, Donnelly S. Exploring the role of macrophages in determining the pathogenesis of liver fluke infection. Parasitology 2022; 149:1364-1373. [PMID: 35621040 PMCID: PMC11010472 DOI: 10.1017/s0031182022000749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/06/2022]
Abstract
The food-borne trematodes, Opisthorchis viverrini and Clonorchis sinensis, are classified as group 1 biological carcinogens: definitive causes of cancer. By contrast, infections with Fasciola hepatica, also a food-borne trematode of the phylum Platyhelminthes, are not carcinogenic. This review explores the premise that the differential activation of macrophages during infection with these food-borne trematodes is a major determinant of the pathological outcome of infection. Like most helminths, the latter stages of infection with all 3 flukes induce M2 macrophages, a phenotype that mediates the functional repair of tissue damaged by the feeding and migratory activities of the parasites. However, there is a critical difference in how the development of pro-inflammatory M1 macrophages is regulated during infection with these parasites. While the activation of the M1 macrophage phenotype is largely suppressed during the early stages of infection with F. hepatica, M1 macrophages predominate in the bile ducts following infection with O. viverrini and C. sinensis. The anti-microbial factors released by M1 macrophages create an environment conducive to mutagenesis, and hence the initiation of tumour formation. Subsequently, the tissue remodelling processes induced by the M2 macrophages promote the proliferation of mutated cells, and the expansion of cancerous tissue. This review will also explore the interactions between macrophages and parasite-derived signals, and their contributions to the stark differences in the innate immune responses to infection with these parasites.
Collapse
Affiliation(s)
- Susel Loli Quinteros
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, Australia
| | - Bronwyn O'Brien
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
18
|
Sun L, Zhu M, Zhang L, Peng M, Li C, Wang L, Wang W, Ma Z, Li S, Zeng W, Yin M, Wang W, Chunyu W. Differences in microbiome of healthy Sprague Dawley rats with Paragonimus proliferus infection and potential pathogenic role of microbes in paragonimiasis. Acta Trop 2022; 233:106578. [PMID: 35779592 DOI: 10.1016/j.actatropica.2022.106578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
Abstract
Paragonimiasis, which is caused by Paragonimus, is considered to be a neglected tropical disease by the World Health Organization. The pathogenicity of Paragonimus mainly manifests as mechanical damage and immunotoxicity caused by adult worms and larvae. However, microbiota associated with Paragonimus and potential disturbance of host microbiota after infection are unknown. Paragonimus proliferus is a rare species, and its successful infection rate in experimental rats is 100%. In the current study, we compared the microbial community in lung tissues, small intestine contents, and fecal samples from Sprague Dawley (SD) rats with and without P. proliferus infection. To determine the impact of P. proliferus on the microbial community in rats, we identified the microbiota in adult worms of P. proliferus via high-throughput sequencing. Results showed dramatic differences in the composition of microbiota in lung tissues between infected and uninfected rats. Paragonimus metacercariae introduced both environmental and gut microbes into the lung tissues of rats. Many potentially pathogenic microbes were also found in the lung of infected rats. Paragonimus infection increased the chances of potentially pathogenic microbiota invading and colonizing the lungs. However, for the purpose of long-term parasitism, there might be a complex interrelationship between Paragonimus and microorganisms. Our study might shed lights on the understanding of the pathogenicity of Paragonimus.
Collapse
Affiliation(s)
- Le Sun
- Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Min Zhu
- Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China; Department of Clinical Laboratory, Jiangyou People's Hospital, Mianyang, Sichuan 621700, China
| | - Lei Zhang
- Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Man Peng
- Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Cuiying Li
- Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Liming Wang
- Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Weiqun Wang
- Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhiqiang Ma
- Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China; The Third People's Hospital of Kunming, Kunming, Yunnan 650043, China
| | - Shenghao Li
- Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China; The Third People's Hospital of Kunming, Kunming, Yunnan 650043, China
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Min Yin
- School of Medicine, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan 650091, China.
| | - Wenlin Wang
- Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Weixun Chunyu
- Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
19
|
Zhang K, Liu Y, Zhang G, Wang X, Li Z, Shang Y, Ning C, Ji C, Cai X, Xia X, Qiao J, Meng Q. Molecular Characteristics and Potent Immunomodulatory Activity of Fasciola hepatica Cystatin. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:117-126. [PMID: 35500893 PMCID: PMC9058280 DOI: 10.3347/kjp.2022.60.2.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
Cystatin, a cysteine protease inhibitor found in many parasites, plays important roles in immune evasion. This study analyzed the molecular characteristics of a cystatin from Fasciola hepatica (FhCystatin) and expressed recombinant FhCystatin (rFhcystatin) to investigate the immune modulatory effects on lipopolysaccharide-induced proliferation, migration, cytokine secretion, nitric oxide (NO) production, and apoptosis in mouse macrophages. The FhCystatin gene encoded 116 amino acids and contained a conserved cystatin-like domain. rFhCystatin significantly inhibited the activity of cathepsin B. rFhCystatin bound to the surface of mouse RAW264.7 cells, significantly inhibited cell proliferation and promoted apoptosis. Moreover, rFhCystatin inhibited the expression of cellular nitric oxide, interleukin-6, and tumor necrosis factor-α, and promoted the expression of transforming growth factor-β and interleukin-10. These results showed that FhCystatin played an important role in regulating the activity of mouse macrophages. Our findings provide new insights into mechanisms underlying the immune evasion and contribute to the exploration of potential targets for the development of new drug to control F. hepatica infection.
Collapse
Affiliation(s)
- Kai Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Yucheng Liu
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Guowu Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Xifeng Wang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Zhiyuan Li
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Yunxia Shang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Chengcheng Ning
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Chunhui Ji
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046,
China
| | - Xianzhu Xia
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Jun Qiao
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Qingling Meng
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
- Corresponding author ()
| |
Collapse
|
20
|
Carson JP, Robinson MW, Ramm GA, Gobert GN. Synthetic peptides derived from the Schistosoma mansoni secretory protein Sm16 induce contrasting responses in hepatic stellate cells. Exp Parasitol 2022; 236-237:108255. [PMID: 35385714 DOI: 10.1016/j.exppara.2022.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
|
21
|
Camaya I, Donnelly S, O'Brien B. Targeting the PI3K/Akt signaling pathway in pancreatic β-cells to enhance their survival and function: An emerging therapeutic strategy for type 1 diabetes. J Diabetes 2022; 14:247-260. [PMID: 35191175 PMCID: PMC9060113 DOI: 10.1111/1753-0407.13252] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of the insulin-producing β-cells within the pancreas. Islet transplantation represents one cure; however, during islet preparation and post transplantation significant amounts of β-cell death occur. Therefore, prevention and cure of T1D is dependent upon the preservation of β-cell function and the prevention of β-cell death. Phosphoinositide 3-kinase (PI3K)/Akt signaling represents a promising therapeutic target for T1D due to its pronounced effects on cellular survival, proliferation, and metabolism. A growing amount of evidence indicates that PI3K/Akt signaling is a critical determinant of β-cell mass and function. Modulation of the PI3K/Akt pathway, directly (via the use of highly specific protein and peptide-based biologics, excretory/secretory products of parasitic worms, and complex constituents of plant extracts) or indirectly (through microRNA interactions) can regulate the β-cell processes to ultimately determine the fate of β-cell mass. An important consideration is the identification of the specific PI3K/Akt pathway modulators that enhance β-cell function and prevent β-cell death without inducing excessive β-cell proliferation, which may carry carcinogenic side effects. Among potential PI3K/Akt pathway agonists, we have identified a novel parasite-derived protein, termed FhHDM-1 (Fasciola hepatica helminth defense molecule 1), which efficiently stimulates the PI3K/Akt pathway in β-cells to enhance function and prevent death without concomitantly inducing proliferation unlike several other identified stimulators of PI3K/Akt signaling . As such, FhHDM-1 will inform the design of biologics aimed at targeting the PI3K/Akt pathway to prevent/ameliorate not only T1D but also T2D, which is now widely recognized as an inflammatory disease characterized by β-cell dysfunction and death. This review will explore the modulation of the PI3K/Akt signaling pathway as a novel strategy to enhance β-cell function and survival.
Collapse
Affiliation(s)
- Inah Camaya
- School of Life Sciences, Faculty of ScienceThe University of Technology SydneyUltimoNew South WalesAustralia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of ScienceThe University of Technology SydneyUltimoNew South WalesAustralia
| | - Bronwyn O'Brien
- School of Life Sciences, Faculty of ScienceThe University of Technology SydneyUltimoNew South WalesAustralia
| |
Collapse
|
22
|
Barbour T, Cwiklinski K, Lalor R, Dalton JP, De Marco Verissimo C. The Zoonotic Helminth Parasite Fasciola hepatica: Virulence-Associated Cathepsin B and Cathepsin L Cysteine Peptidases Secreted by Infective Newly Excysted Juveniles (NEJ). Animals (Basel) 2021; 11:ani11123495. [PMID: 34944270 PMCID: PMC8698070 DOI: 10.3390/ani11123495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Fasciolosis, caused by the worm parasite Fasciola hepatica (liver fluke), is a global disease of farm animals and a neglected disease of humans. Infection arises from the ingestion of resistant metacercariae that contaminate vegetation. Within the intestine, the parasite excysts as an active larvae, the newly excysted juvenile (NEJ), that borrows through the intestinal wall to infect the host and migrates to the liver. NEJ release, tissue penetration and migration are facilitated by enzymes secreted by the parasite, namely, cathepsin B1 (FhCB1), cathepsin B2 (FhCB2), cathepsin B3 (FhCB3) and cathepsin L3 (FhCL3). While our knowledge of these enzymes is growing, we have yet to understand why the parasites require all four of them to invade the host. In this study, we produced functional recombinant forms of these enzymes and demonstrated that they vary greatly in terms of activity, optimal pH and substrate specificity, suggesting that, combined, these enzymes provide the parasite with an efficient digestion system for different host tissues and molecules. We also identified several compounds that inhibited the activity of these enzymes, but did not affect the ability of the larvae to excyst or survive. However, this does not exclude these enzymes as targets for development of drugs or vaccines. Abstract Fasciolosis caused by Fasciola hepatica is a major global disease of livestock and an important neglected helminthiasis of humans. Infection arises when encysted metacercariae are ingested by the mammalian host. Within the intestine, the parasite excysts as a newly excysted juvenile (NEJ) that penetrates the intestinal wall and migrates to the liver. NEJ excystment and tissue penetration are facilitated by the secretion of cysteine peptidases, namely, cathepsin B1 (FhCB1), cathepsin B2 (FhCB2), cathepsin B3 (FhCB3) and cathepsin L3 (FhCL3). While our knowledge of these peptidases is growing, we have yet to understand why multiple enzymes are required for parasite invasion. Here, we produced functional recombinant forms of these four peptidases and compared their physio-biochemical characteristics. Our studies show great variation of their pH optima for activity, substrate specificity and inhibitory profile. Carboxy-dipeptidase activity was exhibited exclusively by FhCB1. Our studies suggest that, combined, these peptidases create a powerful hydrolytic cocktail capable of digesting the various host tissues, cells and macromolecules. Although we found several inhibitors of these enzymes, they did not show potent inhibition of metacercarial excystment or NEJ viability in vitro. However, this does not exclude these peptidases as targets for future drug or vaccine development.
Collapse
Affiliation(s)
- Tara Barbour
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
| | - Krystyna Cwiklinski
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - John Pius Dalton
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - Carolina De Marco Verissimo
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
- Correspondence:
| |
Collapse
|
23
|
Lechner A, Bohnacker S, Esser-von Bieren J. Macrophage regulation & function in helminth infection. Semin Immunol 2021; 53:101526. [PMID: 34802871 DOI: 10.1016/j.smim.2021.101526] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are innate immune cells with essential roles in host defense, inflammation, immune regulation and repair. During infection with multicellular helminth parasites, macrophages contribute to pathogen trapping and killing as well as to tissue repair and the resolution of type 2 inflammation. Macrophages produce a broad repertoire of effector molecules, including enzymes, cytokines, chemokines and growth factors that govern anti-helminth immunity and repair of parasite-induced tissue damage. Helminth infection and the associated type 2 immune response induces an alternatively activated macrophage (AAM) phenotype that - beyond driving host defense - prevents aberrant Th2 cell activation and type 2 immunopathology. The immune regulatory potential of macrophages is exploited by helminth parasites that induce the production of anti-inflammatory mediators such as interleukin 10 or prostaglandin E2 to evade host immunity. Here, we summarize current insights into the mechanisms of macrophage-mediated host defense and repair during helminth infection and highlight recent progress on the immune regulatory crosstalk between macrophages and helminth parasites. We also point out important remaining questions such as the translation of findings from murine models to human settings of helminth infection as well as long-term consequences of helminth-induced macrophage reprogramming for subsequent host immunity.
Collapse
Affiliation(s)
- Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany.
| |
Collapse
|
24
|
Camaya I, Mok TY, Lund M, To J, Braidy N, Robinson MW, Santos J, O'Brien B, Donnelly S. The parasite-derived peptide FhHDM-1 activates the PI3K/Akt pathway to prevent cytokine-induced apoptosis of β-cells. J Mol Med (Berl) 2021; 99:1605-1621. [PMID: 34374810 DOI: 10.1007/s00109-021-02122-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterised by the destruction of the insulin-producing beta (β)-cells within the pancreatic islets. We have previously identified a novel parasite-derived molecule, termed Fasciola hepatica helminth defence molecule 1 (FhHDM-1), that prevents T1D development in non-obese diabetic (NOD) mice. In this study, proteomic analyses of pancreas tissue from NOD mice suggested that FhHDM-1 activated the PI3K/Akt signalling pathway, which is associated with β-cell metabolism, survival and proliferation. Consistent with this finding, FhHDM-1 preserved β-cell mass in NOD mice. Examination of the biodistribution of FhHDM-1 after intraperitoneal administration in NOD mice revealed that the parasite peptide localised to the pancreas, suggesting that it exerted a direct effect on the survival/function of β-cells. This was confirmed in vitro, as the interaction of FhHDM-1 with the NOD-derived β-cell line, NIT-1, resulted in increased levels of phosphorylated Akt, increased NADH and NADPH and reduced activity of the NAD-dependent DNA nick sensor, poly(ADP-ribose) polymerase (PARP-1). As a consequence, β-cell survival was enhanced and apoptosis was prevented in the presence of the pro-inflammatory cytokines that destroy β-cells during T1D pathogenesis. Similarly, FhHDM-1 protected primary human islets from cytokine-induced apoptosis. Importantly, while FhHDM-1 promoted β-cell survival, it did not induce proliferation. Collectively, these data indicate that FhHDM-1 has significant therapeutic applications to promote β-cell survival, which is required for T1D and T2D prevention and islet transplantation. KEY MESSAGES: FhHDM-1 preserves β-cell mass in NOD mice and prevents the development of T1D. FhHDM-1 enhances phosphorylation of Akt in mouse β-cell lines. FhHDM-1 increases levels of NADH/NADPH in mouse β-cell lines in vitro. FhHDM-1 prevents cytokine-induced cell death of mouse β-cell lines and primary human β-cells in vitro via activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Inah Camaya
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Tsz Y Mok
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Maria Lund
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Joyce To
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Randwick, Australia
| | - Mark W Robinson
- School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Jerran Santos
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Bronwyn O'Brien
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
25
|
Lalor R, Cwiklinski K, Calvani NED, Dorey A, Hamon S, Corrales JL, Dalton JP, De Marco Verissimo C. Pathogenicity and virulence of the liver flukes Fasciola hepatica and Fasciola Gigantica that cause the zoonosis Fasciolosis. Virulence 2021; 12:2839-2867. [PMID: 34696693 PMCID: PMC8632118 DOI: 10.1080/21505594.2021.1996520] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fasciolosis caused by the liver flukes Fasciola hepatica and Fasciola gigantica is one of the most important neglected parasitic diseases of humans and animals. The ability of the parasites to infect and multiply in their intermediate snail hosts, and their adaptation to a wide variety of mammalian definitive hosts contribute to their high transmissibility and distribution. Within the mammalian host, the trauma caused by the immature flukes burrowing through the liver parenchyma is associated with most of the pathogenesis. Similarly, the feeding activity and the physical presence of large flukes in the bile ducts can lead to anemia, inflammation, obstruction and cholangitis. The high frequency of non-synonymous polymorphisms found in Fasciola spp. genes allows for adaptation and invasion of a broad range of hosts. This is also facilitated by parasite’s excretory-secretory (ES) molecules that mediate physiological changes that allows their establishment within the host. ES contains cathepsin peptidases that aid parasite invasion by degrading collagen and fibronectin. In the bile ducts, cathepsin-L is critical to hemoglobin digestion during feeding activities. Other molecules (peroxiredoxin, cathepsin-L and Kunitz-type inhibitor) stimulate a strong immune response polarized toward a Treg/Th2 phenotype that favors fluke’s survival. Helminth defense molecule, fatty acid binding proteins, Fasciola-specific glycans and miRNAs modulate host pro-inflammatory responses, while antioxidant scavenger enzymes work in an orchestrated way to deter host oxidant-mediated damage. Combining these strategies Fasciola spp. survive for decades within their mammalian host, where they reproduce and spread to become one of the most widespread zoonotic worm parasites in the world.
Collapse
Affiliation(s)
- Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Nichola Eliza Davies Calvani
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amber Dorey
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Siobhán Hamon
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
26
|
Nunes LGP, Reichert T, Machini MT. His-Rich Peptides, Gly- and His-Rich Peptides: Functionally Versatile Compounds with Potential Multi-Purpose Applications. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Midha A, Goyette-Desjardins G, Goerdeler F, Moscovitz O, Seeberger PH, Tedin K, Bertzbach LD, Lepenies B, Hartmann S. Lectin-Mediated Bacterial Modulation by the Intestinal Nematode Ascaris suum. Int J Mol Sci 2021; 22:ijms22168739. [PMID: 34445445 PMCID: PMC8395819 DOI: 10.3390/ijms22168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Ascariasis is a global health problem for humans and animals. Adult Ascaris nematodes are long-lived in the host intestine where they interact with host cells as well as members of the microbiota resulting in chronic infections. Nematode interactions with host cells and the microbial environment are prominently mediated by parasite-secreted proteins and peptides possessing immunomodulatory and antimicrobial activities. Previously, we discovered the C-type lectin protein AsCTL-42 in the secreted products of adult Ascaris worms. Here we tested recombinant AsCTL-42 for its ability to interact with bacterial and host cells. We found that AsCTL-42 lacks bactericidal activity but neutralized bacterial cells without killing them. Treatment of bacterial cells with AsCTL-42 reduced invasion of intestinal epithelial cells by Salmonella. Furthermore, AsCTL-42 interacted with host myeloid C-type lectin receptors. Thus, AsCTL-42 is a parasite protein involved in the triad relationship between Ascaris, host cells, and the microbiota.
Collapse
Affiliation(s)
- Ankur Midha
- Institute of Immunology, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Guillaume Goyette-Desjardins
- Institute for Immunology & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (G.G.-D.); (B.L.)
| | - Felix Goerdeler
- Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; (F.G.); (O.M.); (P.H.S.)
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Oren Moscovitz
- Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; (F.G.); (O.M.); (P.H.S.)
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; (F.G.); (O.M.); (P.H.S.)
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Karsten Tedin
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Luca D. Bertzbach
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany;
- Department of Viral Transformation, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany
| | - Bernd Lepenies
- Institute for Immunology & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (G.G.-D.); (B.L.)
| | - Susanne Hartmann
- Institute of Immunology, Freie Universität Berlin, 14163 Berlin, Germany;
- Correspondence:
| |
Collapse
|
28
|
Wan S, Sun X, Tang W, Wang L, Wu Z, Sun X. Exosome-Depleted Excretory-Secretory Products of the Fourth-Stage Larval Angiostrongylus cantonensis Promotes Alternative Activation of Macrophages Through Metabolic Reprogramming by the PI3K-Akt Pathway. Front Immunol 2021; 12:685984. [PMID: 34367145 PMCID: PMC8343011 DOI: 10.3389/fimmu.2021.685984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022] Open
Abstract
Angiostrongylus cantonensis (AC), which parasitizes in the brain of the non-permissive host, such as mouse and human, is an etiologic agent of eosinophilic meningitis. Excretory-secretory (ES) products play an important role in the interaction between parasites and hosts’ immune responses. Inflammatory macrophages are responsible for eosinophilic meningitis induced by AC, and the soluble antigens of Angiostrongylus cantonensis fourth stage larva (AC L4), a mimic of dead AC L4, aggravate eosinophilic meningitis in AC-infected mice model via promoting alternative activation of macrophages. In this study, we investigated the key molecules in the ES products of AC L4 on macrophages and observed the relationship between metabolic reprogramming and the PI3K-Akt pathway. First, a co-culture system of macrophage and AC L4 was established to define the role of AC L4 ES products on macrophage polarization. Then, AC L4 exosome and exosome-depleted excretory-secretory products (exofree) were separated from AC L4 ES products using differential centrifugation, and their distinct roles on macrophage polarization were confirmed using qPCR and ELISA experiments. Moreover, AC L4 exofree induced alternative activation of macrophages, which is partially associated with metabolic reprogramming by the PI3K-Akt pathway. Next, lectin blot and deglycosylation assay were done, suggesting the key role of N-linked glycoproteins in exofree. Then, glycoproteomic analysis of exofree and RNA-seq analysis of exofree-treated macrophage were performed. Bi-layer PPI network analysis based on these results identified macrophage-related protein Hexa as a key molecule in inducing alternative activation of macrophages. Our results indicate a great value for research of helminth-derived immunoregulatory molecules, which might contribute to drug development for immune-related diseases.
Collapse
Affiliation(s)
- Shuo Wan
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaoqiang Sun
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Zhongshan School of Mathematics, Sun Yat-Sen University, Guangzhou, China
| | - Wenyan Tang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
29
|
Huson KM, Atcheson E, Oliver NAM, Best P, Barley JP, Hanna REB, McNeilly TN, Fang Y, Haldenby S, Paterson S, Robinson MW. Transcriptome and Secretome Analysis of Intra-Mammalian Life-Stages of Calicophoron daubneyi Reveals Adaptation to a Unique Host Environment. Mol Cell Proteomics 2021; 20:100055. [PMID: 33581320 PMCID: PMC7973311 DOI: 10.1074/mcp.ra120.002175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Paramphistomosis, caused by the rumen fluke, Calicophoron daubneyi, is a parasitic infection of ruminant livestock, which has seen a rapid rise in prevalence throughout Western Europe in recent years. After ingestion of metacercariae (parasite cysts) by the mammalian host, newly excysted juveniles (NEJs) emerge and invade the duodenal submucosa, which causes significant pathology in heavy infections. The immature flukes then migrate upward, along the gastrointestinal tract, and enter the rumen where they mature and begin to produce eggs. Despite their emergence, and sporadic outbreaks of acute disease, we know little about the molecular mechanisms used by C. daubneyi to establish infection, acquire nutrients, and avoid the host immune response. Here, transcriptome analysis of four intramammalian life-cycle stages, integrated with secretome analysis of the NEJ and adult parasites (responsible for acute and chronic diseases, respectively), revealed how the expression and secretion of selected families of virulence factors and immunomodulators are regulated in accordance with fluke development and migration. Our data show that while a family of cathepsins B with varying S2 subsite residues (indicating distinct substrate specificities) is differentially secreted by NEJs and adult flukes, cathepsins L and F are secreted in low abundance by NEJs only. We found that C. daubneyi has an expanded family of aspartic peptidases, which is upregulated in adult worms, although they are under-represented in the secretome. The most abundant proteins in adult fluke secretions were helminth defense molecules that likely establish an immune environment permissive to fluke survival and/or neutralize pathogen-associated molecular patterns such as bacterial lipopolysaccharide in the microbiome-rich rumen. The distinct collection of molecules secreted by C. daubneyi allowed the development of the first coproantigen-based ELISA for paramphistomosis which, importantly, did not recognize antigens from other helminths commonly found as coinfections with rumen fluke.
Collapse
Affiliation(s)
- Kathryn M Huson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Erwan Atcheson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Nicola A M Oliver
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Philip Best
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Jason P Barley
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland
| | - Robert E B Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland
| | - Tom N McNeilly
- Disease Control Department, Moredun Research Institute, Edinburgh, Scotland
| | - Yongxiang Fang
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Sam Haldenby
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Steve Paterson
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
30
|
Zafra R, Buffoni L, Pérez-Caballero R, Molina-Hernández V, Ruiz-Campillo MT, Pérez J, Martínez-Moreno Á, Martínez Moreno FJ. Efficacy of a multivalent vaccine against Fasciola hepatica infection in sheep. Vet Res 2021; 52:13. [PMID: 33509286 PMCID: PMC7841919 DOI: 10.1186/s13567-021-00895-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
In this work we report the protection found in a vaccination trial performed in sheep with two different vaccines composed each one by a cocktail of antigens (rCL1, rPrx, rHDM and rLAP) formulated in two different adjuvants (Montanide ISA 61 VG (G1) and Alhydrogel®(G2)). The parameters of protection tested were fluke burden, faecal egg count and evaluation of hepatic lesions. In vaccinated group 1 we found a significant decrease in fluke burden in comparison to both unimmunised and infected control group (37.2%; p = 0.002) and to vaccinated group 2 (Alhydrogel®) (27.08%; p = 0.016). The lower fluke burden found in G1 was accompanied by a decrease in egg output of 28.71% in comparison with the infected control group. Additionally, gross hepatic lesions found in vaccine 1 group showed a significant decrease (p = 0.03) in comparison with unimmunised-infected group. The serological study showed the highest level for both IgG1 and IgG2 in animals from group 1. All these data support the hypothesis of protection found in vaccine 1 group.
Collapse
Affiliation(s)
- Rafael Zafra
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, Córdoba, Spain
| | - Leandro Buffoni
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, Córdoba, Spain.
| | - Raúl Pérez-Caballero
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, Córdoba, Spain
| | - Verónica Molina-Hernández
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, Córdoba, Spain
| | - María T Ruiz-Campillo
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, Córdoba, Spain
| | - José Pérez
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, Córdoba, Spain
| | - Álvaro Martínez-Moreno
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, Córdoba, Spain
| | - Francisco J Martínez Moreno
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, Córdoba, Spain
| |
Collapse
|
31
|
Cwiklinski K, Robinson MW, Donnelly S, Dalton JP. Complementary transcriptomic and proteomic analyses reveal the cellular and molecular processes that drive growth and development of Fasciola hepatica in the host liver. BMC Genomics 2021; 22:46. [PMID: 33430759 PMCID: PMC7797711 DOI: 10.1186/s12864-020-07326-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Background The major pathogenesis associated with Fasciola hepatica infection results from the extensive tissue damage caused by the tunnelling and feeding activity of immature flukes during their migration, growth and development in the liver. This is compounded by the pathology caused by host innate and adaptive immune responses that struggle to simultaneously counter infection and repair tissue damage. Results Complementary transcriptomic and proteomic approaches defined the F. hepatica factors associated with their migration in the liver, and the resulting immune-pathogenesis. Immature liver-stage flukes express ~ 8000 transcripts that are enriched for transcription and translation processes reflective of intensive protein production and signal transduction pathways. Key pathways that regulate neoblast/pluripotent cells, including the PI3K-Akt signalling pathway, are particularly dominant and emphasise the importance of neoblast-like cells for the parasite’s rapid development. The liver-stage parasites display different secretome profiles, reflecting their distinct niche within the host, and supports the view that cathepsin peptidases, cathepsin peptidase inhibitors, saposins and leucine aminopeptidases play a central role in the parasite’s destructive migration, and digestion of host tissue and blood. Immature flukes are also primed for countering immune attack by secreting immunomodulating fatty acid binding proteins (FABP) and helminth defence molecules (FhHDM). Combined with published host microarray data, our results suggest that considerable immune cell infiltration and subsequent fibrosis of the liver tissue exacerbates oxidative stress within parenchyma that compels the expression of a range of antioxidant molecules within both host and parasite. Conclusions The migration of immature F. hepatica parasites within the liver is associated with an increase in protein production, expression of signalling pathways and neoblast proliferation that drive their rapid growth and development. The secretion of a defined set of molecules, particularly cathepsin L peptidases, peptidase-inhibitors, saponins, immune-regulators and antioxidants allow the parasite to negotiate the liver micro-environment, immune attack and increasing levels of oxidative stress. This data contributes to the growing F. hepatica -omics information that can be exploited to understand parasite development more fully and for the design of novel control strategies to prevent host liver tissue destruction and pathology.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sheila Donnelly
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland.,The School of Life Sciences, University of Technology, Sydney, Australia
| | - John P Dalton
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
32
|
Corral-Ruiz GM, Sánchez-Torres LE. Fasciola hepatica-derived molecules as potential immunomodulators. Acta Trop 2020; 210:105548. [PMID: 32505597 DOI: 10.1016/j.actatropica.2020.105548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/21/2020] [Accepted: 05/18/2020] [Indexed: 01/15/2023]
Abstract
Through the years, helminths have co-existed with many species. This process has allowed parasites to live within them for long periods and, in some cases, to generate offspring. In particular, this ability has allowed Fasciola hepatica to survive the diverse immunological responses faced within its wide range of hosts. The vast repertoire of molecules that are constantly secreted in large quantities by the parasite, acts directly on several cells of the immune system affecting their antiparasitic capacities. Interestingly, these molecules can direct the host immune response to an anti-inflammatory and regulatory phenotype that assures the survival of the parasite with less harm to the host. Based on these observations, some of the products of F. hepatica, as well as those of other helminths, have been studied, either as a total extract, extracellular vesicles or as purified molecules, to establish and characterize their anti-inflammatory mechanisms. Until now, the results obtained encourage further research directed to discover new helminth-derived alternatives to replace current therapies, which can be useful for people suffering from inflammatory diseases like autoimmunity or allergy processes that affect their life quality. In this review, some of the most studied molecules derived from F. hepatica and their modulating capacities are discussed.
Collapse
Affiliation(s)
- Gerardo Manuel Corral-Ruiz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, s/n, 11340 Ciudad de México, México
| | - Luvia Enid Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, s/n, 11340 Ciudad de México, México.
| |
Collapse
|
33
|
Ryan S, Shiels J, Taggart CC, Dalton JP, Weldon S. Fasciola hepatica-Derived Molecules as Regulators of the Host Immune Response. Front Immunol 2020; 11:2182. [PMID: 32983184 PMCID: PMC7492538 DOI: 10.3389/fimmu.2020.02182] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Helminths (worms) are one of the most successful organisms in nature given their ability to infect millions of humans and animals worldwide. Their success can be attributed to their ability to modulate the host immune response for their own benefit by releasing excretory-secretory (ES) products. Accordingly, ES products have been lauded as a potential source of immunomodulators/biotherapeutics for an array of inflammatory diseases. However, there is a significant lack of knowledge regarding the specific interactions between these products and cells of the immune response. Many different compounds have been identified within the helminth "secretome," including antioxidants, proteases, mucin-like peptides, as well as helminth defense molecules (HDMs), each with unique influences on the host inflammatory response. HDMs are a conserved group of proteins initially discovered in the secretome of the liver fluke, Fasciola hepatica. HDMs interact with cell membranes without cytotoxic effects and do not exert antimicrobial activity, suggesting that these peptides evolved specifically for immunomodulatory purposes. A peptide generated from the HDM sequence, termed FhHDM-1, has shown extensive anti-inflammatory abilities in clinically relevant models of diseases such as diabetes, multiple sclerosis, asthma, and acute lung injury, offering hope for the development of a new class of therapeutics. In this review, the current knowledge of host immunomodulation by a range of F. hepatica ES products, particularly FhHDM-1, will be discussed. Immune regulators, including HDMs, have been identified from other helminths and will also be outlined to broaden our understanding of the variety of effects these potent molecules exert on immune cells.
Collapse
Affiliation(s)
- Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jenna Shiels
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - John P Dalton
- Centre of One Health (COH), Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, United Kingdom
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
34
|
Ashour DS, Othman AA. Parasite-bacteria interrelationship. Parasitol Res 2020; 119:3145-3164. [PMID: 32748037 DOI: 10.1007/s00436-020-06804-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Parasites and bacteria have co-evolved with humankind, and they interact all the time in a myriad of ways. For example, some bacterial infections result from parasite-dwelling bacteria as in the case of Salmonella infection during schistosomiasis. Other bacteria synergize with parasites in the evolution of human disease as in the case of the interplay between Wolbachia endosymbiont bacteria and filarial nematodes as well as the interaction between Gram-negative bacteria and Schistosoma haematobium in the pathogenesis of urinary bladder cancer. Moreover, secondary bacterial infections may complicate several parasitic diseases such as visceral leishmaniasis and malaria, due to immunosuppression of the host during parasitic infections. Also, bacteria may colonize the parasitic lesions; for example, hydatid cysts and skin lesions of ectoparasites. Remarkably, some parasitic helminths and arthropods exhibit antibacterial activity usually by the release of specific antimicrobial products. Lastly, some parasite-bacteria interactions are induced as when using probiotic bacteria to modulate the outcome of a variety of parasitic infections. In sum, parasite-bacteria interactions involve intricate processes that never cease to intrigue the researchers. However, understanding and exploiting these interactions could have prophylactic and curative potential for infections by both types of pathogens.
Collapse
Affiliation(s)
- Dalia S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
35
|
Buffoni L, Garza-Cuartero L, Pérez-Caballero R, Zafra R, Javier Martínez-Moreno F, Molina-Hernández V, Pérez J, Martínez-Moreno Á, Mulcahy G. Identification of protective peptides of Fasciola hepatica-derived cathepsin L1 (FhCL1) in vaccinated sheep by a linear B-cell epitope mapping approach. Parasit Vectors 2020; 13:390. [PMID: 32736582 PMCID: PMC7393625 DOI: 10.1186/s13071-020-04260-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background Fasciolosis is one of the most important parasitic diseases of livestock. The need for better control strategies gave rise to the identification of various vaccine candidates. The recombinant form of a member of the cysteine
protease family, cathepsin L1 of Fasciola hepatica (FhCL1) has been a vaccine target for the past few decades since it has been shown to behave as an immunodominant antigen. However, when FhCL1 was used as vaccine, it has been observed to elicit significant protection in some trials, whereas no protection was provided in others. Methods In order to improve vaccine development strategy, we conducted a linear B-cell epitope mapping of FhCL1 in sheep vaccinated with FhCL1, FhHDM, FhLAP and FhPrx plus Montanide and with significant reduction of the fluke burden, sheep vaccinated with FhCL1, FhHDM, FhLAP and FhPrx plus aluminium hydroxide and with non-significant reduction of the fluke burden, and in unvaccinated-infected sheep. Results Our study showed that the pattern and dynamic of peptide recognition varied noticeably between both vaccinated groups, and that the regions 55–63 and 77–84, which are within the propeptide, and regions 102–114 and 265–273 of FhCL1 were specifically recognised only by vaccinated sheep with significant reduction of the fluke burden. In addition, these animals also showed significant production of specific IgG2, whereas none was observed in vaccinated-Aluminium hydroxide and in infected control animals. Conclusions We have identified 42 residues of FhCL1 that contributed to protective immunity against infection with F. hepatica in sheep. Our results provide indications in relation to key aspects of the immune response. Given the variable outcomes of vaccination trials conducted in ruminants to date, this study adds new insights to improve strategies of vaccine development.![]()
Collapse
Affiliation(s)
- Leandro Buffoni
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, km 396, 14014, Córdoba, Spain.
| | - Laura Garza-Cuartero
- School of Veterinary Medicine, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Raúl Pérez-Caballero
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, km 396, 14014, Córdoba, Spain.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rafael Zafra
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - F Javier Martínez-Moreno
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - Verónica Molina-Hernández
- Anatomy and Comparative Pathology Department, Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - José Pérez
- Anatomy and Comparative Pathology Department, Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - Álvaro Martínez-Moreno
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - Grace Mulcahy
- School of Veterinary Medicine, University College Dublin, Belfield, D4, Dublin, Ireland.,Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Shiels J, Cwiklinski K, Alvarado R, Thivierge K, Cotton S, Gonzales Santana B, To J, Donnelly S, Taggart CC, Weldon S, Dalton JP. Schistosoma mansoni immunomodulatory molecule Sm16/SPO-1/SmSLP is a member of the trematode-specific helminth defence molecules (HDMs). PLoS Negl Trop Dis 2020; 14:e0008470. [PMID: 32644998 PMCID: PMC7373315 DOI: 10.1371/journal.pntd.0008470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/21/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sm16, also known as SPO-1 and SmSLP, is a low molecular weight protein (~16kDa) secreted by the digenean trematode parasite Schistosoma mansoni, one of the main causative agents of human schistosomiasis. The molecule is secreted from the acetabular gland of the cercariae during skin invasion and is believed to perform an immune-suppressive function to protect the invading parasite from innate immune cell attack. METHODOLOGY/PRINCIPAL FINDINGS We show that Sm16 homologues of the Schistosomatoidea family are phylogenetically related to the helminth defence molecule (HDM) family of immunomodulatory peptides first described in Fasciola hepatica. Interrogation of 69 helminths genomes demonstrates that HDMs are exclusive to trematode species. Structural analyses of Sm16 shows that it consists predominantly of an amphipathic alpha-helix, much like other HDMs. In S. mansoni, Sm16 is highly expressed in the cercariae and eggs but not in adult worms, suggesting that the molecule is of importance not only during skin invasion but also in the pro-inflammatory response to eggs in the liver tissues. Recombinant Sm16 and a synthetic form, Sm16 (34-117), bind to macrophages and are internalised into the endosomal/lysosomal system. Sm16 (34-117) elicited a weak pro-inflammatory response in macrophages in vitro but also suppressed the production of bacterial lipopolysaccharide (LPS)-induced inflammatory cytokines. Evaluation of the transcriptome of human macrophages treated with a synthetic Sm16 (34-117) demonstrates that the peptide exerts significant immunomodulatory effects alone, as well as in the presence of LPS. Pathways most significantly influenced by Sm16 (34-117) were those involving transcription factors peroxisome proliferator-activated receptor (PPAR) and liver X receptors/retinoid X receptor (LXR/RXR) which are intricately involved in regulating the cellular metabolism of macrophages (fatty acid, cholesterol and glucose homeostasis) and are central to inflammatory responses. CONCLUSIONS/SIGNIFICANCE These results offer new insights into the structure and function of a well-known immunomodulatory molecule, Sm16, and places it within a wider family of trematode-specific small molecule HDM immune-modulators with immuno-biotherapeutic possibilities.
Collapse
Affiliation(s)
- Jenna Shiels
- School of Biological Sciences, Queen’s University Belfast, Northern Ireland
- Airway Innate Immunity Group (AiiR), Wellcome Wolfson Institute for Experimental Medicine (WWIEM), School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland
| | - Krystyna Cwiklinski
- School of Biological Sciences, Queen’s University Belfast, Northern Ireland
- Center of One Health (COH) and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Raquel Alvarado
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Karine Thivierge
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | - Sophie Cotton
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | | | - Joyce To
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Clifford C. Taggart
- Airway Innate Immunity Group (AiiR), Wellcome Wolfson Institute for Experimental Medicine (WWIEM), School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland
| | - Sinead Weldon
- Airway Innate Immunity Group (AiiR), Wellcome Wolfson Institute for Experimental Medicine (WWIEM), School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland
| | - John P. Dalton
- School of Biological Sciences, Queen’s University Belfast, Northern Ireland
- Center of One Health (COH) and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Ireland
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
37
|
Felizatti AP, Zeraik AE, Basso LG, Kumagai PS, Lopes JL, Wallace B, Araujo AP, DeMarco R. Interactions of amphipathic α-helical MEG proteins from Schistosoma mansoni with membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183173. [DOI: 10.1016/j.bbamem.2019.183173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 02/04/2023]
|
38
|
Kang JM, Yoo WG, Lê HG, Lee J, Sohn WM, Na BK. Clonorchis sinensis MF6p/HDM (CsMF6p/HDM) induces pro-inflammatory immune response in RAW 264.7 macrophage cells via NF-κB-dependent MAPK pathways. Parasit Vectors 2020; 13:20. [PMID: 31931867 PMCID: PMC6958574 DOI: 10.1186/s13071-020-3882-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background MF6p/host defense molecules (HDMs) are a broad family of small proteins secreted by helminth parasites. Although the physiological role of MF6p/HDMs in trematode parasites is not fully understood, their potential biological function in maintaining heme homeostasis and modulating host immune response has been proposed. Methods A gene encoding the MF6p/HDM of Clonorchis sinensis (CsMF6p/HDM) was cloned. Recombinant CsMF6p/HDM (rCsMF6p/HDM) was expressed in Escherichia coli. The biochemical and immunological properties of rCsMF6/HDM were analyzed. CsMF6p/HDM induced pro-inflammatory response in RAW 264.7 cells was analyzed by cytokine array assay, reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay. The structural feature of CsMF6p/HDM was analyzed by three-dimensional modeling and molecular docking simulations. Results The CsMF6p/HDM shares a high level of amino acid sequence similarity with orthologs from other trematodes and is expressed in diverse developmental stages of the parasite. The rCsMF6p/HDM bound to bacteria-derived lipopolysaccharide (LPS), without effectively neutralizing LPS-induced inflammatory response in RAW 264.7 macrophage cells. Rather, the rCsMF6p/HDM induced pro-inflammatory immune response, which is characterized by the expression of TNF-α and IL-6, in RAW 264.7 cells. The rCsMF6p/HDM-induced pro-inflammatory immune response was regulated by JNK and p38 MAPKs, and was effectively down-regulated via inhibition of NF-κB. The structural analysis of CsMF6p/HDM and the docking simulation with LPS suggested insufficient capture of LPS by CsMF6p/HDM, which suggested that rCsMF6p/HDM could not effectively neutralize LPS-induced inflammatory response in RAW 264.7 cells. Conclusions Although rCsMF6p/HDM binds to LPS, the binding affinity may not be sufficient to maintain a stable complex of rCsMF6p/HDM and LPS. Moreover, the rCsMF6p/HDM-induced pro-inflammatory response is characterized by the release of IL-6 and TNF-α in RAW 264.7 macrophage cells. The pro-inflammatory response induced by rCsMF6p/HDM is mediated via NF-κB-dependent MAPK signaling pathway. These results collectively suggest that CsMF6p/HDM mediates C. sinensis-induced inflammation cascades that eventually lead to hepatobiliary diseases.![]()
Collapse
Affiliation(s)
- Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jinyoung Lee
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea. .,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
39
|
Abstract
Fasciola hepatica, the common liver fluke, causes infection of livestock throughout temperate regions of the globe. This helminth parasite has an indirect lifecycle, relying on the presence of the mud snail to complete its transition from egg to definitive host (Beesley et al., Transbound Emerg Dis 65:199-216, 2017). Within the definitive host, the parasite excysts in the intestine forming a newly excysted juvenile (NEJ) and migrates via the peritoneal cavity to the liver. Disease resulting from infection can be acute or chronic depending on the host and the number of parasites present. Sheep may succumb to a fatal acute infection if the challenge of metacercariae is great enough. However, in cattle chronic disease is the most likely outcome with parasites surviving for long periods of time. Annual losses are estimated to be in the region of US$ 2000 million to the agricultural industry (Beesley et al., Transbound Emerg Dis 65:199-216, 2017). Management of the disease depends heavily on chemotherapy with triclabendazole being the drug of choice, consistent use for over 20 years has resulted in drug-resistant strains emerging worldwide (Beesley et al., Int J Parasitol 47:11-20, 2017). A more sustainable approach to control would be through vaccination and indeed a lead candidate has been identified, cathepsin L1. Despite these promising results the parasite continues to confound our own and host efforts to generate long-lasting and effective immunity. In this brief review we focus our attention on those mechanisms that the parasite utilises to circumvent the innate based defense mechanisms within the host.
Collapse
Affiliation(s)
- Robin J Flynn
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| | - Mayowa Musah-Eroje
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| |
Collapse
|
40
|
Khan YA, Maurya SK, Kulkarni C, Tiwari MC, Nagar GK, Chattopadhyay N. Fasciola
helminth defense molecule‐1 protects against experimental arthritis by inhibiting osteoclast formation and function without modulating the systemic immune response. FASEB J 2019; 34:1091-1106. [DOI: 10.1096/fj.201901480rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yasir Akhtar Khan
- Division of Endocrinology CSIR‐Central Drug Research Institute Lucknow India
- Section of Parasitology Department of Zoology Aligarh Muslim University Aligarh India
| | | | - Chirag Kulkarni
- Division of Endocrinology CSIR‐Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research CSIR‐Central Drug Research Institute Lucknow India
| | | | - Geet Kumar Nagar
- Division of Endocrinology CSIR‐Central Drug Research Institute Lucknow India
| | - Naibedya Chattopadhyay
- Division of Endocrinology CSIR‐Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research CSIR‐Central Drug Research Institute Lucknow India
| |
Collapse
|
41
|
Mladineo I, Hrabar J, Smodlaka H, Palmer L, Sakamaki K, Keklikoglou K, Katharios P. Functional Ultrastructure of the Excretory Gland Cell in Zoonotic Anisakids (Anisakidae, Nematoda). Cells 2019; 8:E1451. [PMID: 31744245 PMCID: PMC6912704 DOI: 10.3390/cells8111451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 01/18/2023] Open
Abstract
Excretory and secretory products are crucial for parasite infectivity and host immunomodulation, but the functioning and ultrastructure of the excretory gland cell (EC) that produces these products are still scarcely understood and described. In light of growing reports on anisakiasis cases in Europe, we aimed to characterise the EC of larval Anisakispegreffii and adult Pseudoterranovaazarasi. In the latter, EC starts 0.85 mm from the head tip, measuring 1.936 × 0.564 mm. Larval EC shows a long nucleus with thorn-like extravaginations toward the cytoplasm, numerous electron-dense and -lucent secretory granules spanning from the perinuclear to subplasmalemmal space, an elevated number of free ribosomes, small, spherical mitochondria with few cristae and a laminated matrix, small and few Golgi apparatuses, and few endoplasmic reticula, with wide cisternae complexes. Ultrastructure suggests that anaerobic glycolysis is the main metabolic pathway, obtained through nutrient endocytosis across the pseudocoelomic surface of the EC plasmalemma and its endocytic canaliculi. Thorn-like extravaginations of EC karyotheca likely mediate specific processes (Ca2+ signaling, gene expression, transport, nuclear lipid metabolism) into the extremely wide EC cytosol, enabling focal delivery of a signal to specific sites in a short time. These functional annotations of parasitic EC should help to clarify anisakiasis pathogenesis.
Collapse
Affiliation(s)
- Ivona Mladineo
- Institute of Oceanography and Fisheries, 21000 Split, Croatia;
| | - Jerko Hrabar
- Institute of Oceanography and Fisheries, 21000 Split, Croatia;
| | - Hrvoje Smodlaka
- Western University of Health Sciences, College of Veterinary Medicine, Pomona, CA 91766, USA;
| | - Lauren Palmer
- Marine Mammal Care Center Los Angeles, San Pedro, CA 90731, USA;
| | | | - Kleoniki Keklikoglou
- Hellenic Centre for Marine Research, Heraklion, 71500 Crete, Greece; (K.K.); (P.K.)
| | - Pantelis Katharios
- Hellenic Centre for Marine Research, Heraklion, 71500 Crete, Greece; (K.K.); (P.K.)
| |
Collapse
|
42
|
Zhang XX, Cwiklinski K, Hu RS, Zheng WB, Sheng ZA, Zhang FK, Elsheikha HM, Dalton JP, Zhu XQ. Complex and dynamic transcriptional changes allow the helminth Fasciola gigantica to adjust to its intermediate snail and definitive mammalian hosts. BMC Genomics 2019; 20:729. [PMID: 31606027 PMCID: PMC6790025 DOI: 10.1186/s12864-019-6103-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/13/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The tropical liver fluke, Fasciola gigantica causes fasciolosis, an important disease of humans and livestock. We characterized dynamic transcriptional changes associated with the development of the parasite in its two hosts, the snail intermediate host and the mammalian definitive host. RESULTS Differential gene transcription analysis revealed 7445 unigenes transcribed by all F. gigantica lifecycle stages, while the majority (n = 50,977) exhibited stage-specific expression. Miracidia that hatch from eggs are highly transcriptionally active, expressing a myriad of genes involved in pheromone activity and metallopeptidase activity, consistent with snail host finding and invasion. Clonal expansion of rediae within the snail correlates with increased expression of genes associated with transcription, translation and repair. All intra-snail stages (miracidia, rediae and cercariae) require abundant cathepsin L peptidases for migration and feeding and, as indicated by their annotation, express genes putatively involved in the manipulation of snail innate immune responses. Cercariae emerge from the snail, settle on vegetation and become encysted metacercariae that are infectious to mammals; these remain metabolically active, transcribing genes involved in regulation of metabolism, synthesis of nucleotides, pH and endopeptidase activity to assure their longevity and survival on pasture. Dramatic growth and development following infection of the mammalian host are associated with high gene transcription of cell motility pathways, and transport and catabolism pathways. The intra-mammalian stages temporally regulate key families of genes including the cathepsin L and B proteases and their trans-activating peptidases, the legumains, during intense feeding and migration through the intestine, liver and bile ducts. While 70% of the F. gigantica transcripts share homology with genes expressed by the temperate liver fluke Fasciola hepatica, gene expression profiles of the most abundantly expressed transcripts within the comparable lifecycle stages implies significant species-specific gene regulation. CONCLUSIONS Transcriptional profiling of the F. gigantica lifecycle identified key metabolic, growth and developmental processes the parasite undergoes as it encounters vastly different environments within two very different hosts. Comparative analysis with F. hepatica provides insight into the similarities and differences of these parasites that diverged > 20 million years ago, crucial for the future development of novel control strategies against both species.
Collapse
Affiliation(s)
- Xiao-Xuan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, People's Republic of China
| | - Krystyna Cwiklinski
- National Centre for Biomedical and Engineering Science (NCBES), School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | - Rui-Si Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Wen-Bin Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Zhao-An Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530005, People's Republic of China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - John P Dalton
- National Centre for Biomedical and Engineering Science (NCBES), School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| |
Collapse
|
43
|
Hammond K, Lewis H, Faruqui N, Russell C, Hoogenboom BW, Ryadnov MG. Helminth Defense Molecules as Design Templates for Membrane Active Antibiotics. ACS Infect Dis 2019; 5:1471-1479. [PMID: 31117348 DOI: 10.1021/acsinfecdis.9b00157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A design template for membrane active antibiotics against microbial and tumor cells is described. The template is an amino acid sequence that combines the properties of helminth defense molecules, which are not cytolytic, with the properties of host-defense peptides, which disrupt microbial membranes. Like helminth defense molecules, the template folds into an amphipathic helix in both mammalian host and microbial phospholipid membranes. Unlike these molecules, the template exhibits antimicrobial and anticancer properties that are comparable to those of antimicrobial and anticancer antibiotics. The selective antibiotic activity of the template builds upon a functional synergy between three distinctive faces of the helix, which is in contrast to two faces of membrane-disrupting amphipathic structures. This synergy enables the template to adapt pore formation mechanisms according to the nature of the target membrane, inducing the lysis of microbial and tumor cells.
Collapse
Affiliation(s)
- Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
- Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
- London Centre for Nanotechnology, University College London, Gordon Street, London WC1H 0AH, United Kingdom
| | - Helen Lewis
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Nilofar Faruqui
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Craig Russell
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Bart W. Hoogenboom
- Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
- London Centre for Nanotechnology, University College London, Gordon Street, London WC1H 0AH, United Kingdom
| | - Maxim G. Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
- Department of Physics, King’s College London, Strand Lane, London WC2R, United Kingdom
| |
Collapse
|
44
|
Celias DP, Corvo I, Silvane L, Tort JF, Chiapello LS, Fresno M, Arranz A, Motrán CC, Cervi L. Cathepsin L3 From Fasciola hepatica Induces NLRP3 Inflammasome Alternative Activation in Murine Dendritic Cells. Front Immunol 2019; 10:552. [PMID: 30967874 PMCID: PMC6438957 DOI: 10.3389/fimmu.2019.00552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
The production of IL-1-family cytokines such as IL-1β and IL-18 is finely regulated by inflammasome activation after the recognition of pathogens associated molecular pattern (PAMPs) and danger associated molecular patterns (DAMPs). However, little is known about the helminth-derived molecules capable of activating the inflammasome. In the case of the helminth trematode Fasciola hepatica, the secretion of different cathepsin L cysteine peptidases (FhCL) is crucial for the parasite survival. Among these enzymes, cathepsin L3 (FhCL3) is expressed mainly in the juvenile or invasive stage. The ability of FhCL3 to digest collagen has demonstrated to be critical for intestinal tissue invasion during juvenile larvae migration. However, there is no information about the interaction of FhCL3 with the immune system. It has been shown here that FhCL3 induces a non-canonical inflammasome activation in dendritic cells (DCs), leading to IL-1β and IL-18 production without a previous microbial priming. Interestingly, this activation was depending on the cysteine protease activity of FhCL3 and the NLRP3 receptor, but independent of caspase activation. We also show that FhCL3 is internalized by DCs, promoting pro-IL-1β cleavage to its mature and biologically active form IL-1β, which is released to the extracellular environment. The FhCL3-induced NLRP3 inflammasome activation conditions DCs to promote a singular adaptive immune response, characterized by increased production of IFN-γ and IL-13. These data reveal an unexpected ability of FhCL3, a helminth-derived molecule, to activate the NLRP3 inflammasome, which is independent of the classical mechanism involving caspase activation.
Collapse
Affiliation(s)
- Daiana Pamela Celias
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Ileana Corvo
- Laboratorio de Investigación y Desarrollo de Moléculas Bioactivas, CENUR Litoral Norte - Sede Paysandú, Universidad de la República, Paysandú, Uruguay
| | - Leonardo Silvane
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - José Francisco Tort
- Departmento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Silvina Chiapello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa (CSIC), Madrid, Spain
| | - Alicia Arranz
- Centro de Biología Molecular Severo Ochoa (CSIC), Madrid, Spain
| | - Claudia Cristina Motrán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| |
Collapse
|
45
|
Buerfent BC, Gölz L, Hofmann A, Rühl H, Stamminger W, Fricker N, Hess T, Oldenburg J, Nöthen MM, Schumacher J, Hübner MP, Hoerauf A. Transcriptome-wide analysis of filarial extract-primed human monocytes reveal changes in LPS-induced PTX3 expression levels. Sci Rep 2019; 9:2562. [PMID: 30796272 PMCID: PMC6385373 DOI: 10.1038/s41598-019-38985-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 01/15/2019] [Indexed: 12/24/2022] Open
Abstract
Filarial nematodes modulate immune responses in their host to enable their survival and mediate protective effects against autoimmunity and allergies. In this study, we examined the immunomodulatory capacity of extracts from the human pathogenic filaria Brugia malayi (BmA) on human monocyte responses in a transcriptome-wide manner to identify associated pathways and diseases. As previous transcriptome studies often observed quiescent responses of innate cells to filariae, the potential of BmA to alter LPS driven responses was investigated by analyzing >47.000 transcripts of monocytes from healthy male volunteers stimulated with BmA, Escherichia coli LPS or a sequential stimulation of both. In comparison to ~2200 differentially expressed genes in LPS-only stimulated monocytes, only a limited number of differentially expressed genes were identified upon BmA priming before LPS re-stimulation with only PTX3↓ reaching statistical significance after correcting for multiple testing. Nominal significant differences were reached for metallothioneins↑, MMP9↑, CXCL5/ENA-78↑, CXCL6/GCP-2↑, TNFRSF21↓, and CCL20/MIP3α↓ and were confirmed by qPCR or ELISA. Flow cytometric analysis of activation markers revealed a reduced LPS-induced expression of HLA-DR and CD86 on BmA-primed monocytes as well as a reduced apoptosis of BmA-stimulated monocytes. While our experimental design does not allow a stringent extrapolation of our results to the development of filarial pathology, several genes that were identified in BmA-primed monocytes had previously been associated with filarial pathology, supporting the need for further research.
Collapse
Affiliation(s)
- B C Buerfent
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - L Gölz
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
- Department of Orthodontics and Orofacial Orthopedics, University Hospital of Erlangen, Erlangen, Germany
| | - A Hofmann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - H Rühl
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, Germany
| | - W Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - N Fricker
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - T Hess
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - J Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, Germany
| | - M M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - J Schumacher
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - M P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.
| | - A Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
46
|
Sotillo J, Pearson MS, Loukas A. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:411-436. [PMID: 31297769 DOI: 10.1007/978-3-030-18616-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Trematode infections are among the most neglected tropical diseases despite their worldwide distribution and extraordinary ability to parasitise many different host species and host tissues. Furthermore, these parasites are of great socioeconomic, medical, veterinary and agricultural importance. During the last 10 years, there have been increasing efforts to overcome the lack of information on different "omic" resources such as proteomics and genomics. Herein, we focus on the recent advances in genomics and proteomics from trematodes of human importance, including liver, blood, intestinal and lung flukes. We also provide information on the latest technologies applied to study the biology of trematodes as well as on the resources available for the study of the molecular aspects of this group of helminths.
Collapse
Affiliation(s)
- Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Mark S Pearson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
47
|
Costain AH, MacDonald AS, Smits HH. Schistosome Egg Migration: Mechanisms, Pathogenesis and Host Immune Responses. Front Immunol 2018; 9:3042. [PMID: 30619372 PMCID: PMC6306409 DOI: 10.3389/fimmu.2018.03042] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022] Open
Abstract
Many parasitic worms possess complex and intriguing life cycles, and schistosomes are no exception. To exit the human body and progress to their successive snail host, Schistosoma mansoni eggs must migrate from the mesenteric vessels, across the intestinal wall and into the feces. This process is complex and not always successful. A vast proportion of eggs fail to leave their definite host, instead becoming lodged within intestinal or hepatic tissue, where they can evoke potentially life-threatening pathology. Thus, to maximize the likelihood of successful egg passage whilst minimizing host pathology, intriguing egg exit strategies have evolved. Notably, schistosomes actively exert counter-inflammatory influences on the host immune system, discreetly compromise endothelial and epithelial barriers, and modulate granuloma formation around transiting eggs, which is instrumental to their migration. In this review, we discuss new developments in our understanding of schistosome egg migration, with an emphasis on S. mansoni and the intestine, and outline the host-parasite interactions that are thought to make this process possible. In addition, we explore the potential immune implications of egg penetration and discuss the long-term consequences for the host of unsuccessful egg transit, such as fibrosis, co-infection and cancer development.
Collapse
Affiliation(s)
- Alice H. Costain
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
48
|
Maizels RM, Smits HH, McSorley HJ. Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity 2018; 49:801-818. [PMID: 30462997 PMCID: PMC6269126 DOI: 10.1016/j.immuni.2018.10.016] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 02/09/2023]
Abstract
Helminths are extraordinarily successful parasites due to their ability to modulate the host immune response. They have evolved a spectrum of immunomodulatory molecules that are now beginning to be defined, heralding a molecular revolution in parasite immunology. These discoveries have the potential both to transform our understanding of parasite adaptation to the host and to develop possible therapies for immune-mediated disease. In this review we will summarize the current state of the art in parasite immunomodulation and discuss perspectives on future areas for research and discovery.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | | | - Henry J McSorley
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
49
|
Musah-Eroje M, Flynn RJ. Fasciola hepatica, TGF-β and host mimicry: the enemy within. Curr Opin Microbiol 2018; 46:80-85. [PMID: 30317150 DOI: 10.1016/j.mib.2018.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/29/2018] [Accepted: 09/24/2018] [Indexed: 11/16/2022]
Abstract
Helminths parasites undergo developmental changes and migration within their definitive host, in addition to establishing chronic infection. Essential to this is the evasion of host immune responses; the canonical Th2 response is effective at removing parasites resident in the intestine. Conversely, helminths also promote the development of antigen-specific anergy and regulation. This often limits pathology but allows parasite survival, parasite effectors mediating this are the subject of intense study. They may be useful as future vaccine targets or xenogenic therapeutics. Fasciola hepatica possesses a family of TGF-like molecules of which one member, FhTLM, is capable of promoting intrinsic and extrinsic effects. Here we review the extrinsic effects of FhTLM on the host macrophage and its consequences for protective immunity. This review also discusses the specificities of FhTLM in light a very recent description of a nematode TGF-β mimic and the effects of endogenous TGF-β.
Collapse
Affiliation(s)
- Mayowa Musah-Eroje
- School of Veterinary Medicine and Science, University of Nottingham, LE12 5RD, United Kingdom
| | - Robin J Flynn
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, L3 5RF, United Kingdom.
| |
Collapse
|
50
|
Social defeat stress exacerbates the blood abnormalities in Opisthorchis felineus-infected mice. Exp Parasitol 2018; 193:33-44. [DOI: 10.1016/j.exppara.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 07/17/2018] [Accepted: 08/26/2018] [Indexed: 02/07/2023]
|