1
|
Hughson AL, Hannon G, Salama NA, Vrooman TG, Stockwell CA, Mills BN, Garrett-Larsen J, Qiu H, Katerji R, Benoodt L, Johnston CJ, Murphy JD, Kruger E, Ye J, Gavras NW, Keeley DC, Qin SS, Lesch ML, Muhitch JB, Love TM, Calvi LM, Lord EM, Luheshi N, Elyes J, Linehan DC, Gerber SA. Integrating IL-12 mRNA nanotechnology with SBRT eliminates T cell exhaustion in preclinical models of pancreatic cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102350. [PMID: 39469666 PMCID: PMC11513558 DOI: 10.1016/j.omtn.2024.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024]
Abstract
Pronounced T cell exhaustion characterizes immunosuppressive tumors, with the tumor microenvironment (TME) employing multiple mechanisms to elicit this suppression. Traditional immunotherapies, such as immune checkpoint blockade, often fail due to their focus primarily on T cells. To overcome this, we utilized a proinflammatory cytokine, interleukin (IL)-12, that re-wires the immunosuppressive TME by inducing T cell effector function while also repolarizing immunosuppressive myeloid cells. Due to toxicities observed with systemic administration of this cytokine, we utilized lipid nanoparticles encapsulating mRNA encoding IL-12 for intratumoral injection. This strategy has been proven safe and tolerable in early clinical trials for solid malignancies. We report an unprecedented loss of exhausted T cells and the emergence of an activated phenotype in murine pancreatic ductal adenocarcinoma (PDAC) treated with stereotactic body radiation therapy (SBRT) and IL-12mRNA. Our mechanistic findings reveal that each treatment modality contributes to the T cell response differently, with SBRT expanding the T cell receptor repertoire and IL-12mRNA promoting robust T cell proliferation and effector status. This distinctive T cell signature mediated marked growth reductions and long-term survival in local and metastatic PDAC models. This is the first study of its kind combining SBRT with IL-12mRNA and provides a promising new approach for treating this aggressive malignancy.
Collapse
Affiliation(s)
- Angela L. Hughson
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Gary Hannon
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Noah A. Salama
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Tara G. Vrooman
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Bradley N. Mills
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Jesse Garrett-Larsen
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Haoming Qiu
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Roula Katerji
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Lauren Benoodt
- University of Rochester Genomics Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Carl J. Johnston
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Joseph D. Murphy
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Emma Kruger
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Nicholas W. Gavras
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - David C. Keeley
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Shuyang S. Qin
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Maggie L. Lesch
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jason B. Muhitch
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tanzy M.T. Love
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Laura M. Calvi
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Edith M. Lord
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Nadia Luheshi
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Jim Elyes
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - David C. Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Scott A. Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
2
|
Yu F, Zhu Y, Li S, Hao L, Li N, Ye F, Jiang Z, Hu X. Dysfunction and regulatory interplay of T and B cells in chronic hepatitis B: immunotherapy and emerging antiviral strategies. Front Cell Infect Microbiol 2024; 14:1488527. [PMID: 39717542 PMCID: PMC11663751 DOI: 10.3389/fcimb.2024.1488527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
In the context of chronic hepatitis B virus (HBV) infection, the continuous replication of HBV within host hepatocytes is a characteristic feature. Rather than directly causing hepatocyte destruction, this replication leads to immune dysfunction and establishes a state of T-B immune tolerance. Successful clearance of the HBV virus is dependent on the close collaboration between humoral and cellular immunity. Humoral immunity, mediated by B-cell subpopulations, and cellular immunity, dominated by T-cell subpopulations show varying degrees of dysfunction during chronic hepatitis B (CHB). Notably, not all T- and B-cells produce positive immune responses. This review examine the most recent developments in the mutual regulation of T-B cells during chronic HBV infection. Our focus is on the prevailing immunotherapeutic strategies, such as T cell engineering, HBV-related vaccines, PD-1 inhibitors, and Toll-like receptor agonists. While nucleos(t)ide analogues (NUCs) and interferons have notable limitations, including inadequate viral suppression, drug resistance, and adverse reactions, several HBV entry inhibitors have shown promising clinical efficacy. To overcome the challenges posed by NUCs or monotherapy, the combination of immunotherapy and novel antiviral agents presents a promising avenue for future CHB treatment and potential cure.
Collapse
Affiliation(s)
- Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Lin W, He Y, Gu F, Hu F, Yu H, Li H, Liu C, Tang X, Cai W, Li L. Hepatic Flare Following Effective Antiretroviral Therapy Is Associated With HBsAg Seroclearance in HBV/HIV-1 Co-Infection. J Med Virol 2024; 96:e70114. [PMID: 39654313 DOI: 10.1002/jmv.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Little is known about the clinical significance of hepatic flare following effective antiretroviral therapy (ART) on HBsAg seroclearance and prognosis in HBV/HIV co-infection. This observational cohort study recruited HBV/HIV-1 co-infected patients from the China National Free Antiretroviral Treatment Program. We obtained longitudinal information on demographic characteristics, clinical indicators, and treatment outcomes. Hepatic flare was defined as an elevation of ALT of more than five times the upper limit of the normal range without an upsurge of HBV DNA or HBsAg at any time point between ART initiation and 12 months. Among the 1354 enrolled patients, 98.7% received two anti-HBV drugs containing ART and 95.1% achieved good viral control. Hepatic flare was observed in 88 (6.5%) patients and was more frequent in those with lower baseline immune function but subsequently enhanced immune reconstitution. Over a median follow-up of 4.7 years, we observed 99 HBsAg seroclearance, 9 hepatic events, 6 HIV-associated malignancy, 3 non-HIV-associated malignancy, and 3 all-cause mortality. The 3-, 5-, and 10-year cumulative incidence of HBsAg seroclearance was 6.4%, 8.9%, and 12.9%, respectively. Compared to patients without hepatic flare, patients with hepatic flare had significantly higher rates of HBsAg seroclearance (13.6% vs. 6.9%, p = 0.018) but had no recorded adverse outcome. Multivariate analysis with different models indicated that hepatic flare was independently associated with HBsAg seroclearance especially in patients with low immune function, normal ALT, and high levels of HBV DNA and HBsAg at baseline. In HBV/HIV-1 co-infection, hepatic flare following effective ART is associated with HBsAg seroclearance. HBV-specific T cells immune reconstitution may represent a potential mechanism which deserves further investigation.
Collapse
Affiliation(s)
- Weiyin Lin
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yaozu He
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fei Gu
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fengyu Hu
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haisheng Yu
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hong Li
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cong Liu
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Tang
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiping Cai
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Linghua Li
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Liu Q, Wu P, Lei J, Bai P, Zhong P, Yang M, Wei P. Old concepts, new tricks: How peptide vaccines are reshaping cancer immunotherapy? Int J Biol Macromol 2024; 279:135541. [PMID: 39270889 DOI: 10.1016/j.ijbiomac.2024.135541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Over the past few decades, research on cancer immunotherapy has firmly established immune cells as key players in effective cancer treatment. Peptide vaccines directly targeting immune cells have demonstrated immense potential due to their specificity and applicability. However, developing peptide vaccines to generate tumor-reactive T cells remains challenging, primarily due to suboptimal immunogenicity and overcoming the immunosuppressive tumor microenvironment (TME). In this review, we discuss various elements of effective peptide vaccines, including antigen selection, peptide epitope optimization, vaccine adjuvants, and the combination of multiple immunotherapies, in addition to recent advances in tumor neoantigens as well as epitopes bound by non-classical human leukocyte antigen (HLA) molecules, to increase the understanding of cancer peptide vaccines and provide multiple references for the design of subsequent T cell-based peptide vaccines.
Collapse
Affiliation(s)
- Qingyang Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Peihua Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Jun Lei
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Laboratory Medicine, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Peng Bai
- In Vivo Pharmacology Unit, WuXi AppTec, Nantong, Jiangsu, China
| | - Peiluan Zhong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Min Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Pengcheng Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Mak LY, Boettler T, Gill US. HBV Biomarkers and Their Role in Guiding Treatment Decisions. Semin Liver Dis 2024; 44:474-491. [PMID: 39442530 DOI: 10.1055/a-2448-4157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Over 300 million individuals worldwide are chronically infected with hepatitis B virus and at risk for progressive liver disease. Due to the lack of a therapy that reliably achieves viral elimination and the variability of liver disease progression, treatment decisions are guided by the degree of liver disease and viral biomarkers as the viral life-cycle is well characterized and largely conserved between individuals. In contrast, the immunological landscape is much more heterogeneous and diverse and the measurement of its components is less well standardized. Due to the lack of a universal and easily measurable set of biomarkers, clinical practice guidelines remain controversial, aiming for a balance between simplifying treatment decisions by reducing biomarker requirements and using all available biomarkers to avoid overtreatment of patients with low risk for disease progression. While approved therapies such as nucleos(t)ide analogs improve patient outcomes, the inability to achieve a complete cure highlights the need for novel therapies. Since no treatment candidate has demonstrated universal efficacy, biomarkers will remain important for treatment stratification. Here, we summarize the current knowledge on virological and immunological biomarkers with a specific focus on how they might be beneficial in guiding treatment decisions in chronic hepatitis B.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tobias Boettler
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Upkar S Gill
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
6
|
Cheever A, Kang CC, O’Neill KL, Weber KS. Application of novel CAR technologies to improve treatment of autoimmune disease. Front Immunol 2024; 15:1465191. [PMID: 39445021 PMCID: PMC11496059 DOI: 10.3389/fimmu.2024.1465191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has become an important treatment for hematological cancers, and its success has spurred research into CAR T cell therapies for other diseases, including solid tumor cancers and autoimmune diseases. Notably, the development of CAR-based treatments for autoimmune diseases has shown great progress recently. Clinical trials for anti-CD19 and anti-BCMA CAR T cells in treating severe B cell-mediated autoimmune diseases, like systemic lupus erythematosus (SLE), have shown lasting remission thus far. CAR T cells targeting autoreactive T cells are beginning clinical trials for treating T cell mediated autoimmune diseases. Chimeric autoantigen receptor (CAAR) T cells specifically target and eliminate only autoreactive B cells, and they have shown promise in treating mucosal pemphigus vulgaris and MuSK myasthenia gravis. Regulatory CAR T cells have also been developed, which show potential in altering autoimmune affected areas by creating a protective barrier as well as helping decrease inflammation. These new treatments are only the beginning of potential CAR T cell applications in treating autoimmune disease. Novel CAR technologies have been developed that increase the safety, potency, specificity, and efficacy of CAR T cell therapy. Applying these novel modifications to autoimmune CARs has the potential to enhance the efficacy and applicability of CAR therapies to autoimmune disease. This review will detail several recently developed CAR technologies and discuss how their application to autoimmune disease will improve this emerging field. These include logic-gated CARs, soluble protein-secreting CARs, and modular CARs that enable CAR T cell therapies to be more specific, reach a wider span of target cells, be safer for patients, and give a more potent cytotoxic response. Applying these novel CAR technologies to the treatment of autoimmune diseases has the potential to revolutionize this growing application of CAR T cell therapies.
Collapse
|
7
|
Yue B, Gao Y, Hu Y, Zhan M, Wu Y, Lu L. Harnessing CD8 + T cell dynamics in hepatitis B virus-associated liver diseases: Insights, therapies and future directions. Clin Transl Med 2024; 14:e1731. [PMID: 38935536 PMCID: PMC11210506 DOI: 10.1002/ctm2.1731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Hepatitis B virus (HBV) infection playsa significant role in the etiology and progression of liver-relatedpathologies, encompassing chronic hepatitis, fibrosis, cirrhosis, and eventual hepatocellularcarcinoma (HCC). Notably, HBV infection stands as the primary etiologicalfactor driving the development of HCC. Given the significant contribution ofHBV infection to liver diseases, a comprehensive understanding of immunedynamics in the liver microenvironment, spanning chronic HBV infection,fibrosis, cirrhosis, and HCC, is essential. In this review, we focused on thefunctional alterations of CD8+ T cells within the pathogenic livermicroenvironment from HBV infection to HCC. We thoroughly reviewed the roles ofhypoxia, acidic pH, metabolic reprogramming, amino acid deficiency, inhibitory checkpointmolecules, immunosuppressive cytokines, and the gut-liver communication in shapingthe dysfunction of CD8+ T cells in the liver microenvironment. Thesefactors significantly impact the clinical prognosis. Furthermore, we comprehensivelyreviewed CD8+ T cell-based therapy strategies for liver diseases,encompassing HBV infection, fibrosis, cirrhosis, and HCC. Strategies includeimmune checkpoint blockades, metabolic T-cell targeting therapy, therapeuticT-cell vaccination, and adoptive transfer of genetically engineered CD8+ T cells, along with the combined usage of programmed cell death protein-1/programmeddeath ligand-1 (PD-1/PD-L1) inhibitors with mitochondria-targeted antioxidants.Given that targeting CD8+ T cells at various stages of hepatitis Bvirus-induced hepatocellular carcinoma (HBV + HCC) shows promise, we reviewedthe ongoing need for research to elucidate the complex interplay between CD8+ T cells and the liver microenvironment in the progression of HBV infection toHCC. We also discussed personalized treatment regimens, combining therapeuticstrategies and harnessing gut microbiota modulation, which holds potential forenhanced clinical benefits. In conclusion, this review delves into the immunedynamics of CD8+ T cells, microenvironment changes, and therapeuticstrategies within the liver during chronic HBV infection, HCC progression, andrelated liver diseases.
Collapse
Affiliation(s)
- Bing Yue
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yuxia Gao
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yi Hu
- Microbiology and Immunology DepartmentSchool of MedicineFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| |
Collapse
|
8
|
Gao M, Shi J, Xiao X, Yao Y, Chen X, Wang B, Zhang J. PD-1 regulation in immune homeostasis and immunotherapy. Cancer Lett 2024; 588:216726. [PMID: 38401888 DOI: 10.1016/j.canlet.2024.216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
Harnessing the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is pivotal in autoimmunity and cancer immunotherapy. PD-1 receptors on immune cells engage with one of its ligands, PD-L1 or PD-L2, expressed on antigen-presenting cells or tumor cells, driving T-cell dysfunction and tumor immune escape. Thus, targeting PD-1/PD-L1 revitalizes cytotoxic T cells for cancer elimination. However, a majority of cancer patients don't respond to PD-1/PD-L1 blockade, and the underlying mechanisms remain partially understood. Recent studies have revealed that PD-1 expression levels or modifications impact the effectiveness of anti-PD-1/PD-L1 treatments. Therefore, understanding the molecular mechanisms governing PD-1 expression and modifications is crucial for innovating therapeutic strategies to enhance the efficacy of PD-1/PD-L1 inhibition. This article presents a comprehensive overview of advancements in PD-1 regulation and highlights their potential in modulating immune homeostasis and cancer immunotherapy, aiming to refine clinical outcomes.
Collapse
Affiliation(s)
- Minling Gao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jie Shi
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiangling Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yingmeng Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xu Chen
- Chongqing University Medical School, Chongqing, 400044, China
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jinfang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
9
|
Yang X, Liao L, Liang Z, Yu S, Guo Z. Correlation Analysis of IL-17, IL-21, IL-23 with Non-Alcoholic Liver Fibrosis and Cirrhosis. J Inflamm Res 2024; 17:2327-2335. [PMID: 38651006 PMCID: PMC11033842 DOI: 10.2147/jir.s452061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Objective This research aimed to explore the involvement of interleukins (IL) - IL-6, IL-17, IL-21, and IL-23 - in the evolution and diagnosis of non-alcoholic liver fibrosis and cirrhosis. Methods The study subjects were selected from the patients who visited the Department of Hepatology of X Hospital in Y City from August 2021 to April 2023. Peripheral blood samples were collected. All participants were divided into liver fibrosis, cirrhosis, hepatitis, and healthy subjects four groups. IL-21, IL-17, IL23, IL-6 were detected by double antibody sandwich. Results The results showed that there was a significant difference in the levels of IL-17, IL-21, and IL-23 among the 4 groups (P<0.0001). ROC curve analysis showed that the AUC values of IL-17, IL-21 and liver fiber 4 items were >0.70, suggesting that the diagnostic efficacy of IL-17, IL-21 was similar to that of liver fiber 4 items. Spearman correlation analysis showed that IL-17 had a positive correlation with collagen type III N-peptide, type IV collagen, and Laminin (P < 0.05), and no correlation with Hyaluronic acid (P > 0.05). Conclusion IL-17, IL-21, and IL-23 play a pivotal role in the inflammatory pathways associated with liver injuries, establishing themselves as potent auxiliary diagnostic markers in identifying liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Laboratory Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, People’s Republic of China
| | - Liyin Liao
- Department of Laboratory Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, People’s Republic of China
| | - Zizhen Liang
- Department of Laboratory Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, People’s Republic of China
| | - Shenglong Yu
- Institute of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, People’s Republic of China
| | - Zhonghui Guo
- Department of Laboratory Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, People’s Republic of China
| |
Collapse
|
10
|
Wang L, Zeng X, Wang Z, Fang L, Liu J. Recent advances in understanding T cell activation and exhaustion during HBV infection. Virol Sin 2023; 38:851-859. [PMID: 37866815 PMCID: PMC10786656 DOI: 10.1016/j.virs.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major public health concern globally, and T cell responses are widely believed to play a pivotal role in mediating HBV clearance. Accordingly, research on the characteristics of HBV-specific T cell responses, from activation to exhaustion, has advanced rapidly. Here, we summarize recent developments in characterizing T cell immunity in HBV infection by reviewing basic and clinical research published in the last five years. We provide a comprehensive summary of the mechanisms that induce effective anti-HBV T cell immunity, as well as the latest developments in understanding T cell dysfunction in chronic HBV infection. Furthermore, we briefly discuss current novel treatment strategies aimed at restoring anti-HBV T cell responses.
Collapse
Affiliation(s)
- Lu Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqing Zeng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zida Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling Fang
- Central Sterile Supply Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Dimitriadis K, Katelani S, Pappa M, Fragkoulis GE, Androutsakos T. The Role of Interleukins in HBV Infection: A Narrative Review. J Pers Med 2023; 13:1675. [PMID: 38138902 PMCID: PMC10744424 DOI: 10.3390/jpm13121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a worldwide medical issue with significant morbidity and mortality, as it is the main cause of chronic liver disease and hepatocellular carcinoma (HCC). Both innate and adaptive immune responses play a key role in HBV replication and suppression. Recently, the pathophysiological function of interleukins (IL) in the natural course of HBV has gained much attention as a result of the broad use of anti-interleukin agents for a variety of autoimmune diseases and the accompanying risk of HBV reactivation. We present a narrative review regarding the role of IL in HBV infection. Collectively, the pro-inflammatory ILs, namely IL-1, IL-5, IL-6, IL-12 and IL-21, seem to play a critical role in the suppression of HBV replication. In contrast, the anti-inflammatory cytokines IL-10, IL-23 and IL-35 probably act as HBV replication enhancers, while IL-17 has been correlated with HBV-related liver injury. Interestingly enough, IL-2, IL-4 and IL-12 have been tried as therapeutic options against HBV infection with contradictory results. Lastly, the role of IL-22 remains largely ill defined, although preliminary data suggest that it may play a significant role in HBV replication, proliferation and subsequent liver damage.
Collapse
Affiliation(s)
- Konstantinos Dimitriadis
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.D.); (S.K.)
| | - Stamatia Katelani
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.D.); (S.K.)
| | - Maria Pappa
- First Department of Internal Medicine, Propaedeutic Clinic, “Laiko” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (G.E.F.)
| | - George E. Fragkoulis
- First Department of Internal Medicine, Propaedeutic Clinic, “Laiko” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (G.E.F.)
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.D.); (S.K.)
| |
Collapse
|
12
|
Hughson AL, Hannon G, Salama NA, Vrooman TG, Stockwell CA, Mills BN, Garrett-Larsen J, Qiu H, Katerji R, Benoodt L, Johnston CJ, Murphy JD, Kruger E, Ye J, Gavras NW, Keeley DC, Qin SS, Lesch ML, Muhitch JB, Love TMT, Calvi LM, Lord EM, Luheshi N, Elyes J, Linehan DC, Gerber SA. Local Delivery of SBRT and IL12 by mRNA Technology Overcomes Immunosuppressive Barriers to Eliminate Pancreatic Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564833. [PMID: 37961513 PMCID: PMC10635000 DOI: 10.1101/2023.10.30.564833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The immunosuppressive milieu in pancreatic cancer (PC) is a significant hurdle to treatments, resulting in survival statistics that have barely changed in 5 decades. Here we present a combination treatment consisting of stereotactic body radiation therapy (SBRT) and IL-12 mRNA lipid nanoparticles delivered directly to pancreatic murine tumors. This treatment was effective against primary and metastatic models, achieving cures in both settings. IL-12 protein concentrations were transient and localized primarily to the tumor. Depleting CD4 and CD8 T cells abrogated treatment efficacy, confirming they were essential to treatment response. Single cell RNA sequencing from SBRT/IL-12 mRNA treated tumors demonstrated not only a complete loss of T cell exhaustion, but also an abundance of highly proliferative and effector T cell subtypes. SBRT elicited T cell receptor clonal expansion, whereas IL-12 licensed these cells with effector function. This is the first report demonstrating the utility of SBRT and IL-12 mRNA in PC. Statement of significance This study demonstrates the use of a novel combination treatment consisting of radiation and immunotherapy in murine pancreatic tumors. This treatment could effectively treat local and metastatic disease, suggesting it may have the potential to treat a cancer that has not seen a meaningful increase in survival in 5 decades.
Collapse
|
13
|
Badshah Y, Shabbir M, Zafar S, Mussarat U, Ikram A, Javed S, Akhtar H. Impact of IL-12B Genetic Variants on Antiviral Treatment Response among Hepatitis B Patients in Pakistan. LIVERS 2023; 3:494-506. [DOI: 10.3390/livers3030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
HBV is a continuous major global health concern. Genetic factors of hosts are known to play a role in HBV infection outcomes. This study aimed to reveal the association of IL-12b 3′ UTR variant rs3212227 in HBV patients. Genotyping was performed using ARMS-PCR to detect IL-12b rs3212227 polymorphism. The patients were categorized into groups based on their response to the antiviral therapy. Group I: non-sustained virological response (NSR); Group II: sustained virological responders (SVR); and Group III: HBV-positive fresh cases. ALT levels were measured to evaluate liver function, and viral load was determined to evaluate viral infectivity among the study groups. The variant genotype CC was found to be significantly associated with the non-sustained virological response to the antiviral therapy (with a p-value of 0.0117; OR = 2.914; RR = 1.556). It was also determined that the genotype CC was the most prevalent genotype among both genders in the NSR group. Viral load was found to be 6-fold higher in Group III compared to Group I and Group II. The results suggest that genotype CC is the most prevalent genotype in the NSR groups, and it is associated with a poor response to antiviral therapy in Pakistani patients with HBV infection.
Collapse
Affiliation(s)
- Yasmin Badshah
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Maria Shabbir
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Sameen Zafar
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Uzma Mussarat
- Department of Pathology (Microbiology), Islamic International Medical College, Rawalpindi 46000, Pakistan
| | - Aamer Ikram
- Global Health Security Agenda (GHSA), Center for Disease Control (CDC), National Institute of Health (NIH), Islamabad 44000, Pakistan
| | - Sumbal Javed
- Global Health Security Agenda (GHSA), Center for Disease Control (CDC), National Institute of Health (NIH), Islamabad 44000, Pakistan
| | - Hashaam Akhtar
- Global Health Security Agenda (GHSA), Center for Disease Control (CDC), National Institute of Health (NIH), Islamabad 44000, Pakistan
| |
Collapse
|
14
|
Zeng G, Koffas A, Mak LY, Gill US, Kennedy PT. Utility of novel viral and immune markers in predicting HBV treatment endpoints: A systematic review of treatment discontinuation studies. JHEP Rep 2023; 5:100720. [PMID: 37138673 PMCID: PMC10149368 DOI: 10.1016/j.jhepr.2023.100720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/06/2023] [Indexed: 05/05/2023] Open
Abstract
Background & Aims Antivirals represent the mainstay of chronic hepatitis B treatment given their efficacy and tolerability, but rates of functional cure remain low during long-term therapy. Treatment discontinuation has emerged as a strategy to maintain partial cure and achieve functional cure in select patient groups. We aimed to evaluate how data from treatment discontinuation studies exploring novel viral and/or immune markers could be applied to the functional cure program. Methods Treatment discontinuation studies evaluating novel viral and/or immune markers were identified by a systematic search of the PubMed database through to October 30, 2022. Data extraction focused on information regarding novel markers, including identified cut-off levels, timing of measurement, and associated effect on study outcomes of virological relapse, clinical relapse, and HBsAg seroclearance. Results From a search of 4,492 citations, 33 studies comprising a minimum of 2,986 unique patients met the inclusion criteria. Novel viral markers, HBcrAg and HBV RNA, were demonstrated across most studies to be helpful in predicting off-therapy partial cure, with emerging evidence to support a link with functional cure. From novel immune marker studies, we observed that treatment discontinuation has the potential to trigger immune restoration, which may be associated with a transient virological relapse. To this end, these studies support the combination of virus-directing agents with immunomodulator therapies to induce two key steps underlying functional cure: viral antigen load reduction and restoration of the host immune response. Conclusions Patients with a favourable profile of novel viral and immune markers stand to benefit from a trial of antiviral treatment discontinuation alongside novel virus-directing agents with the aim of achieving functional cure without excessive risk of severe clinical relapse. Impact and implications Select patients with chronic hepatitis B undergoing nucleoside analogue therapy may benefit from a trial of treatment discontinuation, aiming to maintain partial cure and/or achieve functional cure. We propose a profile of novel viral and immune markers to identify patients who are likely to achieve these goals without excessive risk of hepatic decompensation. Furthermore, treatment discontinuation may also be considered as a therapeutic strategy to trigger immune restoration, which may increase the chance of functional cure when used in conjunction with novel virus-directing agents.
Collapse
Affiliation(s)
- Georgia Zeng
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Sydney, Australia
| | - Apostolos Koffas
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Lung-Yi Mak
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Upkar S. Gill
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Patrick T.F. Kennedy
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Corresponding author. Address: Department of Immunobiology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Adugna A. Antigen Recognition and Immune Response to Acute and Chronic Hepatitis B Virus Infection. J Inflamm Res 2023; 16:2159-2166. [PMID: 37223107 PMCID: PMC10202203 DOI: 10.2147/jir.s411492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
The antigen recognition and immune response to acute and chronic hepatitis B virus (HBV) infections are the result of both the innate and adaptive immune response. The innate immune response comprises Dendritic Cells (DCs), which served as professional antigen-presenting cells and a bridge between innate and adaptive immunity, Kupffer cells and inflammatory monocytes for the continuous inflammation of hepatocyte, neutrophils for hepatic tissue damage due to acute inflammation, type I interferons (IFN), which induce an antiviral state on infected cells, directs natural killer (NK) cells to kill virally infected cells, reduces the population of infected cells, and promotes the effective maturation and site recruitment of adaptive immunity through the production of pro-inflammatory cytokines and chemokines. Through stimulating B cells, T-helper, and cytotoxic T cells, the adaptive immune system also protects against hepatitis B infection. During HBV infection, a network of cell types that can either play protective or harmful functions creates the anti-viral adaptive immune response. These many elements, such as Cluster of differentiation four (CD4) T cells (traditionally known as helper T cells), are potent cytokine producers and necessary for the effective maturation of effector cytotoxic cluster of differentiation eight (CD8) T cells and B cell antibody production. By cytolytic and non-cytolytic processes, CD8 T cells are able to eliminate HBV-infected hepatocytes and directly detect virus-infected cells, and circulating CD4+ CD25+ regulatory T cells for the modulation of immune system. In order to avoid reinfection, B cells can produce antibodies that destroy free viral particles. Moreover, by presenting HBV antigens to helper T cells, B cells may also influence how well these cells operate.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Microbiology, Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
16
|
Klein S, Mischke J, Beruldsen F, Prinz I, Antunes DA, Cornberg M, Kraft ARM. Individual Epitope-Specific CD8 + T Cell Immune Responses Are Shaped Differently during Chronic Viral Infection. Pathogens 2023; 12:pathogens12050716. [PMID: 37242386 DOI: 10.3390/pathogens12050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
A hallmark in chronic viral infections are exhausted antigen-specific CD8+ T cell responses and the inability of the immune system to eliminate the virus. Currently, there is limited information on the variability of epitope-specific T cell exhaustion within one immune response and the relevance to the T cell receptor (TCR) repertoire. The aim of this study was a comprehensive analysis and comparison of three lymphocytic choriomeningitis virus (LCMV) epitope-specific CD8+ T cell responses (NP396, GP33 and NP205) in a chronic setting with immune intervention, e.g., immune checkpoint inhibitor (ICI) therapy, in regard to the TCR repertoire. These responses, though measured within the same mice, were individual and independent from each other. The massively exhausted NP396-specific CD8+ T cells revealed a significantly reduced TCR repertoire diversity, whereas less-exhausted GP33-specific CD8+ T cell responses were rather unaffected by chronicity in regard to their TCR repertoire diversity. NP205-specific CD8+ T cell responses showed a very special TCR repertoire with a prominent public motif of TCR clonotypes that was present in all NP205-specific responses, which separated this from NP396- and GP33-specific responses. Additionally, we showed that TCR repertoire shifts induced by ICI therapy are heterogeneous on the epitope level, by revealing profound effects in NP396-, less severe and opposed effects in NP205-, and minor effects in GP33-specific responses. Overall, our data revealed individual epitope-specific responses within one viral response that are differently affected by exhaustion and ICI therapy. These individual shapings of epitope-specific T cell responses and their TCR repertoires in an LCMV mouse model indicates important implications for focusing on epitope-specific responses in future evaluations for therapeutic approaches, e.g., for chronic hepatitis virus infections in humans.
Collapse
Affiliation(s)
- Sebastian Klein
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
| | - Jasmin Mischke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
| | - Finn Beruldsen
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Eppendorf, 20251 Hamburg, Germany
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Dinler A Antunes
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), 30625 Hannover, Germany
- Centre for Individualised Infection Medicine (CIIM), c/o CRC Hannover, 30625 Hannover, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), 30625 Hannover, Germany
- Centre for Individualised Infection Medicine (CIIM), c/o CRC Hannover, 30625 Hannover, Germany
| |
Collapse
|
17
|
Khan N, Almajed MR, Fitzmaurice MG, Jafri SM. Developments in pharmacotherapeutic agents for hepatitis B - how close are we to a functional cure? Expert Opin Pharmacother 2023; 24:1001-1011. [PMID: 37163255 DOI: 10.1080/14656566.2023.2211259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
INTRODUCTION Hepatitis B virus (HBV) remains a public health concern given its global prevalence and potential complications including hepatocellular carcinoma (HCC). Current therapies, including nucleos(t)ide analogs (NA) and interferons (IFN), are effective in chronic treatment of HBV but rarely provide a functional cure due to inadequate host response and the presence of viral DNA. Therefore, novel therapies that enhance the innate immune response while suppressing DNA transcription may provide definitive treatment of HBV. AREAS COVERED In this review, the authors provide a brief overview of commonly used agents and their efficacy in treatment of HBV. Newer therapies with direct antiviral agents such as bepirovirsen (antisense oligonucleotide (ASO)) and entry inhibitors such as bulevirtide have shown efficacy in reducing viral load but demonstrate further reductions in conjunction with immune modulators such as therapeutic vaccines. EXPERT OPINION Combination therapy is far superior to monotherapy alone, necessitating the need for both immunomodulators and direct antiviral agents in chronic treatment of HBV. Therapies that target covalently closed circular (cccDNA) with immunomodulators like therapeutic vaccines have shown promising results and may ultimately achieve functional cure. However, therapies need to be evaluated in the context of the patient, considering both financial and socioeconomic factors.
Collapse
Affiliation(s)
- Naoshin Khan
- Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| | - Mohamed Ramzi Almajed
- Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| | - Mary Grace Fitzmaurice
- Pharmacy Department and Transplant Institute, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| | - Syed-Mohammed Jafri
- Division of Gastroenterology and Hepatology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| |
Collapse
|
18
|
Jin SM, Yoo YJ, Shin HS, Kim S, Lee SN, Lee CH, Kim H, Kim JE, Bae YS, Hong J, Noh YW, Lim YT. A nanoadjuvant that dynamically coordinates innate immune stimuli activation enhances cancer immunotherapy and reduces immune cell exhaustion. NATURE NANOTECHNOLOGY 2023; 18:390-402. [PMID: 36635335 DOI: 10.1038/s41565-022-01296-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Although conventional innate immune stimuli contribute to immune activation, they induce exhausted immune cells, resulting in suboptimal cancer immunotherapy. Here we suggest a kinetically activating nanoadjuvant (K-nanoadjuvant) that can dynamically integrate two waves of innate immune stimuli, resulting in effective antitumour immunity without immune cell exhaustion. The combinatorial code of K-nanoadjuvant is optimized in terms of the order, duration and time window between spatiotemporally activating Toll-like receptor 7/8 agonist and other Toll-like receptor agonists. K-nanoadjuvant induces effector/non-exhausted dendritic cells that programme the magnitude and persistence of interleukin-12 secretion, generate effector/non-exhausted CD8+ T cells, and activate natural killer cells. Treatment with K-nanoadjuvant as a monotherapy or in combination therapy with anti-PD-L1 or liposomes (doxorubicin) results in strong antitumour immunity in murine models, with minimal systemic toxicity, providing a strategy for synchronous and dynamic tailoring of innate immunity for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yeon Jeong Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hong Sik Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sohyun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Nam Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chang Hoon Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyunji Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung-Eun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - JungHyub Hong
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Young-Woock Noh
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
19
|
Chen X, Liu X, Jiang Y, Xia N, Liu C, Luo W. Abnormally primed CD8 T cells: The Achilles' heel of CHB. Front Immunol 2023; 14:1106700. [PMID: 36936922 PMCID: PMC10014547 DOI: 10.3389/fimmu.2023.1106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a significant public health challenge, and more than 250 million people around world are infected with HBV. The clearance of HBV with virus-specific CD8 T cells is critical for a functional cure. However, naïve HBV-specific CD8 T cells are heavily hindered during the priming process, and this phenomenon is closely related to abnormal cell and signal interactions in the complex immune microenvironment. Here, we briefly summarize the recent progress in understanding the abnormal priming of HBV-specific CD8 T cells and some corresponding immunotherapies to facilitate their functional recovery, which provides a novel perspective for the design and development of immunotherapy for chronic HBV infection (CHB). Finally, we also highlight the balance between viral clearance and pathological liver injury induced by CD8 T-cell activation that should be carefully considered during drug development.
Collapse
Affiliation(s)
- Xiaoqing Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- The Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| |
Collapse
|
20
|
Corkum CP, Wiede LL, Ruble CLA, Qiu J, Mulrooney-Cousins PM, Steeves MA, Watson DE, Michalak TI. Identification of antibodies cross-reactive with woodchuck immune cells and activation of virus-specific and global cytotoxic T cell responses by anti-PD-1 and anti-PD-L1 in experimental chronic hepatitis B and persistent occult hepadnaviral infection. Front Microbiol 2022; 13:1011070. [PMID: 36560951 PMCID: PMC9764628 DOI: 10.3389/fmicb.2022.1011070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Woodchuck (Marmota monax) infected with woodchuck hepatitis virus (WHV) is the most pathogenically compatible naturally occurring model of human hepatitis B virus (HBV) infection, chronic hepatitis B, and HBV-induced hepatocellular carcinoma. This system plays a crucial role in discovery and preclinical evaluation of anti-HBV therapies. Its utilization remains tempered by the relatively narrow range of validated immunologic and molecular tools. We evaluated commercial antibodies against immune cell phenotypic markers and T cell molecules for cross-reactivity with woodchuck antigenic equivalents. The confirmed antibodies against programed cell death protein-1 (PD-1) and its ligand (PD-L1) were examined for ex vivo ability to activate WHV-specific, global and bystander cytotoxic T cells (CTLs) in chronic hepatitis and asymptomatic infection persisting after self-resolved acute hepatitis. Examination of 65 antibodies led to identification or confirmation of 23 recognizing woodchuck T, regulatory T, B and natural killer cells, T cell-associated PD-1, PD-L1, CTLA-4 and TIM-3 molecules, CD25 and CD69 markers of T cell activation, and interferon gamma (IFNγ). Antibodies against woodchuck PD-1 and PD-L1 triggered in vitro highly individualized WHV-specific and global activation of CTLs in both chronic hepatitis and persistent occult infection. WHV-specific CTLs were more robustly augmented by anti-PD-1 than by anti-PD-L1 in chronic hepatitis, while global IFNγ-positive CTL response was significantly suppressed in chronic hepatitis compared to persistent occult infection. Anti-PD-1 and anti-PD-L1 also occasionally activated CTLs to specificities other than those tested suggesting their potency to trigger side effects. This was particularly apparent when T cells from chronic hepatitis were treated with anti-PD-L1. The current findings indicate that inhibition of the PD-1/PD-L1 pathway could reactivate virus-specific and global T cell responses in both chronic hepatitis and asymptomatic persistent infection. They suggest a mechanism of potential reactivation of clinically silent infection during anti-PD-1/PD-L1 treatment and indicate that this therapy may also subdue occult HBV infection.
Collapse
Affiliation(s)
- Christopher P. Corkum
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Louisa L. Wiede
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Cara L.-A. Ruble
- Lilly Research Laboratories, Elli Lilly and Company, Indianapolis, IN, United States
| | - Jiabin Qiu
- Lilly Research Laboratories, Elli Lilly and Company, Indianapolis, IN, United States
| | - Patricia M. Mulrooney-Cousins
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Meredith A. Steeves
- Non-Clinical Safety Assessment, Toxicology, Elli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - David E. Watson
- Lilly Research Laboratories, Elli Lilly and Company, Indianapolis, IN, United States
| | - Tomasz I. Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada,*Correspondence: Tomasz I. Michalak,
| |
Collapse
|
21
|
Tian L, Zhou W, Wu X, Hu Z, Qiu L, Zhang H, Chen X, Zhang S, Lu Z. CTLs: Killers of intracellular bacteria. Front Cell Infect Microbiol 2022; 12:967679. [PMID: 36389159 PMCID: PMC9645434 DOI: 10.3389/fcimb.2022.967679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/12/2022] [Indexed: 09/10/2023] Open
Abstract
Many microbial pathogens have evolved a range of capabilities to evade host immune defense mechanisms and to survive and multiply in host cells. The presence of host intracellular bacteria makes it difficult for specific antibodies to function. After the intracellular bacteria escape the attack of the innate immune system, such as phagocytes, they survive in cells, and then adaptive immunity comes into play. Cytotoxic T lymphocytes (CTLs) play an important role in eliminating intracellular bacteria. The regulation of key transcription factors could promote CD4+/CD8+ T cells to acquire cytolytic ability. The TCR-CD3 complex transduces activation signals generated by TCR recognition of antigen and promotes CTLs to generate multiple pathways to kill intracellular bacteria. In this review, the mechanism of CD4/CD8 CTLs differentiation and how CD4/CD8 CTLs kill intracellular bacteria are introduced. In addition, their application and prospects in the treatment of bacterial infections are discussed.
Collapse
Affiliation(s)
- Li Tian
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhou
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianwei Wu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhuannan Hu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Qiu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyong Zhang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shaoyan Zhang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenhui Lu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Xia Y, Gao B, Zhang X. Targeting mitochondrial quality control of T cells: Regulating the immune response in HCC. Front Oncol 2022; 12:993437. [PMID: 36212470 PMCID: PMC9539266 DOI: 10.3389/fonc.2022.993437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Most of the primary hepatocellular carcinoma (HCC) develops from Viral Hepatitis including Hepatitis B virus, Hepatitis C Virus, and Nonalcoholic Steatohepatitis. Herein, T cells play crucial roles combined with chronic inflammation and chronic viral infection. However, T cells are gradually exhausted under chronic antigenic stimulation, which leads to T cell exhaustion in the tumor microenvironment, and the exhaustion is associated with mitochondrial dysfunction in T cells. Meanwhile, mitochondria play a crucial role in altering T cells’ metabolism modes to achieve desirable immunological responses, wherein mitochondria maintain quality control (MQC) and promote metabolism regulation in the microenvironment. Although immune checkpoint inhibitors have been widely used in clinical practice, there are some limitations in the therapeutic effect, thus combining immune checkpoint inhibitors with targeting mitochondrial biogenesis may enhance cellular metabolic adaptation and reverse the exhausted state. At present, several studies on mitochondrial quality control in HCC have been reported, however, there are gaps in the regulation of immune cell function by mitochondrial metabolism, particularly the modulating of T cell immune function. Hence, this review summarizes and discusses existing studies on the effects of MQC on T cell populations in liver diseases induced by HCC, it would be clued by mitochondrial quality control events.
Collapse
Affiliation(s)
- Yixue Xia
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
| | - Binghong Gao
- School of Elite Sport, Shanghai University of Sport, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- *Correspondence: Binghong Gao, ; Xue Zhang,
| | - Xue Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Elite Sport, Shanghai University of Sport, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- *Correspondence: Binghong Gao, ; Xue Zhang,
| |
Collapse
|
23
|
Serum Interleukins as Potential Prognostic Biomarkers in HBV-Related Acute-on-Chronic Liver Failure. Mediators Inflamm 2022; 2022:7794890. [PMID: 36117587 PMCID: PMC9477565 DOI: 10.1155/2022/7794890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is relatively common in China and has complex pathogenesis, difficult clinical treatment, and poor prognosis. Immune status is an important factor affecting ACLF prognosis. Interleukins are a family of secreted lymphocyte factors that interact with a host of cell types including immune cells. These signaling molecules play important roles in transmitting information; regulating immune cells; mediating the activation, proliferation, and differentiation of T and B cells; and modulating inflammatory responses. Many studies have investigated the correlation between interleukin expression and the prognosis of HBV-ACLF. This review focuses on the potential use of interleukins as prognostic biomarkers in HBV-ACLF. References were mainly identified through PubMed and CNKI search, including relevant studies published until December 2021. We have summarized reports of several promising diagnostic interleukin biomarkers that predict susceptibility to HBV-ACLF. The use of biomarkers to understand early prognosis can help devise different therapeutic measures and improve patient survival. Ongoing research on prognostic biomarkers of HBV-ACLF is promising, and future preclinical and clinical studies are warranted.
Collapse
|
24
|
Tan YC, Lee GH, Huang DQ, Lim SG. Future anti-HDV treatment strategies, including those aimed at HBV functional cure. Liver Int 2022; 43:1157-1169. [PMID: 35946084 DOI: 10.1111/liv.15387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 02/13/2023]
Abstract
HDV is a defective virus that uses the HBV surface antigen to enter hepatocytes. It is associated with an accelerated course of liver fibrosis progression and an increased risk of hepatocellular carcinoma. Negative HDV RNA 24 weeks after the end of therapy has been proposed as an endpoint but late relapses make this endpoint suboptimal, hence HBsAg loss appears to be more appropriate. Current HBV antiviral agents have poor activity against HDV hence the search for improved therapy. Drugs only active against HDV, such as lonafarnib, have shown efficacy in combination with nucleoside analogues and peginterferon, but do not lead to HBsAg loss. HBsAg loss sustained 24 weeks after the end of therapy with negative HBV DNA is termed functional cure. Agents that are being investigated for functional cure include those that inhibit replication such as entry inhibitors, polymerase inhibitors and capsid assembly modulators but seldom lead to functional cure. Agents that reduce HBV antigen load such as RNA interference and inhibitors of HBsAg secretion are promising. Immunomodulators on their own seldom achieve functional cure, hence these agents in combination to assess the optimal combination are being investigated. Consequently, agents leading to functional cure of HBV are ideal for both HBV and HDV.
Collapse
Affiliation(s)
- Yong Chuan Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Guan Huei Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Seng Gee Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Health System, Singapore
| |
Collapse
|
25
|
Du Y, Wu J, Liu J, Zheng X, Yang D, Lu M. Toll-like receptor-mediated innate immunity orchestrates adaptive immune responses in HBV infection. Front Immunol 2022; 13:965018. [PMID: 35967443 PMCID: PMC9372436 DOI: 10.3389/fimmu.2022.965018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains to be a substantial global burden, especially for end-stage liver diseases. It is well accepted that HBV-specific T and B cells are essential for controlling HBV infection. Toll-like receptors (TLRs) represent one of the major first-line antiviral defenses through intracellular signaling pathways that induce antiviral inflammatory cytokines and interferons, thereby shaping adaptive immunity. However, HBV has evolved strategies to counter TLR responses by suppressing the expression of TLRs and blocking the downstream signaling pathways, thus limiting HBV-specific adaptive immunity and facilitating viral persistence. Recent studies have stated that stimulation of the TLR signaling pathway by different TLR agonists strengthens host innate immune responses and results in suppression of HBV replication. In this review, we will discuss how TLR-mediated responses shape HBV-specific adaptive immunity as demonstrated in different experimental models. This information may provide important insight for HBV functional cure based on TLR agonists as immunomodulators.
Collapse
Affiliation(s)
- Yanqin Du
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Mengji Lu,
| |
Collapse
|
26
|
Fung S, Choi HSJ, Gehring A, Janssen HLA. Getting to HBV cure: The promising paths forward. Hepatology 2022; 76:233-250. [PMID: 34990029 DOI: 10.1002/hep.32314] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
Chronic HBV infection is a global public health burden estimated to impact nearly 300 million persons worldwide. Despite the advent of potent antiviral agents that effectively suppress viral replication, HBV cure remains difficult to achieve because of the persistence of covalently closed circular DNA (cccDNA), HBV-DNA integration into the host genome, and impaired immune response. Indefinite treatment is necessary for most patients to maintain level of viral suppression. The success of direct-acting antivirals (DAAs) for hepatitis C treatment has rejuvenated the search for a cure for chronic hepatitis B (CHB), though an HBV cure likely requires an additional layer: immunomodulators for restoration of robust immune responses. DAAs such as entry inhibitors, capsid assembly modulators, inhibitors of subviral particle release, cccDNA silencers, and RNA interference molecules have reached clinical development. Immunomodulators, namely innate immunomodulators (Toll-like receptor agonists), therapeutic vaccines, checkpoint inhibitors, and monoclonal antibodies, are also progressing toward clinical development. The future of the HBV cure possibly lies in triple combination therapies with concerted action on replication inhibition, antigen reduction, and immune stimulation. Many obstacles remain, such as overcoming translational failures, choosing the right endpoint using the right biomarkers, and leveraging current treatments in combination regimens to enhance response rates. This review gives an overview of the current therapies for CHB, HBV biomarkers used to evaluate treatment response, and development of DAAs and immune-targeting drugs and discusses the limitations and unanswered questions on the journey to an HBV cure.
Collapse
Affiliation(s)
- Scott Fung
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Hannah S J Choi
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Adam Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Kuipery A, Sanchez Vasquez JD, Mehrotra A, Feld JJ, Janssen HLA, Gehring AJ. Immunomodulation and RNA interference alter hepatitis B virus-specific CD8 T-cell recognition of infected HepG2-NTCP. Hepatology 2022; 75:1539-1550. [PMID: 34743340 DOI: 10.1002/hep.32230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/13/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS CD8 T cells are essential in controlling HBV infection. Viral control is dependent on efficient recognition of HBV-infected hepatocytes by CD8 T cells, which can induce direct lysis of infected hepatocytes. In addition, CD8 T cells produce interferon (IFN)-γ, which mediates noncytopathic viral clearance. Innate immunomodulators and HBV-targeted RNA interference (RNAi) are being developed to treat chronic hepatitis B (CHB), but may modify HBV antigen presentation and impact CD8 T-cell recognition, in addition to their primary mechanisms of action. APPROACH AND RESULTS HBV-infected HepG2-NTCP cells were treated with tenofovir disoproxil fumarate (TDF), Toll-like receptor (TLR) 7/8 agonists, TLR7/8 conditioned media (CM) collected from immune cells, or RNAi using short interfering RNAs. The effect of these treatments on antigen presentation was measured through coculture with CD8 T cells recognizing human leukocyte antigen-A0201 restricted epitopes, HBc18-27 or HBs183-191. Cytokine profiles of TLR7/8 CM were measured using a cytometric bead array. TDF reduced viral replication, but not CD8 T-cell recognition, of infected cells. Direct exposure of infected HepG2-NTCP to TLR7/8 agonists had no impact on T-cell recognition. Exposure of infected HepG2-NTCP to TLR7/8 CM enhanced HBV-specific CD8 T-cell recognition through type 1 interferon (IFN) and IFN-γ-dependent mechanisms. RNAi rapidly suppressed HBV-DNA, HBcAg, and HBsAg expression, impairing recognition by HBV-specific CD8 T cells. CONCLUSIONS Immunomodulation and RNAi, but not nucleos(t)ide analogues, alter the recognition of infected HepG2-NTCP by HBV-specific CD8 T cells. Understanding these changes will inform combination treatments for CHB.
Collapse
Affiliation(s)
- Adrian Kuipery
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Juan Diego Sanchez Vasquez
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Aman Mehrotra
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Jordan J Feld
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Harry L A Janssen
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Adam J Gehring
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
28
|
Zhu L, Li J, Xu J, Chen F, Wu X, Zhu C. Significance of T-Cell Subsets for Clinical Response to Peginterferon Alfa-2a Therapy in HBeAg-Positive Chronic Hepatitis B Patients. Int J Gen Med 2022; 15:4441-4451. [PMID: 35509606 PMCID: PMC9058244 DOI: 10.2147/ijgm.s356696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction The adaptive immune response may reflect the immunomodulatory efficacy during peginterferon alfa-2a (PEG-IFN α-2a) treatment in chronic hepatitis B (CHB) patients. We evaluated the predictive efficiency of T-cell subsets on patient's response to PEG-IFN α-2a treatment. Methods The proportions of CD8+PD-1+, CD8+Tim-3+ and CD4+CD25high T-cells were measured at baseline and week 52 in CHB patients who underwent PEG-IFN α-2a treatment. The proportions of T-cell subsets were compared among different responders and non-responders (determined by biochemical, serological, and virological responses). Results The baseline proportions of the three T-cell subsets were significantly higher in CHB patients (65 cases) than in healthy controls (28 cases), while the proportions declined significantly after 52 weeks of PEG-IFN treatment. Responders (ALT < 40 IU/L, 89.2% [58/65]; HBV DNA < 2.7 log10 IU/ml, 66.2% [43/65]; and HBeAg seroconversion [SR], 53.9% [35/65]) experienced more pronounced declines in the proportion of T-cell subsets compared to non-responders. In particular, the baseline proportions of CD4+CD25high T-cells displayed significant difference between SR and non-SR groups. The stepwise logistic regression analysis identified that CD4+CD25high T-cells combined with baseline HBV DNA and ALT can predict SR and CR (ALT < 40 IU/L, HBV DNA < 2.7 log10 IU/mL and HBeAg seroconversion) after 52 weeks of PEG-IFN treatment with high accuracy. Conclusion PEG-IFN therapy induces significant declines in the proportion of some key T-cell subsets in HBeAg-positive patients. The model constructed with CD4+CD25high T-cells combined with ATL and HBV DNA may help to predict the efficacy of PEG-IFN α-2a therapy.
Collapse
Affiliation(s)
- Li Zhu
- Department of Infectious Diseases, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Department of Hepatology, the Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Department of Hepatology, the Fifth People’s Hospital of Suzhou, Suzhou, Jiangsu, People’s Republic of China
| | - Jin Li
- Central Laboratory, the Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Central Laboratory, the Fifth People’s Hospital of Suzhou, Suzhou, Jiangsu, People’s Republic of China
| | - Junchi Xu
- Central Laboratory, the Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Central Laboratory, the Fifth People’s Hospital of Suzhou, Suzhou, Jiangsu, People’s Republic of China
| | - Fan Chen
- Department of Hepatology, the Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Department of Hepatology, the Fifth People’s Hospital of Suzhou, Suzhou, Jiangsu, People’s Republic of China
| | - Xunxun Wu
- Department of Hepatology, the Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Department of Hepatology, the Fifth People’s Hospital of Suzhou, Suzhou, Jiangsu, People’s Republic of China
| | - Chuanwu Zhu
- Department of Infectious Diseases, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Department of Hepatology, the Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Department of Hepatology, the Fifth People’s Hospital of Suzhou, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
29
|
Baroiu L, Anghel L, Tatu A, Iancu A, Dumitru C, Leșe AC, Drăgănescu M, Năstase F, Niculeț E, Fotea S, Nechita A, Voinescu D, Stefanopol A. Risk of hepatitis B reactivation: From biologic therapies for psoriasis to immunosuppressive therapies for COVID‑19 (Review). Exp Ther Med 2022; 23:385. [PMID: 35495599 PMCID: PMC9019722 DOI: 10.3892/etm.2022.11312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
The cytokine storm from the evolution of severe cases of COVID-19, requiring strong immunosuppressive therapies, has raised the issue of reactivation of hepatitis B virus (HBV) infections in these patients. An analysis of the first observational studies in patients with COVID-19 and immunosuppressive therapy and HBV infection along with special clinical cases was presented, as well as personal experience on a series of cases (a group of 958 patients with COVID-19), compared with the analysis of studies performed on patients with HBV infection that underwent biological therapies for psoriasis and personal experience (a group of 81 psoriasis patients treated with biological therapies). Clinical studies have revealed that HBV reactivation in patients undergoing biological therapies for psoriasis, can be prevented with monitoring and treatment protocols and thus, these therapies have been demonstrated to be safe and effective. In COVID-19, immunosuppressive therapies are short-lived but in high doses, and the conclusions of clinical trials are contradictory, but there are published cases of HBV reactivation, which requires a unitary attitude in the prevention of HBV reactivation in these patients. An algorithm was presented for monitoring and treatment of HBV infection for patients with psoriasis treated with biological therapy and the conditions when this protocol can be used for patients with COVID-19 and immunosuppressive therapy.
Collapse
Affiliation(s)
- Liliana Baroiu
- Department of Clinical Medicine, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800216 Galati, Romania
| | - Lucreția Anghel
- Department of Clinical Medicine, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800216 Galati, Romania
| | - Alin Tatu
- Department of Clinical Medicine, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800216 Galati, Romania
| | - Alina Iancu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800216 Galati, Romania
| | - Caterina Dumitru
- Department of Laboratory Medicine, ‘Sf. Cuv. Parascheva’ Clinical Infectious Diseases Hospital, 800179 Galati, Romania
| | - Ana-Cristina Leșe
- Faculty of Visual Arts and Design, ‘George Enescu’ National University of Arts, 700451 Iasi, Romania
| | - Miruna Drăgănescu
- Department of Clinical Medicine, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800216 Galati, Romania
| | - Florentina Năstase
- Department of Neuropsychomotor Rehabilitation, ‘Sf. Ioan’ Clinical Hospital for Children, 800487 Galati, Romania
| | - Elena Niculeț
- Multidisciplinary Integrated Center of Dermatological Interface Research, ‘Dunărea de Jos’ University, 800008 Galați, Romania
| | - Silvia Fotea
- Department of Clinical Medicine, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800216 Galati, Romania
| | - Aurel Nechita
- Department of Clinical Medicine, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800216 Galati, Romania
| | - Doina Voinescu
- Department of Clinical Medicine, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800216 Galati, Romania
| | - Anca Stefanopol
- Multidisciplinary Integrated Center of Dermatological Interface Research, ‘Dunărea de Jos’ University, 800008 Galați, Romania
| |
Collapse
|
30
|
Zhao HJ, Hu YF, Han QJ, Zhang J. Innate and adaptive immune escape mechanisms of hepatitis B virus. World J Gastroenterol 2022; 28:881-896. [PMID: 35317051 PMCID: PMC8908287 DOI: 10.3748/wjg.v28.i9.881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/09/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is an international health problem with extremely high mortality and morbidity rates. Although current clinical chronic hepatitis B (CHB) treatment strategies can partly inhibit and eliminate HBV, viral breakthrough may result due to non-adherence to treatment, the emergence of viral resistance, and a long treatment cycle. Persistent CHB infection arises as a consequence of complex interactions between the virus and the host innate and adaptive immune systems. Therefore, understanding the immune escape mechanisms involved in persistent HBV infection is important for designing novel CHB treatment strategies to clear HBV and achieve long-lasting immune control. This review details the immunological and biological characteristics and escape mechanisms of HBV and the novel immune-based therapies that are currently used for treating HBV.
Collapse
Affiliation(s)
- Hua-Jun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Fei Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Qiu-Ju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
31
|
Zaki MYW, Fathi AM, Samir S, Eldafashi N, William KY, Nazmy MH, Fathy M, Gill US, Shetty S. Innate and Adaptive Immunopathogeneses in Viral Hepatitis; Crucial Determinants of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:1255. [PMID: 35267563 PMCID: PMC8909759 DOI: 10.3390/cancers14051255] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
Viral hepatitis B (HBV) and hepatitis C (HCV) infections remain the most common risk factors for the development of hepatocellular carcinoma (HCC), and their heterogeneous distribution influences the global prevalence of this common type of liver cancer. Typical hepatitis infection elicits various immune responses within the liver microenvironment, and viral persistence induces chronic liver inflammation and carcinogenesis. HBV is directly mutagenic but can also cause low-grade liver inflammation characterized by episodes of intermittent high-grade liver inflammation, liver fibrosis, and cirrhosis, which can progress to decompensated liver disease and HCC. Equally, the absence of key innate and adaptive immune responses in chronic HCV infection dampens viral eradication and induces an exhausted and immunosuppressive liver niche that favors HCC development and progression. The objectives of this review are to (i) discuss the epidemiological pattern of HBV and HCV infections, (ii) understand the host immune response to acute and chronic viral hepatitis, and (iii) explore the link between this diseased immune environment and the development and progression of HCC in preclinical models and HCC patients.
Collapse
Affiliation(s)
- Marco Y. W. Zaki
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Ahmed M. Fathi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Samara Samir
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Nardeen Eldafashi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Kerolis Y. William
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo 12613, Egypt;
| | - Maiiada Hassan Nazmy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Upkar S. Gill
- Barts Liver Centre, Centre for Immunobiology, Barts & The London School of Medicine & Dentistry, QMUL, London E1 2AT, UK;
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
32
|
Titov A, Kaminskiy Y, Ganeeva I, Zmievskaya E, Valiullina A, Rakhmatullina A, Petukhov A, Miftakhova R, Rizvanov A, Bulatov E. Knowns and Unknowns about CAR-T Cell Dysfunction. Cancers (Basel) 2022; 14:1078. [PMID: 35205827 PMCID: PMC8870103 DOI: 10.3390/cancers14041078] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy using chimeric antigen receptor (CAR) T cells is a promising option for cancer treatment. However, T cells and CAR-T cells frequently become dysfunctional in cancer, where numerous evasion mechanisms impair antitumor immunity. Cancer frequently exploits intrinsic T cell dysfunction mechanisms that evolved for the purpose of defending against autoimmunity. T cell exhaustion is the most studied type of T cell dysfunction. It is characterized by impaired proliferation and cytokine secretion and is often misdefined solely by the expression of the inhibitory receptors. Another type of dysfunction is T cell senescence, which occurs when T cells permanently arrest their cell cycle and proliferation while retaining cytotoxic capability. The first section of this review provides a broad overview of T cell dysfunctional states, including exhaustion and senescence; the second section is focused on the impact of T cell dysfunction on the CAR-T therapeutic potential. Finally, we discuss the recent efforts to mitigate CAR-T cell exhaustion, with an emphasis on epigenetic and transcriptional modulation.
Collapse
Affiliation(s)
- Aleksei Titov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, 125167 Moscow, Russia
| | - Yaroslav Kaminskiy
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, 125167 Moscow, Russia
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexey Petukhov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Institute of Hematology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia
| | - Regina Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
33
|
Dudek M, Lohr K, Donakonda S, Baumann T, Lüdemann M, Hegenbarth S, Dübbel L, Eberhagen C, Michailidou S, Yassin A, Prinz M, Popper B, Rose-John S, Zischka H, Knolle PA. IL-6-induced FOXO1 activity determines the dynamics of metabolism in CD8 T cells cross-primed by liver sinusoidal endothelial cells. Cell Rep 2022; 38:110389. [PMID: 35172161 DOI: 10.1016/j.celrep.2022.110389] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/16/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are liver-resident antigen (cross)-presenting cells that generate memory CD8 T cells, but metabolic properties of LSECs and LSEC-primed CD8 T cells remain understudied. Here, we report that high-level mitochondrial respiration and constitutive low-level glycolysis support LSEC scavenger and sentinel functions. LSECs fail to increase glycolysis and co-stimulation after TLR4 activation, indicating absence of metabolic and functional maturation compared with immunogenic dendritic cells. LSEC-primed CD8 T cells show a transient burst of oxidative phosphorylation and glycolysis. Mechanistically, co-stimulatory IL-6 signaling ensures high FOXO1 expression in LSEC-primed CD8 T cells, curtails metabolic activity associated with T cell activation, and is indispensable for T cell functionality after re-activation. Thus, distinct immunometabolic features characterize non-immunogenic LSECs compared with immunogenic dendritic cells and LSEC-primed CD8 T cells with memory features compared with effector CD8 T cells. This reveals local features of metabolism and function of T cells in the liver.
Collapse
Affiliation(s)
- Michael Dudek
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Kerstin Lohr
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Sainitin Donakonda
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Tobias Baumann
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Max Lüdemann
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Silke Hegenbarth
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Lena Dübbel
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Carola Eberhagen
- Institute of Toxicology, Helmholtz Center München, München, Germany
| | - Savvoula Michailidou
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Abdallah Yassin
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Center for NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bastian Popper
- Biomedical Center, Ludwig-Maximilians-University Munich, München, Germany
| | | | - Hans Zischka
- Institute of Toxicology, Helmholtz Center München, München, Germany; Institute of Toxicology and Environmental Hygiene, Technical University Munich, München, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany; German Center for Infection Research, Munich site, München, Germany.
| |
Collapse
|
34
|
Chiu CY, Chang JJ, Dantanarayana AI, Soloman A, Evans VA, Pascoe R, Gubser C, Trautman L, Fromentin R, Chomont N, McMahon JH, Cameron PU, Rasmussen TA, Lewin SR. Combination Immune Checkpoint Blockade Enhances IL-2 and CD107a Production from HIV-Specific T Cells Ex Vivo in People Living with HIV on Antiretroviral Therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:54-62. [PMID: 34853078 PMCID: PMC8702486 DOI: 10.4049/jimmunol.2100367] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
In people with HIV (PWH) on antiretroviral therapy (ART), immune dysfunction persists, including elevated expression of immune checkpoint (IC) proteins on total and HIV-specific T cells. Reversing immune exhaustion is one strategy to enhance the elimination of HIV-infected cells that persist in PWH on ART. We aimed to evaluate whether blocking CTL-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), T cell Ig domain and mucin domain 3 (TIM-3), T cell Ig and ITIM domain (TIGIT) and lymphocyte activation gene-3 (LAG-3) alone or in combination would enhance HIV-specific CD4+ and CD8+ T cell function ex vivo. Intracellular cytokine staining was performed using human PBMCs from PWH on ART (n = 11) and expression of CD107a, IFN-γ, TNF-α, and IL-2 was quantified with HIV peptides and Abs to IC. We found the following: 1) IC blockade enhanced the induction of CD107a and IL-2 but not IFN-γ and TNF-α in response to Gag and Nef peptides; 2) the induction of CD107a and IL-2 was greatest with multiple combinations of two Abs; and 3) Abs to LAG-3, CTLA-4, and TIGIT in combinations showed synergistic induction of IL-2 in HIV-specific CD8+ and CD107a and IL-2 production in HIV-specific CD4+ and CD8+ T cells. These results demonstrate that the combination of Abs to LAG-3, CTLA-4, or TIGIT can increase the frequency of cells expressing CD107a and IL-2 that associated with cytotoxicity and survival of HIV-specific CD4+ and CD8+ T cells in PWH on ART. These combinations should be further explored for an HIV cure.
Collapse
Affiliation(s)
- Chris Y. Chiu
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Judy J. Chang
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Ashanti I. Dantanarayana
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Ajantha Soloman
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Vanessa A. Evans
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Rachel Pascoe
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Céline Gubser
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Lydie Trautman
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec H2X 3E4, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec H2X 3E4, Canada;,Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - James H. McMahon
- Department of Infectious Diseases, Monash University and the Alfred Hospital, Melbourne, Victoria 3010, Australia
| | - Paul U. Cameron
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia;,Department of Infectious Diseases, Monash University and the Alfred Hospital, Melbourne, Victoria 3010, Australia
| | - Thomas A. Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia;,Department of Infectious Diseases, Monash University and the Alfred Hospital, Melbourne, Victoria 3010, Australia;,Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000
| |
Collapse
|
35
|
Liu Y, Meng X, Wang C, Zhang Y, Hua WW, Wang Z. Interleukin-18 Plays a Positive Feedback Activity to Natural Killer-Like B Cells in Hepatitis B Virus-Associated Acute-on-Chronic Liver Failure. Viral Immunol 2021; 35:50-59. [PMID: 35061511 DOI: 10.1089/vim.2021.0164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Natural killer-like B (NKB) cells are a newly identified immune subset, which are separated from NK cells and B cells. NKB cells demonstrated immunoregulatory functions in elimination of microbial infection and inflammation through secretion of interleukin (IL)-12 and IL-18. However, the role of NKB cells in hepatitis B virus (HBV)-related diseases has not been reported. In this study, peripheral T cells, B cells, NK cells, and NKB cells in HBV-associated acute-on-chronic liver failure (ACLF), chronic hepatitis B (CHB), asymptomatic HBV carriers (AsC), and controls were investigated by flow cytometry. Plasma IL-12 and IL-18 levels were measured by enzyme-linked immunosorbent assay. Peripheral blood mononuclear cells from HBV-ACLF patients were stimulated with recombinant IL-12 or IL-18. Changes of immune cell percentage and nuclear factor-kappa B (NF-κB) phosphorylation were assessed. There were no statistical differences of T cell percentage, B cell percentage, or NK cell percentage among groups. NKB cell percentage within lymphocytes, and plasma IL-12 and IL-18 levels in HBV-ACLF patients were significantly elevated compared with in CHB, AsC, and controls. NKB cell percentage and IL-18, but not IL-12, had a better prognosis function for the 28-day survival status in HBV-ACLF patients. Recombinant IL-12 enhanced T cell and NK cell percentage, while only high concentrations (10 ng/mL) of IL-18 promoted NKB cell percentage in HBV-ACLF patients. High concentrations (10 ng/mL) of IL-18 induced NF-κB phosphorylation in NKB cells probably through suppression of IL-18 binding protein in HBV-ACLF patients. The current data indicated that elevated NKB cells and IL-18 might be important indicators for poor prognosis of HBV-ACLF patients. Increased IL-18 might play a positive feedback activity to NKB cells in HBV-ACLF patients.
Collapse
Affiliation(s)
- Ye Liu
- Intensive Care Unit, 964th Hospital of PLA, Changchun, China
| | - Xing Meng
- Intensive Care Unit, 964th Hospital of PLA, Changchun, China
| | - Chao Wang
- Intensive Care Unit, 964th Hospital of PLA, Changchun, China
| | - Ye Zhang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen-Wen Hua
- Intensive Care Unit, 964th Hospital of PLA, Changchun, China
| | - Zhi Wang
- Intensive Care Unit, 964th Hospital of PLA, Changchun, China
| |
Collapse
|
36
|
Duraiswamy J, Turrini R, Minasyan A, Barras D, Crespo I, Grimm AJ, Casado J, Genolet R, Benedetti F, Wicky A, Ioannidou K, Castro W, Neal C, Moriot A, Renaud-Tissot S, Anstett V, Fahr N, Tanyi JL, Eiva MA, Jacobson CA, Montone KT, Westergaard MCW, Svane IM, Kandalaft LE, Delorenzi M, Sorger PK, Färkkilä A, Michielin O, Zoete V, Carmona SJ, Foukas PG, Powell DJ, Rusakiewicz S, Doucey MA, Dangaj Laniti D, Coukos G. Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-1 blockade via CD28 costimulation. Cancer Cell 2021; 39:1623-1642.e20. [PMID: 34739845 PMCID: PMC8861565 DOI: 10.1016/j.ccell.2021.10.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022]
Abstract
The mechanisms regulating exhaustion of tumor-infiltrating lymphocytes (TIL) and responsiveness to PD-1 blockade remain partly unknown. In human ovarian cancer, we show that tumor-specific CD8+ TIL accumulate in tumor islets, where they engage antigen and upregulate PD-1, which restrains their functions. Intraepithelial PD-1+CD8+ TIL can be, however, polyfunctional. PD-1+ TIL indeed exhibit a continuum of exhaustion states, with variable levels of CD28 costimulation, which is provided by antigen-presenting cells (APC) in intraepithelial tumor myeloid niches. CD28 costimulation is associated with improved effector fitness of exhausted CD8+ TIL and is required for their activation upon PD-1 blockade, which also requires tumor myeloid APC. Exhausted TIL lacking proper CD28 costimulation in situ fail to respond to PD-1 blockade, and their response may be rescued by local CTLA-4 blockade and tumor APC stimulation via CD40L.
Collapse
Affiliation(s)
- Jaikumar Duraiswamy
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Riccardo Turrini
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Aspram Minasyan
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Bioinformatics Core Facility, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Alizée J Grimm
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Julia Casado
- Research Program of Systems Oncology, University of Helsinki, 00014 Helsinki, Finland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Fabrizio Benedetti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Alexandre Wicky
- Center for Precision Oncology, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Kalliopi Ioannidou
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Wilson Castro
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Christopher Neal
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Amandine Moriot
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Stéphanie Renaud-Tissot
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Victor Anstett
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Noémie Fahr
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Janos L Tanyi
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monika A Eiva
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connor A Jacobson
- Harvard Ludwig Center, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Department of Oncology, UNIL, 1011 Lausanne, Switzerland
| | - Peter K Sorger
- Harvard Ludwig Center, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Anniina Färkkilä
- Research Program of Systems Oncology, University of Helsinki, 00014 Helsinki, Finland; Department of Obstetrics and Gynecology, Helsinki University Hospital, 00014 Helsinki, Finland
| | - Olivier Michielin
- Center for Precision Oncology, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Vincent Zoete
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Santiago J Carmona
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Periklis G Foukas
- 2nd Department of Pathology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Daniel J Powell
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvie Rusakiewicz
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Marie-Agnès Doucey
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland.
| |
Collapse
|
37
|
Kim DH, Kim HY, Lee WW. Induction of Unique STAT Heterodimers by IL-21 Provokes IL-1RI Expression on CD8 + T Cells, Resulting in Enhanced IL-1β Dependent Effector Function. Immune Netw 2021; 21:e33. [PMID: 34796037 PMCID: PMC8568912 DOI: 10.4110/in.2021.21.e33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
IL-1β plays critical roles in the priming and effector phases of immune responses such as the differentiation, commitment, and memory formation of T cells. In this context, several reports have suggested that the IL-1β signal is crucial for CTL-mediated immune responses to viral infections and tumors. However, little is known regarding whether IL-1β acts directly on CD8+ T cells and what the molecular mechanisms underlying expression of IL-1 receptors (IL-1Rs) on CD8+ T cells and features of IL-1R+CD8+ T cells are. Here, we provide evidence that the expression of IL-1R type I (IL-1RI), the functional receptor of IL-1β, is preferentially induced by IL-21 on TCR-stimulated CD8+ T cells. Further, IL-1β enhances the effector function of CD8+ T cells expressing IL-21-induced IL-1RI by increasing cytokine production and release of cytotoxic granules containing granzyme B. The IL-21-IL-1RI-IL-1β axis is involved in an augmented effector function through regulation of transcription factors BATF, Blimp-1, and IRF4. Moreover, this axis confers a unique effector function to CD8+ T cells compared to conventional type 1 cytotoxic T cells differentiated with IL-12. Chemical inhibitor and immunoprecipitation assay demonstrated that IL-21 induces a unique pattern of STAT activation with the formation of both STAT1:STAT3 and STAT3:STAT5 heterodimers, which are critical for the induction of IL-1RI on TCR-stimulated CD8+ T cells. Taken together, we propose that induction of a novel subset of IL-1RI-expressing CD8+ T cells by IL-21 may be beneficial to the protective immune response against viral infections and is therefore important to consider for vaccine design.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hee Young Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea.,Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea
| |
Collapse
|
38
|
Herschke F, Li C, Zhu R, Han Q, Wu Q, Lu Q, Barale-Thomas E, De Jonghe S, Lin TI, De Creus A. JNJ-64794964 (AL-034/TQ-A3334), a TLR7 agonist, induces sustained anti-HBV activity in AAV/HBV mice via non-cytolytic mechanisms. Antiviral Res 2021; 196:105196. [PMID: 34718044 DOI: 10.1016/j.antiviral.2021.105196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/12/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
JNJ-64794964 (JNJ-4964/AL-034/TQ-A3334), an oral toll-like receptor 7 agonist, is being investigated for the treatment of chronic hepatitis B (CHB), a condition with a high unmet medical need. The anti-hepatitis B (HBV) activity of JNJ-4964 was assessed preclinically in an adeno-associated virus vector expressing HBV (AAV/HBV) mouse model. Mice were treated orally with 2, 6 or 20 mg/kg of JNJ-4964 once-per-week for 12 weeks and then followed up for 4 weeks. At 6 mg/kg, a partial decrease in plasma HBV-DNA and plasma hepatitis B surface antigen (HBsAg) was observed, and anti-HBs antibodies and HBsAg-specific T cells were observed in 1/8 animals. At 20 mg/kg, plasma HBV-DNA and HBsAg levels were undetectable for all animals 3 weeks after start of treatment, with no rebound observed 4 weeks after JNJ-4964 treatment was stopped. High anti-HBs antibody levels were observed until 4 weeks after JNJ-4964 treatment was stopped. In parallel, HBsAg-specific immunoglobulin G-producing B cells and interferon-γ-producing CD4+ T cells were detected in the spleen. In 2/4 animals, liver HBV-DNA and HBV-RNA levels and liver hepatitis B core antigen expression dropped 4 weeks after JNJ-4964 treatment-stop. In these animals, HBsAg-specific CD8+ T cells were detectable. Throughout the study, normal levels of alanine aminotransferase were observed, with no hepatocyte cell death (end of treatment and 4 weeks later) and minimal infiltrations of B and T cells into the liver, suggesting induction of cytokine-mediated, non-cytolytic mechanisms.
Collapse
Affiliation(s)
- Florence Herschke
- Janssen Pharmaceutica NV, 2340, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Chris Li
- Janssen China R&D, Discovery, Shanghai, China
| | - Ren Zhu
- Janssen China R&D, Discovery, Shanghai, China
| | - Qinglin Han
- Janssen China R&D, Discovery, Shanghai, China
| | - Qun Wu
- Janssen China R&D, Discovery, Shanghai, China
| | - Qing Lu
- Janssen China R&D, Discovery, Shanghai, China
| | | | - Sandra De Jonghe
- Janssen Pharmaceutica NV, 2340, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Tse-I Lin
- Janssen Biopharma, 260 E Grand Ave., South San Francisco, CA, 94080, United States
| | - An De Creus
- Janssen Pharmaceutica NV, 2340, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
39
|
Frank B, Guo H, Lebrec H, Wang X. Application of a newly-developed cynomolgus macaque BiTE-mediated cytotoxic T-lymphocyte activity assay to various immunomodulatory agents in vitro. J Immunotoxicol 2021; 18:154-162. [PMID: 34714999 DOI: 10.1080/1547691x.2021.1992687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The immunotoxic potential of drug candidates is assessed through the examination of results from a variety of in vitro and in vivo immunophenotyping and functional study endpoints in pre-clinical studies. CD8+ cytotoxic T-lymphocyte (CTL) activity impairment by immunosuppressive agents is recognized to be a potentiating factor for decreased antiviral defense and increased cancer risk. A bi-specific T-cell engager (BiTE®)-mediated CTL activity assay that applies to ex vivo experimentation in non-human primates in the context of toxicology studies was successfully developed and applied in cynomolgus monkey regulatory studies. While an ex vivo analysis conducted in the context of repeat-dose toxicology studies focuses on the long-term impact on CTL function, an in vitro assay with the same experimental design captures acute effects in the presence of the test article. Here, the in vitro assay was applied to a list of drugs with known clinical immunomodulatory impact to understand the applicability of the assay. The results showed this assay was sensitive to a wide range of immunosuppressants directly targeting cell-intrinsic signaling pathways in activated CTL. However, agents executing immuno-modulation through inhibiting cytokines/cytokine receptors, co-stimulatory molecules, and cell adhesion and migration pathways did not impair the CTL activity in this short-term in vitro culture. In addition, anti-PD-1/PD-L1 immune checkpoint blockers enhanced the CTL activity. Taken together, the results here demonstrate that in concordance with their mechanism of action, the in vitro BiTE®-mediated CTL assay is applicable and sensitive to immunomodulatory agents acting via a variety of mechanisms.
Collapse
Affiliation(s)
- Brendon Frank
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Hao Guo
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Hervé Lebrec
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Xiaoting Wang
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| |
Collapse
|
40
|
Ferrando-Martinez S, Snell Bennett A, Lino E, Gehring AJ, Feld J, Janssen HLA, Robbins SH. Functional Exhaustion of HBV-Specific CD8 T Cells Impedes PD-L1 Blockade Efficacy in Chronic HBV Infection. Front Immunol 2021; 12:648420. [PMID: 34589081 PMCID: PMC8473828 DOI: 10.3389/fimmu.2021.648420] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 08/24/2021] [Indexed: 01/12/2023] Open
Abstract
Background A functional cure for chronic HBV could be achieved by boosting HBV-specific immunity. In vitro studies show that immunotherapy could be an effective strategy. However, these studies include strategies to enrich HBV-specific CD8 T cells, which could alter the expression of the anti-PD-1/anti-PD-L1 antibody targets. Our aim was to determine the efficacy of PD-L1 blockade ex vivo. Methods HBV-specific CD8 T cells were characterized ex vivo by flow cytometry for the simultaneous analysis of six immune populations and 14 activating and inhibitory receptors. Ex vivo functionality was quantified by ELISpot and by combining peptide pool stimulation, dextramers and intracellular flow cytometry staining. Results The functionality of HBV-specific CD8 T cells is associated with a higher frequency of cells with low exhaustion phenotype (LAG3-TIM3-PD-1+), independently of the clinical parameters. The accumulation of HBV-specific CD8 T cells with a functionally exhausted phenotype (LAG3+TIM3+PD-1+) is associated with lack of ex vivo functionality. PD-L1 blockade enhanced the HBV-specific CD8 T cell response only in patients with lower exhaustion levels, while response to PD-L1 blockade was abrogated in patients with higher frequencies of exhausted HBV-specific CD8 T cells. Conclusion Higher levels of functionally exhausted HBV-specific CD8 T cells are associated with a lack of response that cannot be restored by blocking the PD-1:PD-L1 axis. This suggests that the clinical effectiveness of blocking the PD-1:PD-L1 axis as a monotherapy may be restricted. Combination strategies, potentially including the combination of anti-LAG-3 with other anti-iR antibodies, will likely be required to elicit a functional cure for patients with high levels of functionally exhausted HBV-specific CD8 T cells.
Collapse
Affiliation(s)
- Sara Ferrando-Martinez
- Microbial Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Angie Snell Bennett
- Microbial Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Elisabete Lino
- Microbial Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Adam J Gehring
- Toronto Center for Liver Disease, Toronto General Hospital, University Health Network, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jordan Feld
- Toronto Center for Liver Disease, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Harry L A Janssen
- Toronto Center for Liver Disease, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Scott H Robbins
- Late Stage Oncology Development, Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
41
|
Abstract
Chronic hepatitis B virus (HBV) infection is the leading cause of liver cirrhosis and hepatocellular carcinoma, estimated to be globally responsible for ∼800,000 deaths annually. Although effective vaccines are available to prevent new HBV infection, treatment of existing chronic hepatitis B (CHB) is limited, as the current standard-of-care antiviral drugs can only suppress viral replication without achieving cure. In 2016, the World Health Organization called for the elimination of viral hepatitis as a global public health threat by 2030. The United States and other nations are working to meet this ambitious goal by developing strategies to cure CHB, as well as prevent HBV transmission. This review considers recent research progress in understanding HBV pathobiology and development of therapeutics for the cure of CHB, which is necessary for elimination of hepatitis B by 2030.
Collapse
Affiliation(s)
- Timothy M Block
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania 18902, USA;
| | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz VA Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania 18902, USA;
| |
Collapse
|
42
|
Barili V, Vecchi A, Rossi M, Montali I, Tiezzi C, Penna A, Laccabue D, Missale G, Fisicaro P, Boni C. Unraveling the Multifaceted Nature of CD8 T Cell Exhaustion Provides the Molecular Basis for Therapeutic T Cell Reconstitution in Chronic Hepatitis B and C. Cells 2021; 10:2563. [PMID: 34685543 PMCID: PMC8533840 DOI: 10.3390/cells10102563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
In chronic hepatitis B and C virus infections persistently elevated antigen levels drive CD8+ T cells toward a peculiar differentiation state known as T cell exhaustion, which poses crucial constraints to antiviral immunity. Available evidence indicates that T cell exhaustion is associated with a series of metabolic and signaling deregulations and with a very peculiar epigenetic status which all together lead to reduced effector functions. A clear mechanistic network explaining how intracellular metabolic derangements, transcriptional and signaling alterations so far described are interconnected in a comprehensive and unified view of the T cell exhaustion differentiation profile is still lacking. Addressing this issue is of key importance for the development of innovative strategies to boost host immunity in order to achieve viral clearance. This review will discuss the current knowledge in HBV and HCV infections, addressing how innate immunity, metabolic derangements, extensive stress responses and altered epigenetic programs may be targeted to restore functionality and responsiveness of virus-specific CD8 T cells in the context of chronic virus infections.
Collapse
Affiliation(s)
- Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Camilla Tiezzi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
| |
Collapse
|
43
|
Ayithan N, Tang L, Tan SK, Chen D, Wallin JJ, Fletcher SP, Kottilil S, Poonia B. Follicular Helper T (T FH) Cell Targeting by TLR8 Signaling For Improving HBsAg-Specific B Cell Response In Chronic Hepatitis B Patients. Front Immunol 2021; 12:735913. [PMID: 34512670 PMCID: PMC8428528 DOI: 10.3389/fimmu.2021.735913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
Identifying signaling pathways that induce B cell response can aid functional cure strategies for chronic hepatitis B infection (CHB). TLR8 activation with ssRNA was shown to enhance follicular helper T cell (TFH) function leading to improved B cell responses in vitro. We investigated whether this mechanism can rescue an exhausted immune response in CHB infection. Effect of TLR8 agonism on supporting cytokines and TFH and B cells were evaluated using ex vivo and in vitro assays. The ability of an oral TLR8 agonist to promote TFH and B cell response was tested in samples from phase 1b clinical trial. TLR8 agonism induced TFH polarizing cytokine IL-12 in monocytes. Treatment of peripheral blood mononuclear cells (PBMCs) from CHB patients with TLR8 agonists induced cytokine IL-21 by TFH cells with enhanced IL-21+BCL-6+ and ICOS+BCL-6+ co-expression. Mechanistically, incubation of isolated naïve CD4+ T cells with TLR8 triggered monocytes resulted in their differentiation into IL-21+ICOS+BCL-6+ TFH in an IL-12 dependent manner. Furthermore, co-culture of these IL-21 producing TFH with autologous naïve B cells led to enhanced memory (CD19+CD27+) and plasma B cell generation (CD19+CD27++CD38+) and IgG production. Importantly, in TFH from CHB patients treated with an oral TLR8 agonist, HBsAg-specific BCL-6, ICOS, IL-21 and CD40L expression and rescue of defective activation induced marker (AIM) response along with partial restoration of HBsAg-specific B cell ELISPOT response was evident. TLR8 agonism can thus enhance HBV-specific B cell responses in CHB patients by improving monocyte-mediated TFH function and may play a role in achieving HBV functional cure.
Collapse
Affiliation(s)
- Natarajan Ayithan
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Lydia Tang
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Susanna K Tan
- Clinical Research, Gilead Sciences Inc., Foster City, CA, United States
| | - Diana Chen
- Clinical Research, Gilead Sciences Inc., Foster City, CA, United States
| | - Jeffrey J Wallin
- Clinical Research, Gilead Sciences Inc., Foster City, CA, United States
| | - Simon P Fletcher
- Clinical Research, Gilead Sciences Inc., Foster City, CA, United States
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Bhawna Poonia
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
44
|
Rey I, Effendi-Ys R. Association Between Serum IL-6, IL-10, IL-12, and IL-23 Levels and Severity of Liver Cirrhosis. Med Arch 2021; 75:199-203. [PMID: 34483450 PMCID: PMC8385729 DOI: 10.5455/medarh.2021.75.199-203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 11/03/2022] Open
Abstract
Background Liver cirrhosis contributes to high liver-related mortality globally. Systemic inflammation mediated by immune cells contributes to the progression of liver cirrhosis. Growing evidence shows that several pro- and anti-inflammatory cytokines might have an important role in liver cirrhosis. Objective To evaluate the association between serum IL-6, IL-10, IL-12, and IL-23 levels and severity of liver cirrhosis. Methods This observational study was carried out at the Department of Internal Medicine, Universitas Sumatera Utara, Indonesia from March 2018 to August 2019. The severity of liver cirrhosis was assessed by using the Child-Pugh score. IL-6, IL-10, IL-12, and IL-23 levels, hepatitis and renal function were measured in all study subjects. Independent t-test and Mann-Whitney tests were conducted to observe differences between groups. Results A total of 78 liver cirrhosis patients were enrolled, mean age was 50.6±11.4. Median serum IL-6, IL-10, IL-12, and IL-23 levels were 24.5(2.6-46.4)pg/ml, 2.1(0.4-9.3)pg/ml, 3.5(1.4-20.8)pg/ml and 20.3(9.2-218)pg/ml, respectively. A higher IL-6 level was associated with more severe liver cirrhosis (p=0.001) and the presence of hepatic encephalopathy (p=0.018). Higher IL-23 level was found in patients with no hepatic encephalopathy (p=0.049). There was no association between serum cytokines levels and hepatitis viral infection status. Conclusion IL-6 is associated with the severity of liver cirrhosis.
Collapse
Affiliation(s)
- Imelda Rey
- Division of Gastroenterohepatology, Department of Internal Medicine, Universitas Sumatera Utara, Medan, Indonesia.,Haji Adam Malik General Hospital, Medan Indonesia
| | - Rustam Effendi-Ys
- Division of Gastroenterohepatology, Department of Internal Medicine, Universitas Sumatera Utara, Medan, Indonesia.,"dr. Pirngadi" General Hospital, Medan Indonesia
| |
Collapse
|
45
|
Shared immunotherapeutic approaches in HIV and hepatitis B virus: combine and conquer. Curr Opin HIV AIDS 2021; 15:157-164. [PMID: 32167944 DOI: 10.1097/coh.0000000000000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this study was to identify similarities, differences and lessons to be shared from recent progress in HIV and hepatitis B virus (HBV) immunotherapeutic approaches. RECENT FINDINGS Immune dysregulation is a hallmark of both HIV and HBV infection, which have shared routes of transmission, with approximately 10% of HIV-positive patients worldwide being coinfected with HBV. Immune modulation therapies to orchestrate effective innate and adaptive immune responses are currently being sought as potential strategies towards a functional cure in both HIV and HBV infection. These are based on activating immunological mechanisms that would allow durable control by triggering innate immunity, reviving exhausted endogenous responses and/or generating new immune responses. Recent technological advances and increased appreciation of humoral responses in the control of HIV have generated renewed enthusiasm in the cure field. SUMMARY For both HIV and HBV infection, a primary consideration with immunomodulatory therapies continues to be a balance between generating highly effective immune responses and mitigating any significant toxicity. A large arsenal of new approaches and ongoing research offer the opportunity to define the pathways that underpin chronic infection and move closer to a functional cure.
Collapse
|
46
|
Zhao H, Wang H, Hu Y, Xu D, Yin C, Han Q, Zhang J. Chitosan Nanovaccines as Efficient Carrier Adjuvant System for IL-12 with Enhanced Protection Against HBV. Int J Nanomedicine 2021; 16:4913-4928. [PMID: 34321879 PMCID: PMC8312321 DOI: 10.2147/ijn.s317113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose Alum adjuvant in HBV prophylactic vaccines is poor in inducing cellular immunity with the inhibition of IL-12 secretion, and approximately 5–10% of immunised individuals fail to clear HBV upon infection. IL-12 plasmids (pIL-12) as adjuvants enhance significant humoral and cellular immune response in vaccines. However, finding a novel delivery system to protect pIL-12 from enzymatic degradation and achieve efficient delivery remains a major challenge. Methods We prepared the chitosan nanovaccine-loaded IL-12 expression plasmid (termed as “Ng(-)pIL-12”) and analysed the physicochemical properties, encapsulation efficiency and safety. Then, we evaluated the efficiency of Ng(-)pIL-12 for prophylactic HBV vaccine. Serum samples were collected and analysed for IL-12, HBsAg, anti-HBs IgG, IgG1 and IgG2b. Liver tissues were collected and analysed for HBV DNA and RNA. BMDCs and lymphocytes were collected and analysed for HBV-specific immune responses. To further confirm the long-term protective immune response against HBV, these immunised mice were challenged with hydrodynamic injection of pAAV/HBV 1.2 plasmid on day 56 after the initiation of immunisation. Results Chitosan nanovaccine prepared with CS and γ-PGA could load pIL-12 effectively and safely, and IL-12 was efficiently produced in vivo. Interestingly, Ng(-)pIL-12 adjuvant combined with HBsAg induced higher levels of anti-HBs IgG, IgG1 and IgG2b, promoted maturation and presentation capacity of DCs, especially CD8α+/CD103+ DCs. Meanwhile, Ng(-)pIL-12 adjuvant generated robust HBV-specific CD8+ T and CD4+ T cell responses. More importantly, Ng(-)pIL-12 adjuvant triggered terminally differentiated effector memory responses with strong anti-HBV effects. Conclusion Chitosan nanovaccines as an efficient carrier adjuvant system for pIL-12 combined with HBsAg induced protective anti-HBs IgG and enhanced HBV-specific CD8+ T and CD4+ T cell responses, and achieved long-term memory response against HBV, making it a promising candidate for prophylactic HBV vaccines. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/RZZ_0Z5j7Yc
Collapse
Affiliation(s)
- Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Haigang Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Yifei Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Dongqing Xu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Chunlai Yin
- Department of Immunology, Dalian Medical University, Dalian, People's Republic of China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
47
|
Amin OE, Colbeck EJ, Daffis S, Khan S, Ramakrishnan D, Pattabiraman D, Chu R, Micolochick Steuer H, Lehar S, Peiser L, Palazzo A, Frey C, Davies J, Javanbakht H, Rosenberg WM, Fletcher SP, Maini MK, Pallett LJ. Therapeutic Potential of TLR8 Agonist GS-9688 (Selgantolimod) in Chronic Hepatitis B: Remodeling of Antiviral and Regulatory Mediators. Hepatology 2021; 74:55-71. [PMID: 33368377 PMCID: PMC8436741 DOI: 10.1002/hep.31695] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/13/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS GS-9688 (selgantolimod) is a toll-like receptor 8 agonist in clinical development for the treatment of chronic hepatitis B (CHB). Antiviral activity of GS-9688 has previously been evaluated in vitro in HBV-infected hepatocytes and in vivo in the woodchuck model of CHB. Here we evaluated the potential of GS-9688 to boost responses contributing to viral control and to modulate regulatory mediators. APPROACH AND RESULTS We characterized the effect of GS-9688 on immune cell subsets in vitro in peripheral blood mononuclear cells of healthy controls and patients with CHB. GS-9688 activated dendritic cells and mononuclear phagocytes to produce IL-12 and other immunomodulatory mediators, inducing a comparable cytokine profile in healthy controls and patients with CHB. GS-9688 increased the frequency of activated natural killer (NK) cells, mucosal-associated invariant T cells, CD4+ follicular helper T cells, and, in about 50% of patients, HBV-specific CD8+ T cells expressing interferon-γ. Moreover, in vitro stimulation with GS-9688 induced NK-cell expression of interferon-γ and TNF-α, and promoted hepatocyte lysis. We also assessed whether GS-9688 inhibited immunosuppressive cell subsets that might enhance antiviral efficacy. Stimulation with GS-9688 reduced the frequency of CD4+ regulatory T cells and monocytic myeloid-derived suppressor cells (MDSCs). Residual MDSCs expressed higher levels of negative immune regulators, galectin-9 and programmed death-ligand 1. Conversely, GS-9688 induced an expansion of immunoregulatory TNF-related apoptosis-inducing ligand+ NK cells and degranulation of arginase-I+ polymorphonuclear MDSCs. CONCLUSIONS GS-9688 induces cytokines in human peripheral blood mononuclear cells that are able to activate antiviral effector function by multiple immune mediators (HBV-specific CD8+ T cells, CD4+ follicular helper T cells, NK cells, and mucosal-associated invariant T cells). Although reducing the frequency of some immunoregulatory subsets, it enhances the immunosuppressive potential of others, highlighting potential biomarkers and immunotherapeutic targets to optimize the antiviral efficacy of GS-9688.
Collapse
Affiliation(s)
- Oliver E. Amin
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| | - Emily J. Colbeck
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| | | | | | | | | | - Ruth Chu
- Gilead Sciences Inc.Foster CityCA
| | | | - Sophie Lehar
- Gilead Sciences Inc.Foster CityCA
- Present address:
Genentech Inc.South San FranciscoCA
| | - Leanne Peiser
- Gilead Sciences Inc.Foster CityCA
- Present address:
Bristol Myers SquibbSeattleWA
| | | | - Christian Frey
- Gilead Sciences Inc.Foster CityCA
- Present address:
Ideaya Biosciences Inc.South San FranciscoCA
| | - Jessica Davies
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| | - Hassan Javanbakht
- Gilead Sciences Inc.Foster CityCA
- Present address:
SQZ BiotechnologiesWatertownMA
| | | | | | - Mala K. Maini
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| | - Laura J. Pallett
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
48
|
Natural Killer Cells and T Cells in Hepatocellular Carcinoma and Viral Hepatitis: Current Status and Perspectives for Future Immunotherapeutic Approaches. Cells 2021; 10:cells10061332. [PMID: 34071188 PMCID: PMC8227136 DOI: 10.3390/cells10061332] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells account for 25–50% of the total number of hepatic lymphocytes, which implicates that NK cells play an important role in liver immunity. The frequencies of both circulating and tumor infiltrating NK cells are positively correlated with survival benefit in hepatocellular cancer (HCC) and have prognostic implications, which suggests that functional impairment in NK cells and HCC progression are strongly associated. In HCC, T cell exhaustion is accompanied by the interaction between immune checkpoint ligands and their receptors on tumor cells and antigen presenting cells (APC). Immune checkpoint inhibitors (ICIs) have been shown to interfere with this interaction and have altered the therapeutic landscape of multiple cancer types including HCC. Immunotherapy with check-point inhibitors, aimed at rescuing T-cells from exhaustion, has been applied as first-line therapy for HCC. NK cells are the first line effectors in viral hepatitis and play an important role by directly eliminating virus infected cells or by activating antigen specific T cells through IFN-γ production. Furthermore, chimeric antigen receptor (CAR)-engineered NK cells and T cells offer unique opportunities to create CAR-NK with multiple specificities learning from the experience gained with CAR-T cells with potentially less adverse effects. This review focus on the abnormalities of NK cells, T cells, and their functional impairment in patients with chronic viral hepatitis, which contributes to progression to hepatic malignancy. Furthermore, we discuss and summarize recent advances in the NK cell and T cell based immunotherapeutic approaches in HCC.
Collapse
|
49
|
Immunopathology of Chronic Hepatitis B Infection: Role of Innate and Adaptive Immune Response in Disease Progression. Int J Mol Sci 2021; 22:ijms22115497. [PMID: 34071064 PMCID: PMC8197097 DOI: 10.3390/ijms22115497] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
More than 250 million people are living with chronic hepatitis B despite the availability of highly effective vaccines and oral antivirals. Although innate and adaptive immune cells play crucial roles in controlling hepatitis B virus (HBV) infection, they are also accountable for inflammation and subsequently cause liver pathologies. During the initial phase of HBV infection, innate immunity is triggered leading to antiviral cytokines production, followed by activation and intrahepatic recruitment of the adaptive immune system resulting in successful virus elimination. In chronic HBV infection, significant alterations in both innate and adaptive immunity including expansion of regulatory cells, overexpression of co-inhibitory receptors, presence of abundant inflammatory mediators, and modifications in immune cell derived exosome release and function occurs, which overpower antiviral response leading to persistent viral infection and subsequent immune pathologies associated with disease progression towards fibrosis, cirrhosis, and hepatocellular carcinoma. In this review, we discuss the current knowledge of innate and adaptive immune cells transformations that are associated with immunopathogenesis and disease outcome in CHB patients.
Collapse
|
50
|
Mehrotra A, D'Angelo JA, Romney-Vanterpool A, Chu T, Bertoletti A, Janssen HLA, Gehring AJ. IFN-α Suppresses Myeloid Cytokine Production, Impairing IL-12 Production and the Ability to Support T-Cell Proliferation. J Infect Dis 2021; 222:148-157. [PMID: 32049318 DOI: 10.1093/infdis/jiaa064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Interferon-α (IFN-α) can suppress production of T-cell polarizing cytokines or induce inhibitory antigen-presenting cells that suppress T-cell activation. Previous studies showed that IFN-α therapy fails to boost virus-specific T-cell immunity in patients with chronic hepatitis B virus infection. Our aim was to determine whether IFN-α exposure alters human antigen-presenting cell function in vivo. METHODS We investigated the immunomodulatory effects using peripheral blood mononuclear cells from healthy donors exposed to IFN-α and chronic hepatitis B (CHB) patients starting IFN-α therapy. RESULTS IFN-α increased HLA-DR, CD80, CD86, and PD-L1 expression on healthy donor monocytes. In contrast to the activated phenotype, IFN-α inhibited Toll-like receptor-induced cytokine production and monocyte-induced T-cell proliferation. In CHB patients, peg-IFN treatment induced an interferon-stimulated gene signature in monocytes and increased HLA-DR, CD80, CD86, and PD-L1 expression. As early as 3 days after CHB patients started treatment, IFN-α inhibited monocyte cytokine production and T-cell stimulation ex vivo. IFN-α-mediated inhibition of IL-12 production, rather than inhibitory receptor expression, was responsible for inhibition of T-cell proliferation. Addition of IL-12 restored T-cell proliferation to baseline levels. CONCLUSIONS Understanding how professional antigen-presenting cells respond to immunomodulation is important for both new innate and adaptive-targeted immunotherapies. CLINICAL TRIALS REGISTRATION NCT00962871.
Collapse
Affiliation(s)
- Aman Mehrotra
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - June Ann D'Angelo
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Amanda Romney-Vanterpool
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Tom Chu
- Safety Science, Genentech, San Francisco, California, USA
| | - Antonio Bertoletti
- Program of Emerging Viral Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|