1
|
Denjalli I, Knieper M, Uthoff J, Vogelsang L, Kumar V, Seidel T, Dietz KJ. The centrality of redox regulation and sensing of reactive oxygen species in abiotic and biotic stress acclimatization. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4494-4511. [PMID: 38329465 DOI: 10.1093/jxb/erae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
During land plant evolution, the number of genes encoding for components of the thiol redox regulatory network and the generator systems of reactive oxygen species (ROS) expanded, tentatively indicating that they have a role in tailored environmental acclimatization. This hypothesis has been validated both experimentally and theoretically during the last few decades. Recent developments of dynamic redox-sensitive GFP (roGFP)-based in vivo sensors for H2O2 and the redox potential of the glutathione pool have paved the way for dissecting the kinetics changes that occur in these crucial parameters in response to environmental stressors. The versatile cellular redox sensory and response regulatory system monitors alterations in redox metabolism and controls the activity of redox target proteins, and thereby affects most, if not all, cellular processes ranging from transcription to translation and metabolism. This review uses examples to describe the role of the redox- and ROS-dependent regulatory network in realising the appropriate responses to diverse environmental stresses. The selected case studies concern different environmental challenges, namely excess excitation energy, the heavy metal cadmium and the metalloid arsenic, nitrogen or phosphate shortages as examples for nutrient deficiency, wounding, and nematode infestation. Each challenge affects the redox-regulatory and ROS network, but our present state of knowledge also points toward pressing questions that remain open in relation to the translation of redox regulation to environmental acclimatization.
Collapse
Affiliation(s)
- Ibadete Denjalli
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Madita Knieper
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Jana Uthoff
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Vijay Kumar
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
2
|
Hasan MS, Lin CJ, Marhavy P, Kyndt T, Siddique S. Redox signalling in plant-nematode interactions: Insights into molecular crosstalk and defense mechanisms. PLANT, CELL & ENVIRONMENT 2024; 47:2811-2820. [PMID: 38679939 DOI: 10.1111/pce.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
Plant-parasitic nematodes, specifically cyst nematodes (CNs) and root-knot nematodes (RKNs), pose significant threats to global agriculture, leading to substantial crop losses. Both CNs and RKNs induce permanent feeding sites in the root of their host plants, which then serve as their only source of nutrients throughout their lifecycle. Plants deploy reactive oxygen species (ROS) as a primary defense mechanism against nematode invasion. Notably, both CNs and RKNs have evolved sophisticated strategies to manipulate the host's redox environment to their advantage, with each employing distinct tactics to combat ROS. In this review, we have focused on the role of ROS and its scavenging network in interactions between host plants and CNs and RKNs. Overall, this review emphasizes the complex interplay between plant defense mechanism, redox signalling and nematode survival tactics, suggesting potential avenues for developing innovative nematode management strategies in agriculture.
Collapse
Affiliation(s)
- M Shamim Hasan
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES-Molecular Phytomedicine, Bonn, Germany
| | - Ching-Jung Lin
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Peter Marhavy
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Tina Kyndt
- Department Biotechnology, Research Group Epigenetics & Defence, Gent, Belgium
| | - Shahid Siddique
- Department of Entomology and Nematology, University of California, Davis, Davis, California, USA
| |
Collapse
|
3
|
Opitz MW, Díaz-Manzano FE, Ruiz-Ferrer V, Daneshkhah R, Ludwig R, Lorenz C, Escobar C, Steinkellner S, Wieczorek K. The other side of the coin: systemic effects of Serendipita indica root colonization on development of sedentary plant-parasitic nematodes in Arabidopsis thaliana. PLANTA 2024; 259:121. [PMID: 38615288 PMCID: PMC11016515 DOI: 10.1007/s00425-024-04402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
MAIN CONCLUSION Upon systemic S. indica colonization in split-root system cyst and root-knot nematodes benefit from endophyte-triggered carbon allocation and altered defense responses what significantly facilitates their development in A. thaliana. Serendipita indica is an endophytic fungus that establishes mutualistic relationships with different plants including Arabidopsis thaliana. It enhances host's growth and resistance to different abiotic and biotic stresses such as infestation by the cyst nematode Heterodera schachtii (CN). In this work, we show that S. indica also triggers similar direct reduction in development of the root-knot nematode Meloidogyne javanica (RKN) in A. thaliana. Further, to mimick the natural situation occurring frequently in soil where roots are unequally colonized by endophytes we used an in vitro split-root system with one half of A. thaliana root inoculated with S. indica and the other half infected with CN or RKN, respectively. Interestingly, in contrast to direct effects, systemic effects led to an increase in number of both nematodes. To elucidate this phenomenon, we focused on sugar metabolism and defense responses in systemic non-colonized roots of plants colonized by S. indica. We analyzed the expression of several SUSs and INVs as well as defense-related genes and measured sugar pools. The results show a significant downregulation of PDF1.2 as well as slightly increased sucrose levels in the non-colonized half of the root in three-chamber dish. Thus, we speculate that, in contrast to direct effects, both nematode species benefit from endophyte-triggered carbon allocation and altered defense responses in the systemic part of the root, which promotes their development. With this work, we highlight the complexity of this multilayered tripartite relationship and deliver new insights into sugar metabolism and plant defense responses during S. indica-nematode-plant interaction.
Collapse
Affiliation(s)
- Michael W Opitz
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Fernando Evaristo Díaz-Manzano
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Virginia Ruiz-Ferrer
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Roshanak Daneshkhah
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Roland Ludwig
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cindy Lorenz
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Carolina Escobar
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Siegrid Steinkellner
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Krzysztof Wieczorek
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria.
| |
Collapse
|
4
|
Lin CJ, Siddique S. Parasitic nematodes: dietary habits and their implications. Trends Parasitol 2024; 40:230-240. [PMID: 38262837 DOI: 10.1016/j.pt.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024]
Abstract
Nematodes, a diverse group of roundworms, exhibit a wide range of dietary habits, including parasitism of animals and plants. These parasites cause substantial economic losses in agriculture and pose significant health challenges to humans and animals. This review explores the unique adaptations of parasitic nematodes, emphasizing their nutritional requirements and metabolic dependencies. Recent research has identified cross-kingdom compartmentalization of vitamin B5 biosynthesis in some parasitic nematodes, shedding light on coevolutionary dynamics and potential targets for control strategies. Several open questions remain regarding the complexity of nematode nutrition, host manipulation, evolutionary adaptations, and the influence of environmental factors on their metabolic processes. Understanding these aspects offers promising avenues for targeted interventions to manage and control these economically and medically important parasites.
Collapse
Affiliation(s)
- Ching-Jung Lin
- Department of Plant Pathology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Shahid Siddique
- Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
5
|
Chen Y, Liu Q, Sun X, Liu L, Zhao J, Yang S, Wang X, Quentin M, Abad P, Favery B, Jian H. Meloidogyne enterolobii MeMSP1 effector targets the glutathione-S-transferase phi GSTF family in Arabidopsis to manipulate host metabolism and promote nematode parasitism. THE NEW PHYTOLOGIST 2023; 240:2468-2483. [PMID: 37823217 DOI: 10.1111/nph.19298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Meloidogyne enterolobii is an emerging root-knot nematode species that overcomes most of the nematode resistance genes in crops. Nematode effector proteins secreted in planta are key elements in the molecular dialogue of parasitism. Here, we show the MeMSP1 effector is secreted into giant cells and promotes M. enterolobii parasitism. Using co-immunoprecipitation and bimolecular fluorescent complementation assays, we identified glutathione-S-transferase phi GSTFs as host targets of the MeMSP1 effector. This protein family plays important roles in plant responses to abiotic and biotic stresses. We demonstrate that MeMSP1 interacts with all Arabidopsis GSTF. Moreover, we confirmed that the N-terminal region of AtGSTF9 is critical for its interaction, and atgstf9 mutant lines are more susceptible to root-knot nematode infection. Combined transcriptome and metabolome analyses showed that MeMSP1 affects the metabolic pathways of Arabidopsis thaliana, resulting in the accumulation of amino acids, nucleic acids, and their metabolites, and organic acids and the downregulation of flavonoids. Our study has shed light on a novel effector mechanism that targets plant metabolism, reducing the production of plant defence-related compounds while favouring the accumulation of metabolites beneficial to the nematode, and thereby promoting parasitism.
Collapse
Affiliation(s)
- Yongpan Chen
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Qian Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572024, China
| | - Xuqian Sun
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Lei Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Jianlong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Shanshan Yang
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xiangfeng Wang
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Pierre Abad
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Heng Jian
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
6
|
Zhang J, Wang S, Wang H, He P, Chang Y, Zheng W, Tang X, Li L, Wang C, He X. Metabolome and Transcriptome Profiling Reveals the Function of MdSYP121 in the Apple Response to Botryosphaeria dothidea. Int J Mol Sci 2023; 24:16242. [PMID: 38003432 PMCID: PMC10671699 DOI: 10.3390/ijms242216242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The vesicular transport system is important for substance transport in plants. In recent years, the regulatory relationship between the vesicular transport system and plant disease resistance has received widespread attention; however, the underlying mechanism remains unclear. MdSYP121 is a key protein in the vesicular transport system. The overexpression of MdSYP121 decreased the B. dothidea resistance of apple, while silencing MdSYP121 resulted in the opposite phenotype. A metabolome and transcriptome dataset analysis showed that MdSYP121 regulated apple disease resistance by significantly affecting sugar metabolism. HPLC results showed that the levels of many soluble sugars were significantly higher in the MdSYP121-OE calli. Furthermore, the expression levels of genes related to sugar transport were significantly higher in the MdSYP121-OE calli after B. dothidea inoculation. In addition, the relationships between the MdSYP121 expression level, the soluble sugar content, and apple resistance to B. dothidea were verified in an F1 population derived from a cross between 'Golden Delicious' and 'Fuji Nagafu No. 2'. In conclusion, these results suggested that MdSYP121 negatively regulated apple resistance to B. dothidea by influencing the soluble sugar content. These technologies and methods allow us to investigate the molecular mechanism of the vesicular transport system regulating apple resistance to B. dothidea.
Collapse
Affiliation(s)
- Jiahu Zhang
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (X.T.); (C.W.)
| | - Sen Wang
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Haibo Wang
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Ping He
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Yuansheng Chang
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Wenyan Zheng
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Xiao Tang
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (X.T.); (C.W.)
| | - Linguang Li
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Chen Wang
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (X.T.); (C.W.)
| | - Xiaowen He
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| |
Collapse
|
7
|
Zhou Y, Zhao D, Duan Y, Chen L, Fan H, Wang Y, Liu X, Chen LQ, Xuan Y, Zhu X. AtSWEET1 negatively regulates plant susceptibility to root-knot nematode disease. FRONTIERS IN PLANT SCIENCE 2023; 14:1010348. [PMID: 36824200 PMCID: PMC9941640 DOI: 10.3389/fpls.2023.1010348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The root-knot nematode Meloidogyne incognita is a pathogenic pest that causes severe economic loss to agricultural production by forming a parasitic relationship with its hosts. During the development of M. incognita in the host plant roots, giant cells are formed as a nutrient sink. However, the roles of sugar transporters during the giant cells gain sugar from the plant cells are needed to improve. Meanwhile, the eventual function of sugars will eventually be exported transporters (SWEETs) in nematode-plant interactions remains unclear. In this study, the expression patterns of Arabidopsis thaliana SWEETs were examined by inoculation with M. incognita at 3 days post inoculation (dpi) (penetration stage) and 18 dpi (developing stage). We found that few AtSWEETs responded sensitively to M. incognita inoculation, with the highest induction of AtSWEET1 (AT1G21460), a glucose transporter gene. Histological analyses indicated that the β-glucuronidase (GUS) and green fluorescent protein (GFP) signals were observed specifically in the galls of AtSWEET1-GUS and AtSWEET1-GFP transgenic plant roots, suggesting that AtSWEET1 was induced specifically in the galls. Genetic studies have shown that parasitism of M. incognita was significantly affected in atsweet1 compared to wild-type and complementation plants. In addition, parasitism of M. incognita was significantly affected in atsweet10 but not in atsweet13 and atsweet14, expression of which was induced by inoculation with M. incognita. Taken together, these data prove that SWEETs play important roles in plant and nematode interactions.
Collapse
Affiliation(s)
- Yuan Zhou
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Dan Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yuxi Duan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Lijie Chen
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Haiyan Fan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yuanyuan Wang
- College of Biological Science and Technology, Shenyang Agriculture University, Shenyang, China
| | - Xiaoyu Liu
- College of Sciences, Shenyang Agriculture University, Shenyang, China
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yuanhu Xuan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| |
Collapse
|
8
|
The Different Metabolic Responses of Resistant and Susceptible Wheats to Fusarium graminearum Inoculation. Metabolites 2022; 12:metabo12080727. [PMID: 36005599 PMCID: PMC9413380 DOI: 10.3390/metabo12080727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 11/23/2022] Open
Abstract
Fusarium head blight (FHB) is a serious wheat disease caused by Fusarium graminearum (Fg) Schwabe. FHB can cause huge loss in wheat yield. In addition, trichothecene mycotoxins produced by Fg are harmful to the environment and humans. In our previous study, we obtained two mutants TPS1− and TPS2−. Neither of these mutants could synthesize trehalose, and they produced fewer mycotoxins. To understand the complex interaction between Fg and wheat, we systematically analyzed the metabolic responses of FHB-susceptible and -resistant wheat to ddH2O, the TPS− mutants and wild type (WT) using NMR combined with multivariate analysis. More than 40 metabolites were identified in wheat extracts including sugars, amino acids, organic acids, choline metabolites and other metabolites. When infected by Fg, FHB-resistant and -susceptible wheat plants showed different metabolic responses. For FHB-resistant wheat, there were clear metabolic differences between inoculation with mutants (TPS1−/TPS2−) and with ddH2O/WT. For the susceptible wheat, there were obvious metabolic differences between inoculation with mutant (TPS1−/TPS2−) and inoculation with ddH2O; however, there were no significant metabolic differences between inoculation with TPS− mutants and with WT. Specifically, compared with ddH2O, resistant wheat increased the levels of Phe, p-hydroxy cinnamic acid (p-HCA), and chlorogenic acid in response to TPS− mutants; however, susceptible wheat did not. Shikimate-mediated secondary metabolism was activated in the FHB-resistant wheat to inhibit the growth of Fg and reduce the production of mycotoxins. These results can be helpful for the development of FHB-resistant wheat varieties, although the molecular relationship between the trehalose biosynthetic pathway in Fg and shikimate-mediated secondary metabolism in wheat remains to be further studied.
Collapse
|
9
|
Ivanova KA, Chernova EN, Kulaeva OA, Tsyganova AV, Kusakin PG, Russkikh IV, Tikhonovich IA, Tsyganov VE. The Regulation of Pea ( Pisum sativum L.) Symbiotic Nodule Infection and Defense Responses by Glutathione, Homoglutathione, and Their Ratio. FRONTIERS IN PLANT SCIENCE 2022; 13:843565. [PMID: 35432395 PMCID: PMC9006610 DOI: 10.3389/fpls.2022.843565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
In this study, the roles of glutathione (GSH), homoglutathione (hGSH), and their ratio in symbiotic nodule development and functioning, as well as in defense responses accompanying ineffective nodulation in pea (Pisum sativum) were investigated. The expression of genes involved in (h)GSH biosynthesis, thiol content, and localization of the reduced form of GSH were analyzed in nodules of wild-type pea plants and mutants sym33-3 (weak allele, "locked" infection threads, occasional bacterial release, and defense reactions) and sym33-2 (strong allele, "locked" infection threads, defense reactions), and sym40-1 (abnormal bacteroids, oxidative stress, early senescence, and defense reactions). The effects of (h)GSH depletion and GSH treatment on nodule number and development were also examined. The GSH:hGSH ratio was found to be higher in nodules than in uninoculated roots in all genotypes analyzed, with the highest value being detected in wild-type nodules. Moreover, it was demonstrated, that a hGSHS-to-GSHS switch in gene expression in nodule tissue occurs only after bacterial release and leads to an increase in the GSH:hGSH ratio. Ineffective nodules showed variable GSH:hGSH ratios that correlated with the stage of nodule development. Changes in the levels of both thiols led to the activation of defense responses in nodules. The application of a (h)GSH biosynthesis inhibitor disrupted the nitrogen fixation zone in wild-type nodules, affected symbiosome formation in sym40-1 mutant nodules, and meristem functioning and infection thread growth in sym33-3 mutant nodules. An increase in the levels of both thiols following GSH treatment promoted both infection and extension of defense responses in sym33-3 nodules, whereas a similar increase in sym40-1 nodules led to the formation of infected cells resembling wild-type nitrogen-fixing cells and the disappearance of an early senescence zone in the base of the nodule. Meanwhile, an increase in hGSH levels in sym40-1 nodules resulting from GSH treatment manifested as a restriction of infection similar to that seen in untreated sym33-3 nodules. These findings indicated that a certain level of thiols is required for proper symbiotic nitrogen fixation and that changes in thiol content or the GSH:hGSH ratio are associated with different abnormalities and defense responses.
Collapse
Affiliation(s)
- Kira A. Ivanova
- Laboratory of Molecular and Cellular Biology, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Ekaterina N. Chernova
- Saint Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Olga A. Kulaeva
- Laboratory of Genetics of Plant-Microbe Interactions, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Anna V. Tsyganova
- Laboratory of Molecular and Cellular Biology, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Pyotr G. Kusakin
- Laboratory of Molecular and Cellular Biology, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Iana V. Russkikh
- Saint Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Igor A. Tikhonovich
- Laboratory of Genetics of Plant-Microbe Interactions, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Viktor E. Tsyganov
- Laboratory of Molecular and Cellular Biology, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Saint Petersburg Scientific Center of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
10
|
Khoei MA, Karimi M, Karamian R, Amini S, Soorni A. Identification of the Complex Interplay Between Nematode-Related lncRNAs and Their Target Genes in Glycine max L. FRONTIERS IN PLANT SCIENCE 2021; 12:779597. [PMID: 34956274 PMCID: PMC8705754 DOI: 10.3389/fpls.2021.779597] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/08/2021] [Indexed: 05/26/2023]
Abstract
Soybean (Glycine max) is a major plant protein source and oilseed crop. However, plant-parasitic nematodes (PPNs) affect its annual yield. In the current study, in order to better understand the regulation of defense mechanism against PPNs in soybean, we investigated the role of long non-coding RNAs (lncRNAs) in response to two nematode species, Heterodera glycines (SCN: soybean cyst nematode) and Rotylenchulus reniformis (reniform). To this end, two publicly available RNA-seq data sets (SCN data set and RAD: reniform-associated data set) were employed to discover the lncRNAome profile of soybean under SCN and reniform infection, respectively. Upon identification of unannotated transcripts in these data sets, a seven-step pipeline was utilized to sieve these transcripts, which ended up in 384 and 283 potential lncRNAs in SCN data set and RAD, respectively. These transcripts were then used to predict cis and trans nematode-related targets in soybean genome. Computational prediction of target genes function, some of which were also among differentially expressed genes, revealed the involvement of putative nematode-responsive genes as well as enrichment of multiple stress responses in both data sets. Finally, 15 and six lncRNAs were proposed to be involved in microRNA-mediated regulation of gene expression in soybean in response to SNC and reniform infection, respectively. Collectively, this study provides a novel insight into the signaling and regulatory network of soybean-pathogen interactions and opens a new window for further research.
Collapse
Affiliation(s)
| | | | - Roya Karamian
- Department of Biology, Faculty of Sciences, Bu-Ali Sina University, Hamedan, Iran
| | | | - Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
11
|
Metabolic Analysis of the Development of the Plant-Parasitic Cyst Nematodes Heterodera schachtii and Heterodera trifolii by Capillary Electrophoresis Time-of-Flight Mass Spectrometry. Int J Mol Sci 2021; 22:ijms221910488. [PMID: 34638828 PMCID: PMC8508704 DOI: 10.3390/ijms221910488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
The cyst nematodes Heterodera schachtii and Heterodera trifolii, whose major hosts are sugar beet and clover, respectively, damage a broad range of plants, resulting in significant economic losses. Nematodes synthesize metabolites for organismal development and social communication. We performed metabolic profiling of H. schachtii and H. trifolii in the egg, juvenile 2 (J2), and female stages. In all, 392 peaks were analyzed by capillary electrophoresis time-of-flight mass spectrometry, which revealed a lot of similarities among metabolomes. Aromatic amino acid metabolism, carbohydrate metabolism, choline metabolism, methionine salvage pathway, glutamate metabolism, urea cycle, glycolysis, gluconeogenesis, coenzyme metabolism, purine metabolism, pyrimidine metabolism, and tricarboxylic acid (TCA) cycle for energy conversion (β-oxidation and branched-chain amino acid metabolism) energy storage were involved in all stages studied. The egg and female stages synthesized higher levels of metabolites compared to the J2 stage. The key metabolites detected were glycerol, guanosine, hydroxyproline, citric acid, phosphorylcholine, and the essential amino acids Phe, Leu, Ser, and Val. Metabolites, such as hydroxyproline, acetylcholine, serotonin, glutathione, and glutathione disulfide, which are associated with growth and reproduction, mobility, and neurotransmission, predominated in the J2 stage. Other metabolites, such as SAM, 3PSer, 3-ureidopropionic acid, CTP, UDP, UTP, 3-hydroxy-3-methylglutaric acid, 2-amino-2-(hydroxymethyl-1,3-propanediol, 2-hydroxy-4-methylvaleric acid, Gly Asp, glucuronic acid-3 + galacturonic acid-3 Ser-Glu, citrulline, and γ-Glu-Asn, were highly detected in the egg stage. Meanwhile, nicotinamide, 3-PG, F6P, Cys, ADP-Ribose, Ru5P, S7P, IMP, DAP, diethanolamine, p-Hydroxybenzoic acid, and γ-Glu-Arg_divalent were unique to the J2 stage. Formiminoglutamic acid, nicotinaminde riboside + XC0089, putrescine, thiamine 2,3-dihydroxybenzoic acid, 3-methyladenine, caffeic acid, ferulic acid, m-hydrobenzoic acid, o- and p-coumaric acid, and shikimic acid were specific to the female stage. Overall, highly similar identities and quantities of metabolites between the corresponding stages of the two species of nematode were observed. Our results will be a valuable resource for further studies of physiological changes related to the development of nematodes and nematode-plant interactions.
Collapse
|
12
|
Zhao J, Mejias J, Quentin M, Chen Y, de Almeida-Engler J, Mao Z, Sun Q, Liu Q, Xie B, Abad P, Favery B, Jian H. The root-knot nematode effector MiPDI1 targets a stress-associated protein (SAP) to establish disease in Solanaceae and Arabidopsis. THE NEW PHYTOLOGIST 2020; 228:1417-1430. [PMID: 32542658 DOI: 10.1111/nph.16745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/02/2020] [Indexed: 05/11/2023]
Abstract
Large amounts of effectors are secreted by the oesophageal glands of plant-parasitic nematodes, but their molecular mode of action remains largely unknown. We characterized a Meloidogyne incognita protein disulphide isomerase (PDI)-like effector protein (MiPDI1) that facilitates nematode parasitism. In situ hybridization showed that MiPDI1 was expressed specifically in the subventral glands of M. incognita. It was significantly upregulated during parasitic stages. Immunolocalization demonstrated MiPDI1 secretion in planta during nematode migration and within the feeding cells. Host-induced silencing of the MiPDI1 gene affected the ability of the nematode to infect the host, whereas MiPDI1 expression in Arabidopsis increased susceptibility to M. incognita, providing evidence for a key role of MiPDI1 in M. incognita parasitism. Yeast two-hybrid, bimolecular fluorescence complementation and coimmunoprecipitation assays showed that MiPDI1 interacted with a tomato stress-associated protein (SlSAP12) orthologous to the redox-regulated AtSAP12, which plays an important role in plant responses to abiotic and biotic stresses. SAP12 silencing or knocking out in Nicotiana benthamiana and Arabidopsis increased susceptibility to M. incognita. Our results suggest that MiPDI1 acts as a pathogenicity factor promoting disease by fine-tuning SAP-mediated responses at the interface of redox signalling, defence and stress acclimation in Solanaceae and Arabidopsis.
Collapse
Affiliation(s)
- Jianlong Zhao
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | - Joffrey Mejias
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | - Michaël Quentin
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | - Yongpan Chen
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | | | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Qinghua Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Qian Liu
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Pierre Abad
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | - Bruno Favery
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | - Heng Jian
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Hrbáčková M, Dvořák P, Takáč T, Tichá M, Luptovčiak I, Šamajová O, Ovečka M, Šamaj J. Biotechnological Perspectives of Omics and Genetic Engineering Methods in Alfalfa. FRONTIERS IN PLANT SCIENCE 2020; 11:592. [PMID: 32508859 PMCID: PMC7253590 DOI: 10.3389/fpls.2020.00592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/20/2020] [Indexed: 05/07/2023]
Abstract
For several decades, researchers are working to develop improved major crops with better adaptability and tolerance to environmental stresses. Forage legumes have been widely spread in the world due to their great ecological and economic values. Abiotic and biotic stresses are main factors limiting legume production, however, alfalfa (Medicago sativa L.) shows relatively high level of tolerance to drought and salt stress. Efforts focused on alfalfa improvements have led to the release of cultivars with new traits of agronomic importance such as high yield, better stress tolerance or forage quality. Alfalfa has very high nutritional value due to its efficient symbiotic association with nitrogen-fixing bacteria, while deep root system can help to prevent soil water loss in dry lands. The use of modern biotechnology tools is challenging in alfalfa since full genome, unlike to its close relative barrel medic (Medicago truncatula Gaertn.), was not released yet. Identification, isolation, and improvement of genes involved in abiotic or biotic stress response significantly contributed to the progress of our understanding how crop plants cope with these environmental challenges. In this review, we provide an overview of the progress that has been made in high-throughput sequencing, characterization of genes for abiotic or biotic stress tolerance, gene editing, as well as proteomic and metabolomics techniques bearing biotechnological potential for alfalfa improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
14
|
Chen X, Li S, Zhao X, Zhu X, Wang Y, Xuan Y, Liu X, Fan H, Chen L, Duan Y. Modulation of (Homo)Glutathione Metabolism and H 2O 2 Accumulation during Soybean Cyst Nematode Infections in Susceptible and Resistant Soybean Cultivars. Int J Mol Sci 2020; 21:E388. [PMID: 31936278 PMCID: PMC7013558 DOI: 10.3390/ijms21020388] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/25/2022] Open
Abstract
In plant immune responses, reactive oxygen species (ROS) act as signaling molecules that activate defense pathways against pathogens, especially following resistance (R) gene-mediated pathogen recognition. Glutathione (GSH), an antioxidant and redox regulator, participates in the removal of hydrogen peroxide (H2O2). However, the mechanism of GSH-mediated H2O2 generation in soybeans (Glycine max (L.) Merr.) that are resistant to the soybean cyst nematode (SCN; Heterodera glycines Ichinohe) remains unclear. To elucidate this underlying relationship, the feeding of race 3 of H. glycines with resistant cultivars, Peking and PI88788, was compared with that on a susceptible soybean cultivar, Williams 82. After 5, 10, and 15 days of SCN infection, we quantified γ-glutamylcysteine (γ-EC) and (homo)glutathione ((h)GSH), and a gene expression analysis showed that GSH metabolism in resistant cultivars differed from that in susceptible soybean roots. ROS accumulation was examined both in resistant and susceptible roots upon SCN infection. The time of intense ROS generation was related to the differences of resistance mechanisms in Peking and PI88788. ROS accumulation that was caused by the (h)GSH depletion-arrested nematode development in susceptible Williams 82. These results suggest that (h)GSH metabolism in resistant soybeans plays a key role in the regulation of ROS-generated signals, leading to resistance against nematodes.
Collapse
Affiliation(s)
- Xi Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Shuang Li
- Shaanxi key Laboratory of Chinese Jujube, Yan’an University, Yan’an 716000, China;
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Xuebing Zhao
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Yuanyuan Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110000, China
| | - Yuanhu Xuan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Xiaoyu Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Sciences, Shenyang Agricultural University, Shenyang 110000, China
| | - Haiyan Fan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| |
Collapse
|
15
|
Parthasarathy A, Savka MA, Hudson AO. The Synthesis and Role of β-Alanine in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:921. [PMID: 31379903 PMCID: PMC6657504 DOI: 10.3389/fpls.2019.00921] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/28/2019] [Indexed: 05/20/2023]
Abstract
Most studies on amino acids are focused on the proteinogenic amino acids given their essential roles in protein synthesis among other pathways. In addition to 20 ubiquitous amino acids used in protein synthesis, plants synthesize over 250 non-proteinogenic amino acids that are involved in the synthesis of compounds that are anti-herbivory, anti-microbial, response to abiotic stresses, nitrogen storage, toxins against both vertebrates/invertebrates, and plant hormones among others. One such non-proteinogenic acid is β-alanine, which is known mainly for studies on humans. β-Alanine forms a part of pantothenate (vitamin B5), which is incorporated into the universal carbon shuttling compounds Coenzyme A and acyl carrier protein, in all organisms including plants. The focus of this review, however, is on the biosynthesis, metabolism, and the role of β-alanine in plants. There are several functions of β-alanine unique to plants. It is accumulated as a generic stress response molecule involved in protecting plants from temperature extremes, hypoxia, drought, heavy metal shock, and some biotic stresses. There is evidence of its participation in lignin biosynthesis and ethylene production in some species. It is further converted to the osmoprotective compound β-alanine betaine in some species and converted to the antioxidant homoglutathione in others. The polyamines spermine/spermidine, propionate and uracil have been shown to be precursors of β-alanine in plants. However, plants vary in terms of their biosynthetic pathways, and the primary metabolism of β-alanine is far from settled.
Collapse
Affiliation(s)
| | | | - André O. Hudson
- The Thomas H. Gosnell School of Life Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
16
|
Olmo R, Cabrera J, Fenoll C, Escobar C. A role for ALF4 during gall and giant cell development in the biotic interaction between Arabidopsis and Meloidogyne spp. PHYSIOLOGIA PLANTARUM 2019; 165:17-28. [PMID: 29573275 DOI: 10.1111/ppl.12734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/11/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.) are a major pest for the agriculture worldwide. RKNs induce specialized feeding cells (giant cells, GCs) inside galls which are de novo formed pseudo-organs in the roots that share similarities with other developmental processes as lateral root (LR) and callus formation or grafting involving new vascular development or pericycle proliferation. Hence, it is pertinent to study the molecular mechanisms directing the plant-nematode interaction. In this respect, ALF4 is a key gene during LR formation, vascular vessels reconnection in grafting, hormone-induced callus formation or de novo root organogenesis from leaf explants. Our results show that ALF4 is also induced in galls at early infection stages in an auxin-independent way. Furthermore, ALF4 activity is necessary for the formation of proper galls and GCs, as the mutant alf4-1 presents aberrant galls and GCs with severe structural abnormalities leading to a dramatic reduction in the nematode egg production. However, a low-reproduction rate is maintained, that might be explained by the local auxin maximum build by the nematodes in galls, partially rescuing alf4-1 phenotype. This would be similar to the partial rescue described for LR formation with exogenous auxins and also agrees with the LR emergence from alf4-1 galls but not from uninfected roots. In addition, ALF4 is also induced in syncytia formed by cyst nematodes. All these data support a pivotal role for ALF4 during de novo organogenesis processes induced by endoparasitic nematodes, in addition to its role in LR formation, callus development or vessel reconnection during grafting.
Collapse
Affiliation(s)
- Rocio Olmo
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Avda, Carlos III, s/n, 45071, Toledo, Spain
| | - Javier Cabrera
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Avda, Carlos III, s/n, 45071, Toledo, Spain
| | - Carmen Fenoll
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Avda, Carlos III, s/n, 45071, Toledo, Spain
| | - Carolina Escobar
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Avda, Carlos III, s/n, 45071, Toledo, Spain
| |
Collapse
|
17
|
Jaubert-Possamai S, Noureddine Y, Favery B. MicroRNAs, New Players in the Plant-Nematode Interaction. FRONTIERS IN PLANT SCIENCE 2019; 10:1180. [PMID: 31681347 PMCID: PMC6811602 DOI: 10.3389/fpls.2019.01180] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/29/2019] [Indexed: 05/04/2023]
Abstract
Plant-parasitic root-knot and cyst nematodes are microscopic worms that cause severe damage to crops and induce major agricultural losses worldwide. These parasites penetrate into host roots and induce the formation of specialized feeding structures, which supply the resources required for nematode development. Root-knot nematodes induce the redifferentiation of five to seven root cells into giant multinucleate feeding cells, whereas cyst nematodes induce the formation of a multinucleate syncytium by targeting a single root cell. Transcriptomic analyses have shown that the induction of these feeding cells by nematodes involves an extensive reprogramming of gene expression within the targeted root cells. MicroRNAs are small noncoding RNAs that act as key regulators of gene expression in eukaryotes by inducing the posttranscriptional silencing of protein coding genes, including many genes encoding transcription factors. A number of microRNAs (miRNAs) displaying changes in expression in root cells in response to nematode infection have recently been identified in various plant species. Modules consisting of miRNAs and the transcription factors they target were recently shown to be required for correct feeding site formation. Examples include miR396 and GRF in soybean syncytia and miR159 and MYB33 in Arabidopsis giant cells. Moreover, some conserved miRNA/target modules seem to have similar functions in feeding site formation in different plant species. These miRNAs may be master regulators of the reprogramming of expression occurring during feeding site formation. This review summarizes current knowledge about the role of these plant miRNAs in plant-nematode interactions.
Collapse
|
18
|
Barbosa EA, Bonfim MF, Bloch C, Engler G, Rocha T, de Almeida Engler J. Imaging Mass Spectrometry of Endogenous Polypeptides and Secondary Metabolites from Galls Induced by Root-Knot Nematodes in Tomato Roots. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1048-1059. [PMID: 29663868 DOI: 10.1094/mpmi-02-18-0049-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nematodes are devastating pests that infect most cultivated plant species and cause considerable agricultural losses worldwide. The understanding of metabolic adjustments induced during plant-nematode interaction is crucial to generate resistant plants or to select more efficient molecules to fight against this pest. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been used herein for in situ detection and mapping endogenous polypeptides and secondary metabolites from nematode-induced gall tissue. One of the major critical features of this technique is sample preparation; mainly, the generation of intact sections of plant cells with their rigid cell walls and vacuolated cytoplasm. Our experimental settings allowed us to obtain sections without contamination of exogenous ions or diffusion of molecules and to map the differential presence of low and high molecular weight ions in uninfected roots compared with nematode-induced galls. We predict the presence of lipids in both uninfected roots and galls, which was validated by MALDI time-of-flight tandem mass spectrometry and high-resolution mass spectrometry analysis of lipid extracts. Based on the isotopic ion distribution profile, both esters and glycerophospholipids were predicted compounds and may be playing an important role in gall development. Our results indicate that the MALDI-MSI technology is a promising tool to identify secondary metabolites as well as peptides and proteins in complex plant tissues like galls to decipher molecular processes responsible for infection and maintenance of these feeding sites during nematode parasitism.
Collapse
Affiliation(s)
- Eder Alves Barbosa
- 1 Laboratório de espectrometria de massa, Embrapa Recursos Genéticos e Biotecnologia, PqEB, 70770-900, Brasília-DF, Brazil
- 2 Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, 70910-900, Brasília-DF, Brazil
| | - Mauro Ferreira Bonfim
- 2 Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, 70910-900, Brasília-DF, Brazil
- 3 Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB; and
| | - Carlos Bloch
- 1 Laboratório de espectrometria de massa, Embrapa Recursos Genéticos e Biotecnologia, PqEB, 70770-900, Brasília-DF, Brazil
| | - Gilbert Engler
- 4 INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Thales Rocha
- 3 Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB; and
| | | |
Collapse
|
19
|
Lilley CJ, Maqbool A, Wu D, Yusup HB, Jones LM, Birch PRJ, Banfield MJ, Urwin PE, Eves-van den Akker S. Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene. PLoS Genet 2018; 14:e1007310. [PMID: 29641602 PMCID: PMC5919673 DOI: 10.1371/journal.pgen.1007310] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/26/2018] [Accepted: 03/16/2018] [Indexed: 11/24/2022] Open
Abstract
Plant pathogens and parasites are a major threat to global food security. Plant parasitism has arisen four times independently within the phylum Nematoda, resulting in at least one parasite of every major food crop in the world. Some species within the most economically important order (Tylenchida) secrete proteins termed effectors into their host during infection to re-programme host development and immunity. The precise detail of how nematodes evolve new effectors is not clear. Here we reconstruct the evolutionary history of a novel effector gene family. We show that during the evolution of plant parasitism in the Tylenchida, the housekeeping glutathione synthetase (GS) gene was extensively replicated. New GS paralogues acquired multiple dorsal gland promoter elements, altered spatial expression to the secretory dorsal gland, altered temporal expression to primarily parasitic stages, and gained a signal peptide for secretion. The gene products are delivered into the host plant cell during infection, giving rise to "GS-like effectors". Remarkably, by solving the structure of GS-like effectors we show that during this process they have also diversified in biochemical activity, and likely represent the founding members of a novel class of GS-like enzyme. Our results demonstrate the re-purposing of an endogenous housekeeping gene to form a family of effectors with modified functions. We anticipate that our discovery will be a blueprint to understand the evolution of other plant-parasitic nematode effectors, and the foundation to uncover a novel enzymatic function.
Collapse
Affiliation(s)
- Catherine J. Lilley
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Abbas Maqbool
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Duqing Wu
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Hazijah B. Yusup
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Laura M. Jones
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Paul R. J. Birch
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark J. Banfield
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Peter E. Urwin
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sebastian Eves-van den Akker
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
20
|
Gardner M, Dhroso A, Johnson N, Davis EL, Baum TJ, Korkin D, Mitchum MG. Novel global effector mining from the transcriptome of early life stages of the soybean cyst nematode Heterodera glycines. Sci Rep 2018; 8:2505. [PMID: 29410430 PMCID: PMC5802810 DOI: 10.1038/s41598-018-20536-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/12/2018] [Indexed: 11/08/2022] Open
Abstract
Soybean cyst nematode (SCN) Heterodera glycines is an obligate parasite that relies on the secretion of effector proteins to manipulate host cellular processes that favor the formation of a feeding site within host roots to ensure its survival. The sequence complexity and co-evolutionary forces acting upon these effectors remain unknown. Here we generated a de novo transcriptome assembly representing the early life stages of SCN in both a compatible and an incompatible host interaction to facilitate global effector mining efforts in the absence of an available annotated SCN genome. We then employed a dual effector prediction strategy coupling a newly developed nematode effector prediction tool, N-Preffector, with a traditional secreted protein prediction pipeline to uncover a suite of novel effector candidates. Our analysis distinguished between effectors that co-evolve with the host genotype and those conserved by the pathogen to maintain a core function in parasitism and demonstrated that alternative splicing is one mechanism used to diversify the effector pool. In addition, we confirmed the presence of viral and microbial inhabitants with molecular sequence information. This transcriptome represents the most comprehensive whole-nematode sequence currently available for SCN and can be used as a tool for annotation of expected genome assemblies.
Collapse
Affiliation(s)
- Michael Gardner
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, USA
| | - Andi Dhroso
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA
| | - Nathan Johnson
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA
| | - Eric L Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, USA
| | - Dmitry Korkin
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA.
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, USA.
| |
Collapse
|
21
|
Differential Metabolic Profiles during the Developmental Stages of Plant-Parasitic Nematode Meloidogyne incognita. Int J Mol Sci 2017; 18:ijms18071351. [PMID: 28672815 PMCID: PMC5535844 DOI: 10.3390/ijms18071351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/17/2017] [Accepted: 06/20/2017] [Indexed: 12/27/2022] Open
Abstract
Meloidogyne incognita is a common root-knot nematode with a wide range of plant hosts. We aimed to study the metabolites produced at each stage of the nematode life cycle to understand its development. Metabolites of Meloidogyne incognita were extracted at egg, J2, J3, J4, and female stages and 110 metabolites with available standards were quantified using CE-TOF/MS. Analyses indicated abundance of stage-specific metabolites with the exception of J3 and J4 stages which shared similar metabolic profiles. The egg stage showed increased abundance in glycolysis and energy metabolism related metabolites while the J2 metabolites are associated with tissue formation, motility, and neurotransmission. The J3 and J4 stages indicated amino acid metabolism and urea cycle- related metabolites. The female stage was characterized with polyamine synthesis, antioxidant activity, and synthesis of reproduction related metabolites. Such metabolic profiling helps us understand the dynamic physiological changes related to each developmental stage of the root-knot nematode life cycle.
Collapse
|
22
|
Abstract
Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood but most likely multifactorial. This knowledge gap obstructs the progress regarding the development of endophytes or endophyte-derived constituents into biocontrol agents. In part, this may be caused by the fact that endophytic fungi form a rather heterogeneous group. By combining the knowledge of the currently characterized antagonistic endophytic fungi and their effects on nematode behavior and biology with the knowledge of microbial competition and induced plant defenses, the various mechanisms by which this nematode antagonism operates or may operate are discussed. Now that new technologies are becoming available and more accessible, the currently unresolved mechanisms can be studied in greater detail than ever before.
Collapse
Affiliation(s)
- Alexander Schouten
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
23
|
Baldacci-Cresp F, Sacré PY, Twyffels L, Mol A, Vermeersch M, Ziemons E, Hubert P, Pérez-Morga D, El Jaziri M, de Almeida Engler J, Baucher M. Poplar-Root Knot Nematode Interaction: A Model for Perennial Woody Species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:560-572. [PMID: 27135257 DOI: 10.1094/mpmi-01-16-0015-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plant root-knot nematode (RKN) interaction studies are performed on several host plant models. Though RKN interact with trees, no perennial woody model has been explored so far. Here, we show that poplar (Populus tremula × P. alba) grown in vitro is susceptible to Meloidogyne incognita, allowing this nematode to penetrate, to induce feeding sites, and to successfully complete its life cycle. Quantitative reverse transcription-polymerase chain reaction analysis was performed to study changes in poplar gene expression in galls compared with noninfected roots. Three genes (expansin A, histone 3.1, and asparagine synthase), selected as gall development marker genes, followed, during poplar-nematode interaction, a similar expression pattern to what was described for other plant hosts. Downregulation of four genes implicated in the monolignol biosynthesis pathway was evidenced in galls, suggesting a shift in the phenolic profile within galls developed on poplar roots. Raman microspectroscopy demonstrated that cell walls of giant cells were not lignified but mainly composed of pectin and cellulose. The data presented here suggest that RKN exercise conserved strategies to reproduce and to invade perennial plant species and that poplar is a suitable model host to study specific traits of tree-nematode interactions.
Collapse
Affiliation(s)
- Fabien Baldacci-Cresp
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Pierre-Yves Sacré
- 2 University of Liege, CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, B36, B-4000 Liege, Belgium
| | - Laure Twyffels
- 3 Center for Microscopy and Molecular Imaging-CMMI, Université libre de Bruxelles
| | - Adeline Mol
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Marjorie Vermeersch
- 3 Center for Microscopy and Molecular Imaging-CMMI, Université libre de Bruxelles
| | - Eric Ziemons
- 2 University of Liege, CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, B36, B-4000 Liege, Belgium
| | - Philippe Hubert
- 2 University of Liege, CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, B36, B-4000 Liege, Belgium
| | - David Pérez-Morga
- 3 Center for Microscopy and Molecular Imaging-CMMI, Université libre de Bruxelles
- 4 Laboratoire de Parasitologie Moléculaire, Université libre de Bruxelles; and
| | - Mondher El Jaziri
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Janice de Almeida Engler
- 5 INRA, Université Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, F-06900 Sophia Antipolis, France
| | - Marie Baucher
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| |
Collapse
|
24
|
Baldacci-Cresp F, Houbaert A, Metuor Dabire A, Mol A, Monteyne D, El Jaziri M, Van Melderen L, Baucher M. Escherichia colimazEF Toxin-Antitoxin System as a Tool to Target Cell Ablation in Plants. J Mol Microbiol Biotechnol 2016; 26:277-83. [PMID: 27245477 DOI: 10.1159/000446112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/08/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The Escherichia coli MazF is an endoribonuclease that cleaves mRNA at ACA sequences, thereby triggering inhibition of protein synthesis. The aim of this study is to evaluate the efficiency of the mazEF toxin-antitoxin system in plants to develop biotechnological tools for targeted cell ablation. METHODS A double transformation strategy, combining expression of the mazE antitoxin gene under the control of the CaMV 35S promoter, reported to drive expression in all plant cells except within the tapetum, together with the expression of the mazF gene under the control of the TA29 tapetum-specific promoter in transgenic tobacco, was applied. RESULTS No transgenic TA29-mazF line could be regenerated, suggesting that the TA29 promoter is not strictly tapetum specific and that MazF is toxic for plant cells. The regenerated 35S-mazE/TA29-mazF double-transformed lines gave a unique phenotype where the tapetal cell layer was necrosed resulting in the absence of pollen. CONCLUSION These results show that the E. colimazEF system can be used to induce death of specific plant cell types and can provide a new tool to plant cell ablation.
Collapse
Affiliation(s)
- Fabien Baldacci-Cresp
- Laboratoire de Biotechnologie Vx00E9;gx00E9;tale, Universitx00E9; libre de Bruxelles (ULB), Gosselies, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Favery B, Quentin M, Jaubert-Possamai S, Abad P. Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells. JOURNAL OF INSECT PHYSIOLOGY 2016. [PMID: 26211599 DOI: 10.1016/j.jinsphys.2015.07.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Among plant-parasitic nematodes, the root-knot nematodes (RKNs) of the Meloidogyne spp. are the most economically important genus. RKN are root parasitic worms able to infect nearly all crop species and have a wide geographic distribution. During infection, RKNs establish and maintain an intimate relationship with the host plant. This includes the creation of a specialized nutritional structure composed of multinucleate and hypertrophied giant cells, which result from the redifferentiation of vascular root cells. Giant cells constitute the sole source of nutrients for the nematode and are essential for growth and reproduction. Hyperplasia of surrounding root cells leads to the formation of the gall or root-knot, an easily recognized symptom of plant infection by RKNs. Secreted effectors produced in nematode salivary glands and injected into plant cells through a specialized feeding structure called the stylet play a critical role in the formation of giant cells. Here, we describe the complex interactions between RKNs and their host plants. We highlight progress in understanding host plant responses, focusing on how RKNs manipulate key plant processes and functions, including cell cycle, defence, hormones, cellular scaffold, metabolism and transport.
Collapse
Affiliation(s)
- Bruno Favery
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France
| | - Michaël Quentin
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France
| | - Stéphanie Jaubert-Possamai
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France
| | - Pierre Abad
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France.
| |
Collapse
|
26
|
Baldacci-Cresp F, Moussawi J, Leplé JC, Van Acker R, Kohler A, Candiracci J, Twyffels L, Spokevicius AV, Bossinger G, Laurans F, Brunel N, Vermeersch M, Boerjan W, El Jaziri M, Baucher M. PtaRHE1, a Populus tremula × Populus alba RING-H2 protein of the ATL family, has a regulatory role in secondary phloem fibre development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:978-990. [PMID: 25912812 DOI: 10.1111/tpj.12867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
REALLY INTERESTING NEW GENE (RING) proteins play important roles in the regulation of many processes by recognizing target proteins for ubiquitination. Previously, we have shown that the expression of PtaRHE1, encoding a Populus tremula × Populus alba RING-H2 protein with E3 ubiquitin ligase activity, is associated with tissues undergoing secondary growth. To further elucidate the role of PtaRHE1 in vascular tissues, we have undertaken a reverse genetic analysis in poplar. Within stem secondary vascular tissues, PtaRHE1 and its corresponding protein are expressed predominantly in the phloem. The downregulation of PtaRHE1 in poplar by artificial miRNA triggers alterations in phloem fibre patterning, characterized by an increased portion of secondary phloem fibres that have a reduced cell wall thickness and a change in lignin composition, with lower levels of syringyl units as compared with wild-type plants. Following an RNA-seq analysis, a biological network involving hormone stress signalling, as well as developmental processes, could be delineated. Several candidate genes possibly associated with the altered phloem fibre phenotype observed in amiRPtaRHE1 poplar were identified. Altogether, our data suggest a regulatory role for PtaRHE1 in secondary phloem fibre development.
Collapse
Affiliation(s)
- Fabien Baldacci-Cresp
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Jihad Moussawi
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Jean-Charles Leplé
- Unité de Recherche Amélioration Génétique et Physiologie Forestières (UR0588), Institut National de la Recherche Agronomique (INRA), 45075, Orléans Cedex 02, France
| | - Rebecca Van Acker
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Annegret Kohler
- Unité Mixte de Recherche 1136, Interactions Arbres-Microorganismes, Laboratory of Excellence ARBRE, INRA, 54280, Champenoux, France
- Unité Mixte de Recherche 1136, Interactions Arbres-Microorganismes, Laboratory of Excellence ARBRE, Lorraine University, 54500, Vandoeuvre-lès-Nancy, France
| | - Julie Candiracci
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Laure Twyffels
- Center for Microscopy and Molecular Imaging-CMMI, Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Antanas V Spokevicius
- School of Ecosystem and Forest Sciences, The University of Melbourne, Water Street, Creswick, Vic., 3363, Australia
| | - Gerd Bossinger
- School of Ecosystem and Forest Sciences, The University of Melbourne, Water Street, Creswick, Vic., 3363, Australia
| | - Françoise Laurans
- Unité de Recherche Amélioration Génétique et Physiologie Forestières (UR0588), Institut National de la Recherche Agronomique (INRA), 45075, Orléans Cedex 02, France
| | - Nicole Brunel
- UMR A547 PIAF, Clermont Université, Université Blaise Pascal, BP 10448, 63000, Clermont-Ferrand, France
- UMR A547 PIAF, INRA, 63100, Clermont-Ferrand, France
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging-CMMI, Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Mondher El Jaziri
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| |
Collapse
|
27
|
Martinuz A, Zewdu G, Ludwig N, Grundler F, Sikora RA, Schouten A. The application of Arabidopsis thaliana in studying tripartite interactions among plants, beneficial fungal endophytes and biotrophic plant-parasitic nematodes. PLANTA 2015; 241:1015-1025. [PMID: 25548000 DOI: 10.1007/s00425-014-2237-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
The research demonstrated that Arabidopsis can be used as a model system for studying plant-nematode-endophyte tripartite interactions; thus, opening new possibilities for further characterizing the molecular mechanisms behind these interactions. Arabidopsis has been established as an important model system for studying plant biology and plant-microbe interactions. We show that this plant can also be used for studying the tripartite interactions among plants, the root-knot nematode Meloidogyne incognita and a beneficial endophytic isolate of Fusarium oxysporum, strain Fo162. In various plant species, Fo162 can systemically reduce M. incognita infection development and fecundity. Here it is shown that Fo162 can also colonize A. thaliana roots without causing disease symptoms, thus behaving as a typical endophyte. As observed for other plants, this endophyte could not migrate from the roots into the shoots and leaves. Direct inoculation of the leaves also did not result in colonization of the plant. A significant increase in plant fresh weight, root length and average root diameter was observed, suggesting the promotion of plant growth by the endophyte. The inoculation of A. thaliana with F. oxysporum strain Fo162 also resulted in a significant reduction in the number of M. incognita juveniles infecting the roots and ultimately the number of galls produced. This was also observed in a split-root experiment, in which the endophyte and nematode were spatially separated. The usefulness of Arabidopsis opens new possibilities for further dissecting complex tripartite interactions at the molecular and biochemical level.
Collapse
Affiliation(s)
- Alfonso Martinuz
- INRES-Soil Ecosystem Phytopathology and Nematology, University of Bonn, Nussallee 9, 53115, Bonn, Germany,
| | | | | | | | | | | |
Collapse
|
28
|
Noctor G, Lelarge-Trouverie C, Mhamdi A. The metabolomics of oxidative stress. PHYTOCHEMISTRY 2015; 112:33-53. [PMID: 25306398 DOI: 10.1016/j.phytochem.2014.09.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 05/20/2023]
Abstract
Oxidative stress resulting from increased availability of reactive oxygen species (ROS) is a key component of many responses of plants to challenging environmental conditions. The consequences for plant metabolism are complex and manifold. We review data on small compounds involved in oxidative stress, including ROS themselves and antioxidants and redox buffers in the membrane and soluble phases, and we discuss the wider consequences for plant primary and secondary metabolism. While metabolomics has been exploited in many studies on stress, there have been relatively few non-targeted studies focused on how metabolite signatures respond specifically to oxidative stress. As part of the discussion, we present results and reanalyze published datasets on metabolite profiles in catalase-deficient plants, which can be considered to be model oxidative stress systems. We emphasize the roles of ROS-triggered changes in metabolites as potential oxidative signals, and discuss responses that might be useful as markers for oxidative stress. Particular attention is paid to lipid-derived compounds, the status of antioxidants and antioxidant breakdown products, altered metabolism of amino acids, and the roles of phytohormone pathways.
Collapse
Affiliation(s)
- Graham Noctor
- Institut de Biologie des Plantes, UMR8618 CNRS, Université de Paris sud, 91405 Orsay Cedex, France.
| | | | - Amna Mhamdi
- Institut de Biologie des Plantes, UMR8618 CNRS, Université de Paris sud, 91405 Orsay Cedex, France
| |
Collapse
|
29
|
Baldacci-Cresp F, Maucourt M, Deborde C, Pierre O, Moing A, Brouquisse R, Favery B, Frendo P. Maturation of nematode-induced galls in Medicago truncatula is related to water status and primary metabolism modifications. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 232:77-85. [PMID: 25617326 DOI: 10.1016/j.plantsci.2014.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
Root-knot nematodes are obligatory plant parasitic worms that establish and maintain an intimate relationship with their host plants. During a compatible interaction, these nematodes induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells (GCs). These metabolically active feeding cells constitute the exclusive source of nutrients for the nematode. We analyzed the modifications of water status, ionic content and accumulation of metabolites in development and mature galls induced by Meloidogyne incognita and in uninfected roots of Medicago truncatula plants. Water potential and osmotic pressure are significantly modified in mature galls compared to developing galls and control roots. Ionic content is significantly modified in galls compared to roots. Principal component analyses of metabolite content showed that mature gall metabolism is significantly modified compared to developing gall metabolism. The most striking differences were the three-fold increase of trehalose content associated to the five-fold diminution in glucose concentration in mature galls. Gene expression analysis showed that trehalose accumulation was, at least, partially linked to a significantly lower expression of the trehalase gene in mature galls. Our results point to significant modifications of gall physiology during maturation.
Collapse
Affiliation(s)
- Fabien Baldacci-Cresp
- Université de Nice Sophia-Antipolis, UMR Institut Sophia Agrobiotech, 400 route des chappes BP167, F-06903 Sophia Antipolis, France; INRA UMR 7254 Institut Sophia Agrobiotech, 400 route des chappes BP167, F-06903 Sophia Antipolis, France; CNRS UMR1355 Institut Sophia Agrobiotech, 400 route des chappes BP167, F-06903 Sophia Antipolis, France.
| | - Mickaël Maucourt
- Université de Bordeaux 2, UMR 1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, F-33140 Villenave d'Ornon, France; Metabolome Facility of Bordeaux Functional Genomics Center, IBVM, Centre INRA de Bordeaux, F-33140 Villenave d'Ornon, France
| | - Catherine Deborde
- Metabolome Facility of Bordeaux Functional Genomics Center, IBVM, Centre INRA de Bordeaux, F-33140 Villenave d'Ornon, France; INRA, UMR 1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, F-33140 Villenave d'Ornon, France
| | - Olivier Pierre
- Université de Nice Sophia-Antipolis, UMR Institut Sophia Agrobiotech, 400 route des chappes BP167, F-06903 Sophia Antipolis, France; INRA UMR 7254 Institut Sophia Agrobiotech, 400 route des chappes BP167, F-06903 Sophia Antipolis, France; CNRS UMR1355 Institut Sophia Agrobiotech, 400 route des chappes BP167, F-06903 Sophia Antipolis, France
| | - Annick Moing
- Metabolome Facility of Bordeaux Functional Genomics Center, IBVM, Centre INRA de Bordeaux, F-33140 Villenave d'Ornon, France; INRA, UMR 1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, F-33140 Villenave d'Ornon, France
| | - Renaud Brouquisse
- Université de Nice Sophia-Antipolis, UMR Institut Sophia Agrobiotech, 400 route des chappes BP167, F-06903 Sophia Antipolis, France; INRA UMR 7254 Institut Sophia Agrobiotech, 400 route des chappes BP167, F-06903 Sophia Antipolis, France; CNRS UMR1355 Institut Sophia Agrobiotech, 400 route des chappes BP167, F-06903 Sophia Antipolis, France
| | - Bruno Favery
- Université de Nice Sophia-Antipolis, UMR Institut Sophia Agrobiotech, 400 route des chappes BP167, F-06903 Sophia Antipolis, France; INRA UMR 7254 Institut Sophia Agrobiotech, 400 route des chappes BP167, F-06903 Sophia Antipolis, France; CNRS UMR1355 Institut Sophia Agrobiotech, 400 route des chappes BP167, F-06903 Sophia Antipolis, France
| | - Pierre Frendo
- Université de Nice Sophia-Antipolis, UMR Institut Sophia Agrobiotech, 400 route des chappes BP167, F-06903 Sophia Antipolis, France; INRA UMR 7254 Institut Sophia Agrobiotech, 400 route des chappes BP167, F-06903 Sophia Antipolis, France; CNRS UMR1355 Institut Sophia Agrobiotech, 400 route des chappes BP167, F-06903 Sophia Antipolis, France
| |
Collapse
|
30
|
Pivato M, Fabrega-Prats M, Masi A. Low-molecular-weight thiols in plants: Functional and analytical implications. Arch Biochem Biophys 2014; 560:83-99. [DOI: 10.1016/j.abb.2014.07.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/15/2023]
|
31
|
Rodiuc N, Vieira P, Banora MY, de Almeida Engler J. On the track of transfer cell formation by specialized plant-parasitic nematodes. FRONTIERS IN PLANT SCIENCE 2014; 5:160. [PMID: 24847336 PMCID: PMC4017147 DOI: 10.3389/fpls.2014.00160] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/07/2014] [Indexed: 05/02/2023]
Abstract
Transfer cells are ubiquitous plant cells that play an important role in plant development as well as in responses to biotic and abiotic stresses. They are highly specialized and differentiated cells playing a central role in the acquisition, distribution and exchange of nutrients. Their unique structural traits are characterized by augmented ingrowths of invaginated secondary wall material, unsheathed by an amplified area of plasma membrane enriched in a suite of solute transporters. Similar morphological features can be perceived in vascular root feeding cells induced by sedentary plant-parasitic nematodes, such as root-knot and cyst nematodes, in a wide range of plant hosts. Despite their close phylogenetic relationship, these obligatory biotrophic plant pathogens engage different approaches when reprogramming root cells into giant cells or syncytia, respectively. Both nematode feeding-cells types will serve as the main source of nutrients until the end of the nematode life cycle. In both cases, these nematodes are able to remarkably maneuver and reprogram plant host cells. In this review we will discuss the structure, function and formation of these specialized multinucleate cells that act as nutrient transfer cells accumulating and synthesizing components needed for survival and successful offspring of plant-parasitic nematodes. Plant cells with transfer-like functions are also a renowned subject of interest involving still poorly understood molecular and cellular transport processes.
Collapse
Affiliation(s)
- Natalia Rodiuc
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEBBrasília, Brasil
| | - Paulo Vieira
- NemaLab – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de ÉvoraÉvora, Portugal
| | | | - Janice de Almeida Engler
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEBBrasília, Brasil
- Institut National de la Recherche Agronomique, Plant, Health and Environment, Plant-Nematodes Interaction Team, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISASophia-Antipolis, France
| |
Collapse
|
32
|
Cotton JA, Lilley CJ, Jones LM, Kikuchi T, Reid AJ, Thorpe P, Tsai IJ, Beasley H, Blok V, Cock PJA, den Akker SEV, Holroyd N, Hunt M, Mantelin S, Naghra H, Pain A, Palomares-Rius JE, Zarowiecki M, Berriman M, Jones JT, Urwin PE. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biol 2014; 15:R43. [PMID: 24580726 PMCID: PMC4054857 DOI: 10.1186/gb-2014-15-3-r43] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/03/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Globodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security. RESULTS We present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida, which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control. CONCLUSIONS The data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens.
Collapse
Affiliation(s)
- James A Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | | | - Laura M Jones
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Taisei Kikuchi
- Forestry and Forest Products Research Institute, Tsukuba, Japan
- Division of Parasitology, Department of Infectious Disease, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Adam J Reid
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Peter Thorpe
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Isheng J Tsai
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
- Division of Parasitology, Department of Infectious Disease, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Helen Beasley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Vivian Blok
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Peter J A Cock
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Sebastian Eves-van den Akker
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Martin Hunt
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | | | - Hardeep Naghra
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
- Present address: School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Arnab Pain
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
- Present address: Computational Bioscience Research Center (CBRC), Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Juan E Palomares-Rius
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Present address: Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Alameda del Obispo s/n Apdo 4084, 14080 Córdoba, Spain
| | - Magdalena Zarowiecki
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - John T Jones
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
33
|
Cabello S, Lorenz C, Crespo S, Cabrera J, Ludwig R, Escobar C, Hofmann J. Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:201-12. [PMID: 24187419 PMCID: PMC3883288 DOI: 10.1093/jxb/ert359] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sedentary endoparasitic nematodes of plants induce highly specific feeding cells in the root central cylinder. From these, the obligate parasites withdraw all required nutrients. The feeding cells were described as sink tissues in the plant's circulation system that are supplied with phloem-derived solutes such as sugars. Currently, there are several publications describing mechanisms of sugar import into the feeding cells. However, sugar processing has not been studied so far. Thus, in the present work, the roles of the sucrose-cleaving enzymes sucrose synthases (SUS) and invertases (INV) in the development of Heterodera schachtii were studied. Gene expression analyses indicate that both enzymes are regulated transcriptionally. Nematode development was enhanced on multiple INV and SUS mutants. Syncytia of these mutants were characterized by altered enzyme activity and changing sugar pool sizes. Further, the analyses revealed systemically affected sugar levels and enzyme activities in the shoots of the tested mutants, suggesting changes in the source-sink relationship. Finally, the development of the root-knot nematode Meloidogyne javanica was studied in different INV and SUS mutants and wild-type Arabidopsis plants. Similar effects on the development of both sedentary endoparasitic nematode species (root-knot and cyst nematode) were observed, suggesting a more general role of sucrose-degrading enzymes during plant-nematode interactions.
Collapse
Affiliation(s)
- Susana Cabello
- University of Natural Resources and Applied Life Sciences, Department of Crop Sciences, Konrad Lorenz Str. 24, Tulln a. d. Donau A-3430, Austria
| | - Cindy Lorenz
- University of Natural Resources and Applied Life Sciences, Department of Food Sciences and Technology, Vienna, Austria
| | - Sara Crespo
- University of Natural Resources and Applied Life Sciences, Department of Crop Sciences, Konrad Lorenz Str. 24, Tulln a. d. Donau A-3430, Austria
| | - Javier Cabrera
- Universidad de Castilla-La Mancha, Facultad de Ciencias del Medio Ambiente, Avenida de Carlos III s/n, 45071 Toledo, Spain
| | - Roland Ludwig
- University of Natural Resources and Applied Life Sciences, Department of Food Sciences and Technology, Vienna, Austria
| | - Carolina Escobar
- Universidad de Castilla-La Mancha, Facultad de Ciencias del Medio Ambiente, Avenida de Carlos III s/n, 45071 Toledo, Spain
| | - Julia Hofmann
- University of Natural Resources and Applied Life Sciences, Department of Crop Sciences, Konrad Lorenz Str. 24, Tulln a. d. Donau A-3430, Austria
| |
Collapse
|
34
|
Pasternak T, Asard H, Potters G, Jansen MAK. The thiol compounds glutathione and homoglutathione differentially affect cell development in alfalfa (Medicago sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:16-23. [PMID: 24246670 DOI: 10.1016/j.plaphy.2013.10.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/22/2013] [Indexed: 05/20/2023]
Abstract
Glutathione (GSH) is an important scavenger of Reactive Oxygen Species (ROS), precursor of metal chelating phytochelatins, xenobiotic defence compound and regulator of cell proliferation. Homoglutathione (hGSH) is a GSH homologue that is present in several taxa in the family of Fabaceae. It is thought that hGSH performs many of the stress-defence roles typically ascribed to GSH, yet little is known about the potential involvement of hGSH in controlling cell proliferation. Here we show that hGSH/GSH ratios vary across organs and cells and that these changes in hGSH/GSH ratio occur during dedifferentiation and/or cell cycle activation events. The use of a GSH/hGSH biosynthesis inhibitor resulted in impaired cytokinesis in isolated protoplasts, showing the critical importance of these thiol-compounds for cell division. However, exposure of isolated protoplasts to exogenous GSH accelerated cytokinesis, while exogenous hGSH was found to inhibit the same process. We conclude that GSH and hGSH have distinct functional roles in cell cycle regulation in Medicago sativa L. GSH is associated with meristemic cells, and promotes cell cycle activation and induction of somatic embryogenesis, while hGSH is associated with differentiated cells and embryo proliferation.
Collapse
Affiliation(s)
- Taras Pasternak
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium; Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-Universität Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - Han Asard
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | - Geert Potters
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium; Antwerp Maritime Academy, Noordkasteel Oost 6, B-2030 Antwerp, Belgium.
| | - Marcel A K Jansen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium; School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Field, North Mall, Cork, Ireland.
| |
Collapse
|
35
|
Frendo P, Baldacci-Cresp F, Benyamina SM, Puppo A. Glutathione and plant response to the biotic environment. Free Radic Biol Med 2013; 65:724-730. [PMID: 23912161 DOI: 10.1016/j.freeradbiomed.2013.07.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 11/22/2022]
Abstract
Glutathione (GSH) is a major antioxidant molecule in plants. It is involved in regulating plant development and responses to the abiotic and biotic environment. In recent years, numerous reports have clarified the molecular processes involving GSH in plant-microbe interactions. In this review, we summarize recent studies, highlighting the roles of GSH in interactions between plants and microbes, whether pathogenic or beneficial to plants.
Collapse
Affiliation(s)
- Pierre Frendo
- Université de Nice-Sophia Antipolis, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France; INRA UMR 1355, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France; CNRS UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France.
| | - Fabien Baldacci-Cresp
- Université de Nice-Sophia Antipolis, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France; INRA UMR 1355, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France; CNRS UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France
| | - Sofiane M Benyamina
- Université de Nice-Sophia Antipolis, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France; INRA UMR 1355, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France; CNRS UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France
| | - Alain Puppo
- Université de Nice-Sophia Antipolis, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France; INRA UMR 1355, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France; CNRS UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France
| |
Collapse
|
36
|
Vieira P, Escudero C, Rodiuc N, Boruc J, Russinova E, Glab N, Mota M, De Veylder L, Abad P, Engler G, de Almeida Engler J. Ectopic expression of Kip-related proteins restrains root-knot nematode-feeding site expansion. THE NEW PHYTOLOGIST 2013; 199:505-519. [PMID: 23574394 DOI: 10.1111/nph.12255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/01/2013] [Indexed: 05/12/2023]
Abstract
The development of nematode feeding sites induced by root-knot nematodes involves the synchronized activation of cell cycle processes such as acytokinetic mitoses and DNA amplification. A number of key cell cycle genes are reported to be critical for nematode feeding site development. However, it remains unknown whether plant cyclin-dependent kinase (CDK) inhibitors such as the Arabidopsis interactor/inhibitor of CDK (ICK)/Kip-related protein (KRP) family are involved in nematode feeding site development. This study demonstrates the involvement of Arabidopsis ICK2/KRP2 and ICK1/KRP1 in the control of mitosis to endoreduplication in galls induced by the root-knot nematode Meloidogyne incognita. Using ICK/KRP promoter-GUS fusions and mRNA in situ hybridizations, we showed that ICK2/KRP2, ICK3/KRP5 and ICK4/KRP6 are expressed in galls after nematode infection. Loss-of-function mutants have minor effects on gall development and nematode reproduction. Conversely, overexpression of both ICK1/KRP1 and ICK2/KRP2 impaired mitosis in giant cells and blocked neighboring cell proliferation, resulting in a drastic reduction of gall size. Studying the dynamics of protein expression demonstrated that protein levels of ICK2/KRP2 are tightly regulated during giant cell development and reliant on the presence of the nematode. This work demonstrates that impeding cell cycle progression by means of ICK1/KRP1 and ICK2/KRP2 overexpression severely restricts gall development, leading to a marked limitation of root-knot nematode development and reduced numbers of offspring.
Collapse
Affiliation(s)
- Paulo Vieira
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| | - Carmen Escudero
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| | - Natalia Rodiuc
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| | - Joanna Boruc
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Nathalie Glab
- UMR8618, CNRS Université Paris-Sud 11, Bat 630, 91405, Orsay, France
| | - Manuel Mota
- NemaLab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554, Évora, Portugal
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Pierre Abad
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| | - Gilbert Engler
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| | - Janice de Almeida Engler
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| |
Collapse
|
37
|
Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G. Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H(2)O(2) to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal 2013; 18:2106-21. [PMID: 23148658 PMCID: PMC3629853 DOI: 10.1089/ars.2012.5052] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/11/2012] [Indexed: 01/08/2023]
Abstract
AIMS Through its interaction with H(2)O(2), glutathione is a candidate for transmission of signals in plant responses to pathogens, but identification of signaling roles is complicated by its antioxidant function. Using a genetic approach based on a conditional catalase-deficient Arabidopsis mutant, cat2, this study aimed at establishing whether GSH plays an important functional role in the transmission of signals downstream of H(2)O(2). RESULTS Introducing the cad2 or allelic mutations in the glutathione synthesis pathway into cat2 blocked H(2)O(2)-triggered GSH oxidation and accumulation. While no effects on NADP(H) or ascorbate were observed, and H(2)O(2)-induced decreases in growth were maintained, blocking GSH modulation antagonized salicylic acid (SA) accumulation and SA-dependent responses. Other novel double and triple mutants were produced and compared with cat2 cad2 at the levels of phenotype, expression of marker genes, nontargeted metabolite profiling, accumulation of SA, and bacterial resistance. Most of the effects of the cad2 mutation on H(2)O(2)-triggered responses were distinct from those produced by mutations for GLUTATHIONE REDUCTASE1 (GR1) or NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), and were linked to compromised induction of ISOCHORISMATE SYNTHASE1 (ICS1) and ICS1-dependent SA accumulation. INNOVATION A novel genetic approach was used in which GSH content or antioxidative capacity was independently modified in an H(2)O(2) signaling background. Analysis of new double and triple mutants allowed us to infer previously undescribed regulatory roles for GSH. CONCLUSION In parallel to its antioxidant role, GSH acts independently of NPR1 to allow increased intracellular H(2)O(2) to activate SA signaling, a key defense response in plants.
Collapse
Affiliation(s)
- Yi Han
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris Sud, Orsay Cedex, France
| | - Sejir Chaouch
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris Sud, Orsay Cedex, France
| | - Amna Mhamdi
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris Sud, Orsay Cedex, France
| | - Guillaume Queval
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris Sud, Orsay Cedex, France
| | - Bernd Zechmann
- Institute of Plant Sciences, University of Graz, Graz, Austria
| | - Graham Noctor
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris Sud, Orsay Cedex, France
| |
Collapse
|
38
|
Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G. Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H(2)O(2) to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal 2013. [PMID: 23148658 DOI: 10.1089/ars.20125052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
AIMS Through its interaction with H(2)O(2), glutathione is a candidate for transmission of signals in plant responses to pathogens, but identification of signaling roles is complicated by its antioxidant function. Using a genetic approach based on a conditional catalase-deficient Arabidopsis mutant, cat2, this study aimed at establishing whether GSH plays an important functional role in the transmission of signals downstream of H(2)O(2). RESULTS Introducing the cad2 or allelic mutations in the glutathione synthesis pathway into cat2 blocked H(2)O(2)-triggered GSH oxidation and accumulation. While no effects on NADP(H) or ascorbate were observed, and H(2)O(2)-induced decreases in growth were maintained, blocking GSH modulation antagonized salicylic acid (SA) accumulation and SA-dependent responses. Other novel double and triple mutants were produced and compared with cat2 cad2 at the levels of phenotype, expression of marker genes, nontargeted metabolite profiling, accumulation of SA, and bacterial resistance. Most of the effects of the cad2 mutation on H(2)O(2)-triggered responses were distinct from those produced by mutations for GLUTATHIONE REDUCTASE1 (GR1) or NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), and were linked to compromised induction of ISOCHORISMATE SYNTHASE1 (ICS1) and ICS1-dependent SA accumulation. INNOVATION A novel genetic approach was used in which GSH content or antioxidative capacity was independently modified in an H(2)O(2) signaling background. Analysis of new double and triple mutants allowed us to infer previously undescribed regulatory roles for GSH. CONCLUSION In parallel to its antioxidant role, GSH acts independently of NPR1 to allow increased intracellular H(2)O(2) to activate SA signaling, a key defense response in plants.
Collapse
Affiliation(s)
- Yi Han
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris Sud, Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
39
|
Wagner G, Charton S, Lariagon C, Laperche A, Lugan R, Hopkins J, Frendo P, Bouchereau A, Delourme R, Gravot A, Manzanares-Dauleux MJ. Metabotyping: a new approach to investigate rapeseed (Brassica napus L.) genetic diversity in the metabolic response to clubroot infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1478-91. [PMID: 22809276 DOI: 10.1094/mpmi-02-12-0032-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Clubroot disease affects all Brassicaceae spp. and is caused by the obligate biotroph pathogen Plasmodiophora brassicae. The development of galls on the root system is associated with the establishment of a new carbon metabolic sink. Here, we aimed to deepen our knowledge of the involvement of primary metabolism in the Brassica napus response to clubroot infection. We studied the dynamics and the diversity of the metabolic responses to the infection. Root system metabotyping was carried out for 18 rapeseed genotypes displaying different degrees of symptom severity, under inoculated and noninoculated conditions at 42 days postinoculation (dpi). Clubroot susceptibility was positively correlated with clubroot-induced accumulation of several amino acids. Although glucose and fructose accumulated in some genotypes with minor symptoms, their levels were negatively correlated to the disease index across the whole set of genotypes. The dynamics of the metabolic response were studied for the susceptible genotype 'Yudal,' which allowed an "early" metabolic response (established from 14 to 28 dpi) to be differentiated from a "late" response (from 35 dpi). We discuss the early accumulation of amino acids in the context of the establishment of a nitrogen metabolic sink and the hypothetical biological role of the accumulation of glutathione and S-methylcysteine.
Collapse
|
40
|
Cui W, Li L, Gao Z, Wu H, Xie Y, Shen W. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5521-34. [PMID: 22915740 PMCID: PMC3444266 DOI: 10.1093/jxb/ers201] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This work examines the involvement of haem oxygenase-1 (HO-1) in salicylic acid (SA)-induced alleviation of oxidative stress as a result of cadmium (Cd) stress in alfalfa (Medicago sativa L.) seedling roots. CdCl(2) exposure caused severe growth inhibition and Cd accumulation, which were potentiated by pre-treatment with zinc protoporphyrin (ZnPPIX), a potent HO-1 inhibitor. Pre-treatment of plants with the HO-1 inducer haemin or SA, both of which could induce MsHO1 gene expression, significantly reduced the inhibition of growth and Cd accumulation. The alleviation effects were also evidenced by a decreased content of thiobarbituric acid-reactive substances (TBARS). The antioxidant behaviour was confirmed by histochemical staining for the detection of lipid peroxidation and the loss of plasma membrane integrity. Furthermore, haemin and SA pre-treatment modulated the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), and guaiacol peroxidase (POD), or their corresponding transcripts. Significant enhancement of the ratios of reduced/oxidized homoglutathione (hGSH), ascorbic acid (ASA)/dehydroascorbate (DHA), and NAD(P)H/NAD(P)(+), and expression of their metabolism genes was observed, consistent with a decreased reactive oxygen species (ROS) distribution in the root tips. These effects are specific for HO-1, since ZnPPIX blocked the above actions, and the aggravated effects triggered by SA plus ZnPPIX were differentially reversed when carbon monoxide (CO) or bilirubin (BR), two catalytic by-products of HO-1, was added. Together, the results suggest that HO-1 is involved in the SA-induced alleviation of Cd-triggered oxidative stress by re-establishing redox homeostasis.
Collapse
Affiliation(s)
- Weiti Cui
- These authors contributed equally to this work
| | - Le Li
- These authors contributed equally to this work
| | | | | | | | - Wenbiao Shen
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Damiani I, Baldacci-Cresp F, Hopkins J, Andrio E, Balzergue S, Lecomte P, Puppo A, Abad P, Favery B, Hérouart D. Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes. THE NEW PHYTOLOGIST 2012; 194:511-522. [PMID: 22360638 DOI: 10.1111/j.1469-8137.2011.04046.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The establishment and development of plant-microorganism interactions involve impressive transcriptomic reprogramming of target plant genes. The symbiont (Sinorhizobium meliloti) and the root knot-nematode pathogen (Meloidogyne incognita) induce the formation of new root organs, the nodule and the gall, respectively. Using laser-assisted microdissection, we specifically monitored, at the cell level, Medicago gene expression in nodule zone II cells, which are preparing to receive rhizobia, and in gall giant and surrounding cells, which play an essential role in nematode feeding and constitute the typical root swollen structure, respectively. We revealed an important reprogramming of hormone pathways and C1 metabolism in both interactions, which may play key roles in nodule and gall neoformation, rhizobia endocytosis and nematode feeding. Common functions targeted by rhizobia and nematodes were mainly down-regulated, whereas the specificity of the interaction appeared to involve up-regulated genes. Our transcriptomic results provide powerful datasets to unravel the mechanisms involved in the accommodation of rhizobia and root-knot nematodes. Moreover, they raise the question of host specificity and the evolution of plant infection mechanisms by a symbiont and a pathogen.
Collapse
Affiliation(s)
- Isabelle Damiani
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Fabien Baldacci-Cresp
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Julie Hopkins
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Emilie Andrio
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Sandrine Balzergue
- URGV UMR INRA 1165 - CNRS 8114 - UEVE, 2 rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France
| | - Philippe Lecomte
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Alain Puppo
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Pierre Abad
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Bruno Favery
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Didier Hérouart
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| |
Collapse
|