1
|
Rezaei H, Martin D, Herzog L, Reine F, Marín Moreno A, Moudjou M, Aron N, Igel A, Klute H, Youssafi S, Moog JB, Sibille P, Andréoletti O, Torrent J, Béringue V. Species barrier as molecular basis for adaptation of synthetic prions with N-terminally truncated PrP. FEBS J 2024; 291:5051-5076. [PMID: 39396118 DOI: 10.1111/febs.17291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/04/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024]
Abstract
Mammalian prions are neurotropic pathogens formed from PrPSc assemblies, a misfolded variant of the host-encoded prion protein PrPC. Multiple PrPSc conformations or strains self-propagate in host populations or mouse models of prion diseases, exhibiting distinct biological and biochemical phenotypes. Constrained interactions between PrPSc and PrPC conformations confer species specificity and regulate cross-species transmission. The pathogenicity of fibrillar assemblies derived from bacterially expressed recombinant PrP (rPrP) has been instrumental in demonstrating the protein-only nature of prions. Yet, their ability to encode different strains and transmit between species remains poorly studied, hampering their use in exploring structure-to-strain relationships. Fibrillar assemblies from rPrP with hamster, mouse, human, and bovine primary structures were generated and tested for transmission and adaptation in tg7 transgenic mice expressing hamster PrPC. All assemblies, except the bovine ones, were fully pathogenic on the primary passage, causing clinical disease, PrPSc brain deposition, and spongiform degeneration. They exhibited divergent adaptation processes and strain properties upon subsequent passage. Assemblies of hamster origin propagated without apparent need for adaptation, those of mouse origin adapted abruptly, and those of human origin required serial passages for optimal fitness. Molecular analyses revealed the presence of endogenously truncated PrPSc species in the resulting synthetic strains that lack the 90-140 amino acid region considered crucial for infectivity. In conclusion, rPrP assemblies provide a facile means of generating novel prion strains with adaptative/evolutive properties mimicking genuine prions. The PrP amino acid backbone is sufficient to encode different strains with specific adaptative properties, offering insights into prion transmission and strain diversity.
Collapse
Affiliation(s)
- Human Rezaei
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Davy Martin
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Laetitia Herzog
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Fabienne Reine
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Mohammed Moudjou
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Angélique Igel
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Hannah Klute
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Stella Youssafi
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Pierre Sibille
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Joan Torrent
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
- INM, Univ Montpellier, INSERM, CNRS, France
| | - Vincent Béringue
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| |
Collapse
|
2
|
McDonough GA, Cheng Y, Morillo KS, Doan RN, Zhou Z, Kenny CJ, Foutz A, Kim C, Cohen ML, Appleby BS, Walsh CA, Safar JG, Huang AY, Miller MB. Neuropathologically directed profiling of PRNP somatic and germline variants in sporadic human prion disease. Acta Neuropathol 2024; 148:10. [PMID: 39048735 PMCID: PMC11328154 DOI: 10.1007/s00401-024-02774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the PRNP gene. Of human prion disease cases, < 1% were transmitted by misfolded PrP, ~ 15% are inherited, and ~ 85% are sporadic (sCJD). While familial cases are inherited through germline mutations in PRNP, the cause of sCJD is unknown. Somatic mutations have been hypothesized as a cause of sCJD, and recent studies have revealed that somatic mutations accumulate in neurons during aging. To investigate the hypothesis that somatic mutations in PRNP may underlie sCJD, we performed deep DNA sequencing of PRNP in 205 sCJD cases and 170 age-matched non-disease controls. We included 5 cases of Heidenhain variant sporadic CJD (H-sCJD), where visual symptomatology and neuropathology implicate localized initiation of prion formation, and examined multiple regions across the brain including in the affected occipital cortex. We employed Multiple Independent Primer PCR Sequencing (MIPP-Seq) with a median depth of > 5000× across the PRNP coding region and analyzed for variants using MosaicHunter. An allele mixing experiment showed positive detection of variants in bulk DNA at a variant allele fraction (VAF) as low as 0.2%. We observed multiple polymorphic germline variants among individuals in our cohort. However, we did not identify bona fide somatic variants in sCJD, including across multiple affected regions in H-sCJD, nor in control individuals. Beyond our stringent variant-identification pipeline, we also analyzed VAFs from raw sequencing data, and observed no evidence of prion disease enrichment for the known germline pathogenic variants P102L, D178N, and E200K. The lack of PRNP pathogenic somatic mutations in H-sCJD or the broader cohort of sCJD suggests that clonal somatic mutations may not play a major role in sporadic prion disease. With H-sCJD representing a localized presentation of neurodegeneration, this serves as a test of the potential role of clonal somatic mutations in genes known to cause familial neurodegeneration.
Collapse
Affiliation(s)
- Gannon A McDonough
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Yuchen Cheng
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Katherine S Morillo
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Zinan Zhou
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Connor J Kenny
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Aaron Foutz
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chae Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mark L Cohen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian S Appleby
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - August Yue Huang
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Michael B Miller
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
McDonough GA, Cheng Y, Morillo K, Doan RN, Kenny CJ, Foutz A, Kim C, Cohen ML, Appleby BS, Walsh CA, Safar JG, Huang AY, Miller MB. Neuropathologically-directed profiling of PRNP somatic and germline variants in sporadic human prion disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600668. [PMID: 38979287 PMCID: PMC11230391 DOI: 10.1101/2024.06.25.600668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the PRNP gene. Of human prion disease cases, ~1% were transmitted by misfolded PrP, ~15% are inherited, and ~85% are sporadic (sCJD). While familial cases are inherited through germline mutations in PRNP, the cause of sCJD is unknown. Somatic mutations have been hypothesized as a cause of sCJD, and recent studies have revealed that somatic mutations accumulate in neurons during aging. To investigate the hypothesis that somatic mutations in PRNP may underlie sCJD, we performed deep DNA sequencing of PRNP in 205 sCJD cases and 170 age-matched non-disease controls. We included 5 cases of Heidenhain variant sporadic CJD (H-sCJD), where visual symptomatology and neuropathology implicate focal initiation of prion formation, and examined multiple regions across the brain including in the affected occipital cortex. We employed Multiple Independent Primer PCR Sequencing (MIPP-Seq) with a median depth of >5,000X across the PRNP coding region and analyzed for variants using MosaicHunter. An allele mixing experiment showed positive detection of variants in bulk DNA at a variant allele fraction (VAF) as low as 0.2%. We observed multiple polymorphic germline variants among individuals in our cohort. However, we did not identify bona fide somatic variants in sCJD, including across multiple affected regions in H-sCJD, nor in control individuals. Beyond our stringent variant-identification pipeline, we also analyzed VAFs from raw sequencing data, and observed no evidence of prion disease enrichment for the known germline pathogenic variants P102L, D178N, and E200K. The lack of PRNP pathogenic somatic mutations in H-sCJD or the broader cohort of sCJD suggests that clonal somatic mutations may not play a major role in sporadic prion disease. With H-sCJD representing a focal presentation of neurodegeneration, this serves as a test of the potential role of clonal somatic mutations in genes known to cause familial neurodegeneration.
Collapse
Affiliation(s)
- Gannon A. McDonough
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yuchen Cheng
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Katherine Morillo
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Ryan N. Doan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Connor J. Kenny
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Aaron Foutz
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chae Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mark L. Cohen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian S. Appleby
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Jiri G. Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - August Yue Huang
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael B. Miller
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Benarroch E. What Are the Roles of Cellular Prion Protein in Normal and Pathologic Conditions? Neurology 2024; 102:e209272. [PMID: 38484222 DOI: 10.1212/wnl.0000000000209272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 03/19/2024] Open
|
5
|
Guadagno AH, Medina SH. The manifold role of octapeptide repeats in prion protein assembly. Pept Sci (Hoboken) 2023; 115:e24303. [PMID: 37153755 PMCID: PMC10162500 DOI: 10.1002/pep2.24303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Prion protein misfolding is associated with fatal neurodegenerative disorders such as kuru, Creutzfeldt-Jakob disease, and several animal encephalopathies. While the C-terminal 106-126 peptide has been well studied for its role in prion replication and toxicity, the octapeptide repeat (OPR) sequence found within the N-terminal domain has been relatively under explored. Recent findings that the OPR has both local and long-range effects on prion protein folding and assembly, as well as its ability to bind and regulate transition metal homeostasis, highlights the important role this understudied region may have in prion pathologies. This review attempts to collate this knowledge to advance a deeper understanding on the varied physiologic and pathologic roles the prion OPR plays, and connect these findings to potential therapeutic modalities focused on OPR-metal binding. Continued study of the OPR will not only elucidate a more complete mechanistic model of prion pathology, but may enhance knowledge on other neurodegenerative processes underlying Alzheimer's, Parkinson's, and Huntington's diseases.
Collapse
Affiliation(s)
- Amy H. Guadagno
- Nanomedicine, Intercollegiate Degree Program, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott H. Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
6
|
Lubecka EA, Hansmann UHE. Early Stages of RNA-Mediated Conversion of Human Prions. J Phys Chem B 2022; 126:6221-6230. [PMID: 35973105 PMCID: PMC9420815 DOI: 10.1021/acs.jpcb.2c04614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prion diseases are characterized by the conversion of prion proteins from a PrPC fold into a disease-causing PrPSC form that is self-replicating. A possible agent to trigger this conversion is polyadenosine RNA, but both mechanism and pathways of the conversion are poorly understood. Using coarse-grained molecular dynamic simulations we study the time evolution of PrPC over 600 μs. We find that both the D178N mutation and interacting with polyadenosine RNA reduce the helicity of the protein and encourage formation of segments with strand-like motifs. We conjecture that these transient β-strands nucleate the conversion of the protein to the scrapie conformation PrPSC.
Collapse
Affiliation(s)
- Emilia A Lubecka
- Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Ulrich H E Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019,United States
| |
Collapse
|
7
|
Pirisinu L, Di Bari MA, D’Agostino C, Vanni I, Riccardi G, Marcon S, Vaccari G, Chiappini B, Benestad SL, Agrimi U, Nonno R. A single amino acid residue in bank vole prion protein drives permissiveness to Nor98/atypical scrapie and the emergence of multiple strain variants. PLoS Pathog 2022; 18:e1010646. [PMID: 35731839 PMCID: PMC9255773 DOI: 10.1371/journal.ppat.1010646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/05/2022] [Accepted: 06/03/2022] [Indexed: 12/03/2022] Open
Abstract
Prions are infectious agents that replicate through the autocatalytic misfolding of the cellular prion protein (PrPC) into infectious aggregates (PrPSc) causing fatal neurodegenerative diseases in humans and animals. Prions exist as strains, which are encoded by conformational variants of PrPSc. The transmissibility of prions depends on the PrPC sequence of the recipient host and on the incoming prion strain, so that some animal prion strains are more contagious than others or are transmissible to new species, including humans. Nor98/atypical scrapie (AS) is a prion disease of sheep and goats reported in several countries worldwide. At variance with classical scrapie (CS), AS is considered poorly contagious and is supposed to be spontaneous in origin. The zoonotic potential of AS, its strain variability and the relationships with the more contagious CS strains remain largely unknown. We characterized AS isolates from sheep and goats by transmission in ovinised transgenic mice (tg338) and in two genetic lines of bank voles, carrying either methionine (BvM) or isoleucine (BvI) at PrP residue 109. All AS isolates induced the same pathological phenotype in tg338 mice, thus proving that they encoded the same strain, irrespective of their geographical origin or source species. In bank voles, we found that the M109I polymorphism dictates the susceptibility to AS. BvI were susceptible and faithfully reproduced the AS strain, while the transmission in BvM was highly inefficient and was characterized by a conformational change towards a CS-like prion strain. Sub-passaging experiments revealed that the main strain component of AS is accompanied by minor CS-like strain components, which can be positively selected during replication in both AS-resistant or AS-susceptible animals. These findings add new clues for a better comprehension of strain selection dynamics in prion infections and have wider implications for understanding the origin of contagious prion strains, such as CS. Prions are transmissible agents responsible for fatal neurodegenerative diseases in humans and animals. Prions exist as strains, exhibiting distinct disease phenotypes and transmission properties. Some prion diseases occur sporadically with a supposedly spontaneous origin, while others are contagious and give rise to epidemics, mainly in animals. We investigated the strain properties of Nor98/atypical scrapie (AS), a sporadic prion disease of small ruminants. We found that AS was faithfully reproduced not only in a homologous context, i.e. ovinised transgenic mice, but also in an unrelated animal species, the bank vole. A natural polymorphism of the bank vole prion protein, coding for methionine (BvM) or for isoleucine (BvI) at codon 109, dictated the susceptibility of voles to AS, with BvI being highly susceptible to AS and BvM rather resistant. Most importantly, the M109I polymorphism mediated the emergence of AS-derived mutant prion strains resembling classical scrapie (CS), a contagious prion disease. Finally, by sub-passages in bank voles, we found that the main strain component of AS is accompanied by minor CS-like strain components, which can be positively selected during replication in both AS-resistant or AS-susceptible vole lines. These findings allow a better understanding of strain selection dynamics and suggest a link between sporadic and contagious prion diseases.
Collapse
Affiliation(s)
- Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Angelo Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia D’Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Geraldina Riccardi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Marcon
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele Vaccari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Chiappini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
8
|
Zhang X, Pan YH, Chen Y, Pan C, Ma J, Yuan C, Yu G, Ma J. The protease-sensitive N-terminal polybasic region of prion protein modulates its conversion to the pathogenic prion conformer. J Biol Chem 2021; 297:101344. [PMID: 34710372 PMCID: PMC8604679 DOI: 10.1016/j.jbc.2021.101344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Conversion of normal prion protein (PrPC) to the pathogenic PrPSc conformer is central to prion diseases such as Creutzfeldt-Jakob disease and scrapie; however, the detailed mechanism of this conversion remains obscure. To investigate how the N-terminal polybasic region of PrP (NPR) influences the PrPC-to-PrPSc conversion, we analyzed two PrP mutants: ΔN6 (deletion of all six amino acids in NPR) and Met4-1 (replacement of four positively charged amino acids in NPR with methionine). We found that ΔN6 and Met4-1 differentially impacted the binding of recombinant PrP (recPrP) to the negatively charged phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, a nonprotein cofactor that facilitates PrP conversion. Both mutant recPrPs were able to form recombinant prion (recPrPSc) in vitro, but the convertibility was greatly reduced, with ΔN6 displaying the lowest convertibility. Prion infection assays in mammalian RK13 cells expressing WT or NPR-mutant PrPs confirmed these differences in convertibility, indicating that the NPR affects the conversion of both bacterially expressed recPrP and post-translationally modified PrP in eukaryotic cells. We also found that both WT and mutant recPrPSc conformers caused prion disease in WT mice with a 100% attack rate, but the incubation times and neuropathological changes caused by two recPrPSc mutants were significantly different from each other and from that of WT recPrPSc. Together, our results support that the NPR greatly influences PrPC-to-PrPSc conversion, but it is not essential for the generation of PrPSc. Moreover, the significant differences between ΔN6 and Met4-1 suggest that not only charge but also the identity of amino acids in NPR is important to PrP conversion.
Collapse
Affiliation(s)
- Xiangyi Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ying Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Chenhua Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ji Ma
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Chonggang Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Guohua Yu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, School of Life Sciences, Longyan University, Longyan, China
| | - Jiyan Ma
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China; Department of Neurodegeneraive Science, Van Andel Institute, Grand Rapids, Michigan, USA; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
9
|
Abstract
Somatic mutations arise postzygotically, producing genetic differences between cells in an organism. Well established as a driver of cancer, somatic mutations also exist in nonneoplastic cells, including in the brain. Technological advances in nucleic acid sequencing have enabled recent break-throughs that illuminate the roles of somatic mutations in aging and degenerative diseases of the brain. Somatic mutations accumulate during aging in human neurons, a process termed genosenium. A number of recent studies have examined somatic mutations in Alzheimer’s disease (AD), primarily from the perspective of genes causing familial AD. We have also gained new information on genome-wide mutations, providing insights into the cellular events driving somatic mutation and cellular dysfunction. This review highlights recent concepts, methods, and findings in the progress to understand the role of brain somatic mutation in aging and AD.
Collapse
Affiliation(s)
- Michael B Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Hannah C Reed
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Allegheny College, Meadville, Pennsylvania 16335, USA;
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
10
|
Vanni I, Pirisinu L, Acevedo-Morantes C, Kamali-Jamil R, Rathod V, Di Bari MA, D’Agostino C, Marcon S, Esposito E, Riccardi G, Hornemann S, Senatore A, Aguzzi A, Agrimi U, Wille H, Nonno R. Isolation of infectious, non-fibrillar and oligomeric prions from a genetic prion disease. Brain 2020; 143:1512-1524. [PMID: 32303068 PMCID: PMC7241950 DOI: 10.1093/brain/awaa078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 11/21/2022] Open
Abstract
Prions are transmissible agents causing lethal neurodegenerative diseases that are composed of aggregates of misfolded cellular prion protein (PrPSc). Despite non-fibrillar oligomers having been proposed as the most infectious prion particles, prions purified from diseased brains usually consist of large and fibrillar PrPSc aggregates, whose protease-resistant core (PrPres) encompasses the whole C-terminus of PrP. In contrast, PrPSc from Gerstmann-Sträussler-Scheinker disease associated with alanine to valine substitution at position 117 (GSS-A117V) is characterized by a small protease-resistant core, which is devoid of the C-terminus. We thus aimed to investigate the role of this unusual PrPSc in terms of infectivity, strain characteristics, and structural features. We found, by titration in bank voles, that the infectivity of GSS-A117V is extremely high (109.3 ID50 U/g) and is resistant to treatment with proteinase K (109.0 ID50 U/g). We then purified the proteinase K-resistant GSS-A117V prions and determined the amount of infectivity and PrPres in the different fractions, alongside the morphological characteristics of purified PrPres aggregates by electron microscopy. Purified pellet fractions from GSS-A117V contained the expected N- and C-terminally cleaved 7 kDa PrPres, although the yield of PrPres was low. We found that this low yield depended on the low density/small size of GSS-A117V PrPres, as it was mainly retained in the last supernatant fraction. All fractions were highly infectious, thus confirming the infectious nature of the 7 kDa PrPres, with infectivity levels that directly correlated with the PrPres amount detected. Finally, electron microscopy analysis of these fractions showed no presence of amyloid fibrils, but only very small and indistinct, non-fibrillar PrPresparticles were detected and confirmed to contain PrP via immunogold labelling. Our study demonstrates that purified aggregates of 7 kDa PrPres, spanning residues ∼90-150, are highly infectious oligomers that encode the biochemical and biological strain features of the original sample. Overall, the autocatalytic behaviour of the prion oligomers reveals their role in the propagation of neurodegeneration in patients with Gerstmann-Sträussler-Scheinker disease and implies that the C-terminus of PrPSc is dispensable for infectivity and strain features for this prion strain, uncovering the central PrP domain as the minimal molecular component able to encode infectious prions. These findings are consistent with the hypothesis that non-fibrillar prion particles are highly efficient propagators of disease and provide new molecular and morphological constraints on the structure of infectious prions.
Collapse
Affiliation(s)
- Ilaria Vanni
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Laura Pirisinu
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Claudia Acevedo-Morantes
- Centre for Prions and Protein Folding Diseases and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Razieh Kamali-Jamil
- Centre for Prions and Protein Folding Diseases and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vineet Rathod
- Centre for Prions and Protein Folding Diseases and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michele Angelo Di Bari
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Claudia D’Agostino
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Stefano Marcon
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Elena Esposito
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Geraldina Riccardi
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Simone Hornemann
- Institute for Neuropathology, University of Zürich, Zürich, Switzerland
| | - Assunta Senatore
- Institute for Neuropathology, University of Zürich, Zürich, Switzerland
| | - Adriano Aguzzi
- Institute for Neuropathology, University of Zürich, Zürich, Switzerland
| | - Umberto Agrimi
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Romolo Nonno
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| |
Collapse
|
11
|
Bélondrade M, Jas-Duval C, Nicot S, Bruyère-Ostells L, Mayran C, Herzog L, Reine F, Torres JM, Fournier-Wirth C, Béringue V, Lehmann S, Bougard D. Correlation between Bioassay and Protein Misfolding Cyclic Amplification for Variant Creutzfeldt-Jakob Disease Decontamination Studies. mSphere 2020; 5:e00649-19. [PMID: 31996421 PMCID: PMC6992370 DOI: 10.1128/msphere.00649-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/05/2020] [Indexed: 12/20/2022] Open
Abstract
To date, approximately 500 iatrogenic Creutzfeldt-Jakob disease cases have been reported worldwide, most of them resulting from cadaveric dura mater graft and from the administration of prion-contaminated human growth hormone. The unusual resistance of prions to decontamination processes, their large tissue distribution, and the uncertainty about the prevalence of variant Creutzfeldt-Jakob disease (vCJD) in the general population lead to specific recommendations regarding identification of tissue at risk and reprocessing of reusable medical devices, including the use of dedicated treatment for prion inactivation. We previously described an in vitro assay, called Surf-PMCA, which allowed us to classify prion decontamination treatments according to their efficacy on vCJD prions by monitoring residual seeding activity (RSA). Here, we used a transgenic mouse line permissive to vCJD prions to study the correlation between the RSA measured in vitro and the in vivo infectivity. Implantation in mouse brains of prion-contaminated steel wires subjected to different decontamination procedures allows us to demonstrate a good concordance between RSA measured by Surf-PMCA (in vitro) and residual infectivity (in vivo). These experiments emphasize the strength of the Surf-PMCA method as a rapid and sensitive assay for the evaluation of prion decontamination procedures and also confirm the lack of efficacy of several marketed reagents on vCJD prion decontamination.IMPORTANCE Creutzfeldt-Jakob diseases are neurodegenerative disorders for which transmission linked to medical procedures have been reported in hundreds of patients. As prion diseases, they are characterized by an unusual resistance to conventional decontamination processes. Moreover, their large tissue distribution and the ability of prions to attach to many surfaces raised the risk of transmission in health care facilities. It is therefore of major importance that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated for prion inactivation. We previously described an in vitro assay, which allowed us to classify accurately prion decontamination treatments according to their efficacy on variant Creutzfeldt-Jakob disease. The significance of this study is in demonstrating the concordance between previous in vitro results and infectivity studies in transgenic mice. Furthermore, commercial reagents currently used in hospitals were tested by both protocols, and we observed that most of them were ineffective on human prions.
Collapse
Affiliation(s)
- Maxime Bélondrade
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Christelle Jas-Duval
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
- VIM INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Simon Nicot
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Lilian Bruyère-Ostells
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Charly Mayran
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | | | - Fabienne Reine
- VIM INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), Madrid, Spain
| | - Chantal Fournier-Wirth
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | | | - Sylvain Lehmann
- CHRU de Montpellier and Université de Montpellier, IRMB, INSERM U1183, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| | - Daisy Bougard
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Hannaoui S, Arifin MI, Chang SC, Yu J, Gopalakrishnan P, Doh-Ura K, Schatzl HM, Gilch S. Cellulose ether treatment in vivo generates chronic wasting disease prions with reduced protease resistance and delayed disease progression. J Neurochem 2019; 152:727-740. [PMID: 31553058 PMCID: PMC7078990 DOI: 10.1111/jnc.14877] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Chronic wasting disease (CWD) is a prion disease of free-ranging and farmed cervids that is highly contagious because of extensive prion shedding and prion persistence in the environment. Previously, cellulose ether compounds (CEs) have been shown to significantly extend the survival of mice inoculated with mouse-adapted prion strains. In this study, we used CEs, TC-5RW, and 60SH-50, in vitro and in vivo to assess their efficacy to interfere with CWD prion propagation. In vitro, CEs inhibited CWD prion amplification in a dose-dependent manner. Transgenic mice over-expressing elk PrPC (tgElk) were injected subcutaneously with a single dose of either of the CEs, followed by intracerebral inoculation with different CWD isolates from white tailed deer, mule deer, or elk. All treated groups showed a prolonged survival of up to more than 30 % when compared to the control group regardless of the CWD isolate used for infection. The extended survival in the treated groups correlated with reduced proteinase K resistance of prions. Remarkably, passage of brain homogenates from treated or untreated animals in tgElk mice resulted in a prolonged life span of mice inoculated with homogenates from CE-treated mice (of + 17%) even in the absence of further treatment. Besides the delayed disease onset upon passage in TgElk mice, the reduced proteinase K resistance was maintained but less pronounced. Therefore, these compounds can be very useful in limiting the spread of CWD in captive and wild-ranging cervids.
Collapse
Affiliation(s)
- Samia Hannaoui
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Maria Immaculata Arifin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sheng Chun Chang
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Jie Yu
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Preetha Gopalakrishnan
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hermann M Schatzl
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sabine Gilch
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
13
|
Abstract
The prion strain, surface type, and matrix containing PrPSc can influence PrPSc surface adsorption. The cumulative effect of these factors can result in strain- and soil-specific differences in prion bioavailability. Environmental weathering processes can result in decreases in PrPSc conversion efficiency and infectivity. Little is known about how incomplete inactivation of surface-bound PrPSc affects transmission and prion strain emergence. Here, we show that strain interference occurs with soil-bound prions and that altering the ratios of prion strains by strain-specific inactivation can affect strain emergence. Additionally, we identify a novel mechanism of inhibition of prion conversion by environmental treatment-induced changes at the soil-protein interface altering strain emergence. These novel findings suggest that environmental factors can influence strain emergence of surface-bound prions. Prions can persist in the environment for extended periods of time after adsorption to surfaces, including soils, feeding troughs, or fences. Prion strain- and soil-specific differences in prion adsorption, infectivity, and response to inactivation may be involved in strain maintenance or emergence of new strains in a population. Extensive proteinase K (PK) digestion of Hyper (HY) and Drowsy (DY) PrPSc resulted in a greater reduction in the level of DY PrPSc than of HY PrPSc. Use of the PK-digested material in protein misfolding cyclic amplification strain interference (PMCAsi) resulted in earlier emergence of HY PrPSc than of undigested controls. This result established that strain-specific alteration of the starting ratios of conversion-competent HY and DY PrPSc can alter strain emergence. We next investigated whether environmentally relevant factors such as surface binding and weathering could alter strain emergence. Adsorption of HY and DY PrPSc to silty clay loam (SCL), both separately and combined, resulted in DY interfering with the emergence of HY in PMCAsi in a manner similar to that seen with unbound controls. Similarly, repeated cycles of wetting and drying of SCL-bound HY and DY PrPSc did not alter the emergence of HY PrPSc compared to untreated controls. Importantly, these data indicate that prion strain interference can occur when prions are bound to surfaces. Interestingly, we found that drying of adsorbed brain homogenate on SCL could restore its ability to interfere with the emergence of HY, suggesting a novel strain interference mechanism. Overall, these data provide evidence that the emergence of a strain from a mixture can be influenced by nonhost factors. IMPORTANCE The prion strain, surface type, and matrix containing PrPSc can influence PrPSc surface adsorption. The cumulative effect of these factors can result in strain- and soil-specific differences in prion bioavailability. Environmental weathering processes can result in decreases in PrPSc conversion efficiency and infectivity. Little is known about how incomplete inactivation of surface-bound PrPSc affects transmission and prion strain emergence. Here, we show that strain interference occurs with soil-bound prions and that altering the ratios of prion strains by strain-specific inactivation can affect strain emergence. Additionally, we identify a novel mechanism of inhibition of prion conversion by environmental treatment-induced changes at the soil-protein interface altering strain emergence. These novel findings suggest that environmental factors can influence strain emergence of surface-bound prions.
Collapse
|
14
|
McDonald AJ, Leon DR, Markham KA, Wu B, Heckendorf CF, Schilling K, Showalter HD, Andrews PC, McComb ME, Pushie MJ, Costello CE, Millhauser GL, Harris DA. Altered Domain Structure of the Prion Protein Caused by Cu 2+ Binding and Functionally Relevant Mutations: Analysis by Cross-Linking, MS/MS, and NMR. Structure 2019; 27:907-922.e5. [PMID: 30956132 DOI: 10.1016/j.str.2019.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/17/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
The cellular isoform of the prion protein (PrPC) serves as precursor to the infectious isoform (PrPSc), and as a cell-surface receptor, which binds misfolded protein oligomers as well as physiological ligands such as Cu2+ ions. PrPC consists of two domains: a flexible N-terminal domain and a structured C-terminal domain. Both the physiological and pathological functions of PrP depend on intramolecular interactions between these two domains, but the specific amino acid residues involved have proven challenging to define. Here, we employ a combination of chemical cross-linking, mass spectrometry, NMR, molecular dynamics simulations, and functional assays to identify residue-level contacts between the N- and C-terminal domains of PrPC. We also determine how these interdomain contacts are altered by binding of Cu2+ ions and by functionally relevant mutations. Our results provide a structural basis for interpreting both the normal and toxic activities of PrP.
Collapse
Affiliation(s)
- Alex J McDonald
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Deborah R Leon
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kathleen A Markham
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Christian F Heckendorf
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kevin Schilling
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hollis D Showalter
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Philip C Andrews
- Department of Biological Chemistry, Department of Chemistry, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark E McComb
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| | - M Jake Pushie
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Catherine E Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
15
|
Burke CM, Walsh DJ, Steele AD, Agrimi U, Di Bari MA, Watts JC, Supattapone S. Full restoration of specific infectivity and strain properties from pure mammalian prion protein. PLoS Pathog 2019; 15:e1007662. [PMID: 30908557 PMCID: PMC6448948 DOI: 10.1371/journal.ppat.1007662] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/04/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, protein-only PrPSc preparations lack significant levels of prion infectivity, leading to the alternative hypothesis that cofactor molecules are required to form infectious prions. Here, we show that prions with parental strain properties and full specific infectivity can be restored from protein-only PrPSc in vitro. The restoration reaction is rapid, potent, and requires bank vole PrPC substrate, post-translational modifications, and cofactor molecules. To our knowledge, this represents the first report in which the essential properties of an infectious mammalian prion have been restored from pure PrP without adaptation. These findings provide evidence for a unified hypothesis of prion infectivity in which the global structure of protein-only PrPSc accurately stores latent infectious and strain information, but cofactor molecules control a reversible switch that unmasks biological infectivity.
Collapse
Affiliation(s)
- Cassandra M. Burke
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Daniel J. Walsh
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Alexander D. Steele
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Angelo Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Surachai Supattapone
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
16
|
Le NTT, Wu B, Harris DA. Prion neurotoxicity. Brain Pathol 2019; 29:263-277. [PMID: 30588688 DOI: 10.1111/bpa.12694] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/28/2018] [Indexed: 01/04/2023] Open
Abstract
Although the mechanisms underlying prion propagation and infectivity are now well established, the processes accounting for prion toxicity and pathogenesis have remained mysterious. These processes are of enormous clinical relevance as they hold the key to identification of new molecular targets for therapeutic intervention. In this review, we will discuss two broad areas of investigation relevant to understanding prion neurotoxicity. The first is the use of in vitro experimental systems that model key events in prion pathogenesis. In this context, we will describe a hippocampal neuronal culture system we developed that reproduces the earliest pathological alterations in synaptic morphology and function in response to PrPSc . This system has allowed us to define a core synaptotoxic signaling pathway involving the activation of NMDA and AMPA receptors, stimulation of p38 MAPK phosphorylation and collapse of the actin cytoskeleton in dendritic spines. The second area concerns a striking and unexpected phenomenon in which certain structural manipulations of the PrPC molecule itself, including introduction of N-terminal deletion mutations or binding of antibodies to C-terminal epitopes, unleash powerful toxic effects in cultured cells and transgenic mice. We will describe our studies of this phenomenon, which led to the recognition that it is related to the induction of large, abnormal ionic currents by the structurally altered PrP molecules. Our results suggest a model in which the flexible N-terminal domain of PrPC serves as a toxic effector which is regulated by intramolecular interactions with the globular C-terminal domain. Taken together, these two areas of study have provided important clues to underlying cellular and molecular mechanisms of prion neurotoxicity. Nevertheless, much remains to be done on this next frontier of prion science.
Collapse
Affiliation(s)
- Nhat T T Le
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| |
Collapse
|
17
|
Zhao Y, Zurawel AA, Jenkins NP, Duennwald ML, Cheng C, Kettenbach AN, Supattapone S. Comparative Analysis of Mutant Huntingtin Binding Partners in Yeast Species. Sci Rep 2018; 8:9554. [PMID: 29934597 PMCID: PMC6015068 DOI: 10.1038/s41598-018-27900-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease is caused by the pathological expansion of a polyglutamine (polyQ) stretch in Huntingtin (Htt), but the molecular mechanisms by which polyQ expansion in Htt causes toxicity in selective neuronal populations remain poorly understood. Interestingly, heterologous expression of expanded polyQ Htt is toxic in Saccharomyces cerevisiae cells, but has no effect in Schizosaccharomyces pombe, a related yeast species possessing very few endogenous polyQ or Q/N-rich proteins. Here, we used a comprehensive and unbiased mass spectrometric approach to identify proteins that bind Htt in a length-dependent manner in both species. Analysis of the expanded polyQ-associated proteins reveals marked enrichment of proteins that are localized to and play functional roles in nucleoli and mitochondria in S. cerevisiae, but not in S. pombe. Moreover, expanded polyQ Htt appears to interact preferentially with endogenous polyQ and Q/N-rich proteins, which are rare in S. pombe, as well as proteins containing coiled-coil motifs in S. cerevisiae. Taken together, these results suggest that polyQ expansion of Htt may cause cellular toxicity in S. cerevisiae by sequestering endogenous polyQ and Q/N-rich proteins, particularly within nucleoli and mitochondria.
Collapse
Affiliation(s)
- Yanding Zhao
- Departments of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Ashley A Zurawel
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Nicole P Jenkins
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Martin L Duennwald
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Chao Cheng
- Departments of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
- Biomedical Data Sciences, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Arminja N Kettenbach
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Surachai Supattapone
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States.
- Medicine, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States.
| |
Collapse
|
18
|
Alred EJ, Lodangco I, Gallaher J, Hansmann UH. Mutations Alter RNA-Mediated Conversion of Human Prions. ACS OMEGA 2018; 3:3936-3944. [PMID: 29732450 PMCID: PMC5928492 DOI: 10.1021/acsomega.7b02007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Prion diseases are connected with self-replication and self-propagation of misfolded proteins. The rate-limiting factor is the formation of the initial seed. We have recently studied the early stages in the conversion between functional PrPC and the infectious scrapie PrPSC form, triggered by the binding of RNA. Here, we study how this process is modulated by the prion sequence. We focus on residues 129 and 178, which are connected to the hereditary neurodegenerative disease fatal familial insomnia.
Collapse
|
19
|
Málaga-Trillo E, Ochs K. Uncontrolled SFK-mediated protein trafficking in prion and Alzheimer's disease. Prion 2017; 10:352-361. [PMID: 27649856 DOI: 10.1080/19336896.2016.1221873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Prions and Amyloid beta (Aβ) peptides induce synaptic damage via complex mechanisms that include the pathological alteration of intracellular signaling cascades. The host-encoded cellular prion protein (PrPC) acts as a high-affinity cell surface receptor for both toxic species and it can modulate the endocytic trafficking of the N-methyl D-aspartate (NMDA) receptor and E-cadherin adhesive complexes via Src family kinases (SFKs). Interestingly, SFK-mediated control of endocytosis is a widespread mechanism used to regulate the activity of important transmembrane proteins, including neuroreceptors for major excitatory and inhibitory neurotransmitters. Here we discuss our recent work in zebrafish and accumulating evidence suggesting that subversion of this pleiotropic regulatory mechanism by Aβ oligomers and prions explains diverse neurotransmission deficits observed in human patients and mouse models of prion and Alzheimer's neurodegeneration. While Aβ, PrPC and SFKs constitute potential therapeutic targets on their own, drug discovery efforts might benefit significantly from aiming at protein-protein interactions that modulate the endocytosis of specific SFK targets.
Collapse
Affiliation(s)
| | - Katharina Ochs
- a Department of Biology , Universidad Peruana Cayetano Heredia , Lima , Perú.,b Department of Biology , University of Konstanz , Konstanz , Germany
| |
Collapse
|
20
|
Role of the central lysine cluster and scrapie templating in the transmissibility of synthetic prion protein aggregates. PLoS Pathog 2017; 13:e1006623. [PMID: 28910420 PMCID: PMC5614645 DOI: 10.1371/journal.ppat.1006623] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/26/2017] [Accepted: 09/01/2017] [Indexed: 12/19/2022] Open
Abstract
Mammalian prion structures and replication mechanisms are poorly understood. Most synthetic recombinant prion protein (rPrP) amyloids prepared without cofactors are non-infectious or much less infectious than bona fide tissue-derived PrPSc. This effect has been associated with differences in folding of the aggregates, manifested in part by reduced solvent exclusion and protease-resistance in rPrP amyloids, especially within residues ~90-160. Substitution of 4 lysines within residues 101-110 of rPrP (central lysine cluster) with alanines (K4A) or asparagines (K4N) allows formation of aggregates with extended proteinase K (PK) resistant cores reminiscent of PrPSc, particularly when seeded with PrPSc. Here we have compared the infectivity of rPrP aggregates made with K4N, K4A or wild-type (WT) rPrP, after seeding with scrapie brain homogenate (ScBH) or normal brain homogenate (NBH). None of these preparations caused clinical disease on first passage into rodents. However, the ScBH-seeded fibrils (only) led to a subclinical pathogenesis as indicated by increases in prion seeding activity, neuropathology, and abnormal PrP in the brain. Seeding activities usually accumulated to much higher levels in animals inoculated with ScBH-seeded fibrils made with the K4N, rather than WT, rPrP molecules. Brain homogenates from subclinical animals induced clinical disease on second passage into "hamsterized" Tg7 mice, with shorter incubation times in animals inoculated with ScBH-seeded K4N rPrP fibrils. On second passage from animals inoculated with ScBH-seeded WT fibrils, we detected an additional PK resistant PrP fragment that was similar to that of bona fide PrPSc. Together these data indicate that both the central lysine cluster and scrapie seeding of rPrP aggregates influence the induction of PrP misfolding, neuropathology and clinical manifestations upon passage in vivo. We confirm that some rPrP aggregates can initiate further aggregation without typical pathogenesis in vivo. We also provide evidence that there is little, if any, biohazard associated with routine RT-QuIC assays.
Collapse
|
21
|
Alred EJ, Nguyen M, Martin M, Hansmann UHE. Molecular dynamics simulations of early steps in RNA-mediated conversion of prions. Protein Sci 2017; 26:1524-1534. [PMID: 28425641 DOI: 10.1002/pro.3178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/16/2017] [Indexed: 01/23/2023]
Abstract
The rate-limiting step in prion diseases is the initial transition of a prion protein from its native form into a mis-folded state in which the protein not only forms cell-toxic aggregates but also becomes infectious. Recent experiments implicate polyadenosine RNA as a possible agent for generating the initial seed. In order to understand the mechanism of RNA-mediated mis-folding and aggregation of prions, we dock polyadenosine RNA to mouse and human prion models. Changes in stability and secondary structure of the prions upon binding to polyadenosine RNA are evaluated by comparing molecular dynamics simulations of these complexes with that of the unbound prions.
Collapse
Affiliation(s)
- Erik J Alred
- Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Michael Nguyen
- Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Maggie Martin
- Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | | |
Collapse
|
22
|
Vanni I, Migliore S, Cosseddu GM, Di Bari MA, Pirisinu L, D’Agostino C, Riccardi G, Agrimi U, Nonno R. Isolation of a Defective Prion Mutant from Natural Scrapie. PLoS Pathog 2016; 12:e1006016. [PMID: 27880822 PMCID: PMC5120856 DOI: 10.1371/journal.ppat.1006016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022] Open
Abstract
It is widely known that prion strains can mutate in response to modification of the replication environment and we have recently reported that prion mutations can occur in vitro during amplification of vole-adapted prions by Protein Misfolding Cyclic Amplification on bank vole substrate (bvPMCA). Here we exploited the high efficiency of prion replication by bvPMCA to study the in vitro propagation of natural scrapie isolates. Although in vitro vole-adapted PrPSc conformers were usually similar to the sheep counterpart, we repeatedly isolated a PrPSc mutant exclusively when starting from extremely diluted seeds of a single sheep isolate. The mutant and faithful PrPSc conformers showed to be efficiently autocatalytic in vitro and were characterized by different PrP protease resistant cores, spanning aa ∼155–231 and ∼80–231 respectively, and by different conformational stabilities. The two conformers could thus be seen as different bona fide PrPSc types, putatively accounting for prion populations with different biological properties. Indeed, once inoculated in bank vole the faithful conformer was competent for in vivo replication while the mutant was unable to infect voles, de facto behaving like a defective prion mutant. Overall, our findings confirm that prions can adapt and evolve in the new replication environments and that the starting population size can affect their evolutionary landscape, at least in vitro. Furthermore, we report the first example of “authentic” defective prion mutant, composed of brain-derived PrPC and originating from a natural scrapie isolate. Our results clearly indicate that the defective mutant lacks of some structural characteristics, that presumably involve the central region ∼90–155, critical for infectivity but not for in vitro replication. Finally, we propose a molecular mechanism able to account for the discordant in vitro and in vivo behavior, suggesting possible new paths for investigating the molecular bases of prion infectivity. Prions are unique infectious agents, consisting of PrPSc, a self-propagating aggregated conformer of the host-encoded prion protein PrPC. Despite the absence of any nucleic acid information, prions exist as distinct strains that share the same amino acid sequence but differ in their conformation. Moreover, prions can mutate and are thus heterogeneous populations able to evolve and adapt to new replication environments. During in vitro amplification of sheep scrapie, we found that a prion mutant could be obtained from one natural isolate. The prion mutant identified was characterized in vivo and in vitro, showing unusual biochemical and biological features: a smaller than usual C-terminal proteinase resistant core of PrPSc, which spans aa ∼155–231, and the inability to propagate in vivo despite an efficient autocatalytic replication in vitro. With such a signature, we denoted the mutant as a “defective” prion mutant. We thus postulate a new hypothesis for the discrepancy between the in vitro and in vivo behavior of the defective mutant and suggest that the central PrPSc domain ∼90–160 might have a key role in prion replication. This work provides important new insights into the mechanism underpinning prion replication and has numerous implications for understanding the molecular requirements indispensable for prion infectivity.
Collapse
Affiliation(s)
- Ilaria Vanni
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Sergio Migliore
- Istituto Zooprofilattico Sperimentale of Sicily "A. Mirri", Palermo, Italy
| | - Gian Mario Cosseddu
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Michele Angelo Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Pirisinu
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia D’Agostino
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Geraldina Riccardi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Romolo Nonno
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
23
|
Imberdis T, Heeres JT, Yueh H, Fang C, Zhen J, Rich CB, Glicksman M, Beeler AB, Harris DA. Identification of Anti-prion Compounds using a Novel Cellular Assay. J Biol Chem 2016; 291:26164-26176. [PMID: 27803163 DOI: 10.1074/jbc.m116.745612] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/19/2016] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are devastating neurodegenerative disorders with no known cure. One strategy for developing therapies for these diseases is to identify compounds that block conversion of the cellular form of the prion protein (PrPC) into the infectious isoform (PrPSc). Most previous efforts to discover such molecules by high-throughput screening methods have utilized, as a read-out, a single kind of cellular assay system: neuroblastoma cells that are persistently infected with scrapie prions. Here, we describe the use of an alternative cellular assay based on suppressing the spontaneous cytotoxicity of a mutant form of PrP (Δ105-125). Using this assay, we screened 75,000 compounds, and identified a group of phenethyl piperidines (exemplified by LD7), which reduces the accumulation of PrPSc in infected neuroblastoma cells by >90% at low micromolar doses, and inhibits PrPSc-induced synaptotoxicity in hippocampal neurons. By analyzing the structure-activity relationships of 35 chemical derivatives, we defined the pharmacophore of LD7, and identified a more potent derivative. Active compounds do not alter total or cell-surface levels of PrPC, and do not bind to recombinant PrP in surface plasmon resonance experiments, although at high concentrations they inhibit PrPSc-seeded conversion of recombinant PrP to a misfolded state in an in vitro reaction (RT-QuIC). This class of small molecules may provide valuable therapeutic leads, as well as chemical biological tools to identify cellular pathways underlying PrPSc metabolism and PrPC function.
Collapse
Affiliation(s)
- Thibaut Imberdis
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - James T Heeres
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Han Yueh
- the Department of Chemistry, Boston University, Boston, Massachusetts 02115, and
| | - Cheng Fang
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jessie Zhen
- the Department of Chemistry, Boston University, Boston, Massachusetts 02115, and
| | - Celeste B Rich
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Marcie Glicksman
- the Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139
| | - Aaron B Beeler
- the Department of Chemistry, Boston University, Boston, Massachusetts 02115, and
| | - David A Harris
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
24
|
A Neuronal Culture System to Detect Prion Synaptotoxicity. PLoS Pathog 2016; 12:e1005623. [PMID: 27227882 PMCID: PMC4881977 DOI: 10.1371/journal.ppat.1005623] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/19/2016] [Indexed: 12/02/2022] Open
Abstract
Synaptic pathology is an early feature of prion as well as other neurodegenerative diseases. Although the self-templating process by which prions propagate is well established, the mechanisms by which prions cause synaptotoxicity are poorly understood, due largely to the absence of experimentally tractable cell culture models. Here, we report that exposure of cultured hippocampal neurons to PrPSc, the infectious isoform of the prion protein, results in rapid retraction of dendritic spines. This effect is entirely dependent on expression of the cellular prion protein, PrPC, by target neurons, and on the presence of a nine-amino acid, polybasic region at the N-terminus of the PrPC molecule. Both protease-resistant and protease-sensitive forms of PrPSc cause dendritic loss. This system provides new insights into the mechanisms responsible for prion neurotoxicity, and it provides a platform for characterizing different pathogenic forms of PrPSc and testing potential therapeutic agents. Prion diseases are fatal neurodegenerative disorders that cause memory loss, impaired coordination, and abnormal movements. The molecular culprit in prion diseases is PrPSc, an infectious isoform of a host-encoded glycoprotein (PrPC) that can propagate itself by a self-templating mechanism. Whether PrPSc itself is toxic to neurons, and if so, the cellular mechanisms by which it produces neuronal pathology are largely unknown, in part because of the absence of suitable cell culture models. We describe here a hippocampal neuronal cultural system to detect the toxic effect of PrPSc on dendritic spines, which are postsynaptic elements responsible for excitatory synaptic transmission, and which are implicated in learning, memory, and the earliest stages of neurodegenerative diseases. We found that purified, exogenously applied PrPSc causes acute retraction of dendritic spines, an effect that is entirely dependent on expression of PrPC by target neurons, and on the on the presence of a nine-amino acid, polybasic region at the N-terminus of the PrPC molecule. Both protease-resistant and protease-sensitive forms of PrPSc cause dendritic retraction. This system provides new insights into the mechanisms responsible for prion neurotoxicity, and it provides a platform for characterizing different pathogenic forms of PrPSc and testing potential therapeutic agents.
Collapse
|
25
|
Belondrade M, Nicot S, Béringue V, Coste J, Lehmann S, Bougard D. Rapid and Highly Sensitive Detection of Variant Creutzfeldt-Jakob Disease Abnormal Prion Protein on Steel Surfaces by Protein Misfolding Cyclic Amplification: Application to Prion Decontamination Studies. PLoS One 2016; 11:e0146833. [PMID: 26800081 PMCID: PMC4723062 DOI: 10.1371/journal.pone.0146833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/22/2015] [Indexed: 11/18/2022] Open
Abstract
The prevalence of variant Creutzfeldt-Jakob disease (vCJD) in the population remains uncertain, although it has been estimated that 1 in 2000 people in the United Kingdom are positive for abnormal prion protein (PrPTSE) by a recent survey of archived appendix tissues. The prominent lymphotropism of vCJD prions raises the possibility that some surgical procedures may be at risk of iatrogenic vCJD transmission in healthcare facilities. It is therefore vital that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated. A current limitation is the lack of a rapid model permissive to human prions. Here, we developed a prion detection assay based on protein misfolding cyclic amplification (PMCA) technology combined with stainless-steel wire surfaces as carriers of prions (Surf-PMCA). This assay allowed the specific detection of minute quantities (10−8 brain dilution) of either human vCJD or ovine scrapie PrPTSE adsorbed onto a single steel wire, within a two week timeframe. Using Surf-PMCA we evaluated the performance of several reference and commercially available prion-specific decontamination procedures. Surprisingly, we found the efficiency of several marketed reagents to remove human vCJD PrPTSE was lower than expected. Overall, our results demonstrate that Surf-PMCA can be used as a rapid and ultrasensitive assay for the detection of human vCJD PrPTSE adsorbed onto a metallic surface, therefore facilitating the development and validation of decontamination procedures against human prions.
Collapse
Affiliation(s)
- Maxime Belondrade
- Laboratoire TransDiag, UMR 1058, Etablissement Français du Sang Pyrénées-Méditerranée, Montpellier, France
| | - Simon Nicot
- Laboratoire TransDiag, UMR 1058, Etablissement Français du Sang Pyrénées-Méditerranée, Montpellier, France
| | - Vincent Béringue
- Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Joliette Coste
- Laboratoire TransDiag, UMR 1058, Etablissement Français du Sang Pyrénées-Méditerranée, Montpellier, France
| | - Sylvain Lehmann
- CHRU de Montpellier and Université de Montpellier, IRMB, INSERM U1183, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| | - Daisy Bougard
- Laboratoire TransDiag, UMR 1058, Etablissement Français du Sang Pyrénées-Méditerranée, Montpellier, France
- * E-mail:
| |
Collapse
|
26
|
Mutated but Not Deleted Ovine PrP(C) N-Terminal Polybasic Region Strongly Interferes with Prion Propagation in Transgenic Mice. J Virol 2015; 90:1638-46. [PMID: 26608316 DOI: 10.1128/jvi.02805-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mammalian prions are proteinaceous infectious agents composed of misfolded assemblies of the host-encoded, cellular prion protein (PrP). Physiologically, the N-terminal polybasic region of residues 23 to 31 of PrP has been shown to be involved in its endocytic trafficking and interactions with glycosaminoglycans or putative ectodomains of membrane-associated proteins. Several recent reports also describe this PrP region as important for the toxicity of mutant prion proteins and the efficiency of prion propagation, both in vitro and in vivo. The question remains as to whether the latter observations made with mouse PrP and mouse prions would be relevant to other PrP species/prion strain combinations given the dramatic impact on prion susceptibility of minimal amino acid substitutions and structural variations in PrP. Here, we report that transgenic mouse lines expressing ovine PrP with a deletion of residues 23 to 26 (KKRP) or mutated in this N-terminal region (KQHPH instead of KKRPK) exhibited a variable, strain-dependent susceptibility to prion infection with regard to the proportion of affected mice and disease tempo relative to findings in their wild-type counterparts. Deletion has no major effect on 127S scrapie prion pathogenesis, whereas mutation increased by almost 3-fold the survival time of the mice. Deletion marginally affected the incubation time of scrapie LA19K and ovine bovine spongiform encephalopathy (BSE) prions, whereas mutation caused apparent resistance to disease. IMPORTANCE Recent reports suggested that the N-terminal polybasic region of the prion protein could be a therapeutic target to prevent prion propagation or toxic signaling associated with more common neurodegenerative diseases such as Alzheimer's disease. Mutating or deleting this region in ovine PrP completes the data previously obtained with the mouse protein by identifying the key amino acid residues involved.
Collapse
|
27
|
Shikiya RA, Eckland TE, Young AJ, Bartz JC. Prion formation, but not clearance, is supported by protein misfolding cyclic amplification. Prion 2015; 8:415-20. [PMID: 25482601 DOI: 10.4161/19336896.2014.983759] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders that affect animals including humans. The kinetics of prion infectivity and PrP(Sc) accumulation can differ between prion strains and within a single strain in different tissues. The net accumulation of PrP(Sc) in animals is controlled by the relationship between the rate of PrP(Sc) formation and clearance. Protein misfolding cyclic amplification (PMCA) is a powerful technique that faithfully recapitulates PrP(Sc) formation and prion infectivity in a cell-free system. PMCA has been used as a surrogate for animal bioassay and can model species barriers, host range, strain co-factors and strain interference. In this study we investigated if degradation of PrP(Sc) and/or prion infectivity occurs during PMCA. To accomplish this we performed PMCA under conditions that do not support PrP(Sc) formation and did not observe either a reduction in PrP(Sc) abundance or an extension of prion incubation period, compared to untreated control samples. These results indicate that prion clearance does not occur during PMCA. These data have significant implications for the interpretation of PMCA based experiments such as prion amplification rate, adaptation to new species and strain interference where production and clearance of prions can affect the outcome.
Collapse
Affiliation(s)
- Ronald A Shikiya
- a Department of Medical Microbiology and Immunology ; School of Medicine; Creighton University ; Omaha, NE USA
| | | | | | | |
Collapse
|
28
|
Martínez J, Sánchez R, Castellanos M, Makarava N, Aguzzi A, Baskakov IV, Gasset M. PrP charge structure encodes interdomain interactions. Sci Rep 2015; 5:13623. [PMID: 26323476 PMCID: PMC4555102 DOI: 10.1038/srep13623] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/31/2015] [Indexed: 11/19/2022] Open
Abstract
Almost all proteins contain charged residues, and their chain distribution is tailored to fulfill essential ionic interactions for folding, binding and catalysis. Among proteins, the hinged two-domain chain of the cellular prion protein (PrPC) exhibits a peculiar charge structure with unclear consequences in its structural malleability. To decipher the charge design role, we generated charge-reverted mutants for each domain and analyzed their effect on conformational and metabolic features. We found that charges contain the information for interdomain interactions. Use of dynamic light scattering and thermal denaturation experiments delineates the compaction of the α-fold by an electrostatic compensation between the polybasic 23–30 region and the α3 electronegative surface. This interaction increases stability and disfavors fibrillation. Independently of this structural effect, the N-terminal electropositive clusters regulate the α-cleavage efficiency. In the fibrillar state, use of circular dichroism, atomic-force and fluorescence microscopies reveal that the N-terminal positive clusters and the α3 electronegative surface dictate the secondary structure, the assembly hierarchy and the growth length of the fibril state. These findings show that the PrP charge structure functions as a code set up to ensure function and reduce pathogenic routes.
Collapse
Affiliation(s)
- Javier Martínez
- Instituto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Rosa Sánchez
- Instituto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Milagros Castellanos
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain; IMDEA-Nanociencia, Madrid 28049, Spain
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Zürich 8091, Switzerland
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - María Gasset
- Instituto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| |
Collapse
|
29
|
Uchiyama K, Miyata H, Yano M, Yamaguchi Y, Imamura M, Muramatsu N, Das NR, Chida J, Hara H, Sakaguchi S. Mouse-hamster chimeric prion protein (PrP) devoid of N-terminal residues 23-88 restores susceptibility to 22L prions, but not to RML prions in PrP-knockout mice. PLoS One 2014; 9:e109737. [PMID: 25330286 PMCID: PMC4199594 DOI: 10.1371/journal.pone.0109737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/09/2014] [Indexed: 01/02/2023] Open
Abstract
Prion infection induces conformational conversion of the normal prion protein PrPC, into the pathogenic isoform PrPSc, in prion diseases. It has been shown that PrP-knockout (Prnp0/0) mice transgenically reconstituted with a mouse-hamster chimeric PrP lacking N-terminal residues 23-88, or Tg(MHM2Δ23-88)/Prnp 0/0 mice, neither developed the disease nor accumulated MHM2ScΔ23-88 in their brains after inoculation with RML prions. In contrast, RML-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice developed the disease with abundant accumulation of MHM2ScΔ23-88 in their brains. These results indicate that MHM2Δ23-88 itself might either lose or greatly reduce the converting capacity to MHM2ScΔ23-88, and that the co-expressing wild-type PrPC can stimulate the conversion of MHM2Δ23-88 to MHM2ScΔ23-88 in trans. In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp 0/0 mice remained resistant to RML prions for up to 730 days after inoculation. However, we found that Tg(MHM2Δ23-88)/Prnp 0/0 mice were susceptible to 22L prions, developing the disease with prolonged incubation times and accumulating MHM2ScΔ23-88 in their brains. We also found accelerated conversion of MHM2Δ23-88 into MHM2ScΔ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice. However, wild-type PrPSc accumulated less in the brains of these inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice, compared with RML- and 22L-inoculated Prnp 0/+ mice. These results show that MHM2Δ23-88 itself can convert into MHM2ScΔ23-88 without the help of the trans-acting PrPC, and that, irrespective of prion strains inoculated, the co-expressing wild-type PrPC stimulates the conversion of MHM2Δ23-88 into MHM2ScΔ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrPC into PrPSc.
Collapse
Affiliation(s)
- Keiji Uchiyama
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), The University of Tokushima, Kuramato, Tokushima, Japan
| | - Hironori Miyata
- Animal Research Center, School of Medicine, University of Occupational and Environmental Health, Yahatanishi, Kitakyushu, Japan
| | - Masashi Yano
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), The University of Tokushima, Kuramato, Tokushima, Japan
| | - Yoshitaka Yamaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), The University of Tokushima, Kuramato, Tokushima, Japan
| | - Morikazu Imamura
- Influenza and Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Naomi Muramatsu
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), The University of Tokushima, Kuramato, Tokushima, Japan
| | - Nandita Rani Das
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), The University of Tokushima, Kuramato, Tokushima, Japan
| | - Junji Chida
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), The University of Tokushima, Kuramato, Tokushima, Japan
| | - Hideyuki Hara
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), The University of Tokushima, Kuramato, Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), The University of Tokushima, Kuramato, Tokushima, Japan
| |
Collapse
|
30
|
Klimova N, Makarava N, Baskakov IV. The diversity and relationship of prion protein self-replicating states. Virus Res 2014; 207:113-9. [PMID: 25312451 DOI: 10.1016/j.virusres.2014.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/15/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
Abstract
It has become evident that the prion protein (PrP) can form a diverse range of self-replicating structures in addition to bona fide PrP(Sc) or strain-specific PrP(Sc) variants. Some self-replicating states can be only produced in vitro, whereas others can be formed in vivo and in vitro. While transmissible, not all states that replicate in vivo are truly pathogenic. Some of them can replicate silently without causing symptoms or clinical diseases. In the current article we discuss the data on PK-digestion patterns of different self-replicating PrP states in connection with other structural data available to date and assess possible relationships between different self-replicating states. Even though different self-replicating PrP states appear to have significantly different global folding patterns, it seems that the C-terminal region exhibits a cross-β-sheet structure in all self-replicating states, as this region acquires the proteolytically most stable conformation. We also discuss the possibility of the transformation of self-replicating states and triggering of PrP(Sc) formation within the frame of the deformed templating model. The spread of silent self-replicating states is of a particular concern because they can lead to transmissible prion disease. Moreover, examples on how different replication requirements favor different states are discussed. This knowledge can help in designing conditions for selective amplification of a particular PrP state in vitro.
Collapse
Affiliation(s)
- Nina Klimova
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 725 W. Lombard St., Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 725 W. Lombard St., Baltimore, MD 21201, USA
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 725 W. Lombard St., Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 725 W. Lombard St., Baltimore, MD 21201, USA
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 725 W. Lombard St., Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 725 W. Lombard St., Baltimore, MD 21201, USA.
| |
Collapse
|
31
|
Zurawel AA, Walsh DJ, Fortier SM, Chidawanyika T, Sengupta S, Zilm K, Supattapone S. Prion nucleation site unmasked by transient interaction with phospholipid cofactor. Biochemistry 2014; 53:68-76. [PMID: 24328062 DOI: 10.1021/bi4014825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infectious mammalian prions can be formed de novo from purified recombinant prion protein (PrP) substrate through a pathway that requires the sequential addition of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and RNA cofactor molecules. Recent studies show that the initial interaction between PrP and POPG causes widespread and persistent conformational changes to form an insoluble intermediate species, termed PrP(Int1). Here, we characterize the mechanism and functional consequences of the interaction between POPG and PrP. Negative-stain electron microscopy of PrP(Int1) revealed the presence of amorphous aggregates. Pull-down and photoaffinity label experiments indicate that POPG induces the formation of a PrP(C) polybasic-domain-binding neoepitope within PrP(Int1). The ongoing presence of POPG is not required to maintain PrP(Int1) structure, as indicated by the absence of stoichiometric levels of POPG in solid-state NMR measurements of PrP(Int1). Together, these results show that a transient interaction with POPG cofactor unmasks a PrP(C) binding site, leading to PrP(Int1) aggregation.
Collapse
Affiliation(s)
- Ashley A Zurawel
- Departments of Biochemistry and ‡Medicine, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire 03755, United States
| | | | | | | | | | | | | |
Collapse
|
32
|
Dissociation of prion protein amyloid seeding from transmission of a spongiform encephalopathy. J Virol 2013; 87:12349-56. [PMID: 24027305 PMCID: PMC3807897 DOI: 10.1128/jvi.00673-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Misfolding and aggregation of proteins are common pathogenic mechanisms of a group of diseases called proteinopathies. The formation and spread of proteinaceous lesions within and between individuals were first described in prion diseases and proposed as the basis of their infectious nature. Recently, a similar "prion-like" mechanism of transmission has been proposed in other neurodegenerative diseases such as Alzheimer's disease. We investigated if misfolding and aggregation of corrupted prion protein (PrP(TSE)) are always associated with horizontal transmission of disease. Knock-in transgenic mice (101LL) expressing mutant PrP (PrP-101L) that are susceptible to disease but do not develop any spontaneous neurological phenotype were inoculated with (i) brain extracts containing PrP(TSE) from healthy 101LL mice with PrP plaques in the corpus callosum or (ii) brain extracts from mice overexpressing PrP-101L with neurological disease, severe spongiform encephalopathy, and formation of proteinase K-resistant PrP(TSE). In all instances, 101LL mice developed PrP plaques in the area of inoculation and vicinity in the absence of clinical disease or spongiform degeneration of the brain. Importantly, 101LL mice did not transmit disease on serial passage, ruling out the presence of subclinical infection. Thus, in both experimental models the formation of PrP(TSE) is not infectious. These results have implications for the interpretation of tests based on the detection of protein aggregates and suggest that de novo formation of PrP(TSE) in the host does not always result in a transmissible prion disease. In addition, these results question the validity of assuming that all diseases due to protein misfolding can be transmitted between individuals.
Collapse
|
33
|
Miller MB, Wang DW, Wang F, Noble GP, Ma J, Woods VL, Li S, Supattapone S. Cofactor molecules induce structural transformation during infectious prion formation. Structure 2013; 21:2061-8. [PMID: 24120764 DOI: 10.1016/j.str.2013.08.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 12/12/2022]
Abstract
The spread of misfolded proteins may occur in many neurodegenerative diseases. Mammalian prions are currently the only misfolded proteins in which high specific biological infectivity can be produced in vitro. Using a system that generates infectious prions de novo from purified recombinant PrP and conversion cofactors palmitoyl-oleoyl-phosphatidylglycerol (POPG) and RNA, we examined by deuterium exchange mass spectrometry (DXMS) the stepwise protein conformational changes that occur during prion formation. We found that initial incubation with POPG causes major structural changes in PrP involving all three α helices and one β strand, with subsequent addition of RNA rendering the N terminus highly exposed. Final conversion into the infectious PrP(Sc) form was accompanied by globally decreased solvent exposure, with persistence of the major cofactor-induced conformational features. Thus, we report that cofactor molecules appear to induce major structural rearrangements during prion formation, initiating a dynamic sequence of conformational changes resulting in biologically active prions.
Collapse
Affiliation(s)
- Michael B Miller
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Taguchi Y, Mistica AMA, Kitamoto T, Schätzl HM. Critical significance of the region between Helix 1 and 2 for efficient dominant-negative inhibition by conversion-incompetent prion protein. PLoS Pathog 2013; 9:e1003466. [PMID: 23825952 PMCID: PMC3694865 DOI: 10.1371/journal.ppat.1003466] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/13/2013] [Indexed: 01/01/2023] Open
Abstract
Prion diseases are fatal infectious neurodegenerative disorders in man and animals associated with the accumulation of the pathogenic isoform PrPSc of the host-encoded prion protein (PrPc). A profound conformational change of PrPc underlies formation of PrPSc and prion propagation involves conversion of PrPc substrate by direct interaction with PrPSc template. Identifying the interfaces and modalities of inter-molecular interactions of PrPs will highly advance our understanding of prion propagation in particular and of prion-like mechanisms in general. To identify the region critical for inter-molecular interactions of PrP, we exploited here dominant-negative inhibition (DNI) effects of conversion-incompetent, internally-deleted PrP (ΔPrP) on co-expressed conversion-competent PrP. We created a series of ΔPrPs with different lengths of deletions in the region between first and second α-helix (H1∼H2) which was recently postulated to be of importance in prion species barrier and PrP fibril formation. As previously reported, ΔPrPs uniformly exhibited aberrant properties including detergent insolubility, limited protease digestion resistance, high-mannose type N-linked glycans, and intracellular localization. Although formerly controversial, we demonstrate here that ΔPrPs have a GPI anchor attached. Surprisingly, despite very similar biochemical and cell-biological properties, DNI efficiencies of ΔPrPs varied significantly, dependant on location and inversely correlated with the size of deletion. This data demonstrates that H1∼H2 and the region C-terminal to it are critically important for efficient DNI. It also suggests that this region is involved in PrP-PrP interaction and conversion of PrPC into PrPSc. To reconcile the paradox of how an intracellular PrP can exert DNI, we demonstrate that ΔPrPs are subject to both proteasomal and lysosomal/autophagic degradation pathways. Using autophagy pathways ΔPrPs obtain access to the locale of prion conversion and PrPSc recycling and can exert DNI there. This shows that the intracellular trafficking of PrPs is more complex than previously anticipated. Prion diseases are deadly infectious diseases of the brain characterized by accumulation of a pathologic protein (PrPSc) which is derived from the normal prion protein (PrPc). Prions replicate by direct contact in a template-directed refolding process which involves conversion of PrPC into PrPSc. Identifying the modalities of this interaction can advance our molecular understanding of prion diseases. Like substrates and competitive inhibitors of enzymes, a conversion-incompetent PrP can inhibit conversion of normal PrPC, a phenomenon known as dominant-negative inhibition (DNI). Interestingly, some conversion-incompetent PrPs efficiently cause DNI but others do not, presumably depending on affinity for PrPSc and integrity of interaction interface. We utilized DNI to characterize the PrP-PrP interaction interface in cultured cells. We created a series of PrPs with internal deletions in the region between helix 1 and 2 and evaluated their DNI. We found an inverse correlation between deletion size and DNI which suggests that this region plays an important role in PrP-PrP interaction. We also found that such PrPs are subject to various cellular degradation pathways and that a fraction of them reaches the intracellular locale of prion conversion. Further investigation of such prion proteins might help elucidating the cellular mechanisms of the PrPC-PrPSc interaction.
Collapse
Affiliation(s)
- Yuzuru Taguchi
- Departments of Veterinary Sciences and of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America.
| | | | | | | |
Collapse
|
35
|
Pirisinu L, Nonno R, Esposito E, Benestad SL, Gambetti P, Agrimi U, Zou WQ. Small ruminant nor98 prions share biochemical features with human gerstmann-sträussler-scheinker disease and variably protease-sensitive prionopathy. PLoS One 2013; 8:e66405. [PMID: 23826096 PMCID: PMC3691246 DOI: 10.1371/journal.pone.0066405] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/06/2013] [Indexed: 01/08/2023] Open
Abstract
Prion diseases are classically characterized by the accumulation of pathological prion protein (PrPSc) with the protease resistant C-terminal fragment (PrPres) of 27–30 kDa. However, in both humans and animals, prion diseases with atypical biochemical features, characterized by PK-resistant PrP internal fragments (PrPres) cleaved at both the N and C termini, have been described. In this study we performed a detailed comparison of the biochemical features of PrPSc from atypical prion diseases including human Gerstmann-Sträussler-Scheinker disease (GSS) and variably protease-sensitive prionopathy (VPSPr) and in small ruminant Nor98 or atypical scrapie. The kinetics of PrPres production and its cleavage sites after PK digestion were analyzed, along with the PrPSc conformational stability, using a new method able to characterize both protease-resistant and protease-sensitive PrPSc components. All these PrPSc types shared common and distinctive biochemical features compared to PrPSc from classical prion diseases such as sporadic Creutzfeldt-Jakob disease and scrapie. Notwithstanding, distinct biochemical signatures based on PrPres cleavage sites and PrPSc conformational stability were identified in GSS A117V, GSS F198S, GSS P102L and VPSPr, which allowed their specific identification. Importantly, the biochemical properties of PrPSc from Nor98 and GSS P102L largely overlapped, but were distinct from the other human prions investigated. Finally, our study paves the way towards more refined comparative approaches to the characterization of prions at the animal–human interface.
Collapse
Affiliation(s)
- Laura Pirisinu
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
- * E-mail: (LP); (WQZ)
| | - Romolo Nonno
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Esposito
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | | | - Pierluigi Gambetti
- Department of Pathology, National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Wen-Quan Zou
- Department of Pathology, National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (LP); (WQZ)
| |
Collapse
|
36
|
Jeffrey M. Review: Membrane-associated misfolded protein propagation in natural transmissible spongiform encephalopathies (TSEs), synthetic prion diseases and Alzheimer's disease. Neuropathol Appl Neurobiol 2013; 39:196-216. [DOI: 10.1111/nan.12004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/06/2012] [Indexed: 12/17/2022]
Affiliation(s)
- M. Jeffrey
- Lasswade Laboratory; Animal Health and Veterinary Laboratories Agency; Penicuik; UK
| |
Collapse
|
37
|
The N-terminal, polybasic region of PrP(C) dictates the efficiency of prion propagation by binding to PrP(Sc). J Neurosci 2012; 32:8817-30. [PMID: 22745483 DOI: 10.1523/jneurosci.1103-12.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prion propagation involves a templating reaction in which the infectious form of the prion protein (PrP(Sc)) binds to the cellular form (PrP(C)), generating additional molecules of PrP(Sc). While several regions of the PrP(C) molecule have been suggested to play a role in PrP(Sc) formation based on in vitro studies, the contribution of these regions in vivo is unclear. Here, we report that mice expressing PrP deleted for a short, polybasic region at the N terminus (residues 23-31) display a dramatically reduced susceptibility to prion infection and accumulate greatly reduced levels of PrP(Sc). These results, in combination with biochemical data, demonstrate that residues 23-31 represent a critical site on PrP(C) that binds to PrP(Sc) and is essential for efficient prion propagation. It may be possible to specifically target this region for treatment of prion diseases as well as other neurodegenerative disorders due to β-sheet-rich oligomers that bind to PrP(C).
Collapse
|
38
|
Isolation of novel synthetic prion strains by amplification in transgenic mice coexpressing wild-type and anchorless prion proteins. J Virol 2012; 86:11763-78. [PMID: 22915801 DOI: 10.1128/jvi.01353-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian prions are thought to consist of misfolded aggregates (protease-resistant isoform of the prion protein [PrP(res)]) of the cellular prion protein (PrP(C)). Transmissible spongiform encephalopathy (TSE) can be induced in animals inoculated with recombinant PrP (rPrP) amyloid fibrils lacking mammalian posttranslational modifications, but this induction is inefficient in hamsters or transgenic mice overexpressing glycosylphosphatidylinositol (GPI)-anchored PrP(C). Here we show that TSE can be initiated by inoculation of misfolded rPrP into mice that express wild-type (wt) levels of PrP(C) and that synthetic prion strain propagation and selection can be affected by GPI anchoring of the host's PrP(C). To create prions de novo, we fibrillized mouse rPrP in the absence of molecular cofactors, generating fibrils with a PrP(res)-like protease-resistant banding profile. These fibrils induced the formation of PrP(res) deposits in transgenic mice coexpressing wt and GPI-anchorless PrP(C) (wt/GPI(-)) at a combined level comparable to that of PrP(C) expression in wt mice. Secondary passage into mice expressing wt, GPI(-), or wt plus GPI(-) PrP(C) induced TSE disease with novel clinical, histopathological, and biochemical phenotypes. Contrary to laboratory-adapted mouse scrapie strains, the synthetic prion agents exhibited a preference for conversion of GPI(-) PrP(C) and, in one case, caused disease only in GPI(-) mice. Our data show that novel TSE agents can be generated de novo solely from purified mouse rPrP after amplification in mice coexpressing normal levels of wt and anchorless PrP(C). These observations provide insight into the minimal elements required to create prions in vitro and suggest that the PrP(C) GPI anchor can modulate the propagation of synthetic TSE strains.
Collapse
|
39
|
Abstract
Aggregation-prone proteins associated with neurodegenerative disease, such as α synuclein and β amyloid, now appear to share key prion-like features with mammalian prion protein, such as the ability to recruit normal proteins to aggregates and to translocate between neurons. These features may shed light on the genesis of stereotyped lesion development patterns in conditions such as Alzheimer disease and Lewy Body dementia. We discuss the qualifications of tau protein as a possible "prionoid" mediator of lesion spread based on recent characterizations of the secretion, uptake and transneuronal transfer of human tau isoforms in a variety of tauopathy models, and in human patients. In particular, we consider (1) the possibility that prionoid behavior of misprocessed tau in neurodegenerative disease may involve other aggregation-prone proteins, including PrP itself, and (2) whether "prionlike" tau lesion propagation might include mechanisms other than protein-protein templating.
Collapse
Affiliation(s)
- Garth F Hall
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA.
| | | |
Collapse
|
40
|
Affiliation(s)
- Jiyan Ma
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America.
| |
Collapse
|
41
|
Makarava N, Savtchenko R, Alexeeva I, Rohwer RG, Baskakov IV. Fast and ultrasensitive method for quantitating prion infectivity titre. Nat Commun 2012; 3:741. [PMID: 22415832 PMCID: PMC3518416 DOI: 10.1038/ncomms1730] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 02/06/2012] [Indexed: 12/19/2022] Open
Abstract
Bioassay by end-point dilution has been used for decades for routine determination of prion infectivity titre. Here we show that the new protein misfolding cyclic amplification with beads (PMCAb) technique can be used to estimate titres of the infection-specific forms of the prion protein with a higher level of precision and in 3-6 days as opposed to 2 years, when compared with the bioassay. For two hamster strains, 263 K and SSLOW, the median reactive doses determined by PCMAb (PMCAb(50)) were found to be 10(12.8) and 10(12.2) per gram of brain tissue, which are 160- and 4,000-fold higher than the corresponding median infectious dose (ID(50)) values measured by bioassay. The 10(2)- to 10(3)-fold differences between ID(50) and PMCAb(50) values could be due to a large excess of PMCAb-reactive prion protein seeds with little or no infectivity. Alternatively, the differences between ID(50) and PMCAb(50) could be due to higher rate of clearance of infection-specific prion protein seeds in animals versus PMCAb reactions. A well-calibrated PMCAb reaction can be an efficient and cost-effective method for the estimation of infection-specific prion protein titre.
Collapse
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland, 725 W. Lombard Street, Baltimore 21201, USA
| | | | | | | | | |
Collapse
|