1
|
Wang C, Leong MM, Ding W, Narita Y, Liu X, Wang H, Yiu SPT, Lee J, Zhao KRS, Cui A, Gewurz B, Hammerschmidt W, Teng M, Zhao B. Viral oncogene EBNALP regulates YY1 DNA binding and alters host 3D genome organization. EMBO Rep 2025:10.1038/s44319-024-00357-6. [PMID: 39747661 DOI: 10.1038/s44319-024-00357-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP's role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant EBV using multi-omics techniques. EBNALP inactivation alters enhancer-promoter interactions, resulting in decreased CCND2 and increased CASP1 and BCL2L11 expression. Mechanistically, EBNALP interacts with and colocalizes with the looping factor YY1. Depletion of EBNALP reduces YY1 DNA-binding and enhancer-promoter interactions, similar to effects observed with YY1 depletion. Furthermore, EBNALP colocalizes with DPF2, a protein that binds to H3K14ac and H4K16ac. CRISPR depletion of DPF2 reduces both EBNALP and YY1 DNA binding, suggesting that the DPF2/EBNALP complex may tether YY1 to DNA to increase enhancer-promoter interactions. EBNALP inactivation also increases enhancer-promoter interactions at the CASP1 and BCL2L11 loci, along with elevated DPF2 and YY1 binding and DNA accessibility. Our data suggest that EBNALP regulates YY1 to rewire the host genome, which might facilitate naive B-cell transformation.
Collapse
Affiliation(s)
- Chong Wang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Merrin Manlong Leong
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weiyue Ding
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yohei Narita
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiang Liu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Hongbo Wang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefanie P T Yiu
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica Lee
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katelyn R S Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amy Cui
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research, Munich, Germany
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| | - Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Murray-Nerger LA, Maestri D, Liu X, Li Z, Auld NR, Tempera I, Teng M, Gewurz BE. The DNA loop release factor WAPL suppresses Epstein-Barr virus latent membrane protein expression to maintain the highly restricted latency I program. PLoS Pathog 2024; 20:e1012525. [PMID: 39241017 PMCID: PMC11410233 DOI: 10.1371/journal.ppat.1012525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 08/23/2024] [Indexed: 09/08/2024] Open
Abstract
Epstein-Barr virus (EBV) uses latency programs to colonize the memory B-cell reservoir, and each program is associated with human malignancies. However, knowledge remains incomplete of epigenetic mechanisms that maintain the highly restricted latency I program, present in memory and Burkitt lymphoma cells, in which EBNA1 is the only EBV-encoded protein expressed. Given increasing appreciation that higher order chromatin architecture is an important determinant of viral and host gene expression, we investigated roles of Wings Apart-Like Protein Homolog (WAPL), a host factor that unloads cohesin to control DNA loop size and that was discovered as an EBNA2-associated protein. WAPL knockout (KO) in Burkitt cells de-repressed LMP1 and LMP2A expression, but not other EBV oncogenes, to yield a viral program reminiscent of EBV latency II, which is rarely observed in B-cells. WAPL KO also increased LMP1/2A levels in latency III lymphoblastoid cells. WAPL KO altered EBV genome architecture, triggering formation of DNA loops between the LMP promoter region and the EBV origins of lytic replication (oriLyt). Hi-C analysis further demonstrated that WAPL KO reprogrammed EBV genomic DNA looping. LMP1 and LMP2A de-repression correlated with decreased histone repressive marks at their promoters. We propose that EBV coopts WAPL to negatively regulate latent membrane protein expression to maintain Burkitt latency I.
Collapse
Affiliation(s)
- Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Davide Maestri
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Xiang Liu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Zhixuan Li
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Nina R. Auld
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Italo Tempera
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
3
|
Murray-Nerger LA, Maestri D, Liu X, Li Z, Tempera I, Teng M, Gewurz BE. The DNA loop release factor WAPL suppresses Epstein-Barr virus latent membrane protein expression to maintain the highly restricted latency I program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593401. [PMID: 38766209 PMCID: PMC11100819 DOI: 10.1101/2024.05.09.593401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Epstein-Barr virus (EBV) uses latency programs to colonize the memory B-cell reservoir, and each program is associated with human malignancies. However, knowledge remains incomplete of epigenetic mechanisms that maintain the highly restricted latency I program, present in memory and Burkitt lymphoma cells, in which EBNA1 is the only EBV-encoded protein expressed. Given increasing appreciation that higher order chromatin architecture is an important determinant of viral and host gene expression, we investigated roles of Wings Apart-Like Protein Homolog (WAPL), a host factor that unloads cohesins to control DNA loop size and that was discovered as an EBNA2-associated protein. WAPL knockout (KO) in Burkitt cells de-repressed LMP1 and LMP2A expression but not other EBV oncogenes to yield a viral program reminiscent of EBV latency II, which is rarely observed in B-cells. WAPL KO also increased LMP1/2A levels in latency III lymphoblastoid cells. WAPL KO altered EBV genome architecture, triggering formation of DNA loops between the LMP promoter region and the EBV origins of lytic replication (oriLyt). Hi-C analysis further demonstrated that WAPL KO reprograms EBV genomic DNA looping. LMP1 and LMP2A de-repression correlated with decreased histone repressive marks at their promoters. We propose that EBV coopts WAPL to negatively regulate latent membrane protein expression to maintain Burkitt latency I. Author Summary EBV is a highly prevalent herpesvirus etiologically linked to multiple lymphomas, gastric and nasopharyngeal carcinomas, and multiple sclerosis. EBV persists in the human host in B-cells that express a series of latency programs, each of which is observed in a distinct type of human lymphoma. The most restricted form of EBV latency, called latency I, is observed in memory cells and in most Burkitt lymphomas. In this state, EBNA1 is the only EBV-encoded protein expressed to facilitate infected cell immunoevasion. However, epigenetic mechanisms that repress expression of the other eight EBV-encoded latency proteins remain to be fully elucidated. We hypothesized that the host factor WAPL might have a role in restriction of EBV genes, as it is a major regulator of long-range DNA interactions by negatively regulating cohesin proteins that stabilize DNA loops, and WAPL was found in a yeast 2-hybrid screen for EBNA2-interacting host factors. Using CRISPR together with Hi-ChIP and Hi-C DNA architecture analyses, we uncovered WAPL roles in suppressing expression of LMP1 and LMP2A, which mimic signaling by CD40 and B-cell immunoglobulin receptors, respectively. These proteins are expressed together with EBNA1 in the latency II program. We demonstrate that WAPL KO changes EBV genomic architecture, including allowing the formation of DNA loops between the oriLyt enhancers and the LMP promoter regions. Collectively, our study suggests that WAPL reinforces Burkitt latency I by preventing the formation of DNA loops that may instead support the latency II program.
Collapse
|
4
|
Kim KD, Lieberman PM. Viral remodeling of the 4D nucleome. Exp Mol Med 2024; 56:799-808. [PMID: 38658699 PMCID: PMC11058267 DOI: 10.1038/s12276-024-01207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 04/26/2024] Open
Abstract
The dynamic spatial organization of genomes across time, referred to as the four-dimensional nucleome (4DN), is a key component of gene regulation and biological fate. Viral infections can lead to a reconfiguration of viral and host genomes, impacting gene expression, replication, latency, and oncogenic transformation. This review provides a summary of recent research employing three-dimensional genomic methods such as Hi-C, 4C, ChIA-PET, and HiChIP in virology. We review how viruses induce changes in gene loop formation between regulatory elements, modify chromatin accessibility, and trigger shifts between A and B compartments in the host genome. We highlight the central role of cellular chromatin organizing factors, such as CTCF and cohesin, that reshape the 3D structure of both viral and cellular genomes. We consider how viral episomes, viral proteins, and viral integration sites can alter the host epigenome and how host cell type and conditions determine viral epigenomes. This review consolidates current knowledge of the diverse host-viral interactions that impact the 4DN.
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea.
| | | |
Collapse
|
5
|
Liao Y, Yan J, Beri NR, Giulino-Roth L, Cesarman E, Gewurz BE. Germinal center cytokine driven epigenetic control of Epstein-Barr virus latency gene expression. PLoS Pathog 2024; 20:e1011939. [PMID: 38683861 PMCID: PMC11081508 DOI: 10.1371/journal.ppat.1011939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/09/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Epstein-Barr virus (EBV) persistently infects 95% of adults worldwide and is associated with multiple human lymphomas that express characteristic EBV latency programs used by the virus to navigate the B-cell compartment. Upon primary infection, the EBV latency III program, comprised of six Epstein-Barr Nuclear Antigens (EBNA) and two Latent Membrane Protein (LMP) antigens, drives infected B-cells into germinal center (GC). By incompletely understood mechanisms, GC microenvironmental cues trigger the EBV genome to switch to the latency II program, comprised of EBNA1, LMP1 and LMP2A and observed in GC-derived Hodgkin lymphoma. To gain insights into pathways and epigenetic mechanisms that control EBV latency reprogramming as EBV-infected B-cells encounter microenvironmental cues, we characterized GC cytokine effects on EBV latency protein expression and on the EBV epigenome. We confirmed and extended prior studies highlighting GC cytokine effects in support of the latency II transition. The T-follicular helper cytokine interleukin 21 (IL-21), which is a major regulator of GC responses, and to a lesser extent IL-4 and IL-10, hyper-induced LMP1 expression, while repressing EBNA expression. However, follicular dendritic cell cytokines including IL-15 and IL-27 downmodulate EBNA but not LMP1 expression. CRISPR editing highlighted that STAT3 and STAT5 were necessary for cytokine mediated EBNA silencing via epigenetic effects at the EBV genomic C promoter. By contrast, STAT3 was instead necessary for LMP1 promoter epigenetic remodeling, including gain of activating histone chromatin marks and loss of repressive polycomb repressive complex silencing marks. Thus, EBV has evolved to coopt STAT signaling to oppositely regulate the epigenetic status of key viral genomic promoters in response to GC cytokine cues.
Collapse
Affiliation(s)
- Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jinjie Yan
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Nina R. Beri
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lisa Giulino-Roth
- Weill Cornell Medical College, New York, New York, United States of America
| | - Ethel Cesarman
- Weill Cornell Medical College, New York, New York, United States of America
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Torne AS, Robertson ES. Epigenetic Mechanisms in Latent Epstein-Barr Virus Infection and Associated Cancers. Cancers (Basel) 2024; 16:991. [PMID: 38473352 PMCID: PMC10931536 DOI: 10.3390/cancers16050991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The Epstein-Barr Virus (EBV) is a double-stranded DNA-based human tumor virus that was first isolated in 1964 from lymphoma biopsies. Since its initial discovery, EBV has been identified as a major contributor to numerous cancers and chronic autoimmune disorders. The virus is particularly efficient at infecting B-cells but can also infect epithelial cells, utilizing an array of epigenetic strategies to establish long-term latent infection. The association with histone modifications, alteration of DNA methylation patterns in host and viral genomes, and microRNA targeting of host cell factors are core epigenetic strategies that drive interactions between host and virus, which are necessary for viral persistence and progression of EBV-associated diseases. Therefore, understanding epigenetic regulation and its role in post-entry viral dynamics is an elusive area of EBV research. Here, we present current outlooks of EBV epigenetic regulation as it pertains to viral interactions with its host during latent infection and its propensity to induce tumorigenesis. We review the important epigenetic regulators of EBV latency and explore how the strategies involved during latent infection drive differential epigenetic profiles and host-virus interactions in EBV-associated cancers.
Collapse
Affiliation(s)
| | - Erle S. Robertson
- Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
7
|
Kong IY, Giulino-Roth L. Targeting latent viral infection in EBV-associated lymphomas. Front Immunol 2024; 15:1342455. [PMID: 38464537 PMCID: PMC10920267 DOI: 10.3389/fimmu.2024.1342455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Epstein-Barr virus (EBV) contributes to the development of a significant subset of human lymphomas. As a herpes virus, EBV can transition between a lytic state which is required to establish infection and a latent state where a limited number of viral antigens are expressed which allows infected cells to escape immune surveillance. Three broad latency programs have been described which are defined by the expression of viral proteins RNA, with latency I being the most restrictive expressing only EBV nuclear antigen 1 (EBNA1) and EBV-encoded small RNAs (EBERs) and latency III expressing the full panel of latent viral genes including the latent membrane proteins 1 and 2 (LMP1/2), and EBNA 2, 3, and leader protein (LP) which induce a robust T-cell response. The therapeutic use of EBV-specific T-cells has advanced the treatment of EBV-associated lymphoma, however this approach is only effective against EBV-associated lymphomas that express the latency II or III program. Latency I tumors such as Burkitt lymphoma (BL) and a subset of diffuse large B-cell lymphomas (DLBCL) evade the host immune response to EBV and are resistant to EBV-specific T-cell therapies. Thus, strategies for inducing a switch from the latency I to the latency II or III program in EBV+ tumors are being investigated as mechanisms to sensitize tumors to T-cell mediated killing. Here, we review what is known about the establishment and regulation of latency in EBV infected B-cells, the role of EBV-specific T-cells in lymphoma, and strategies to convert latency I tumors to latency II/III.
Collapse
|
8
|
Yifei L, Jinjie Y, Beri NR, Roth LG, Ethel C, Benjamin E. G. Germinal Center Cytokines Driven Epigenetic Control of Epstein-Barr Virus Latency Gene Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573986. [PMID: 38260430 PMCID: PMC10802360 DOI: 10.1101/2024.01.02.573986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Epstein-Barr virus (EBV) persistently infects 95% of adults worldwide and is associated with multiple human lymphomas that express characteristic EBV latency programs used by the virus to navigate the B-cell compartment. Upon primary infection, the EBV latency III program, comprised of six Epstein-Barr Nuclear Antigens (EBNA) and two Latent Membrane Protein (LMP) antigens, drives infected B-cells into germinal center (GC). By incompletely understood mechanisms, GC microenvironmental cues trigger the EBV genome to switch to the latency II program, comprised of EBNA1, LMP1 and LMP2A and observed in GC-derived Hodgkin lymphoma. To gain insights into pathways and epigenetic mechanisms that control EBV latency reprogramming as EBV-infected B-cells encounter microenvironmental cues, we characterized GC cytokine effects on EBV latency protein expression and on the EBV epigenome. We confirmed and extended prior studies highlighting GC cytokine effects in support of the latency II transition. The T-follicular helper cytokine interleukin 21 (IL-21), which is a major regulator of GC responses, and to a lesser extent IL-4 and IL-10, hyper-induced LMP1 expression, while repressing EBNA expression. However, follicular dendritic cell cytokines including IL-15 and IL-27 downmodulate EBNA but not LMP1 expression. CRISPR editing highlighted that STAT3 and STAT5 were necessary for cytokine mediated EBNA silencing via epigenetic effects at the EBV genomic C promoter. By contrast, STAT3 was instead necessary for LMP1 promoter epigenetic remodeling, including gain of activating histone chromatin marks and loss of repressive polycomb repressive complex silencing marks. Thus, EBV has evolved to coopt STAT signaling to oppositely regulate the epigenetic status of key viral genomic promoters in response to GC cytokine cues.
Collapse
Affiliation(s)
- Liao Yifei
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Yan Jinjie
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Nina R. Beri
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Lisa G. Roth
- Weill Cornell Medical College, New York, NY 10065
| | | | - Gewurz Benjamin E.
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
- Harvard Program in Virology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
9
|
Maestri D, Napoletani G, Kossenkov A, Preston-Alp S, Caruso LB, Tempera I. The three-dimensional structure of the EBV genome plays a crucial role in regulating viral gene expression in EBVaGC. Nucleic Acids Res 2023; 51:12092-12110. [PMID: 37889078 PMCID: PMC10711448 DOI: 10.1093/nar/gkad936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Epstein-Barr virus (EBV) establishes lifelong asymptomatic infection by replication of its chromatinized episomes with the host genome. EBV exhibits different latency-associated transcriptional repertoires, each with distinct three-dimensional structures. CTCF, Cohesin and PARP1 are involved in maintaining viral latency and establishing episome architecture. Epstein-Barr virus-associated gastric cancer (EBVaGC) represents 1.3-30.9% of all gastric cancers globally. EBV-positive gastric cancers exhibit an intermediate viral transcription profile known as 'Latency II', expressing specific viral genes and noncoding RNAs. In this study, we investigated the impact of PARP1 inhibition on CTCF/Cohesin binding in Type II latency. We observed destabilization of the binding of both factors, leading to a disrupted three-dimensional architecture of the episomes and an altered viral gene expression. Despite sharing the same CTCF binding profile, Type I, II and III latencies exhibit different 3D structures that correlate with variations in viral gene expression. Additionally, our analysis of H3K27ac-enriched interactions revealed differences between Type II latency episomes and a link to cellular transformation through docking of the EBV genome at specific sites of the Human genome, thus promoting oncogene expression. Overall, this work provides insights into the role of PARP1 in maintaining active latency and novel mechanisms of EBV-induced cellular transformation.
Collapse
Affiliation(s)
- Davide Maestri
- The Wistar Institute, Philadelphia, PA 19104, USA
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Caruso LB, Maestri D, Tempera I. Three-Dimensional Chromatin Structure of the EBV Genome: A Crucial Factor in Viral Infection. Viruses 2023; 15:1088. [PMID: 37243174 PMCID: PMC10222312 DOI: 10.3390/v15051088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Epstein-Barr Virus (EBV) is a human gamma-herpesvirus that is widespread worldwide. To this day, about 200,000 cancer cases per year are attributed to EBV infection. EBV is capable of infecting both B cells and epithelial cells. Upon entry, viral DNA reaches the nucleus and undergoes a process of circularization and chromatinization and establishes a latent lifelong infection in host cells. There are different types of latency all characterized by different expressions of latent viral genes correlated with a different three-dimensional architecture of the viral genome. There are multiple factors involved in the regulation and maintenance of this three-dimensional organization, such as CTCF, PARP1, MYC and Nuclear Lamina, emphasizing its central role in latency maintenance.
Collapse
Affiliation(s)
| | - Davide Maestri
- The Wistar Institute, Philadelphia, PA 19104, USA; (L.B.C.); (D.M.)
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Italo Tempera
- The Wistar Institute, Philadelphia, PA 19104, USA; (L.B.C.); (D.M.)
| |
Collapse
|
11
|
Dunn LEM, Lu F, Su C, Lieberman PM, Baines JD. Reactivation of Epstein-Barr Virus from Latency Involves Increased RNA Polymerase Activity at CTCF Binding Sites on the Viral Genome. J Virol 2023; 97:e0189422. [PMID: 36744959 PMCID: PMC9972995 DOI: 10.1128/jvi.01894-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/11/2023] [Indexed: 02/07/2023] Open
Abstract
The ability of Epstein-Barr virus (EBV) to switch between latent and lytic infection is key to its long-term persistence, yet the molecular mechanisms behind this switch remain unclear. To investigate transcriptional events during the latent-to-lytic switch, we utilized Precision nuclear Run On followed by deep Sequencing (PRO-Seq) to map cellular RNA polymerase (Pol) activity to single-nucleotide resolution on the host and EBV genome in three different models of EBV latency and reactivation. In latently infected Mutu-I Burkitt lymphoma (BL) cells, Pol activity was enriched at the Qp promoter, the EBER region, and the BHLF1/LF3 transcripts. Upon reactivation with phorbol ester and sodium butyrate, early-phase Pol activity occurred bidirectionally at CTCF sites within the LMP-2A, EBER-1, and RPMS1 loci. PRO-Seq analysis of Akata cells reactivated from latency with anti-IgG and a lymphoblastoid cell line (LCL) reactivated with small molecule C60 showed a similar pattern of early bidirectional transcription initiating around CTCF binding sites, although the specific CTCF sites and viral genes were different for each latency model. The functional importance of CTCF binding, transcription, and reactivation was confirmed using an EBV mutant lacking the LMP-2A CTCF binding site. This virus was unable to reactivate and had disrupted Pol activity at multiple CTCF binding sites relative to the wild-type (WT) virus. Overall, these data suggest that CTCF regulates the viral early transcripts during reactivation from latency. These activities likely help maintain the accessibility of the viral genome to initiate productive replication. IMPORTANCE The ability of EBV to switch between latent and lytic infection is key to its long-term persistence in memory B cells, and its ability to persist in proliferating cells is strongly linked to oncogenesis. During latency, most viral genes are epigenetically silenced, and the virus must overcome this repression to reactivate lytic replication. Reactivation occurs once the immediate early (IE) EBV lytic genes are expressed. However, the molecular mechanisms behind the switch from the latent transcriptional program to begin transcription of the IE genes remain unknown. In this study, we mapped RNA Pol positioning and activity during latency and reactivation. Unexpectedly, Pol activity accumulated at distinct regions characteristic of transcription initiation on the EBV genome previously shown to be associated with CTCF. We propose that CTCF binding at these regions retains Pol to maintain a stable latent chromosome conformation and a rapid response to various reactivation signals.
Collapse
Affiliation(s)
- Laura E. M. Dunn
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Department of Pathobiology, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Fang Lu
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Chenhe Su
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Joel D. Baines
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Department of Pathobiology, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
12
|
Li S, Yang L, Li Y, Yue W, Xin S, Li J, Long S, Zhang W, Cao P, Lu J. Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling. Microbiol Spectr 2023; 11:e0123722. [PMID: 36728436 PMCID: PMC10101146 DOI: 10.1128/spectrum.01237-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
Epstein-Barr virus (EBV) switches between latent and lytic phases in hosts, which is important in the development of related diseases. However, the underlying mechanism of controlling the viral biphasic life cycle and how EBV mediates this regulation remain largely unknown. This study identified bromodomain-containing protein 7 (BRD7) as a crucial host protein in EBV latent infection. Based on the chromatin immunoprecipitation (ChIP) sequencing of endogenous BRD7 in Burkitt lymphoma cells, we found that EBV drove BRD7 to regulate cellular and viral genomic loci, including the transcriptional activation of c-Myc, a recently reported regulator of EBV latency. Additionally, EBV-mediated BRD7 signals were enriched around the FUSE (far-upstream sequence element) site in chromosome 8 and the enhancer LOC108348026 in the lgH locus, which might activate the c-Myc alleles. Mechanically, EBV-encoded nuclear antigen 1 (EBNA1) bound to BRD7 and colocalized at promoter regions of the related genes, thus serving as cofactors for the maintenance of viral latency. Moreover, the disruption of BRD7 decreased the c-Myc expression, induced the BZLF1 expression, and reactivated the lytic cycle. Our findings reveal the unique role of BRD7 to synergize with EBV in maintaining the viral latency state via chromatin remodeling. This study paves the way for understanding the new molecular mechanism of EBV-induced chromatin remodeling and latent-lytic switch, providing novel therapeutic candidate targets for EBV persistent infection. IMPORTANCE When establishing persistent infection in most human hosts, EBV is usually latent. How the viral latency is maintained in cells remains largely unknown. c-Myc was recently reported to act as a controller of the lytic switch, while whether and how EBV regulates it remain to be explored. Here, we identified that BRD7 is involved in controlling EBV latency. We found that EBV-mediated BRD7 was enriched in both the normal promoter regions and the translocation alleles of c-Myc, and disruption of BRD7 decreased c-Myc expression to reactivate the lytic cycle. We also demonstrated that EBV-encoded EBNA1 bound to and regulated BRD7. Therefore, we reveal a novel mechanism by which EBV can regulate its infection state by coordinating with host BRD7 to target c-Myc. Our findings will help future therapeutic intervention strategies for EBV infection and pathogenesis.
Collapse
Affiliation(s)
- Shen Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Wenxing Yue
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Jing Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Sijing Long
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Wentao Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Yan B, Wang C, Chakravorty S, Zhang Z, Kadadi SD, Zhuang Y, Sirit I, Hu Y, Jung M, Sahoo SS, Wang L, Shao K, Anderson NL, Trujillo‐Ochoa JL, Briggs SD, Liu X, Olson MR, Afzali B, Zhao B, Kazemian M. A comprehensive single cell data analysis of lymphoblastoid cells reveals the role of super-enhancers in maintaining EBV latency. J Med Virol 2023; 95:e28362. [PMID: 36453088 PMCID: PMC10027397 DOI: 10.1002/jmv.28362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
We probed the lifecycle of Epstein-Barr virus (EBV) on a cell-by-cell basis using single cell RNA sequencing (scRNA-seq) data from nine publicly available lymphoblastoid cell lines (LCLs). While the majority of LCLs comprised cells containing EBV in the latent phase, two other clusters of cells were clearly evident and were distinguished by distinct expression of host and viral genes. Notably, both were high expressors of EBV LMP1/BNLF2 and BZLF1 compared to another cluster that expressed neither gene. The two novel clusters differed from each other in their expression of EBV lytic genes, including glycoprotein gene GP350. The first cluster, comprising GP350- LMP1hi cells, expressed high levels of HIF1A and was transcriptionally regulated by HIF1-α. Treatment of LCLs with Pevonedistat, a drug that enhances HIF1-α signaling, markedly induced this cluster. The second cluster, containing GP350+ LMP1hi cells, expressed EBV lytic genes. Host genes that are controlled by super-enhancers (SEs), such as transcription factors MYC and IRF4, had the lowest expression in this cluster. Functionally, the expression of genes regulated by MYC and IRF4 in GP350+ LMP1hi cells were lower compared to other cells. Indeed, induction of EBV lytic reactivation in EBV+ AKATA reduced the expression of these SE-regulated genes. Furthermore, CRISPR-mediated perturbation of the MYC or IRF4 SEs in LCLs induced the lytic EBV gene expression, suggesting that host SEs and/or SE target genes are required for maintenance of EBV latency. Collectively, our study revealed EBV-associated heterogeneity among LCLs that may have functional consequence on host and viral biology.
Collapse
Affiliation(s)
- Bingyu Yan
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Chong Wang
- Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Zonghao Zhang
- Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Simran D. Kadadi
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Yuxin Zhuang
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Isabella Sirit
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Yonghua Hu
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Minwoo Jung
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | | | - Luopin Wang
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Kunming Shao
- Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Nicole L. Anderson
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Jorge L. Trujillo‐Ochoa
- Immunoregulation Section, Kidney Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIHBethesdaMarylandUSA
| | - Scott D. Briggs
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Xing Liu
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Matthew R. Olson
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIHBethesdaMarylandUSA
| | - Bo Zhao
- Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Majid Kazemian
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
14
|
Lee SH, Kim KD, Cho M, Huh S, An SH, Seo D, Kang K, Lee M, Tanizawa H, Jung I, Cho H, Kang H. Characterization of a new CCCTC-binding factor binding site as a dual regulator of Epstein-Barr virus latent infection. PLoS Pathog 2023; 19:e1011078. [PMID: 36696451 PMCID: PMC9876287 DOI: 10.1371/journal.ppat.1011078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/15/2022] [Indexed: 01/26/2023] Open
Abstract
Distinct viral gene expression characterizes Epstein-Barr virus (EBV) infection in EBV-producing marmoset B-cell (B95-8) and EBV-associated gastric carcinoma (SNU719) cell lines. CCCTC-binding factor (CTCF) is a structural chromatin factor that coordinates chromatin interactions in the EBV genome. Chromatin immunoprecipitation followed by sequencing against CTCF revealed 16 CTCF binding sites in the B95-8 and SNU719 EBV genomes. The biological function of one CTCF binding site (S13 locus) located on the BamHI A right transcript (BART) miRNA promoter was elucidated experimentally. Microscale thermophoresis assay showed that CTCF binds more readily to the stable form than the mutant form of the S13 locus. EBV BART miRNA clusters encode 22 miRNAs, whose roles are implicated in EBV-related cancer pathogenesis. The B95-8 EBV genome lacks a 11.8-kb EcoRI C fragment, whereas the SNU719 EBV genome is full-length. ChIP-PCR assay revealed that CTCF, RNA polymerase II, H3K4me3 histone, and H3K9me3 histone were more enriched at S13 and S16 (167-kb) loci in B95-8 than in the SNU719 EBV genome. 4C-Seq and 3C-PCR assays using B95-8 and SNU719 cells showed that the S13 locus was associated with overall EBV genomic loci including 3-kb and 167-kb region in both EBV genomes. We generated mutations in the S13 locus in bacmids with or without the 11.8-kb BART transcript unit (BART(+/-)). The S13 mutation upregulated BART miRNA expression, weakened EBV latency, and reduced EBV infectivity in the presence of EcoRI C fragment. Another 3C-PCR assay using four types of BART(+/-)·S13(wild-type(Wt)/mutant(Mt)) HEK293-EBV cells revealed that the S13 mutation decreased DNA associations between the 167-kb region and 3-kb in the EBV genome. Based on these results, CTCF bound to the S13 locus along with the 11.8-kb EcoRI C fragment is suggested to form an EBV 3-dimensional DNA loop for coordinated EBV BART miRNA expression and infectivity.
Collapse
Affiliation(s)
- Sun Hee Lee
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Miyeon Cho
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Sora Huh
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Seong Ho An
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Donghyun Seo
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Kyuhyun Kang
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Minhee Lee
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Inuk Jung
- Department of Computer Science and Engineering, Kyungpook National University, Daegu, Korea
| | - Hyosun Cho
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
- * E-mail: (HC); (HK)
| | - Hyojeung Kang
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
- * E-mail: (HC); (HK)
| |
Collapse
|
15
|
Ahmed N, Abusalah MAHA, Farzand A, Absar M, Yusof NY, Rabaan AA, AlSaihati H, Alshengeti A, Alwarthan S, Alsuwailem HS, Alrumaih ZA, Alsayyah A, Yean CY. Updates on Epstein-Barr Virus (EBV)-Associated Nasopharyngeal Carcinoma: Emphasis on the Latent Gene Products of EBV. Medicina (B Aires) 2022; 59:medicina59010002. [PMID: 36676626 PMCID: PMC9863520 DOI: 10.3390/medicina59010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an uncommon type of malignancy/cancer worldwide. However, NPC is an endemic disease in southeast Asia and southern China and the reasons behind the underlying for such changes are unclear. Even though the Epstein-Barr infection (EBV) has been suggested as an important reason for undistinguishable NPC, the EBV itself is not adequate to source this type of cancer. The risk factors, for example, genetic susceptibility, and environmental factors might be associated with EBV to undertake a part in the NPC carcinogenesis. Normal healthy people have a memory B cell pool where the EBV persists, and any disturbance of this connection leads to virus-associated B cell malignancies. Less is known about the relationship between EBV and epithelial cell tumors, especially the EBV-associated nasopharyngeal carcinoma (EBVaNPC) and EBV-associated gastric carcinoma (EBVaGC). Currently, it is believed that premalignant genetic changes in epithelial cells contribute to the aberrant establishment of viral latency in these tumors. The early and late phases of NPC patients' survival rates vary significantly. The presence of EBV in all tumor cells presents prospects for the development of innovative therapeutic and diagnostic techniques, despite the fact that the virus's exact involvement in the carcinogenic process is presently not very well known. EBV research continues to shed light on the carcinogenic process, which is important for a more comprehensive knowledge of tumor etiology and the development of targeted cancer therapeutics. In order to screen for NPC, EBV-related biomarkers have been widely used in a few high-incidence locations because of their close associations with the risks of NPC. The current review highlights the scientific importance of EBV and its possible association with NPC.
Collapse
Affiliation(s)
- Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | | | - Anam Farzand
- Department of Allied Health Science, Superior University, Lahore 54000, Pakistan
| | - Muhammad Absar
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Hajir AlSaihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Haifa S. Alsuwailem
- Department of Medicine, College of Medicine, Princess Norah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Zainb A. Alrumaih
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence:
| |
Collapse
|
16
|
Kuan MI, Caruso LB, Zavala AG, Rana PSJB, O'Dowd JM, Tempera I, Fortunato EA. Human Cytomegalovirus Utilizes Multiple Viral Proteins to Regulate the Basement Membrane Protein Nidogen 1. J Virol 2022; 96:e0133622. [PMID: 36218358 PMCID: PMC9599421 DOI: 10.1128/jvi.01336-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Nidogen 1 (NID1) is an important basement membrane protein secreted by many cell types. We previously found that human cytomegalovirus (HCMV) infection rapidly induced chromosome 1 breaks and that the basement membrane protein NID1, encoded near the 1q42 break site, was downregulated. We have now determined that the specific breaks in and of themselves did not regulate NID1, rather interactions between several viral proteins and the cellular machinery and DNA regulated NID1. We screened a battery of viral proteins present by 24 hours postinfection (hpi) when regulation was induced, including components of the incoming virion and immediate early (IE) proteins. Adenovirus (Ad) delivery of the tegument proteins pp71 and UL35 and the IE protein IE1 influenced steady-state (ss) NID1 levels. IE1's mechanism of regulation was unclear, while UL35 influenced proteasomal regulation of ss NID1. Real-time quantitative PCR (RT-qPCR) experiments determined that pp71 downregulated NID1 transcription. Surprisingly, WF28-71, a fibroblast clone that expresses minute quantities of pp71, suppressed NID1 transcription as efficiently as HCMV infection, resulting in the near absence of ss NID1. Sequence analysis of the region surrounding the 1q42 break sites and NID1 promoter revealed CCCTC-binding factor (CTCF) binding sites. Chromatin immunoprecipitation experiments determined that pp71 and CTCF were both bound at these two sites during HCMV infection. Expression of pp71 alone replicated this binding. Binding was observed as early as 1 hpi, and colocalization of pp71 and CTCF occurred as quickly as 15 min postinfection (pi) in infected cell nuclei. In fibroblasts where CTCF was knocked down, Adpp71 infection did not decrease NID1 transcription nor ss NID1 protein levels. Our results emphasize another aspect of pp71 activity during infection and identify this viral protein as a key contributor to HCMV's efforts to eliminate NID1. Further, we show, for the first time, direct interaction between pp71 and the cellular genome. IMPORTANCE We have found that human cytomegalovirus (HCMV) utilizes multiple viral proteins in multiple pathways to regulate a ubiquitous cellular basement membrane protein, nidogen-1 (NID1). The extent of the resources and the redundant methods that the virus has evolved to affect this control strongly suggest that its removal provides a life cycle advantage to HCMV. Our discoveries that one of the proteins that HCMV uses to control NID1, pp71, binds directly to the cellular DNA and can exert control when present in vanishingly small quantities may have broad implications in a wide range of infection scenarios. Dysregulation of NID1 in an immunocompetent host is not known to manifest complications during infection; however, in the naive immune system of a developing fetus, disruption of this developmentally critical protein could initiate catastrophic HCMV-induced birth defects.
Collapse
Affiliation(s)
- Man I Kuan
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | | | - Anamaria G. Zavala
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - Pranav S. J. B. Rana
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - John M. O'Dowd
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - Italo Tempera
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. Fortunato
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
17
|
The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines. J Virol 2022; 96:e0073922. [PMID: 36094314 PMCID: PMC9517713 DOI: 10.1128/jvi.00739-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) persists in human cells as episomes. EBV episomes are chromatinized and their 3D conformation varies greatly in cells expressing different latency genes. We used HiChIP, an assay which combines genome-wide chromatin conformation capture followed by deep sequencing (Hi-C) and chromatin immunoprecipitation (ChIP), to interrogate the EBV episome 3D conformation in different cancer cell lines. In an EBV-transformed lymphoblastoid cell line (LCL) GM12878 expressing type III EBV latency genes, abundant genomic interactions were identified by H3K27ac HiChIP. A strong enhancer was located near the BILF2 gene and looped to multiple genes around BALFs loci. Perturbation of the BILF2 enhancer by CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) altered the expression of BILF2 enhancer-linked genes, including BARF0 and BALF2, suggesting that this enhancer regulates the expression of linked genes. H3K27ac ChIP followed by deep sequencing (ChIP-seq) identified several strong EBV enhancers in T/NK (natural killer) lymphoma cells that express type II EBV latency genes. Extensive intragenomic interactions were also found which linked enhancers to target genes. A strong enhancer at BILF2 also looped to the BALF loci. CRISPRi also validated the functional connection between BILF2 enhancer and BARF1 gene. In contrast, H3K27ac HiChIP found significantly fewer intragenomic interactions in type I EBV latency gene-expressing primary effusion lymphoma (PEL) cell lines. These data provided new insight into the regulation of EBV latency gene expression in different EBV-associated tumors. IMPORTANCE EBV is the first human DNA tumor virus identified, discovered over 50 years ago. EBV causes ~200,000 cases of various cancers each year. EBV-encoded oncogenes, noncoding RNAs, and microRNAs (miRNAs) can promote cell growth and survival and suppress senescence. Regulation of EBV gene expression is very complex. The viral C promoter regulates the expression of all EBV nuclear antigens (EBNAs), some of which are very far away from the C promoter. Another way by which the virus activates remote gene expression is through DNA looping. In this study, we describe the viral genome looping patterns in various EBV-associated cancer cell lines and identify important EBV enhancers in these cells. This study also identified novel opportunities to perturb and eventually control EBV gene expression in these cancer cells.
Collapse
|
18
|
Varghese CS, Parish JL, Ferguson J. Lying low-chromatin insulation in persistent DNA virus infection. Curr Opin Virol 2022; 55:101257. [PMID: 35998396 DOI: 10.1016/j.coviro.2022.101257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/08/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022]
Abstract
Persistent virus infections are achieved when the intricate balance of virus replication, host-cell division and successful immune evasion is met. The genomes of persistent DNA viruses are either maintained as extrachromosomal episomes or can integrate into the host genome. Common to both these strategies of persistence is the chromatinisation of viral DNA by cellular histones which, like host DNA, are subject to epigenetic modification. Epigenetic repression of viral genes required for lytic replication occurs, while genes required for latent or persistent infection are maintained in an active chromatin state. Viruses utilise host-cell chromatin insulators, which function to maintain epigenetic boundaries and enforce this strict transcriptional programme. Here, we review insulator protein function in virus transcription control, focussing on CCCTC-binding factor (CTCF) and cofactors. We describe CTCF-dependent activities in virus transcription regulation through epigenetic and promoter-enhancer insulation, three-dimensional chromatin looping and manipulation of transcript splicing.
Collapse
Affiliation(s)
- Christy S Varghese
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK
| | - Joanna L Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK.
| | - Jack Ferguson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK
| |
Collapse
|
19
|
Caruso LB, Guo R, Keith K, Madzo J, Maestri D, Boyle S, Wasserman J, Kossenkov A, Gewurz BE, Tempera I. The nuclear lamina binds the EBV genome during latency and regulates viral gene expression. PLoS Pathog 2022; 18:e1010400. [PMID: 35421198 PMCID: PMC9009669 DOI: 10.1371/journal.ppat.1010400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/30/2022] Open
Abstract
The Epstein Barr virus (EBV) infects almost 95% of the population worldwide. While typically asymptomatic, EBV latent infection is associated with several malignancies of epithelial and lymphoid origin in immunocompromised individuals. In latently infected cells, the EBV genome persists as a chromatinized episome that expresses a limited set of viral genes in different patterns, referred to as latency types, which coincide with varying stages of infection and various malignancies. We have previously demonstrated that latency types correlate with differences in the composition and structure of the EBV episome. Several cellular factors, including the nuclear lamina, regulate chromatin composition and architecture. While the interaction of the viral genome with the nuclear lamina has been studied in the context of EBV lytic reactivation, the role of the nuclear lamina in controlling EBV latency has not been investigated. Here, we report that the nuclear lamina is an essential epigenetic regulator of the EBV episome. We observed that in B cells, EBV infection affects the composition of the nuclear lamina by inducing the expression of lamin A/C, but only in EBV+ cells expressing the Type III latency program. Using ChIP-Seq, we determined that lamin B1 and lamin A/C bind the EBV genome, and their binding correlates with deposition of the histone repressive mark H3K9me2. By RNA-Seq, we observed that knock-out of lamin A/C in B cells alters EBV gene expression. Our data indicate that the interaction between lamins and the EBV episome contributes to the epigenetic control of viral gene expression during latency, suggesting a restrictive function of the nuclear lamina as part of the host response against viral DNA entry into the nucleus. Epstein-Barr virus (EBV) is a common herpesvirus that establishes a lifelong latent infection in a small fraction of B cells of the infected individuals. In most cases, EBV infection is asymptomatic; however, especially in the context of immune suppression, EBV latent infection is associated with several malignancies. In EBV+ cancer cells, latent viral gene expression plays an essential role in sustaining the cancer phenotype. We and others have established that epigenetic modifications of the viral genome are critical to regulating EBV gene expression during latency. Understanding how the EBV genome is epigenetically regulated during latent infection may help identify new specific therapeutic targets for treating EBV+ malignancies. The nuclear lamina is involved in regulating the composition and structure of the cellular chromatin. In the present study, we determined that the nuclear lamina binds the EBV genome during latency, influencing viral gene expression. Depleting one component of the nuclear lamina, lamin A/C, increased the expression of latent EBV genes associated with cellular proliferation, indicating that the binding of the nuclear lamina with the viral genome is essential to control viral gene expression in infected cells. Our data show for the first time that the nuclear lamina may be involved in the cellular response against EBV infection by restricting viral gene expression.
Collapse
Affiliation(s)
| | - Rui Guo
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, United States of America.,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Kelsey Keith
- The Coriell Institute for Medical Research, Camden, New Jersey, United States of America
| | - Jozef Madzo
- The Coriell Institute for Medical Research, Camden, New Jersey, United States of America
| | - Davide Maestri
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Sarah Boyle
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Jason Wasserman
- The Fels Cancer Institute for Personalized Medicine, School of Medicine Temple University, Philadelphia, Pennsylvania, United States of America
| | - Andrew Kossenkov
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, United States of America.,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Italo Tempera
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
20
|
Kearns PKA. Prevention of MS Requires Intervention on the Causes of the Disease: Reconciling Genes, Epigenetics, and Epstein Barr Virus. Front Neurol 2022; 13:817677. [PMID: 35273557 PMCID: PMC8902355 DOI: 10.3389/fneur.2022.817677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022] Open
Abstract
Prevention of multiple sclerosis requires intervention on modifiable causes of the condition making it necessary to establish what those causes are. MS is often stated to be a polygenic disease, with causal contributions from environmental factors and gene-environment interactions, implying an additive and independent relationship of these factors. Mechanistically there are no independent contributions of genes or environmental factors to traits. This model is unrealistic but still useful and underlies the concept of heritability, a foundational parameter in population genetics. However, it perpetuates a debate on an irreconcilable dichotomy about whether MS is primarily genetic or environmental. In particular, epidemiological evidence now exists for a causal, possibly even necessary, role for Epstein Barr Virus in MS. The additive model makes it unintuitive to reconcile MS as a genetic disease but also independently a viral illness. In this perspective it is argued that starting from a realistic interaction only model, based on broadly accepted biological premises, and working forward to explain why the classical additive model gives useful results, there is actually no paradox. An integrated approach using population genetic studies, immunology and molecular virology offers a particularly promising route to establish the elusive role of EBV in MS pathology, as EBV is a large and complex virus and its latency, dysregulated in most EBV-related pathologies, is hard to study in vivo. This approach may offer a route to prevention of MS altogether.
Collapse
Affiliation(s)
- Patrick K A Kearns
- Chromatin Lab, MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.,Anne Rowling Regenerative Neurology Clinic, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Department of Clinical Neurosciences (Neurology), Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Bellefroid M, Rodari A, Galais M, Krijger PHL, Tjalsma SJD, Nestola L, Plant E, Vos ESM, Cristinelli S, Van Driessche B, Vanhulle C, Ait-Ammar A, Burny A, Ciuffi A, de Laat W, Van Lint C. Role of the cellular factor CTCF in the regulation of bovine leukemia virus latency and three-dimensional chromatin organization. Nucleic Acids Res 2022; 50:3190-3202. [PMID: 35234910 PMCID: PMC8989512 DOI: 10.1093/nar/gkac107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 01/12/2023] Open
Abstract
Bovine leukemia virus (BLV)-induced tumoral development is a multifactorial phenomenon that remains incompletely understood. Here, we highlight the critical role of the cellular CCCTC-binding factor (CTCF) both in the regulation of BLV transcriptional activities and in the deregulation of the three-dimensional (3D) chromatin architecture surrounding the BLV integration site. We demonstrated the in vivo recruitment of CTCF to three conserved CTCF binding motifs along the provirus. Next, we showed that CTCF localized to regions of transitions in the histone modifications profile along the BLV genome and that it is implicated in the repression of the 5′Long Terminal Repeat (LTR) promoter activity, thereby contributing to viral latency, while favoring the 3′LTR promoter activity. Finally, we demonstrated that BLV integration deregulated the host cellular 3D chromatin organization through the formation of viral/host chromatin loops. Altogether, our results highlight CTCF as a new critical effector of BLV transcriptional regulation and BLV-induced physiopathology.
Collapse
Affiliation(s)
- Maxime Bellefroid
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Anthony Rodari
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Mathilde Galais
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Sjoerd J D Tjalsma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Lorena Nestola
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Erica S M Vos
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Sara Cristinelli
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Benoit Van Driessche
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Caroline Vanhulle
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Arsène Burny
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| |
Collapse
|
22
|
Epigenetic control of the Epstein-Barr lifecycle. Curr Opin Virol 2022; 52:78-88. [PMID: 34891084 PMCID: PMC9112224 DOI: 10.1016/j.coviro.2021.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Epstein-Barr virus (EBV) infects 95% of adults worldwide, causes infectious mononucleosis, is etiologically linked to multiple sclerosis and is associated with 200 000 cases of cancer each year. EBV manipulates host epigenetic pathways to switch between a series of latency programs and to reactivate from latency in order to colonize the memory B-cell compartment for lifelong infection and to ultimately spread to new hosts. Here, we review recent advances in the understanding of epigenetic mechanisms that control EBV latency and lytic gene expression in EBV-transformed B and epithelial cells. We highlight newly appreciated roles of DNA methylation epigenetic machinery, host histone chaperones, the Hippo pathway, m6A RNA modification and nonsense mediated decay in control of the EBV lifecycle.
Collapse
|
23
|
Morgan SM, Tanizawa H, Caruso LB, Hulse M, Kossenkov A, Madzo J, Keith K, Tan Y, Boyle S, Lieberman PM, Tempera I. The three-dimensional structure of Epstein-Barr virus genome varies by latency type and is regulated by PARP1 enzymatic activity. Nat Commun 2022; 13:187. [PMID: 35039491 PMCID: PMC8764100 DOI: 10.1038/s41467-021-27894-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) persists in human B-cells by maintaining its chromatinized episomes within the nucleus. We have previously shown that cellular factor Poly [ADP-ribose] polymerase 1 (PARP1) binds the EBV genome, stabilizes CTCF binding at specific loci, and that PARP1 enzymatic activity correlates with maintaining a transcriptionally active latency program. To better understand PARP1's role in regulating EBV latency, here we functionally characterize the effect of PARP enzymatic inhibition on episomal structure through in situ HiC mapping, generating a complete 3D structure of the EBV genome. We also map intragenomic contact changes after PARP inhibition to global binding of chromatin looping factors CTCF and cohesin across the EBV genome. We find that PARP inhibition leads to fewer total unique intragenomic interactions within the EBV episome, yet new chromatin loops distinct from the untreated episome are also formed. This study also illustrates that PARP inhibition alters gene expression at the regions where chromatin looping is most effected. We observe that PARP1 inhibition does not alter cohesin binding sites but does increase its frequency of binding at those sites. Taken together, these findings demonstrate that PARP has an essential role in regulating global EBV chromatin structure and latent gene expression.
Collapse
Affiliation(s)
- Sarah M Morgan
- The Wistar Institute, Philadelphia, PA, USA
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | | | | | - Michael Hulse
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | | | - Jozef Madzo
- The Coriell Institute for Medical Research, Camden, NJ, USA
| | - Kelsey Keith
- The Coriell Institute for Medical Research, Camden, NJ, USA
| | - Yinfei Tan
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
24
|
Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021; 13:v13122344. [PMID: 34960613 PMCID: PMC8706188 DOI: 10.3390/v13122344] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Epstein–Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of cancer. Like other herpesviruses, it establishes an asymptomatic, life-long latent infection, with occasional reactivation and shedding of progeny viruses. During latency, EBV expresses a small number of viral genes, and exists as an episome in the host–cell nucleus. Expression patterns of latency genes are dependent on the cell type, time after infection, and milieu of the cell (e.g., germinal center or peripheral blood). Upon lytic induction, expression of the viral immediate-early genes, BZLF1 and BRLF1, are induced, followed by early gene expression, viral DNA replication, late gene expression, and maturation and egress of progeny virions. Furthermore, EBV reactivation involves more than just progeny production. The EBV life cycle is regulated by signal transduction, transcription factors, promoter sequences, epigenetics, and the 3D structure of the genome. In this article, the molecular basis of EBV latency establishment and reactivation is summarized.
Collapse
|
25
|
The Epstein-Barr Virus Oncogene EBNA1 Suppresses Natural Killer Cell Responses and Apoptosis Early after Infection of Peripheral B Cells. mBio 2021; 12:e0224321. [PMID: 34781735 PMCID: PMC8593684 DOI: 10.1128/mbio.02243-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The innate immune system serves as frontline defense against pathogens, such as bacteria and viruses. Natural killer (NK) cells are a part of innate immunity and can both secrete cytokines and directly target cells for lysis. NK cells express several cell surface receptors, including NKG2D, which bind multiple ligands. People with deficiencies in NK cells are often susceptible to uncontrolled infection by herpesviruses, such as Epstein-Barr virus (EBV). Infection with EBV stimulates both innate and adaptive immunity, yet the virus establishes lifelong latent infection in memory B cells. We show that the EBV oncogene EBNA1, previously known to be necessary for maintaining EBV genomes in latently infected cells, also plays an important role in suppressing NK cell responses and cell death in newly infected cells. EBNA1 does so by downregulating the NKG2D ligands ULBP1 and ULBP5 and modulating expression of c-Myc. B cells infected with a derivative of EBV that lacks EBNA1 are more susceptible to NK cell-mediated killing and show increased levels of apoptosis. Thus, EBNA1 performs a previously unappreciated role in reducing immune response and programmed cell death after EBV infection, helping infected cells avoid immune surveillance and apoptosis and thus persist for the lifetime of the host. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous human pathogen, infecting up to 95% of the world's adult population. Initial infection with EBV can cause infectious mononucleosis. EBV is also linked to several human malignancies, including lymphomas and carcinomas. Although infection by EBV alerts the immune system and causes an immune response, the virus persists for life in memory B cells. We show that the EBV protein EBNA1 can downregulate several components of the innate immune system linked to natural killer (NK) cells. This downregulation of NK cell activity translates to lower killing of EBV-infected cells and is likely one way that EBV escapes immune surveillance after infection. Additionally, we show that EBNA1 reduces apoptosis in newly infected B cells, allowing more of these cells to survive. Taken together, our findings uncover new functions of EBNA1 and provide insights into viral strategies to survive the initial immune response postinfection.
Collapse
|
26
|
Stress-Induced Epstein-Barr Virus Reactivation. Biomolecules 2021; 11:biom11091380. [PMID: 34572593 PMCID: PMC8470332 DOI: 10.3390/biom11091380] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is typically found in a latent, asymptomatic state in immunocompetent individuals. Perturbations of the host immune system can stimulate viral reactivation. Furthermore, there are a myriad of EBV-associated illnesses including various cancers, post-transplant lymphoproliferative disease, and autoimmune conditions. A thorough understanding of this virus, and the interplay between stress and the immune system, is essential to establish effective treatment. This review will provide a summary of the interaction between both psychological and cellular stressors resulting in EBV reactivation. It will examine mechanisms by which EBV establishes and maintains latency and will conclude with a brief overview of treatments targeting EBV.
Collapse
|
27
|
Chen ZH, Yan SM, Chen XX, Zhang Q, Liu SX, Liu Y, Luo YL, Zhang C, Xu M, Zhao YF, Huang LY, Liu BL, Xia TL, Xu DZ, Liang Y, Chen YM, Wang W, Yuan SQ, Zhang HZ, Yun JP, Zhai WW, Zeng MS, Bai F, Zhong Q. The genomic architecture of EBV and infected gastric tissue from precursor lesions to carcinoma. Genome Med 2021; 13:146. [PMID: 34493320 PMCID: PMC8422682 DOI: 10.1186/s13073-021-00963-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 08/29/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV)-associated gastric carcinomas (EBVaGCs) present unique molecular signatures, but the tumorigenesis of EBVaGCs and the role EBV plays during this process remain poorly understood. METHODS We applied whole-exome sequencing, EBV genome sequencing, and whole-genome bisulfite sequencing to multiple samples (n = 123) derived from the same patients (n = 25), which covered saliva samples and different histological stages from morphologically normal epithelial tissues to dysplasia and EBVaGCs. We compared the genomic landscape between EBVaGCs and their precursor lesions and traced the clonal evolution for each patient. We also analyzed genome sequences of EBV from samples of different histological types. Finally, the key molecular events promoting the tumor evolution were demonstrated by MTT, IC50, and colony formation assay in vitro experiments and in vivo xenograft experiments. RESULTS Our analysis revealed increasing mutational burden and EBV load from normal tissues and low-grade dysplasia (LD) to high-grade dysplasia (HD) and EBVaGCs, and oncogenic amplifications occurred late in EBVaGCs. Interestingly, within each patient, EBVaGCs and HDs were monoclonal and harbored single-strain-originated EBV, but saliva or normal tissues/LDs had different EBV strains from that in EBVaGCs. Compared with precursor lesions, tumor cells showed incremental methylation in promotor regions, whereas EBV presented consistent hypermethylation. Dominant alterations targeting the PI3K-Akt and Wnt pathways were found in EBV-infected cells. The combinational inhibition of these two pathways in EBV-positive tumor cells confirmed their synergistic function. CONCLUSIONS We portrayed the (epi) genomic evolution process of EBVaGCs, revealed the extensive genomic diversity of EBV between tumors and normal tissue sites, and demonstrated the synergistic activation of the PI3K and Wnt pathways in EBVaGCs, offering a new potential treatment strategy for this disease.
Collapse
Affiliation(s)
- Zhang-Hua Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Integrated Research Building Room 330, School of Life Sciences, Peking University, Yiheyuan Road No.5, Haidian District, Beijing, 100871, China
| | - Shu-Mei Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Xi-Xi Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Integrated Research Building Room 330, School of Life Sciences, Peking University, Yiheyuan Road No.5, Haidian District, Beijing, 100871, China
| | - Qi Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Oncology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shang-Xin Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yang Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Integrated Research Building Room 330, School of Life Sciences, Peking University, Yiheyuan Road No.5, Haidian District, Beijing, 100871, China
| | - Yi-Ling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chao Zhang
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, USA
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, USA
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yi-Fan Zhao
- Biomedical Pioneering Innovation Center (BIOPIC), Integrated Research Building Room 330, School of Life Sciences, Peking University, Yiheyuan Road No.5, Haidian District, Beijing, 100871, China
| | - Li-Yun Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Bin-Liu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Da-Zhi Xu
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yao Liang
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Ming Chen
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Wang
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shu-Qiang Yuan
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui-Zhong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Wei-Wei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Integrated Research Building Room 330, School of Life Sciences, Peking University, Yiheyuan Road No.5, Haidian District, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
28
|
Abstract
Among all of the known biological carcinogens, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two of the classical oncogenic herpesviruses known to induce the oncogenic phenotype. Many studies have revealed important functions related to epigenetic alterations of the EBV and KSHV genomes that mediate oncogenesis, but the detailed mechanisms are not fully understood. It is also challenging to fully describe the critical cellular events that drive oncogenesis as well as a comprehensive map of the molecular contributors. This review introduces the roles of epigenetic modifications of these viral genomes, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA expression, and elucidates potential strategies utilized for inducing oncogenesis by these human gammaherpesviruses.
Collapse
Affiliation(s)
- Yonggang Pei
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Josiah Hiu-Yuen Wong
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Erle S Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
29
|
Xiao K, Xiong D, Chen G, Yu J, Li Y, Chen K, Zhang L, Xu Y, Xu Q, Huang X, Gao A, Cao K, Yan K, Dai J, Hu X, Ruan Y, Fu Z, Li G, Cao G. RUNX1-mediated alphaherpesvirus-host trans-species chromatin interaction promotes viral transcription. SCIENCE ADVANCES 2021; 7:7/26/eabf8962. [PMID: 34162542 PMCID: PMC8221632 DOI: 10.1126/sciadv.abf8962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/10/2021] [Indexed: 05/04/2023]
Abstract
Like most DNA viruses, herpesviruses precisely deliver their genomes into the sophisticatedly organized nuclei of the infected host cells to initiate subsequent transcription and replication. However, it remains elusive how the viral genome specifically interacts with the host genome and hijacks host transcription machinery. Using pseudorabies virus (PRV) as model virus, we performed chromosome conformation capture assays to demonstrate a genome-wide specific trans-species chromatin interaction between the virus and host. Our data show that the PRV genome is delivered by the host DNA binding protein RUNX1 into the open chromatin and active transcription zone. This facilitates virus hijacking host RNAPII to efficiently transcribe viral genes, which is significantly inhibited by either a RUNX1 inhibitor or RNA interference. Together, these findings provide insights into the chromatin interaction between viral and host genomes and identify new areas of research to advance the understanding of herpesvirus genome transcription.
Collapse
Affiliation(s)
- Ke Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Gong Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kening Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangyang Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Anran Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Keji Yan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxia Dai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueying Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijun Ruan
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Zhenfang Fu
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
30
|
Epstein-Barr Virus-Encoded Latent Membrane Protein 2A Downregulates GCNT3 via the TGF-β1/Smad-mTORC1 Signaling Axis. J Virol 2021; 95:JVI.02481-20. [PMID: 33658337 PMCID: PMC8139646 DOI: 10.1128/jvi.02481-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence shows that Epstein-Barr virus (EBV) infection is closely related to various lymphoid and epithelioid malignancies. However, the underlying mechanisms are unclear. GCNT3 (core 2β-1,6-acetylglucosaminyltransferase) is a new type of core mucin synthase, and its expression in EBV-associated gastric cancer (EBVaGC) is lower than that in EBV-negative gastric cancer (EBVnGC). EBV-encoded latent membrane protein 2A (LMP2A) is a transmembrane protein with tumorigenic transformation properties. Here, we demonstrated that LMP2A inhibited the transcription of GCNT3 by inhibiting Smad2/3 and Smad4. LMP2A restrained the activation of the mTORC1 pathway by inactivating the TGF-β1/Smad pathway and then downregulated GCNT3 expression. The mTORC1-GCNT3 pathway promoted cell proliferation and migration and inhibited G0/G1 cell arrest. Related proteins involved in epithelial-mesenchymal transition (EMT) were downstream molecules of the TGF-β1/Smad-mTORC1-GCNT3 pathway. GCNT3 inhibited autophagy by inducing mTORC1 phosphorylation. These findings indicate that targeting the TGF-β1/Smad-mTORC1-GCNT3 axis may represent a novel therapeutic target in GC.ImportanceEpstein-Barr virus (EBV) is an opportunistic pathogen, and the latent membrane protein 2A (LMP2A) encoded by EBV plays a key role in ensuring the incubation period of EBV. Glycosylation modification is an important marker of cancer cells, and recent studies have reported that it is related to EBV. Our conclusions provide deeper theoretical support for the role of LMP2A and TGF/Smad-mTORC1-GCNT3 in EBVaGC and help to understand glycosylation abnormalities in cancer. Our results may provide novel therapeutic targets for the treatment of gastric cancer against the TGF/Smad-mTORC1-GCNT3 signaling cascade.
Collapse
|
31
|
Majumder K, Morales AJ. Utilization of Host Cell Chromosome Conformation by Viral Pathogens: Knowing When to Hold and When to Fold. Front Immunol 2021; 12:633762. [PMID: 33841414 PMCID: PMC8027251 DOI: 10.3389/fimmu.2021.633762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
Though viruses have their own genomes, many depend on the nuclear environment of their hosts for replication and survival. A substantial body of work has therefore been devoted to understanding how viral and eukaryotic genomes interact. Recent advances in chromosome conformation capture technologies have provided unprecedented opportunities to visualize how mammalian genomes are organized and, by extension, how packaging of nuclear DNA impacts cellular processes. Recent studies have indicated that some viruses, upon entry into host cell nuclei, produce factors that alter host chromatin topology, and thus, impact the 3D organization of the host genome. Additionally, a variety of distinct viruses utilize host genome architectural factors to advance various aspects of their life cycles. Indeed, human gammaherpesviruses, known for establishing long-term reservoirs of latent infection in B lymphocytes, utilize 3D principles of genome folding to package their DNA and establish latency in host cells. This manipulation of host epigenetic machinery by latent viral genomes is etiologically linked to the onset of B cell oncogenesis. Small DNA viruses, by contrast, are tethered to distinct cellular sites that support virus expression and replication. Here, we briefly review the recent findings on how viruses and host genomes spatially communicate, and how this impacts virus-induced pathology.
Collapse
Affiliation(s)
- Kinjal Majumder
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, Human Cancer Virology Program, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Abigail J Morales
- Department of Medical Laboratory Sciences, Hunter College of the City University of New York, New York, NY, United States
| |
Collapse
|
32
|
Abstract
Herpesviruses infect virtually all humans and establish lifelong latency and reactivate to infect other humans. Latency requires multiple functions: maintaining the herpesvirus genome in the nuclei of cells; partitioning the viral genome to daughter cells in dividing cells; avoiding recognition by the immune system by limiting protein expression; producing noncoding viral RNAs (including microRNAs) to suppress lytic gene expression or regulate cellular protein expression that could otherwise eliminate virus-infected cells; modulating the epigenetic state of the viral genome to regulate viral gene expression; and reactivating to infect other hosts. Licensed antivirals inhibit virus replication, but do not affect latency. Understanding of the mechanisms of latency is leading to novel approaches to destroy latently infected cells or inhibit reactivation from latency.
Collapse
|
33
|
Roychowdhury T, Chattopadhyay S. Chemical Decorations of "MARs" Residents in Orchestrating Eukaryotic Gene Regulation. Front Cell Dev Biol 2020; 8:602994. [PMID: 33409278 PMCID: PMC7779526 DOI: 10.3389/fcell.2020.602994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 01/19/2023] Open
Abstract
Genome organization plays a crucial role in gene regulation, orchestrating multiple cellular functions. A meshwork of proteins constituting a three-dimensional (3D) matrix helps in maintaining the genomic architecture. Sequences of DNA that are involved in tethering the chromatin to the matrix are called scaffold/matrix attachment regions (S/MARs), and the proteins that bind to these sequences and mediate tethering are termed S/MAR-binding proteins (S/MARBPs). The regulation of S/MARBPs is important for cellular functions and is altered under different conditions. Limited information is available presently to understand the structure–function relationship conclusively. Although all S/MARBPs bind to DNA, their context- and tissue-specific regulatory roles cannot be justified solely based on the available information on their structures. Conformational changes in a protein lead to changes in protein–protein interactions (PPIs) that essentially would regulate functional outcomes. A well-studied form of protein regulation is post-translational modification (PTM). It involves disulfide bond formation, cleavage of precursor proteins, and addition or removal of low-molecular-weight groups, leading to modifications like phosphorylation, methylation, SUMOylation, acetylation, PARylation, and ubiquitination. These chemical modifications lead to varied functional outcomes by mechanisms like modifying DNA–protein interactions and PPIs, altering protein function, stability, and crosstalk with other PTMs regulating subcellular localizations. S/MARBPs are reported to be regulated by PTMs, thereby contributing to gene regulation. In this review, we discuss the current understanding, scope, disease implications, and future perspectives of the diverse PTMs regulating functions of S/MARBPs.
Collapse
Affiliation(s)
- Tanaya Roychowdhury
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, India.,Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, India.,Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
34
|
Collins-McMillen D, Kamil J, Moorman N, Goodrum F. Control of Immediate Early Gene Expression for Human Cytomegalovirus Reactivation. Front Cell Infect Microbiol 2020; 10:476. [PMID: 33072616 PMCID: PMC7533536 DOI: 10.3389/fcimb.2020.00476] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a beta herpesvirus that persists for life in the majority of the world's population. The persistence of HCMV in the human population is due to the exquisite ability of herpesviruses to establish a latent infection that evades elimination by the host immune response. How the virus moves into and out of the latent state has been an intense area of research focus and debate. The prevailing paradigm is that the major immediate early promoter (MIEP), which drives robust expression of the major immediate early (MIE) transactivators, is epigenetically silenced during the establishment of latency, and must be reactivated for the virus to exit latency and re-enter productive replication. While it is clear that the MIEP is silenced by the association of repressive chromatin remodeling factors and histone marks, the mechanisms by which HCMV de-represses MIE gene expression for reactivation are less well understood. We have identified alternative promoter elements within the MIE locus that drive a second or delayed phase of MIE gene expression during productive infection. In the context of reactivation in THP-1 macrophages and primary CD34+ human progenitor cells, MIE transcripts are predominantly derived from initiation at these alternative promoters. Here we review the mechanisms by which alternative viral promoters might tailor the control of viral gene expression and the corresponding pattern of infection to specific cell types. Alternative promoter control of the HCMV MIE locus increases versatility in the system and allows the virus to tightly repress viral gene expression for latency but retain the ability to sense and respond to cell type-specific host cues for reactivation of replication.
Collapse
Affiliation(s)
- Donna Collins-McMillen
- Department of Immunobiology and BIO5 Institute, University of Arizona, Tucson, AZ, United States
| | - Jeremy Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, United States
| | - Nathaniel Moorman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Felicia Goodrum
- Department of Immunobiology and BIO5 Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
35
|
Guo R, Jiang C, Zhang Y, Govande A, Trudeau SJ, Chen F, Fry CJ, Puri R, Wolinsky E, Schineller M, Frost TC, Gebre M, Zhao B, Giulino-Roth L, Doench JG, Teng M, Gewurz BE. MYC Controls the Epstein-Barr Virus Lytic Switch. Mol Cell 2020; 78:653-669.e8. [PMID: 32315601 DOI: 10.1016/j.molcel.2020.03.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) is associated with multiple human malignancies. To evade immune detection, EBV switches between latent and lytic programs. How viral latency is maintained in tumors or in memory B cells, the reservoir for lifelong EBV infection, remains incompletely understood. To gain insights, we performed a human genome-wide CRISPR/Cas9 screen in Burkitt lymphoma B cells. Our analyses identified a network of host factors that repress lytic reactivation, centered on the transcription factor MYC, including cohesins, FACT, STAGA, and Mediator. Depletion of MYC or factors important for MYC expression reactivated the lytic cycle, including in Burkitt xenografts. MYC bound the EBV genome origin of lytic replication and suppressed its looping to the lytic cycle initiator BZLF1 promoter. Notably, MYC abundance decreases with plasma cell differentiation, a key lytic reactivation trigger. Our results suggest that EBV senses MYC abundance as a readout of B cell state and highlights Burkitt latency reversal therapeutic targets.
Collapse
Affiliation(s)
- Rui Guo
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Chang Jiang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yuchen Zhang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Apurva Govande
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Stephen J Trudeau
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Fang Chen
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA
| | | | - Rishi Puri
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Emma Wolinsky
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Molly Schineller
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Thomas C Frost
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Makda Gebre
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa Giulino-Roth
- Division of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY 10065, USA
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Benjamin E Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Graduate Program in Virology, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Buschle A, Hammerschmidt W. Epigenetic lifestyle of Epstein-Barr virus. Semin Immunopathol 2020; 42:131-142. [PMID: 32232535 PMCID: PMC7174264 DOI: 10.1007/s00281-020-00792-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) is a model of herpesvirus latency and epigenetic changes. The virus preferentially infects human B-lymphocytes (and also other cell types) but does not turn them straight into virus factories. Instead, it establishes a strictly latent infection in them and concomitantly induces the activation and proliferation of infected B cells. How the virus establishes latency in its target cells is only partially understood, but its latent state has been studied intensively by many. During latency, several copies of the viral genome are maintained as minichromosomes in the nucleus. In latently infected cells, most viral genes are epigenetically repressed by cellular chromatin constituents and DNA methylation, but certain EBV genes are spared and remain expressed to support the latent state of the virus in its host cell. Latency is not a dead end, but the virus can escape from this state and reactivate. Reactivation is a coordinated process that requires the removal of repressive chromatin components and a gain in accessibility for viral and cellular factors and machines to support the entire transcriptional program of EBV's ensuing lytic phase. We have a detailed picture of the initiating events of EBV's lytic phase, which are orchestrated by a single viral protein - BZLF1. Its induced expression can lead to the expression of all lytic viral proteins, but initially it fosters the non-licensed amplification of viral DNA that is incorporated into preformed capsids. In the virions, the viral DNA is free of histones and lacks methylated cytosine residues which are lost during lytic DNA amplification. This review provides an overview of EBV's dynamic epigenetic changes, which are an integral part of its ingenious lifestyle in human host cells.
Collapse
Affiliation(s)
- Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Centre for Infection Research (DZIF), Partner site Munich, Marchioninistr. 25, D-81377, Munich, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Centre for Infection Research (DZIF), Partner site Munich, Marchioninistr. 25, D-81377, Munich, Germany.
| |
Collapse
|
37
|
Kim KD, Tanizawa H, De Leo A, Vladimirova O, Kossenkov A, Lu F, Showe LC, Noma KI, Lieberman PM. Epigenetic specifications of host chromosome docking sites for latent Epstein-Barr virus. Nat Commun 2020; 11:877. [PMID: 32054837 PMCID: PMC7018943 DOI: 10.1038/s41467-019-14152-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) genomes persist in latently infected cells as extrachromosomal episomes that attach to host chromosomes through the tethering functions of EBNA1, a viral encoded sequence-specific DNA binding protein. Here we employ circular chromosome conformation capture (4C) analysis to identify genome-wide associations between EBV episomes and host chromosomes. We find that EBV episomes in Burkitt's lymphoma cells preferentially associate with cellular genomic sites containing EBNA1 binding sites enriched with B-cell factors EBF1 and RBP-jK, the repressive histone mark H3K9me3, and AT-rich flanking sequence. These attachment sites correspond to transcriptionally silenced genes with GO enrichment for neuronal function and protein kinase A pathways. Depletion of EBNA1 leads to a transcriptional de-repression of silenced genes and reduction in H3K9me3. EBV attachment sites in lymphoblastoid cells with different latency type show different correlations, suggesting that host chromosome attachment sites are functionally linked to latency type gene expression programs.
Collapse
MESH Headings
- Attachment Sites, Microbiological/genetics
- Attachment Sites, Microbiological/physiology
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/virology
- Cell Line, Tumor
- Chromosomes, Human/genetics
- Chromosomes, Human/virology
- Epigenesis, Genetic
- Epstein-Barr Virus Nuclear Antigens/physiology
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 4, Human/physiology
- Host Microbial Interactions/genetics
- Host Microbial Interactions/physiology
- Humans
- Models, Biological
- Plasmids/genetics
- Virus Latency/genetics
- Virus Latency/physiology
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Alessandra De Leo
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA
| | - Olga Vladimirova
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA
| | - Andrew Kossenkov
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA
| | - Fang Lu
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA
| | - Louise C Showe
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA
| | - Ken-Ichi Noma
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Paul M Lieberman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA.
| |
Collapse
|
38
|
Choudhary MN, Friedman RZ, Wang JT, Jang HS, Zhuo X, Wang T. Co-opted transposons help perpetuate conserved higher-order chromosomal structures. Genome Biol 2020; 21:16. [PMID: 31973766 PMCID: PMC6979391 DOI: 10.1186/s13059-019-1916-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/08/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) make up half of mammalian genomes and shape genome regulation by harboring binding sites for regulatory factors. These include binding sites for architectural proteins, such as CTCF, RAD21, and SMC3, that are involved in tethering chromatin loops and marking domain boundaries. The 3D organization of the mammalian genome is intimately linked to its function and is remarkably conserved. However, the mechanisms by which these structural intricacies emerge and evolve have not been thoroughly probed. RESULTS Here, we show that TEs contribute extensively to both the formation of species-specific loops in humans and mice through deposition of novel anchoring motifs, as well as to the maintenance of conserved loops across both species through CTCF binding site turnover. The latter function demonstrates the ability of TEs to contribute to genome plasticity and reinforce conserved genome architecture as redundant loop anchors. Deleting such candidate TEs in human cells leads to the collapse of conserved loop and domain structures. These TEs are also marked by reduced DNA methylation and bear mutational signatures of hypomethylation through evolutionary time. CONCLUSIONS TEs have long been considered a source of genetic innovation. By examining their contribution to genome topology, we show that TEs can contribute to regulatory plasticity by inducing redundancy and potentiating genetic drift locally while conserving genome architecture globally, revealing a paradigm for defining regulatory conservation in the noncoding genome beyond classic sequence-level conservation.
Collapse
Affiliation(s)
- Mayank Nk Choudhary
- The Edison Family Center for Genome Sciences & Systems Biology, Department of Genetics, Washington University, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO, 63110, USA
| | - Ryan Z Friedman
- The Edison Family Center for Genome Sciences & Systems Biology, Department of Genetics, Washington University, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO, 63110, USA
| | - Julia T Wang
- The Edison Family Center for Genome Sciences & Systems Biology, Department of Genetics, Washington University, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO, 63110, USA
| | - Hyo Sik Jang
- The Edison Family Center for Genome Sciences & Systems Biology, Department of Genetics, Washington University, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO, 63110, USA
| | - Xiaoyu Zhuo
- The Edison Family Center for Genome Sciences & Systems Biology, Department of Genetics, Washington University, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO, 63110, USA
| | - Ting Wang
- The Edison Family Center for Genome Sciences & Systems Biology, Department of Genetics, Washington University, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO, 63110, USA.
| |
Collapse
|
39
|
Charman M, Herrmann C, Weitzman MD. Viral and cellular interactions during adenovirus DNA replication. FEBS Lett 2019; 593:3531-3550. [PMID: 31764999 DOI: 10.1002/1873-3468.13695] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/30/2022]
Abstract
Adenoviruses represent ubiquitous and clinically significant human pathogens, gene-delivery vectors, and oncolytic agents. The study of adenovirus-infected cells has long been used as an excellent model to investigate fundamental aspects of both DNA virus infection and cellular biology. While many key details supporting a well-established model of adenovirus replication have been elucidated over a period spanning several decades, more recent findings suggest that we have only started to appreciate the complex interplay between viral genome replication and cellular processes. Here, we present a concise overview of adenovirus DNA replication, including the biochemical process of replication, the spatial organization of replication within the host cell nucleus, and insights into the complex plethora of virus-host interactions that influence viral genome replication. Finally, we identify emerging areas of research relating to the replication of adenovirus genomes.
Collapse
Affiliation(s)
- Matthew Charman
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christin Herrmann
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Matthew D Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
40
|
De Leo A, Calderon A, Lieberman PM. Control of Viral Latency by Episome Maintenance Proteins. Trends Microbiol 2019; 28:150-162. [PMID: 31624007 DOI: 10.1016/j.tim.2019.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
The human DNA tumor viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV) share the common property of persisting as multicopy episomes in the nuclei of rapidly dividing host cells. These episomes form the molecular basis for viral latency and are etiologically linked to virus-associated cancers. Episome maintenance requires epigenetic programming to ensure the proper control of viral gene expression, DNA replication, and genome copy number. For these viruses, episome maintenance requires a dedicated virus-encoded episome maintenance protein (EMP), namely LANA (KSHV), EBNA1 (EBV), and E2 (HPV). Here, we review common features of these viral EMPs and discuss recent advances in understanding how they contribute to the epigenetic control of viral episome maintenance during latency.
Collapse
|
41
|
LMP1–miR-146a–CXCR4 axis regulates cell proliferation, apoptosis and metastasis. Virus Res 2019; 270:197654. [DOI: 10.1016/j.virusres.2019.197654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/07/2019] [Accepted: 07/08/2019] [Indexed: 11/23/2022]
|
42
|
Collins-McMillen D, Rak M, Buehler JC, Igarashi-Hayes S, Kamil JP, Moorman NJ, Goodrum F. Alternative promoters drive human cytomegalovirus reactivation from latency. Proc Natl Acad Sci U S A 2019; 116:17492-17497. [PMID: 31409717 PMCID: PMC6717278 DOI: 10.1073/pnas.1900783116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reactivation from latency requires reinitiation of viral gene expression and culminates in the production of infectious progeny. The major immediate early promoter (MIEP) of human cytomegalovirus (HCMV) drives the expression of crucial lytic cycle transactivators but is silenced during latency in hematopoietic progenitor cells (HPCs). Because the MIEP has poor activity in HPCs, it is unclear how viral transactivators are expressed during reactivation. It has been presumed that viral gene expression is reinitiated via de-repression of the MIEP. We demonstrate that immediate early transcripts arising from reactivation originate predominantly from alternative promoters within the canonical major immediate early locus. Disruption of these intronic promoters results in striking defects in re-expression of viral genes and viral genome replication in the THP-1 latency model. Furthermore, we show that these promoters are necessary for efficient reactivation in primary CD34+ HPCs. Our findings shift the paradigm for HCMV reactivation by demonstrating that promoter switching governs reactivation from viral latency in a context-specific manner.
Collapse
Affiliation(s)
| | - Mike Rak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721
| | | | | | - Jeremy P Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71103
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Felicia Goodrum
- BIO5 Institute, University of Arizona, Tucson, AZ 85721;
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
43
|
The CCCTC Binding Factor, CTRL2, Modulates Heterochromatin Deposition and the Establishment of Herpes Simplex Virus 1 Latency In Vivo. J Virol 2019; 93:JVI.00415-19. [PMID: 30996085 DOI: 10.1128/jvi.00415-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/04/2019] [Indexed: 01/02/2023] Open
Abstract
The cellular insulator protein CTCF plays a role in herpes simplex virus 1 (HSV-1) latency through the establishment and regulation of chromatin boundaries. We previously found that the CTRL2 regulatory element downstream from the latency-associated transcript (LAT) enhancer was bound by CTCF during latency and underwent CTCF eviction at early times postreactivation in mice latently infected with 17syn+ virus. We also showed that CTRL2 was a functional enhancer-blocking insulator in both epithelial and neuronal cell lines. We hypothesized that CTRL2 played a direct role in silencing lytic gene expression during the establishment of HSV-1 latency. To test this hypothesis, we used a recombinant virus with a 135-bp deletion spanning only the core CTRL2 insulator domain (ΔCTRL2) in the 17syn+ background. Deletion of CTRL2 resulted in restricted viral replication in epithelial cells but not neuronal cells. Following ocular infection, mouse survival decreased in the ΔCTRL2-infected cohort, and we found a significant decrease in the number of viral genomes in mouse trigeminal ganglia (TG) infected with ΔCTRL2, indicating that the CTRL2 insulator was required for the efficient establishment of latency. Immediate early (IE) gene expression significantly increased in the number of ganglia infected with ΔCTRL2 by 31 days postinfection relative to the level with 17syn+ infection, indicating that deletion of the CTRL2 insulator disrupted the organization of chromatin domains during HSV-1 latency. Finally, chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) analyses of TG from ΔCTRL2-infected mice confirmed that the distribution of the repressive H3K27me3 (histone H3 trimethylated at K27) mark on the ΔCTRL2 recombinant genomes was altered compared to that of the wild type, indicating that the CTRL2 site modulates the repression of IE genes during latency.IMPORTANCE It is becoming increasingly clear that chromatin insulators play a key role in the transcriptional control of DNA viruses. The gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) utilize chromatin insulators to order protein recruitment and dictate the formation of three-dimensional DNA loops that spatially control transcription and latency. The contribution of chromatin insulators in alphaherpesvirus transcriptional control is less well understood. The work presented here begins to bridge that gap in knowledge by showing how one insulator site in HSV-1 modulates lytic gene transcription and heterochromatin deposition as the HSV-1 genome establishes latency.
Collapse
|
44
|
Chakravorty A, Sugden B, Johannsen EC. An Epigenetic Journey: Epstein-Barr Virus Transcribes Chromatinized and Subsequently Unchromatinized Templates during Its Lytic Cycle. J Virol 2019; 93:e02247-18. [PMID: 30700606 PMCID: PMC6450099 DOI: 10.1128/jvi.02247-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) lytic phase, like those of all herpesviruses, proceeds via an orderly cascade that integrates DNA replication and gene expression. EBV early genes are expressed independently of viral DNA amplification, and several early gene products facilitate DNA amplification. On the other hand, EBV late genes are defined by their dependence on viral DNA replication for expression. Recently, a set of orthologous genes found in beta- and gammaherpesviruses have been determined to encode a viral preinitiation complex (vPIC) that mediates late gene expression. The EBV vPIC requires an origin of lytic replication in cis, implying that the vPIC mediates transcription from newly replicated DNA. In agreement with this implication, EBV late gene mRNAs localize to replication factories. Notably, these factories exclude canonical histones. In this review, we compare and contrast the mechanisms and epigenetics of EBV early and late gene expression. We summarize recent findings, propose a model explaining the dependence of EBV late gene expression on lytic DNA amplification, and suggest some directions for future study.
Collapse
Affiliation(s)
- Adityarup Chakravorty
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bill Sugden
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric C Johannsen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
45
|
Lang F, Pei Y, Lamplugh ZL, Robertson ES. Molecular Biology of EBV in Relationship to HIV/AIDS-Associated Oncogenesis. Cancer Treat Res 2019; 177:81-103. [PMID: 30523622 DOI: 10.1007/978-3-030-03502-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herpesvirus-induced disease is one of the most lethal factors which leads to high mortality in HIV/AIDS patients. EBV, also known as human herpesvirus 4, can transform naive B cells into immortalized cells in vitro through the regulation of cell cycle, cell proliferation, and apoptosis. EBV infection is associated with several lymphoma and epithelial cancers in humans, which occurs at a much higher rate in immune deficient individuals than in healthy people, demonstrating that the immune system plays a vital role in inhibiting EBV activities. EBV latency infection proteins can mimic suppression cytokines or upregulate PD-1 on B cells to repress the cytotoxic T cells response. Many malignancies, including Hodgkin Lymphoma and non-Hodgkin's lymphomas occur at a much higher frequency in EBV positive individuals than in EBV negative people during the development of HIV infection. Importantly, understanding EBV pathogenesis at the molecular level will aid the development of novel therapies for EBV-induced diseases in HIV/AIDS patients.
Collapse
Affiliation(s)
- Fengchao Lang
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zachary L Lamplugh
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,, 3610 Hamilton Walk, 201E Johnson Pavilion, Philadelphia, PA, 19104, USA.
| |
Collapse
|
46
|
Chakravorty A, Sugden B. Long-distance communication: Looping of human papillomavirus genomes regulates expression of viral oncogenes. PLoS Biol 2018; 16:e3000062. [PMID: 30481166 PMCID: PMC6286019 DOI: 10.1371/journal.pbio.3000062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/07/2018] [Indexed: 11/18/2022] Open
Abstract
High-risk human papillomaviruses (HPVs) are a major cause of cancers. HPVs infect epithelial cells, and viral oncogenes disrupt several cellular processes, including cell division, differentiation, and apoptosis. Expression of these oncogenes is relatively low in undifferentiated epithelial cells but increases in differentiating cells by unknown mechanisms. In a new study, Parish and colleagues unveil how two cellular proteins, CCCTC-binding factor (CTCF) and Yin Yang 1 (YY1), mediate looping of the HPV18 genome, which regulates expression of viral oncogenes in both dividing and differentiating epithelial cells. This Primer explores the implications of a new study that connects viral DNA-looping and transcription of human papillomavirus oncogenes at different stages of the viral life cycle.
Collapse
Affiliation(s)
- Adityarup Chakravorty
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
47
|
Pentland I, Campos-León K, Cotic M, Davies KJ, Wood CD, Groves IJ, Burley M, Coleman N, Stockton JD, Noyvert B, Beggs AD, West MJ, Roberts S, Parish JL. Disruption of CTCF-YY1-dependent looping of the human papillomavirus genome activates differentiation-induced viral oncogene transcription. PLoS Biol 2018; 16:e2005752. [PMID: 30359362 PMCID: PMC6219814 DOI: 10.1371/journal.pbio.2005752] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 11/06/2018] [Accepted: 10/12/2018] [Indexed: 11/19/2022] Open
Abstract
The complex life cycle of oncogenic human papillomavirus (HPV) initiates in undifferentiated basal epithelial keratinocytes where expression of the E6 and E7 oncogenes is restricted. Upon epithelial differentiation, E6/E7 transcription is increased through unknown mechanisms to drive cellular proliferation required to support virus replication. We report that the chromatin-organising CCCTC-binding factor (CTCF) promotes the formation of a chromatin loop in the HPV genome that epigenetically represses viral enhancer activity controlling E6/E7 expression. CTCF-dependent looping is dependent on the expression of the CTCF-associated Yin Yang 1 (YY1) transcription factor and polycomb repressor complex (PRC) recruitment, resulting in trimethylation of histone H3 at lysine 27. We show that viral oncogene up-regulation during cellular differentiation results from YY1 down-regulation, disruption of viral genome looping, and a loss of epigenetic repression of viral enhancer activity. Our data therefore reveal a key role for CTCF-YY1-dependent looping in the HPV life cycle and identify a regulatory mechanism that could be disrupted in HPV carcinogenesis.
Collapse
Affiliation(s)
- Ieisha Pentland
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Karen Campos-León
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marius Cotic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kelli-Jo Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - C. David Wood
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Ian J. Groves
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Megan Burley
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joanne D. Stockton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Boris Noyvert
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew D. Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michelle J. West
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Joanna L. Parish
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
48
|
Frost TC, Gewurz BE. Epigenetic crossroads of the Epstein-Barr virus B-cell relationship. Curr Opin Virol 2018; 32:15-23. [PMID: 30227386 DOI: 10.1016/j.coviro.2018.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) is a gamma-herpesvirus that establishes lifelong infection in the majority of people worldwide. EBV uses epigenetic reprogramming to switch between multiple latency states in order to colonize the memory B-cell compartment and to then periodically undergo lytic reactivation upon plasma cell differentiation. This review focuses on recent advances in the understanding of epigenetic mechanisms that EBV uses to control its lifecycle and to subvert the growth and survival pathways that underly EBV-driven B-cell differentiation versus B-cell growth transformation, a hallmark of the first human tumor virus. These include the formation of viral super enhancers that drive expression of key host dependency factors, evasion of tumor suppressor responses, prevention of plasmablast differentiation, and regulation of the B-cell lytic switch.
Collapse
Affiliation(s)
- Thomas C Frost
- Graduate Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
| | - Benjamin E Gewurz
- Graduate Program in Virology, Harvard Medical School, Boston, MA, 02115, USA; Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Boston, MA, 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| |
Collapse
|
49
|
PARP1 Stabilizes CTCF Binding and Chromatin Structure To Maintain Epstein-Barr Virus Latency Type. J Virol 2018; 92:JVI.00755-18. [PMID: 29976663 PMCID: PMC6146685 DOI: 10.1128/jvi.00755-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
EBV is a human gammaherpesvirus that infects more than 95% of individuals worldwide. Upon infection, EBV circularizes as an episome and establishes a chronic, latent infection in B cells. In doing so, the virus utilizes host cell machinery to regulate and maintain the viral genome. In otherwise healthy individuals, EBV infection is typically nonpathological; however, latent infection is potentially oncogenic and is responsible for 1% of human cancers. During latent infection, EBV expresses specific sets of proteins according to the given latency type, each of which is associated with specific types of cancers. For example, type III latency, in which the virus expresses its full repertoire of latent proteins, is characteristic of AIDS-associated and posttransplant lymphomas associated with EBV infection. Understanding how viral latency type is regulated at the chromatin level may reveal potential targets for EBV-specific pharmacological intervention in EBV-associated cancers. Epstein Barr virus (EBV) is a potentially oncogenic gammaherpesvirus that establishes a chronic, latent infection in memory B cells. The EBV genome persists in infected host cells as a chromatinized episome and is subject to chromatin-mediated regulation. Binding of the host insulator protein CTCF to the EBV genome has an established role in maintaining viral latency type. CTCF is posttranslationally modified by the host enzyme PARP1. PARP1, or poly(ADP-ribose) polymerase 1, catalyzes the transfer of a poly(ADP-ribose) (PAR) moiety from NAD+ onto acceptor proteins, including itself, histone proteins, and CTCF. PARylation of CTCF by PARP1 can affect CTCF's insulator activity, DNA binding capacity, and ability to form chromatin loops. Both PARP1 and CTCF have been implicated in the regulation of EBV latency and lytic reactivation. Thus, we predicted that pharmacological inhibition with PARP1 inhibitors would affect EBV latency type through a chromatin-specific mechanism. Here, we show that PARP1 and CTCF colocalize at specific sites throughout the EBV genome and provide evidence to suggest that PARP1 acts to stabilize CTCF binding and maintain the open chromatin landscape at the active Cp promoter during type III latency. Further, PARP1 activity is important in maintaining latency type-specific viral gene expression. The data presented here provide a rationale for the use of PARP inhibitors in the treatment of EBV-associated cancers exhibiting type III latency and ultimately could contribute to an EBV-specific treatment strategy for AIDS-related or posttransplant lymphomas. IMPORTANCE EBV is a human gammaherpesvirus that infects more than 95% of individuals worldwide. Upon infection, EBV circularizes as an episome and establishes a chronic, latent infection in B cells. In doing so, the virus utilizes host cell machinery to regulate and maintain the viral genome. In otherwise healthy individuals, EBV infection is typically nonpathological; however, latent infection is potentially oncogenic and is responsible for 1% of human cancers. During latent infection, EBV expresses specific sets of proteins according to the given latency type, each of which is associated with specific types of cancers. For example, type III latency, in which the virus expresses its full repertoire of latent proteins, is characteristic of AIDS-associated and posttransplant lymphomas associated with EBV infection. Understanding how viral latency type is regulated at the chromatin level may reveal potential targets for EBV-specific pharmacological intervention in EBV-associated cancers.
Collapse
|
50
|
Abstract
Herpes simplex virus 1 (HSV-1) establishes a lifelong latent infection in host peripheral neurons, including the neurons of the trigeminal ganglia (TG). HSV-1 can reactivate from neurons to cause recurrent infection. During latency, the insulator protein CTCF occupies DNA binding sites on the HSV-1 genome, and these sites have been previously characterized as functional enhancer-blocking insulators. Previously, CTCF was found to be dissociated from wild-type virus postreactivation but not in mutants that do not reactivate, indicating that CTCF eviction may also be an important component of reactivation. To further elucidate the role of CTCF in reactivation of HSV-1, we used recombinant adeno-associated virus (rAAV) vectors to deliver a small interfering RNA targeting CTCF to peripheral neurons latent with HSV-1 in rabbit TG. Our data show that CTCF depletion resulted in long-term and persistent shedding of infectious virus in the cornea and increased ICP0 expression in the ganglia, indicating that CTCF depletion facilitates HSV-1 reactivation.IMPORTANCE Increasing evidence has shown that the insulator protein CTCF regulates gene expression of DNA viruses, including the gammaherpesviruses. While CTCF occupation and insulator function control gene expression in DNA viruses, CTCF eviction has been correlated to increased lytic gene expression and the dissolution of transcriptional domains. Our previous data have shown that in the alphaherpesvirus HSV-1, CTCF was found to be dissociated from the HSV-1 genome postreactivation, further indicating a global role for CTCF eviction in the transition from latency to reactivation in HSV-1 genomes. Using an rAAV8, we targeted HSV-1-infected peripheral neurons for CTCF depletion to show that CTCF depletion precedes the shedding of infectious virus and increased lytic gene expression in vivo, providing the first evidence that CTCF depletion facilitates HSV-1 reactivation.
Collapse
|