1
|
Zhu R, Wu Y, Huang Y, Jiang Y, Jiang Y, Zhang D, Sun H, Zhou Z, Zhou L, Weng S, Chen H, Chen X, Ning W, Zou Y, He M, Yang H, Deng W, Li Y, Chen Z, Ye X, Han J, Yin Z, Zhao H, Liu C, Que Y, Fang M, Yu H, Zhang J, Luo W, Li S, Zheng Q, Xu L, Xia N, Cheng T. Broadly therapeutic antibody provides cross-serotype protection against enteroviruses via Fc effector functions and by mimicking SCARB2. Nat Microbiol 2024; 9:2939-2953. [PMID: 39424982 DOI: 10.1038/s41564-024-01822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/03/2024] [Indexed: 10/21/2024]
Abstract
Enteroviruses contain multiple serotypes and can cause severe neurological complications. The intricate life cycle of enteroviruses involving dynamic virus-receptor interaction hampers the development of broad therapeutics and vaccines. Here, using function-based screening, we identify a broadly therapeutic antibody h1A6.2 that potently protects mice in lethal models of infection with both enterovirus A71 and coxsackievirus A16 through multiple mechanisms, including inhibition of the virion-SCARB2 interactions and monocyte/macrophage-dependent Fc effector functions. h1A6.2 mitigates inflammation and improves intramuscular mechanics, which are associated with diminished innate immune signalling and preserved tissue repair. Moreover, cryogenic electron microscopy structures delineate an adaptive binding of h1A6.2 to the flexible and dynamic nature of the VP2 EF loop with a binding angle mimicking the SCARB2 receptor. The coordinated binding mode results in efficient binding of h1A6.2 to all viral particle types and facilitates broad neutralization of enterovirus, therefore informing a promising target for the structure-guided design of pan-enterovirus vaccine.
Collapse
Affiliation(s)
- Rui Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Yuanyuan Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Yang Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Yanan Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Yichao Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Dongqing Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Hui Sun
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Zhenhong Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Lizhi Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Shihan Weng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Hao Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Xiaoqing Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Yuxiang Zou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Maozhou He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Hongwei Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Weixi Deng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Yu Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Zhenqin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Xiangzhong Ye
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd, Beijing, PR China
| | - Jinle Han
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd, Beijing, PR China
| | - Zhichao Yin
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd, Beijing, PR China
| | - Huan Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Che Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Yuqiong Que
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Mujin Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Hai Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China.
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China.
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China.
| | - Longfa Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China.
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian, PR China.
| | - Tong Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China.
| |
Collapse
|
2
|
Lin X, Gan J, Sun Q, Li Z, Qin K, Zhang Y, Cao Y, Zhou J. The Structural Framework and Opening Appearance of the VP1-Pocket of Enteroviruses Correlated with Viral Thermostability. Pathogens 2024; 13:711. [PMID: 39204311 PMCID: PMC11357065 DOI: 10.3390/pathogens13080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Enteroviruses (EVs and RVs) are prevalent worldwide and cause various diseases in humans, of which the VP1-pocket is a target of antivirals, with a lipid molecule as a pocket factor to stabilize the virion. However, the characterization of the structure of the VP1-pocket in EVs is poor. Here, we compared the published capsid crystals of EVs and RVs and proposed a structural framework for the VP1-pocket: Frame 1-4, which is located at the CD loop, GH loop, and C-terminus, presenting with an outward opening appearance or not. The non-outward viral strains-CVB3, Echo 11, RV-A81, and RV-B70-are more thermally stable, with a breakpoint temperature (B.T.) of 51~62 °C for genome releasing, which is 4~10 °C higher than its outward temperature of 41~47 °C, and infectivity preservation when treated at 50 °C for 3 min. Its outward versus non-outward opening is correlated significantly with the B.T. for genome release (r = -0.90; p = 0.0004) and infectivity (r = -0.82, p = 0.0039). The energy of Frames 1, 2, and 4, including Van der Waals attractive and repulsive interactions and hydrogen bonds, showed significant correlations with the B.T. (r = -0.67, 0.75, and -0.8; p = 0.034, 0.013, and 0.006, respectively). These characters of the VP1-pocket could be predictors for virion thermostability and aid in the development of vaccines or antivirals.
Collapse
Affiliation(s)
- Xiaojing Lin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (Q.S.); (Z.L.); (K.Q.); (Y.Z.)
| | - Jianhong Gan
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (J.G.); (Y.C.)
| | - Qiang Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (Q.S.); (Z.L.); (K.Q.); (Y.Z.)
| | - Zi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (Q.S.); (Z.L.); (K.Q.); (Y.Z.)
| | - Kun Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (Q.S.); (Z.L.); (K.Q.); (Y.Z.)
| | - Yong Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (Q.S.); (Z.L.); (K.Q.); (Y.Z.)
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (J.G.); (Y.C.)
| | - Jianfang Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (Q.S.); (Z.L.); (K.Q.); (Y.Z.)
| |
Collapse
|
3
|
Moss DL, Paine AC, Krug PW, Kanekiyo M, Ruckwardt TJ. Enterovirus virus-like-particle and inactivated poliovirus vaccines do not elicit substantive cross-reactive antibody responses. PLoS Pathog 2024; 20:e1012159. [PMID: 38662650 PMCID: PMC11045126 DOI: 10.1371/journal.ppat.1012159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Human enteroviruses are the most common human pathogen with over 300 distinct genotypes. Previous work with poliovirus has suggested that it is possible to generate antibody responses in humans and animals that can recognize members of multiple enterovirus species. However, cross protective immunity across multiple enteroviruses is not observed epidemiologically in humans. Here we investigated whether immunization of mice or baboons with inactivated poliovirus or enterovirus virus-like-particles (VLPs) vaccines generates antibody responses that can recognize enterovirus D68 or A71. We found that mice only generated antibodies specific for the antigen they were immunized with, and repeated immunization failed to generate cross-reactive antibody responses as measured by both ELISA and neutralization assay. Immunization of baboons with IPV failed to generate neutralizing antibody responses against enterovirus D68 or A71. These results suggest that a multivalent approach to enterovirus vaccination is necessary to protect against enterovirus disease in vulnerable populations.
Collapse
Affiliation(s)
- Daniel L. Moss
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alden C. Paine
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter W. Krug
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Torii S, Gouttenoire J, Kumar K, Antanasijevic A, Kohn T. Influence of Amino Acid Substitutions in Capsid Proteins of Coxsackievirus B5 on Free Chlorine and Thermal Inactivation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5279-5289. [PMID: 38488515 DOI: 10.1021/acs.est.3c10409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The sensitivity of enteroviruses to disinfectants varies among genetically similar variants and coincides with amino acid changes in capsid proteins, although the effect of individual substitutions remains unknown. Here, we employed reverse genetics to investigate how amino acid substitutions in coxsackievirus B5 (CVB5) capsid proteins affect the virus' sensitivity to free chlorine and heat treatment. Of ten amino acid changes observed in CVB5 variants with free chlorine resistance, none significantly reduced the chlorine sensitivity, indicating a minor role of the capsid composition in chlorine sensitivity of CVB5. Conversely, a subset of these amino acid changes located at the C-terminal region of viral protein 1 led to reduced heat sensitivity. Cryo-electron microscopy revealed that these changes affect the assembly of intermediate viral states (altered and empty particles), suggesting that the mechanism for reduced heat sensitivity could be related to improved molecular packing of CVB5, resulting in greater stability or altered dynamics of virus uncoating during infection.
Collapse
Affiliation(s)
- Shotaro Torii
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Kiruthika Kumar
- Virology and Structural Immunology Laboratory, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Aleksandar Antanasijevic
- Virology and Structural Immunology Laboratory, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Catching A, Te Yeh M, Bianco S, Capponi S, Andino R. A tradeoff between enterovirus A71 particle stability and cell entry. Nat Commun 2023; 14:7450. [PMID: 37978288 PMCID: PMC10656440 DOI: 10.1038/s41467-023-43029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
A central role of viral capsids is to protect the viral genome from the harsh extracellular environment while facilitating initiation of infection when the virus encounters a target cell. Viruses are thought to have evolved an optimal equilibrium between particle stability and efficiency of cell entry. In this study, we genetically perturb this equilibrium in a non-enveloped virus, enterovirus A71 to determine its structural basis. We isolate a single-point mutation variant with increased particle thermotolerance and decreased efficiency of cell entry. Using cryo-electron microscopy and molecular dynamics simulations, we determine that the thermostable native particles have acquired an expanded conformation that results in a significant increase in protein dynamics. Examining the intermediate states of the thermostable variant reveals a potential pathway for uncoating. We propose a sequential release of the lipid pocket factor, followed by internal VP4 and ultimately the viral RNA.
Collapse
Affiliation(s)
- Adam Catching
- Department of Microbiology and Immunology, University of California in San Francisco, San Francisco, CA, 94158, USA
- Graduate Program in Biophysics, University of California in San Francisco, San Francisco, CA, 94158, USA
| | - Ming Te Yeh
- Department of Microbiology and Immunology, University of California in San Francisco, San Francisco, CA, 94158, USA
| | - Simone Bianco
- Industrial and Applied Genomics, AI and Cognitive Software, IBM Almaden Research Center, San Jose, CA, 95120, USA
- Center for Cellular Construction, San Francisco, CA, 94158, USA
- Altos Labs, Redwood City, CA, 94022, USA
| | - Sara Capponi
- Industrial and Applied Genomics, AI and Cognitive Software, IBM Almaden Research Center, San Jose, CA, 95120, USA.
- Center for Cellular Construction, San Francisco, CA, 94158, USA.
| | - Raul Andino
- Department of Microbiology and Immunology, University of California in San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
6
|
Liang Y, Chen J, Wang C, Yu B, Zhang Y, Liu Z. Investigating the mechanism of Echovirus 30 cell invasion. Front Microbiol 2023; 14:1174410. [PMID: 37485505 PMCID: PMC10359910 DOI: 10.3389/fmicb.2023.1174410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Viruses invade susceptible cells through a complex mechanism before injecting their genetic material into them. This causes direct damage to the host cell, as well as resulting in disease in the corresponding system. Echovirus type 30 (E30) is a member of the Enterovirus B group and has recently been reported to cause central nervous system (CNS) disorders, leading to viral encephalitis and viral meningitis in children. In this review, we aim to help in improving the understanding of the mechanisms of CNS diseases caused by E30 for the subsequent development of relevant drugs and vaccines.
Collapse
Affiliation(s)
- Yucai Liang
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Junbing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Congcong Wang
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Bowen Yu
- Department of Immunology, Weifang Medical University, Weifang, China
| | - Yong Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| |
Collapse
|
7
|
Kyaw T, Drummond G, Bobik A, Peter K. Myocarditis: causes, mechanisms, and evolving therapies. Expert Opin Ther Targets 2023; 27:225-238. [PMID: 36946552 DOI: 10.1080/14728222.2023.2193330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Myocarditis is a severe lymphocyte-mediated inflammatory disorder of the heart, mostly caused by viruses and immune checkpoint inhibitors (ICIs). Recently, myocarditis as a rare adverse event of mRNA vaccines for SARS-CoV-2 has caused global attention. The clinical consequences of myocarditis can be very severe, but specific treatment options are lacking or not yet clinically proven. AREAS COVERED This paper offers a brief overview of the biology of viruses that frequently cause myocarditis, focusing on mechanisms important for viral entry and replication following host infection. Current and new potential therapeutic targets/strategies especially for viral myocarditis are reviewed systematically. In particular, the immune system in myocarditis is dissected with respect to infective viral and non-infective, ICI-induced myocarditis. EXPERT OPINION Vaccination is an excellent emerging preventative strategy for viral myocarditis, but most vaccines still require further development. Anti-viral treatments that inhibit viral replication need to be considered following viral infection in host myocardium, as lower viral load reduces inflammation severity. Understanding how the immune system continues to damage the heart even after viral clearance will define novel therapeutic targets/strategies. We propose that viral myocarditis can be best treated using a combination of antiviral agents and immunotherapies that control cytotoxic T cell activity.
Collapse
Affiliation(s)
- Tin Kyaw
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
| | - Grant Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Alex Bobik
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
| | - Karlheinz Peter
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
- Department of Immunology, Monash University Melbourne Australia
| |
Collapse
|
8
|
Molecular mechanism of antibody neutralization of coxsackievirus A16. Nat Commun 2022; 13:7854. [PMID: 36543790 PMCID: PMC9769477 DOI: 10.1038/s41467-022-35575-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Coxsackievirus A16 (CVA16) causes hand, foot and mouth disease in infants and young children. However, no vaccine or anti-viral agent is currently available for CVA16. Here, the functions and working mechanisms of two CVA16-specific neutralizing monoclonal antibodies (MAbs), 9B5 and 8C4, are comprehensively investigated. Both 9B5 and 8C4 display potent neutralization in vitro and prophylactic and therapeutic efficacy in a mouse model of CVA16 infection. Mechanistically, 9B5 exerts neutralization primarily through inhibiting CVA16 attachment to cell surface via blockade of CVA16 binding to its attachment receptor, heparan sulfate, whereas 8C4 functions mainly at the post-attachment stage of CVA16 entry by interfering with the interaction between CVA16 and its uncoating receptor SCARB2. Cryo-EM studies show that 9B5 and 8C4 target distinct epitopes located at the 5-fold and 3-fold protrusions of CVA16 capsids, respectively, and exhibit differential binding preference to three forms of naturally occurring CVA16 particles. Moreover, 9B5 and 8C4 are compatible in formulating an antibody cocktail which displays the ability to prevent virus escape seen with individual MAbs. Together, our work elucidates the functional and structural basis of CVA16 antibody-mediated neutralization and protection, providing important information for design and development of effective CVA16 vaccines and antibody therapies.
Collapse
|
9
|
Hu B, Chik KKH, Chan JFW, Cai JP, Cao H, Tsang JOL, Zou Z, Hung YP, Tang K, Jia L, Luo C, Yin F, Ye ZW, Chu H, Yeung ML, Yuan S. Vemurafenib Inhibits Enterovirus A71 Genome Replication and Virus Assembly. Pharmaceuticals (Basel) 2022; 15:1067. [PMID: 36145288 PMCID: PMC9500672 DOI: 10.3390/ph15091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Enterovirus A71 (EV-A71) infection is a major cause of hand, foot, and mouth disease (HFMD), which may be occasionally associated with severe neurological complications. There is currently a lack of treatment options for EV-A71 infection. The Raf-MEK-ERK signaling pathway, in addition to its critical importance in the regulation of cell growth, differentiation, and survival, has been shown to be essential for virus replication. In this study, we investigated the anti-EV-A71 activity of vemurafenib, a clinically approved B-Raf inhibitor used in the treatment of late-stage melanoma. Vemurafenib exhibits potent anti-EV-A71 effect in cytopathic effect inhibition and viral load reduction assays, with half maximal effective concentration (EC50) at nanomolar concentrations. Mechanistically, vemurafenib interrupts both EV-A71 genome replication and assembly. These findings expand the list of potential antiviral candidates of anti-EV-A71 therapeutics.
Collapse
Affiliation(s)
- Bodan Hu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenn Ka-Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou 571199, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hehe Cao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jessica Oi-Ling Tsang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Zijiao Zou
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yin-Po Hung
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lilong Jia
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Man-Lung Yeung
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| |
Collapse
|
10
|
Abstract
Enterovirus 70 (EV70) is a human pathogen belonging to the family Picornaviridae. EV70 is transmitted by eye secretions and causes acute hemorrhagic conjunctivitis, a serious eye disease. Despite the severity of the disease caused by EV70, its structure is unknown. Here, we present the structures of the EV70 virion, altered particle, and empty capsid determined by cryo-electron microscopy. The capsid of EV70 is composed of the subunits VP1, VP2, VP3, and VP4. The partially collapsed hydrophobic pocket located in VP1 of the EV70 virion is not occupied by a pocket factor, which is commonly present in other enteroviruses. Nevertheless, we show that the pocket can be targeted by the antiviral compounds WIN51711 and pleconaril, which block virus infection. The inhibitors prevent genome release by stabilizing EV70 particles. Knowledge of the structures of complexes of EV70 with inhibitors will enable the development of capsid-binding therapeutics against this virus. IMPORTANCE Globally distributed enterovirus 70 (EV70) causes local outbreaks of acute hemorrhagic conjunctivitis. The discharge from infected eyes enables the high-efficiency transmission of EV70 in overcrowded areas with low hygienic standards. Currently, only symptomatic treatments are available. We determined the structures of EV70 in its native form, the genome release intermediate, and the empty capsid resulting from genome release. Furthermore, we elucidated the structures of EV70 in complex with two inhibitors that block virus infection, and we describe the mechanism of their binding to the virus capsid. These results enable the development of therapeutics against EV70.
Collapse
|
11
|
R.Swartz A, Shieh Y, Gulasarian A, Olson J, R.Rustandi R. Binding of Coxsackievirus A21 procapsids to immobilized glutathione depends on cell culture conditions during infection. Virology 2022; 573:167-175. [DOI: 10.1016/j.virol.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023]
|
12
|
Accurate virus identification with interpretable Raman signatures by machine learning. Proc Natl Acad Sci U S A 2022; 119:e2118836119. [PMID: 35653572 DOI: 10.1073/pnas.2118836119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Significance A large Raman dataset collected on a variety of viruses enables the training of machine learning (ML) models capable of highly accurate and sensitive virus identification. The trained ML models can then be integrated with a portable device to provide real-time virus detection and identification capability. We validate this conceptual framework by presenting highly accurate virus type and subtype identification results using a convolutional neural network to classify Raman spectra of viruses. The accurate and interpretable ML model developed for Raman virus identification presents promising potential in a real-time, label-free virus detection system that could be used in future outbreaks and pandemics.
Collapse
|
13
|
Development of an Enzyme-Linked Immunosorbent Assay for Detection of the Native Conformation of Enterovirus A71. mSphere 2022; 7:e0008822. [PMID: 35642505 PMCID: PMC9241546 DOI: 10.1128/msphere.00088-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Enterovirus A71 (EVA71) is a medically important virus that is commonly associated with hand, foot, and mouth disease (HFMD). It is responsible for periodic outbreaks, resulting in significant economic impact and loss of life. Vaccination offers the potential to control future outbreaks, and vaccine development has been increasingly the focus of global research efforts. However, antigenic characterization of vaccine candidates is challenging because there are few tools to characterize the different antigenic forms of the virus. As with other picornaviruses, EVA71 virions exist in two antigenic states, native (NAg) and expanded (HAg). It is likely that the composition of vaccines, in terms of the proportions of NAg and HAg, will be important for vaccine efficacy and batch-to-batch consistency. This paper describes the development of a single-chain fused variable (scFv) domain fragment and the optimization of a sandwich enzyme-linked immunosorbent assay (ELISA) for the specific detection of the NAg conformation of EVA71. NAg specificity of the scFv was demonstrated using purified EVA71, and conversion of NAg to HAg by heating resulted in a loss of binding. We have thus developed an effective tool for characterization of the specific antigenic state of EVA71. IMPORTANCE EVA71 is a medically important virus that is commonly associated with HFMD, resulting in periodic outbreaks, significant economic impact, and loss of life. Vaccination offers the potential to curtail future outbreaks, and vaccine development has been increasingly the focus of global research efforts. However, antigenic characterization of vaccine candidates is challenging because there are very limited effective tools to characterize the different antigenic forms of EV71. As with other picornaviruses, EVA71 virions exist in two antigenic states, native and expanded. This paper describes the development of an scFv and the optimization of a sandwich ELISA for the specific detection of the native conformation of EVA71 as an effective tool for characterization of the specific antigenic state of EVA71.
Collapse
|
14
|
Abstract
Kobuviruses are an unusual and poorly characterized genus within the picornavirus family and can cause gastrointestinal enteric disease in humans, livestock, and pets. The human kobuvirus Aichi virus (AiV) can cause severe gastroenteritis and deaths in children below the age of 5 years; however, this is a very rare occurrence. During the assembly of most picornaviruses (e.g., poliovirus, rhinovirus, and foot-and-mouth disease virus), the capsid precursor protein VP0 is cleaved into VP4 and VP2. However, kobuviruses retain an uncleaved VP0. From studies with other picornaviruses, it is known that VP4 performs the essential function of pore formation in membranes, which facilitates transfer of the viral genome across the endosomal membrane and into the cytoplasm for replication. Here, we employ genome exposure and membrane interaction assays to demonstrate that pH plays a critical role in AiV uncoating and membrane interactions. We demonstrate that incubation at low pH alters the exposure of hydrophobic residues within the capsid, enhances genome exposure, and enhances permeabilization of model membranes. Furthermore, using peptides we demonstrate that the N terminus of VP0 mediates membrane pore formation in model membranes, indicating that this plays an analogous function to VP4. IMPORTANCE To initiate infection, viruses must enter a host cell and deliver their genome into the appropriate location. The picornavirus family of small nonenveloped RNA viruses includes significant human and animal pathogens and is also a model to understand the process of cell entry. Most picornavirus capsids contain the internal protein VP4, generated from cleavage of a VP0 precursor. During entry, VP4 is released from the capsid. In enteroviruses this forms a membrane pore, which facilitates genome release into the cytoplasm. Due to high levels of sequence similarity, it is expected to play the same role for other picornaviruses. Some picornaviruses, such as Aichi virus, retain an intact VP0, and it is unknown how these viruses rearrange their capsids and induce membrane permeability in the absence of VP4. Here, we have used Aichi virus as a model VP0 virus to test for conservation of function between VP0 and VP4. This could enhance understanding of pore function and lead to development of novel therapeutic agents that block entry.
Collapse
|
15
|
Gunaseelan S, Ariffin MZ, Khanna S, Ooi MH, Perera D, Chu JJH, Chua JJE. Pharmacological perturbation of CXCL1 signaling alleviates neuropathogenesis in a model of HEVA71 infection. Nat Commun 2022; 13:890. [PMID: 35173169 PMCID: PMC8850555 DOI: 10.1038/s41467-022-28533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Hand, foot and mouth disease (HFMD) caused by Human Enterovirus A71 (HEVA71) infection is typically a benign infection. However, in minority of cases, children can develop severe neuropathology that culminate in fatality. Approximately 36.9% of HEVA71-related hospitalizations develop neurological complications, of which 10.5% are fatal. Yet, the mechanism by which HEVA71 induces these neurological deficits remain unclear. Here, we show that HEVA71-infected astrocytes release CXCL1 which supports viral replication in neurons by activating the CXCR2 receptor-associated ERK1/2 signaling pathway. Elevated CXCL1 levels correlates with disease severity in a HEVA71-infected mice model. In humans infected with HEVA71, high CXCL1 levels are only present in patients presenting neurological complications. CXCL1 release is specifically triggered by VP4 synthesis in HEVA71-infected astrocytes, which then acts via its receptor CXCR2 to enhance viral replication in neurons. Perturbing CXCL1 signaling or VP4 myristylation strongly attenuates viral replication. Treatment with AZD5069, a CXCL1-specific competitor, improves survival and lessens disease severity in infected animals. Collectively, these results highlight the CXCL1-CXCR2 signaling pathway as a potential target against HFMD neuropathogenesis.
Collapse
Affiliation(s)
- Saravanan Gunaseelan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore, 117456, Singapore
| | - Mohammed Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore, 117456, Singapore
| | - Mong How Ooi
- Department of Paediatrics, Sarawak General Hospital, Kuching, Sarawak, Malaysia
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - David Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Infectious Disease Translational Research Programme, National University of Singapore, Singapore, 117597, Singapore.
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- LSI Neurobiology Programme, National University of Singapore, Singapore, 117456, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Murer L, Petkidis A, Vallet T, Vignuzzi M, Greber UF. Chemical Evolution of Rhinovirus Identifies Capsid-Destabilizing Mutations Driving Low-pH-Independent Genome Uncoating. J Virol 2022; 96:e0106021. [PMID: 34705560 PMCID: PMC8791267 DOI: 10.1128/jvi.01060-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
Rhinoviruses (RVs) cause recurrent infections of the nasal and pulmonary tracts, life-threatening conditions in chronic respiratory illness patients, predisposition of children to asthmatic exacerbation, and large economic cost. RVs are difficult to treat. They rapidly evolve resistance and are genetically diverse. Here, we provide insight into RV drug resistance mechanisms against chemical compounds neutralizing low pH in endolysosomes. Serial passaging of RV-A16 in the presence of the vacuolar proton ATPase inhibitor bafilomycin A1 (BafA1) or the endolysosomotropic agent ammonium chloride (NH4Cl) promoted the emergence of resistant virus populations. We found two reproducible point mutations in viral proteins 1 and 3 (VP1 and VP3), A2526G (serine 66 to asparagine [S66N]), and G2274U (cysteine 220 to phenylalanine [C220F]), respectively. Both mutations conferred cross-resistance to BafA1, NH4Cl, and the protonophore niclosamide, as identified by massive parallel sequencing and reverse genetics, but not the double mutation, which we could not rescue. Both VP1-S66 and VP3-C220 locate at the interprotomeric face, and their mutations increase the sensitivity of virions to low pH, elevated temperature, and soluble intercellular adhesion molecule 1 receptor. These results indicate that the ability of RV to uncoat at low endosomal pH confers virion resistance to extracellular stress. The data endorse endosomal acidification inhibitors as a viable strategy against RVs, especially if inhibitors are directly applied to the airways. IMPORTANCE Rhinoviruses (RVs) are the predominant agents causing the common cold. Anti-RV drugs and vaccines are not available, largely due to rapid evolutionary adaptation of RVs giving rise to resistant mutants and an immense diversity of antigens in more than 160 different RV types. In this study, we obtained insight into the cell biology of RVs by harnessing the ability of RVs to evolve resistance against host-targeting small chemical compounds neutralizing endosomal pH, an important cue for uncoating of normal RVs. We show that RVs grown in cells treated with inhibitors of endolysosomal acidification evolved capsid mutations yielding reduced virion stability against elevated temperature, low pH, and incubation with recombinant soluble receptor fragments. This fitness cost makes it unlikely that RV mutants adapted to neutral pH become prevalent in nature. The data support the concept of host-directed drug development against respiratory viruses in general, notably at low risk of gain-of-function mutations.
Collapse
Affiliation(s)
- Luca Murer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Anthony Petkidis
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Thomas Vallet
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Department of Virology, CNRS UMR 3569, Paris, France
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Department of Virology, CNRS UMR 3569, Paris, France
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Sukeník L, Mukhamedova L, Procházková M, Škubník K, Plevka P, Vácha R. Cargo Release from Nonenveloped Viruses and Virus-like Nanoparticles: Capsid Rupture or Pore Formation. ACS NANO 2021; 15:19233-19243. [PMID: 34881874 DOI: 10.1021/acsnano.1c04814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Virus-like nanoparticles are protein shells similar to wild-type viruses, and both aim to deliver their content into a cell. Unfortunately, the release mechanism of their cargo/genome remains elusive. Pores on the symmetry axes were proposed to enable the slow release of the viral genome. In contrast, cryo-EM images showed that capsids of nonenveloped RNA viruses can crack open and rapidly release the genome. We combined in vitro cryo-EM observations of the genome release of three viruses with coarse-grained simulations of generic virus-like nanoparticles to investigate the cargo/genome release pathways. Simulations provided details on both slow and rapid release pathways, including the success rates of individual releases. Moreover, the simulated structures from the rapid release pathway were in agreement with the experiment. Slow release occurred when interactions between capsid subunits were long-ranged, and the cargo/genome was noncompact. In contrast, rapid release was preferred when the interaction range was short and/or the cargo/genome was compact. These findings indicate a design strategy of virus-like nanoparticles for drug delivery.
Collapse
Affiliation(s)
- Lukáš Sukeník
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| | - Liya Mukhamedova
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Michaela Procházková
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Karel Škubník
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Plevka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
18
|
Two Cross-Protective Antigen Sites on Foot-and-Mouth Disease Virus Serotype O Structurally Revealed by Broadly Neutralizing Antibodies from Cattle. J Virol 2021; 95:e0088121. [PMID: 34406868 DOI: 10.1128/jvi.00881-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious virus that infects cloven-hoofed animals. Neutralizing antibodies play critical roles in antiviral infection. Although five known antigen sites that induce neutralizing antibodies have been defined, studies on cross-protective antigen sites are still scarce. We mapped two cross-protective antigen sites using 13 bovine-derived broadly neutralizing monoclonal antibodies (bnAbs) capable of neutralizing 4 lineages within 3 topotypes of FMDV serotype O. One antigen site was formed by a novel cluster of VP3-focused epitopes recognized by bnAb C4 and C4-like antibodies. The cryo-electron microscopy (cryo-EM) structure of the FMDV-OTi (O/Tibet/99)-C4 complex showed close contact with VP3 and a novel interprotomer antigen epitope around the icosahedral 3-fold axis of the FMDV particle, which is far beyond the known antigen site 4. The key determinants of the neutralizing function of C4 and C4-like antibodies on the capsid were βB (T65), the B-C loop (T68), the E-F loop (E131 and K134), and the H-I loop (G196), revealing a novel antigen site on VP3. The other antigen site comprised two group epitopes on VP2 recognized by 9 bnAbs (B57, B73, B77, B82, F28, F145, F150, E46, and E54), which belong to the known antigen site 2 of FMDV serotype O. Notably, bnAb C4 potently promoted FMDV RNA release in response to damage to viral particles, suggesting that the targeted epitope contains a trigger mechanism for particle disassembly. This study revealed two cross-protective antigen sites that can elicit cross-reactive neutralizing antibodies in cattle and provided new structural information for the design of a broad-spectrum molecular vaccine against FMDV serotype O. IMPORTANCE FMDV is the causative agent of foot-and-mouth disease (FMD), which is one of the most contagious and economically devastating diseases of domestic animals. The antigenic structure of FMDV serotype O is rather complicated, especially for those sites that can elicit a cross-protective neutralizing antibody response. Monoclonal neutralization antibodies provide both crucial defense components against FMDV infection and valuable tools for fine analysis of the antigenic structure. In this study, we found a cluster of novel VP3-focused epitopes using 13 bnAbs against FMDV serotype O from natural host cattle, which revealed two cross-protective antigen sites on VP2 and VP3. Antibody C4 targeting this novel epitope potently promoted viral particle disassembly and RNA release before infection, which may indicate a vulnerable region of FMDV. This study reveals new structural information about cross-protective antigen sites of FMDV serotype O, providing valuable and strong support for future research on broad-spectrum vaccines against FMD.
Collapse
|
19
|
Structures of foot-and-mouth disease virus with bovine neutralizing antibodies reveal the determinant of intra-serotype cross-neutralization. J Virol 2021; 95:e0130821. [PMID: 34586859 DOI: 10.1128/jvi.01308-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) exhibits broad antigenic diversity with poor intra-serotype cross-neutralizing activity. Studies of the determinant involved in this diversity are essential for the development of broadly protective vaccines. In this work, we isolated a bovine antibody, designated R55, that displays cross-reaction with both FMDV A/AF/72 (hereafter named FMDV-AAF) and FMDV A/WH/09 (hereafter named FMDV-AWH) but only has a neutralizing effect on FMDV-AWH. Near-atomic resolution structures of FMDV-AAF-R55 and FMDV-AWH-R55 show that R55 engages the capsids of both FMDV-AAF and FMDV-AWH near the icosahedral threefold axis and binds to the βB and BC/HI-loops of VP2 and to the B-B knob of VP3. The common interaction residues are highly conserved, which is the major determinant for cross-reaction with both FMDV-AAF and FMDV-AWH. In addition, the cryo-EM structure of the FMDV-AWH-R55 complex also shows that R55 binds to VP3E70 located at the VP3 BC-loop in an adjacent pentamer, which enhances the acid and thermal stabilities of the viral capsid. This may prevent capsid dissociation and genome release into host cells, eventually leading to neutralization of the viral infection. In contrast, R55 binds only to the FMDV-AAF capsid within one pentamer due to the VP3E70G variation, which neither enhances capsid stability nor neutralizes FMDV-AAF infection. The VP3E70G mutation is the major determinant involved in the neutralizing differences between FMDV-AWH and FMDV-AAF. The crucial amino acid VP3E70 is a key component of the neutralizing epitopes, which may aid in the development of broadly protective vaccines. Importance Foot-and-mouth disease virus (FMDV) causes a highly contagious and economically devastating disease in cloven-hoofed animals, and neutralizing antibodies play critical roles in the defense against viral infections. Here, we isolated a bovine antibody (R55) using the single B cell antibody isolation technique. Enzyme-linked immunosorbent assays (ELISA) and virus neutralization tests (VNT) showed that R55 displays cross-reactions with both FMDV-AWH and FMDV-AAF but only has a neutralizing effect on FMDV-AWH. Cryo-EM structures, fluorescence-based thermal stability assays and acid stability assays showed that R55 engages the capsid of FMDV-AWH near the icosahedral threefold axis and informs an interpentamer epitope, which overstabilizes virions to hinder capsid dissociation to release the genome, eventually leading to neutralization of viral infection. The crucial amino acid VP3E70 forms a key component of neutralizing epitopes, and the determination of the VP3E70G mutation involved in the neutralizing differences between FMDV-AWH and FMDV-AAF could aid in the development of broadly protective vaccines.
Collapse
|
20
|
Zhang C, Xu C, Dai W, Wang Y, Liu Z, Zhang X, Wang X, Wang H, Gong S, Cong Y, Huang Z. Functional and structural characterization of a two-MAb cocktail for delayed treatment of enterovirus D68 infections. Nat Commun 2021; 12:2904. [PMID: 34006855 PMCID: PMC8131599 DOI: 10.1038/s41467-021-23199-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
Enterovirus D68 (EV-D68) is an emerging pathogen associated with respiratory diseases and/or acute flaccid myelitis. Here, two MAbs, 2H12 and 8F12, raised against EV-D68 virus-like particle (VLP), show distinct preference in binding VLP and virion and in neutralizing different EV-D68 strains. A combination of 2H12 and 8F12 exhibits balanced and potent neutralization effects and confers broader protection in mice than single MAbs when given at onset of symptoms. Cryo-EM structures of EV-D68 virion complexed with 2H12 or 8F12 show that both antibodies bind to the canyon region of the virion, creating steric hindrance for sialic acid receptor binding. Additionally, 2H12 binding can impair virion integrity and trigger premature viral uncoating. We also capture an uncoating intermediate induced by 2H12 binding, not previously described for picornaviruses. Our study elucidates the structural basis and neutralizing mechanisms of the 2H12 and 8F12 MAbs and supports further development of the 2H12/8F12 cocktail as a broad-spectrum therapeutic agent against EV-D68 infections in humans.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Cell Line, Tumor
- Cryoelectron Microscopy
- Enterovirus D, Human/drug effects
- Enterovirus D, Human/immunology
- Enterovirus D, Human/physiology
- Enterovirus Infections/drug therapy
- Enterovirus Infections/immunology
- Enterovirus Infections/virology
- Female
- Humans
- Mice, Inbred BALB C
- Protein Binding/drug effects
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Time-to-Treatment
- Treatment Outcome
- Virion/drug effects
- Virion/immunology
- Virion/metabolism
- Virion/ultrastructure
- Virus Uncoating/drug effects
- Mice
Collapse
Affiliation(s)
- Chao Zhang
- Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Cong Xu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenlong Dai
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhi Liu
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xueyang Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xuesong Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Sitang Gong
- Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China.
| | - Zhong Huang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
21
|
Virion structure and in vitro genome release mechanism of dicistrovirus Kashmir bee virus. J Virol 2021; 95:JVI.01950-20. [PMID: 33658338 PMCID: PMC8139710 DOI: 10.1128/jvi.01950-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infections of Kashmir bee virus (KBV) are lethal for honeybees and have been associated with colony collapse disorder. KBV and closely related viruses contribute to the ongoing decline in the number of honeybee colonies in North America, Europe, Australia, and other parts of the world. Despite the economic and ecological impact of KBV, its structure and infection process remain unknown. Here we present the structure of the virion of KBV determined to a resolution of 2.8 Å. We show that the exposure of KBV to acidic pH induces a reduction in inter-pentamer contacts within capsids and the reorganization of its RNA genome from a uniform distribution to regions of high and low density. Capsids of KBV crack into pieces at acidic pH, resulting in the formation of open particles lacking pentamers of capsid proteins. The large openings of capsids enable the rapid release of genomes and thus limit the probability of their degradation by RNases. The opening of capsids may be a shared mechanism for the genome release of viruses from the family Dicistroviridae ImportanceThe western honeybee (Apis mellifera) is indispensable for maintaining agricultural productivity as well as the abundance and diversity of wild flowering plants. However, bees suffer from environmental pollution, parasites, and pathogens, including viruses. Outbreaks of virus infections cause the deaths of individual honeybees as well as collapses of whole colonies. Kashmir bee virus has been associated with colony collapse disorder in the US, and no cure of the disease is currently available. Here we report the structure of an infectious particle of Kashmir bee virus and show how its protein capsid opens to release the genome. Our structural characterization of the infection process determined that therapeutic compounds stabilizing contacts between pentamers of capsid proteins could prevent the genome release of the virus.
Collapse
|
22
|
ICAM-1 induced rearrangements of capsid and genome prime rhinovirus 14 for activation and uncoating. Proc Natl Acad Sci U S A 2021; 118:2024251118. [PMID: 33947819 PMCID: PMC8126848 DOI: 10.1073/pnas.2024251118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Medical visits and missed days of school and work caused by rhinoviruses cost tens of billions of US dollars annually. Currently, there are no antivirals against rhinoviruses, and the available treatments only treat the symptoms. Here, we present the molecular structure of human rhinovirus 14 in complex with its cellular receptor intercellular adhesion molecule 1. The binding of the virus to its receptor initiates the infection. Knowledge of the structure of the human rhinovirus 14–intercellular adhesion molecule 1 interface and mechanism of interaction provides the basis for the design of compounds that may block the binding of rhinoviruses to receptors and thus prevent infection. Most rhinoviruses, which are the leading cause of the common cold, utilize intercellular adhesion molecule-1 (ICAM-1) as a receptor to infect cells. To release their genomes, rhinoviruses convert to activated particles that contain pores in the capsid, lack minor capsid protein VP4, and have an altered genome organization. The binding of rhinoviruses to ICAM-1 promotes virus activation; however, the molecular details of the process remain unknown. Here, we present the structures of virion of rhinovirus 14 and its complex with ICAM-1 determined to resolutions of 2.6 and 2.4 Å, respectively. The cryo-electron microscopy reconstruction of rhinovirus 14 virions contains the resolved density of octanucleotide segments from the RNA genome that interact with VP2 subunits. We show that the binding of ICAM-1 to rhinovirus 14 is required to prime the virus for activation and genome release at acidic pH. Formation of the rhinovirus 14–ICAM-1 complex induces conformational changes to the rhinovirus 14 capsid, including translocation of the C termini of VP4 subunits, which become poised for release through pores that open in the capsids of activated particles. VP4 subunits with altered conformation block the RNA–VP2 interactions and expose patches of positively charged residues. The conformational changes to the capsid induce the redistribution of the virus genome by altering the capsid–RNA interactions. The restructuring of the rhinovirus 14 capsid and genome prepares the virions for conversion to activated particles. The high-resolution structure of rhinovirus 14 in complex with ICAM-1 explains how the binding of uncoating receptors enables enterovirus genome release.
Collapse
|
23
|
Rong H, Wang L, Gao L, Fang Y, Chen Q, Hu J, Ye M, Liao Q, Zhang L, Dong C. Bioinformatics-based prediction of conformational epitopes for human parechovirus. PLoS One 2021; 16:e0247423. [PMID: 33793559 PMCID: PMC8016246 DOI: 10.1371/journal.pone.0247423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
Human parechoviruses (HPeVs) are human pathogens that usually cause diseases ranging from rash to neonatal sepsis in young children. HPeV1 and HPeV3 are the most frequently reported genotypes and their three-dimensional structures have been determined. However, there is a lack of systematic research on the antigenic epitopes of HPeVs, which are useful for understanding virus-receptor interactions, developing antiviral agents or molecular diagnostic tools, and monitoring antigenic evolution. Thus, we systematically predicted and compared the conformational epitopes of HPeV1 and HPeV3 using bioinformatics methods in the study. The results showed that both epitopes clustered into three sites (sites 1, 2 and 3). Site 1 was located on the "northern rim" near the fivefold vertex; site 2 was on the "puff"; and site 3 was divided into two parts, of which one was located on the "knob" and the other was close to the threefold vertex. The predicted epitopes highly overlapped with the reported antigenic epitopes, which indicated that the prediction results were accurate. Although the distribution positions of the epitopes of HPeV1 and HPeV3 were highly consistent, the residues varied largely and determined the genotypes. Three amino acid residues, VP3-91N, -92H and VP0-257S, were the key residues for monoclonal antibody (mAb) AM28 binding to HPeV1 and were also of great significance in distinguishing HPeV1 and HPeV3. We also found that two residues, VP1-85N and -87D, might affect the capability of mAb AT12-015 to bind to HPeV3.
Collapse
Affiliation(s)
- Hao Rong
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, China
| | - Liping Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, China
| | - Liuying Gao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Yulu Fang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, China
| | - Qin Chen
- HuaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Jianli Hu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, China
| | - Qi Liao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, China
| | - Lina Zhang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, China
| | - Changzheng Dong
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, China
- * E-mail:
| |
Collapse
|
24
|
Škubník K, Sukeník L, Buchta D, Füzik T, Procházková M, Moravcová J, Šmerdová L, Přidal A, Vácha R, Plevka P. Capsid opening enables genome release of iflaviruses. SCIENCE ADVANCES 2021; 7:7/1/eabd7130. [PMID: 33523856 PMCID: PMC7775750 DOI: 10.1126/sciadv.abd7130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/11/2020] [Indexed: 05/29/2023]
Abstract
The family Iflaviridae includes economically important viruses of the western honeybee such as deformed wing virus, slow bee paralysis virus, and sacbrood virus. Iflaviruses have nonenveloped virions and capsids organized with icosahedral symmetry. The genome release of iflaviruses can be induced in vitro by exposure to acidic pH, implying that they enter cells by endocytosis. Genome release intermediates of iflaviruses have not been structurally characterized. Here, we show that conformational changes and expansion of iflavirus RNA genomes, which are induced by acidic pH, trigger the opening of iflavirus particles. Capsids of slow bee paralysis virus and sacbrood virus crack into pieces. In contrast, capsids of deformed wing virus are more flexible and open like flowers to release their genomes. The large openings in iflavirus particles enable the fast exit of genomes from capsids, which decreases the probability of genome degradation by the RNases present in endosomes.
Collapse
Affiliation(s)
- Karel Škubník
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Lukáš Sukeník
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Department of Condensed Matter Physics and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - David Buchta
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Michaela Procházková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jana Moravcová
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Lenka Šmerdová
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Antonín Přidal
- Department of Zoology, Fishery, Hydrobiology, and Apidology, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1/1665, 613 00 Brno, Czech Republic
| | - Robert Vácha
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Department of Condensed Matter Physics and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
25
|
Shah PNM, Filman DJ, Karunatilaka KS, Hesketh EL, Groppelli E, Strauss M, Hogle JM. Cryo-EM structures reveal two distinct conformational states in a picornavirus cell entry intermediate. PLoS Pathog 2020; 16:e1008920. [PMID: 32997730 PMCID: PMC7549760 DOI: 10.1371/journal.ppat.1008920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 10/12/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
The virions of enteroviruses such as poliovirus undergo a global conformational change after binding to the cellular receptor, characterized by a 4% expansion, and by the opening of holes at the two and quasi-three-fold symmetry axes of the capsid. The resultant particle is called a 135S particle or A-particle and is thought to be on the pathway to a productive infection. Previously published studies have concluded that the membrane-interactive peptides, namely VP4 and the N-terminus of VP1, are irreversibly externalized in the 135S particle. However, using established protocols to produce the 135S particle, and single particle cryo-electron microscopy methods, we have identified at least two unique states that we call the early and late 135S particle. Surprisingly, only in the "late" 135S particles have detectable levels of the VP1 N-terminus been trapped outside the capsid. Moreover, we observe a distinct density inside the capsid that can be accounted for by VP4 that remains associated with the genome. Taken together our results conclusively demonstrate that the 135S particle is not a unique conformation, but rather a family of conformations that could exist simultaneously.
Collapse
Affiliation(s)
- Pranav N. M. Shah
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - David J. Filman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Krishanthi S. Karunatilaka
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Emma L. Hesketh
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Elisabetta Groppelli
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Mike Strauss
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - James M. Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
26
|
Phanthong S, Densumite J, Seesuay W, Thanongsaksrikul J, Teimoori S, Sookrung N, Poovorawan Y, Onvimala N, Guntapong R, Pattanapanyasat K, Chaicumpa W. Human Antibodies to VP4 Inhibit Replication of Enteroviruses Across Subgenotypes and Serotypes, and Enhance Host Innate Immunity. Front Microbiol 2020; 11:562768. [PMID: 33101238 PMCID: PMC7545151 DOI: 10.3389/fmicb.2020.562768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a highly contagious disease that usually affects infants and young children (<5 years). HFMD outbreaks occur frequently in the Asia-Pacific region, and these outbreaks are associated with enormous healthcare and socioeconomic burden. There is currently no specific antiviral agent to treat HFMD and/or the severe complications that are frequently associated with the enterovirus of serotype EV71. Therefore, the development of a broadly effective and safe anti-enterovirus agent is an existential necessity. In this study, human single-chain antibodies (HuscFvs) specific to the EV71-internal capsid protein (VP4) were generated using phage display technology. VP4 specific-HuscFvs were linked to cell penetrating peptides to make them cell penetrable HuscFvs (transbodies), and readily accessible to the intracellular target. The transbodies, as well as the original HuscFvs that were tested, entered the enterovirus-infected cells, bound to intracellular VP4, and inhibited replication of EV71 across subgenotypes A, B, and C, and coxsackieviruses CVA16 and CVA6. The antibodies also enhanced the antiviral response of the virus-infected cells. Computerized simulation, indirect and competitive ELISAs, and experiments on cells infected with EV71 particles to which the VP4 and VP1-N-terminus were surface-exposed (i.e., A-particles that don’t require receptor binding for infection) indicated that the VP4 specific-antibodies inhibit virus replication by interfering with the VP4-N-terminus, which is important for membrane pore formation and virus genome release leading to less production of virus proteins, less infectious virions, and restoration of host innate immunity. The antibodies may inhibit polyprotein/intermediate protein processing and cause sterically strained configurations of the capsid pentamers, which impairs virus morphogenesis. These antibodies should be further investigated for application as a safe and broadly effective HFMD therapy.
Collapse
Affiliation(s)
- Siratcha Phanthong
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Jaslan Densumite
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Watee Seesuay
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Jeeraphong Thanongsaksrikul
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Bangkok, Thailand
| | - Salma Teimoori
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Nitat Sookrung
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand.,Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Napa Onvimala
- Department of Medical Science, Ministry of Public Health, National Institute of Health, Nonthaburi, Thailand
| | - Ratigorn Guntapong
- Department of Medical Science, Ministry of Public Health, National Institute of Health, Nonthaburi, Thailand
| | - Kovit Pattanapanyasat
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| |
Collapse
|
27
|
Kiss B, Mudra D, Török G, Mártonfalvi Z, Csík G, Herényi L, Kellermayer M. Single-particle virology. Biophys Rev 2020; 12:1141-1154. [PMID: 32880826 PMCID: PMC7471434 DOI: 10.1007/s12551-020-00747-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023] Open
Abstract
The development of advanced experimental methodologies, such as optical tweezers, scanning-probe and super-resolved optical microscopies, has led to the evolution of single-molecule biophysics, a field of science that allows direct access to the mechanistic detail of biomolecular structure and function. The extension of single-molecule methods to the investigation of particles such as viruses permits unprecedented insights into the behavior of supramolecular assemblies. Here we address the scope of viral exploration at the level of individual particles. In an era of increased awareness towards virology, single-particle approaches are expected to facilitate the in-depth understanding, and hence combating, of viral diseases.
Collapse
Affiliation(s)
- Bálint Kiss
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Dorottya Mudra
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - György Török
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Zsolt Mártonfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Gabriella Csík
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Levente Herényi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
28
|
Hankaniemi MM, Baikoghli MA, Stone VM, Xing L, Väätäinen O, Soppela S, Sioofy-Khojine A, Saarinen NVV, Ou T, Anson B, Hyöty H, Marjomäki V, Flodström-Tullberg M, Cheng RH, Hytönen VP, Laitinen OH. Structural Insight into CVB3-VLP Non-Adjuvanted Vaccine. Microorganisms 2020; 8:microorganisms8091287. [PMID: 32846899 PMCID: PMC7565060 DOI: 10.3390/microorganisms8091287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Coxsackievirus B (CVB) enteroviruses are common pathogens that can cause acute and chronic myocarditis, dilated cardiomyopathy, aseptic meningitis, and they are hypothesized to be a causal factor in type 1 diabetes. The licensed enterovirus vaccines and those currently in clinical development are traditional inactivated or live attenuated vaccines. Even though these vaccines work well in the prevention of enterovirus diseases, new vaccine technologies, like virus-like particles (VLPs), can offer important advantages in the manufacturing and epitope engineering. We have previously produced VLPs for CVB3 and CVB1 in insect cells. Here, we describe the production of CVB3-VLPs with enhanced production yield and purity using an improved purification method consisting of tangential flow filtration and ion exchange chromatography, which is compatible with industrial scale production. We also resolved the CVB3-VLP structure by Cryo-Electron Microscopy imaging and single particle reconstruction. The VLP diameter is 30.9 nm on average, and it is similar to Coxsackievirus A VLPs and the expanded enterovirus cell-entry intermediate (the 135s particle), which is ~2 nm larger than the mature virion. High neutralizing and total IgG antibody levels, the latter being a predominantly Th2 type (IgG1) phenotype, were detected in C57BL/6J mice immunized with non-adjuvanted CVB3-VLP vaccine. The structural and immunogenic data presented here indicate the potential of this improved methodology to produce highly immunogenic enterovirus VLP-vaccines in the future.
Collapse
Affiliation(s)
- Minna M. Hankaniemi
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
- Correspondence: (M.M.H.); (V.P.H.); Tel.: +358-504176882 (M.M.H.); +358-401901517 (V.P.H.)
| | - Mo A. Baikoghli
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, P.O. Box 20, University of Helsinki, 00014 Helsinki, Finland
| | - Virginia M. Stone
- The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 52 Stockholm, Sweden; (V.M.S.); (M.F.-T.)
| | - Li Xing
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
| | - Outi Väätäinen
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| | - Saana Soppela
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| | - Amirbabak Sioofy-Khojine
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| | - Niila V. V. Saarinen
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| | - Tingwei Ou
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
| | - Brandon Anson
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
- Fimlab Laboratories, FI-33520 Tampere, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Malin Flodström-Tullberg
- The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 52 Stockholm, Sweden; (V.M.S.); (M.F.-T.)
| | - R. Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
| | - Vesa P. Hytönen
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
- Fimlab Laboratories, FI-33520 Tampere, Finland
- Correspondence: (M.M.H.); (V.P.H.); Tel.: +358-504176882 (M.M.H.); +358-401901517 (V.P.H.)
| | - Olli H. Laitinen
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| |
Collapse
|
29
|
Real-Hohn A, Groznica M, Löffler N, Blaas D, Kowalski H. nanoDSF: In vitro Label-Free Method to Monitor Picornavirus Uncoating and Test Compounds Affecting Particle Stability. Front Microbiol 2020; 11:1442. [PMID: 32676065 PMCID: PMC7333345 DOI: 10.3389/fmicb.2020.01442] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022] Open
Abstract
Thermal shift assays measure the stability of macromolecules and macromolecular assemblies as a function of temperature. The Particle Stability Thermal Release Assay (PaSTRy) of picornaviruses is based on probes becoming strongly fluorescent upon binding to hydrophobic patches of the protein capsid (e.g., SYPRO Orange) or to the viral RNA genome (e.g., SYTO-82) that become exposed upon heating virus particles. PaSTRy has been exploited for studying the stability of viral mutants, viral uncoating, and the effect of capsid-stabilizing compounds. While the results were usually robust, the thermal shift assay with SYPRO Orange is sensitive to surfactants and EDTA and failed at least to correctly report the effect of excipients on an inactivated poliovirus 3 vaccine. Furthermore, interactions between the probe and capsid-binding antivirals as well as mutual competition for binding sites cannot be excluded. To overcome these caveats, we assessed differential scanning fluorimetry with a nanoDSF device as a label-free alternative. NanoDSF monitors the changes in the intrinsic tryptophan fluorescence (ITF) resulting from alterations of the 3D-structure of proteins as a function of the temperature. Using rhinovirus A2 as a model, we demonstrate that nanoDFS is well suited for recording the temperature-dependence of conformational changes associated with viral uncoating with minute amounts of sample. We compare it with orthogonal methods and correlate the increase in viral RNA exposure with PaSTRy measurements. Importantly, nanoDSF correctly identified the thermal stabilization of RV-A2 by pleconaril, a prototypic pocket-binding antiviral compound. NanoDFS is thus a label-free, high throughput-customizable, attractive alternative for the discovery of capsid-binding compounds impacting on viral stability.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center for Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Martin Groznica
- Center for Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Nadine Löffler
- Center for Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Dieter Blaas
- Center for Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Heinrich Kowalski
- Center for Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Salt Enhances the Thermostability of Enteroviruses by Stabilizing Capsid Protein Interfaces. J Virol 2020; 94:JVI.02176-19. [PMID: 32213614 DOI: 10.1128/jvi.02176-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
Enteroviruses are common agents of infectious disease that are spread by the fecal-oral route. They are readily inactivated by mild heat, which causes the viral capsid to disintegrate or undergo conformational change. While beneficial for the thermal treatment of food or water, this heat sensitivity poses challenges for the stability of enterovirus vaccines. The thermostability of an enterovirus can be modulated by the composition of the suspending matrix, though the effects of the matrix on virus stability are not understood. Here, we determined the thermostability of four enterovirus strains in solutions with various concentrations of NaCl and different pH values. The experimental findings were combined with molecular modeling of the protein interaction forces at the pentamer and the protomer interfaces of the viral capsids. While pH only had a modest effect on thermostability, increasing NaCl concentrations raised the breakpoint temperatures of all viruses tested by up to 20°C. This breakpoint shift could be explained by an enhancement of the van der Waals attraction forces at the two protein interfaces. In comparison, the (net repulsive) electrostatic interactions were less affected by NaCl. Depending on the interface considered, the breakpoint temperature shifted by 7.5 or 5.6°C per 100-kcal/(mol·Å) increase in protein interaction force.IMPORTANCE The genus Enterovirus encompasses important contaminants of water and food (e.g., coxsackieviruses), as well as viruses of acute public health concern (e.g., poliovirus). Depending on the properties of the surrounding matrix, enteroviruses exhibit different sensitivities to heat, which in turn influences their persistence in the environment, during food treatment, and during vaccine storage. Here, we determined the effect of NaCl and pH on the heat stability of different enteroviruses and related the observed effects to changes in protein interaction forces in the viral capsid. We demonstrate that NaCl renders enteroviruses thermotolerant and that this effect stems from an increase in van der Waals forces at different protein subunits in the viral capsid. This work sheds light on the mechanism by which salt enhances virus stability.
Collapse
|
31
|
He M, Xu L, Zheng Q, Zhu R, Yin Z, Zha Z, Lin Y, Yang L, Huang Y, Ye X, Li S, Hou W, Wu Y, Han J, Liu D, Li Z, Chen Z, Yu H, Que Y, Wang Y, Yan X, Zhang J, Gu Y, Zhou ZH, Cheng T, Li S, Xia N. Identification of Antibodies with Non-overlapping Neutralization Sites that Target Coxsackievirus A16. Cell Host Microbe 2020; 27:249-261.e5. [PMID: 32027857 PMCID: PMC7539366 DOI: 10.1016/j.chom.2020.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/06/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Hand, foot, and mouth disease is a common childhood illness primarily caused by coxsackievirus A16 (CVA16), for which there are no current vaccines or treatments. We identify three CVA16-specific neutralizing monoclonal antibodies (nAbs) with therapeutic potential: 18A7, 14B10, and NA9D7. We present atomic structures of these nAbs bound to all three viral particle forms-the mature virion, A-particle, and empty particle-and show that each Fab can simultaneously occupy the mature virion. Additionally, 14B10 or NA9D7 provide 100% protection against lethal CVA16 infection in a neonatal mouse model. 18A7 binds to a non-conserved epitope present in all three particles, whereas 14B10 and NA9D7 recognize broad protective epitopes but only bind the mature virion. NA9D7 targets an immunodominant site, which may overlap the receptor-binding site. These findings indicate that CVA16 vaccines should be based on mature virions and that these antibodies could be used to discriminate optimal virion-based immunogens.
Collapse
Affiliation(s)
- Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhichao Yin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhenghui Zha
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yu Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lisheng Yang
- Beijing Wantai Biological Pharmacy Enterprise, Beijing 102206, China
| | - Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiangzhong Ye
- Beijing Wantai Biological Pharmacy Enterprise, Beijing 102206, China
| | - Shuxuan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wangheng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yangtao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jinle Han
- Beijing Wantai Biological Pharmacy Enterprise, Beijing 102206, China
| | - Dongxiao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zekai Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaodong Yan
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093-0378, USA
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Z Hong Zhou
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
32
|
Li N, Li Z, Fu Y, Cao S. Cryo-EM Studies of Virus-Antibody Immune Complexes. Virol Sin 2020; 35:1-13. [PMID: 31916022 PMCID: PMC7035235 DOI: 10.1007/s12250-019-00190-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/25/2019] [Indexed: 01/25/2023] Open
Abstract
Antibodies play critical roles in neutralizing viral infections and are increasingly used as therapeutic drugs and diagnostic tools. Structural studies on virus-antibody immune complexes are important for better understanding the molecular mechanisms of antibody-mediated neutralization and also provide valuable information for structure-based vaccine design. Cryo-electron microscopy (cryo-EM) has recently matured as a powerful structural technique for studying bio-macromolecular complexes. When combined with X-ray crystallography, cryo-EM provides a routine approach for structurally characterizing the immune complexes formed between icosahedral viruses and their antibodies. In this review, recent advances in the structural understanding of virus-antibody interactions are outlined for whole virions with icosahedral T = pseudo 3 (picornaviruses) and T = 3 (flaviviruses) architectures, focusing on the dynamic nature of viral shells in different functional states. Glycoprotein complexes from pleomorphic enveloped viruses are also discussed as immune complex antigens. Improving our understanding of viral epitope structures using virus-based platforms would provide a fundamental road map for future vaccine development.
Collapse
Affiliation(s)
- Na Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Wuhan, 430071, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Wuhan, 430071, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Fu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Wuhan, 430071, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Sheng Cao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Wuhan, 430071, China. .,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
33
|
Zhao Y, Zhou D, Ni T, Karia D, Kotecha A, Wang X, Rao Z, Jones EY, Fry EE, Ren J, Stuart DI. Hand-foot-and-mouth disease virus receptor KREMEN1 binds the canyon of Coxsackie Virus A10. Nat Commun 2020; 11:38. [PMID: 31911601 PMCID: PMC6946704 DOI: 10.1038/s41467-019-13936-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/07/2019] [Indexed: 01/12/2023] Open
Abstract
Coxsackievirus A10 (CV-A10) is responsible for an escalating number of severe infections in children, but no prophylactics or therapeutics are currently available. KREMEN1 (KRM1) is the entry receptor for the largest receptor-group of hand-foot-and-mouth disease causing viruses, which includes CV-A10. We report here structures of CV-A10 mature virus alone and in complex with KRM1 as well as of the CV-A10 A-particle. The receptor spans the viral canyon with a large footprint on the virus surface. The footprint has some overlap with that seen for the neonatal Fc receptor complexed with enterovirus E6 but is larger and distinct from that of another enterovirus receptor SCARB2. Reduced occupancy of a particle-stabilising pocket factor in the complexed virus and the presence of both unbound and expanded virus particles suggests receptor binding initiates a cascade of conformational changes that produces expanded particles primed for viral uncoating.
Collapse
MESH Headings
- Enterovirus A, Human/chemistry
- Enterovirus A, Human/genetics
- Enterovirus A, Human/physiology
- Enterovirus A, Human/ultrastructure
- Enterovirus Infections/genetics
- Enterovirus Infections/metabolism
- Enterovirus Infections/virology
- Foot-and-Mouth Disease Virus/genetics
- Foot-and-Mouth Disease Virus/physiology
- Hand, Foot and Mouth Disease/genetics
- Hand, Foot and Mouth Disease/metabolism
- Hand, Foot and Mouth Disease/virology
- Humans
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Virus Uncoating
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Daming Zhou
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Tao Ni
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Dimple Karia
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Abhay Kotecha
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Xiangxi Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, 100101, Beijing, China
| | - Zihe Rao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, 100101, Beijing, China
| | - E Yvonne Jones
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Elizabeth E Fry
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Jingshan Ren
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK.
| | - David I Stuart
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK.
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
34
|
Electrostatic interactions at the five-fold axis alter heparin-binding phenotype and drive enterovirus A71 virulence in mice. PLoS Pathog 2019; 15:e1007863. [PMID: 31730673 PMCID: PMC6881073 DOI: 10.1371/journal.ppat.1007863] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/27/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023] Open
Abstract
Enterovirus A71 (EV-A71) causes hand, foot and mouth disease epidemics with neurological complications and fatalities. However, the neuropathogenesis of EV-A71 remains poorly understood. In mice, adaptation and virulence determinants have been mapped to mutations at VP2-149, VP1-145 and VP1-244. We investigate how these amino acids alter heparin-binding phenotype and shapes EV-A71 virulence in one-day old mice. We constructed six viruses with varying residues at VP1-98, VP1-145 (which are both heparin-binding determinants) and VP2-149 (based on the wild type 149K/98E/145Q, termed KEQ) to generate KKQ, KKE, KEE, IEE and IEQ variants. We demonstrated that the weak heparin-binder IEE was highly lethal in mice. The initially strong heparin-binding IEQ variant acquired an additional mutation VP1-K244E, which confers weak heparin-binding phenotype resulting in elevated viremia and increased virus antigens in mice brain, with subsequent high virulence. IEE and IEQ-244E variants inoculated into mice disseminated efficiently and displayed high viremia. Increasing polymerase fidelity and impairing recombination of IEQ attenuated the virulence, suggesting the importance of population diversity in EV-A71 pathogenesis in vivo. Combining in silico docking and deep sequencing approaches, we inferred that virus population diversity is shaped by electrostatic interactions at the five-fold axis of the virus surface. Electrostatic surface charges facilitate virus adaptation by generating poor heparin-binding variants for better in vivo dissemination in mice, likely due to reduced adsorption to heparin-rich peripheral tissues, which ultimately results in increased neurovirulence. The dynamic switching between heparin-binding and weak heparin-binding phenotype in vivo explained the neurovirulence of EV-A71. Enterovirus A71 (EV-A71) is the primary cause of hand, foot and mouth disease, and it can also infect the central nervous system and cause fatal outbreaks in young children. EV-A71 pathogenesis remains elusive. In this study, we demonstrated that EV-A71 variants with strong affinity to heparan sulfate (heparin) have a growth advantage in cell culture, but are disadvantaged in vivo. When inoculated into one-day old mice, strong heparin-binding virus variants are more likely to be adsorbed to peripheral tissues, resulting in impaired ability to disseminate, and are cleared from the bloodstream rapidly. The lower viremia level resulted in no neuroinvasion. In contrast, weak heparin-binding variants show greater levels of viremia, dissemination and subsequent neurovirulence in mice. We also provide evidence that the EV-A71 heparin-binding pattern is mediated by electrostatic surface charges on the virus capsid surface. In mice, EV-A71 undergoes adaptive mutation to acquire greater negative surface charges, thus generating new virulent variants with weak heparin-binding ability which allows greater viral spread. Our study underlines the importance of electrostatic surface charges in shaping EV-A71 virulence.
Collapse
|
35
|
Slow Infection due to Lowering the Amount of Intact versus Empty Particles Is a Characteristic Feature of Coxsackievirus B5 Dictated by the Structural Proteins. J Virol 2019; 93:JVI.01130-19. [PMID: 31375587 DOI: 10.1128/jvi.01130-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022] Open
Abstract
Enterovirus B species typically cause a rapid cytolytic infection leading to efficient release of progeny viruses. However, they are also capable of persistent infections in tissues, which are suggested to contribute to severe chronic states such as myocardial inflammation and type 1 diabetes. In order to understand the factors contributing to differential infection strategies, we constructed a chimera by combining the capsid proteins from fast-cytolysis-causing echovirus 1 (EV1) with nonstructural proteins from coxsackievirus B5 (CVB5), which shows persistent infection in RD cells. The results showed that the chimera behaved similarly to parental EV1, leading to efficient cytolysis in both permissive A549 and semipermissive RD cells. In contrast to EV1 and the chimera, CVB5 replicated slowly in permissive cells and showed persistent infection in semipermissive cells. However, there was no difference in the efficiency of uptake of CVB5 in A549 or RD cells in comparison to the chimera or EV1. CVB5 batches constantly contained significant amounts of empty capsids, also in comparison to CVB5's close relative CVB3. During successive passaging of batches containing only intact CVB5, increasing amounts of empty and decreasing amounts of infective capsids were produced. Our results demonstrate that the increase in the amount of empty particles and the lowering of the amount of infective particles are dictated by the CVB5 structural proteins, leading to slowing down of the infection between passages. Furthermore, the key factor for persistent infection is the small amount of infective particles produced, not the high number of empty particles that accumulate.IMPORTANCE Enteroviruses cause several severe diseases, with lytic infections that lead to rapid cell death but also persistent infections that are more silent and lead to chronic states of infection. Our study compared a cytolytic echovirus 1 infection to persistent coxsackievirus B5 infection by making a chimera with the structural proteins of echovirus 1 and the nonstructural proteins of coxsackievirus B5. Coxsackievirus B5 infection was found to lead to the production of a high number of empty viruses (empty capsids) that do not contain genetic material and are unable to continue the infection. Coinciding with the high number of empty capsids, the amount of infective virions decreased. This characteristic property was not observed in the constructed chimera virus, suggesting that structural proteins are in charge of these phenomena. These results shed light on the mechanisms that may cause persistent infections. Understanding events leading to efficient or inefficient infections is essential in understanding virus-caused pathologies.
Collapse
|
36
|
Conformational Changes and Nuclear Entry of Porcine Circovirus without Disassembly. J Virol 2019; 93:JVI.00824-19. [PMID: 31341057 DOI: 10.1128/jvi.00824-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022] Open
Abstract
A relatively stable and flexible capsid is critical to the viral life cycle. However, the capsid dynamics and cytosol trafficking of porcine circovirus type 2 (PCV2) during its infectious cycle are poorly understood. Here, we report the structural stability and conformation flexibility of PCV2 virions by genome labeling and the use of three monoclonal antibodies (MAbs) against the native capsid of PCV2. Genome labeling showed that the infectivity of the PCV2 virion was not affected by conjugation with deoxy-5-ethynylcytidine (EdC). Heat stability experiments indicated that PCV2 capsids started to disassemble at 65°C, causing binding incompetence for all antibodies, and the viral genome was released without capsid disassembly upon heating at 60°C. Antibody binding experiments with PCV2 showed that residues 186 to 192 were concealed in the early endosomes of epithelial PK-15 and monocytic 3D4/31 cells with or without chloroquine treatment and then exposed in PK-15 cytosol and the 3D4/31 nucleus. Viral propagation and localization experiments showed that PCV2 replication and cytosol trafficking were not significantly affected by microtubule depolymerization in monocytic 3D4/31 cells treated with nocodazole. These findings demonstrated that nuclear targeting of viral capsids involved conformational changes, the PCV2 genome was released from the assembled capsid, and the transit of PCV2 particles was independent of microtubules in 3D4/31 cells.IMPORTANCE Circovirus is the smallest virus known to replicate autonomously. Knowledge of viral genome release may provide understanding of viral replication and a method to artificially inactivate viral particles. Currently, little is known about the release model of porcine circovirus type 2 (PCV2). Here, we report the release of the PCV2 genome from assembled capsid and the intracellular trafficking of infectious PCV2 by alterations in the capsid conformation. Knowledge of PCV2 capsid stability and dynamics is essential to understanding its infectious cycle and lays the foundation for discovering powerful targets for therapeutic and prophylactic intervention.
Collapse
|
37
|
Extracellular Albumin and Endosomal Ions Prime Enterovirus Particles for Uncoating That Can Be Prevented by Fatty Acid Saturation. J Virol 2019; 93:JVI.00599-19. [PMID: 31189702 DOI: 10.1128/jvi.00599-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
There is limited information about the molecular triggers leading to the uncoating of enteroviruses under physiological conditions. Using real-time spectroscopy and sucrose gradients with radioactively labeled virus, we show at 37°C, the formation of albumin-triggered, metastable uncoating intermediate of echovirus 1 without receptor engagement. This conversion was blocked by saturating the albumin with fatty acids. High potassium but low sodium and calcium concentrations, mimicking the endosomal environment, also induced the formation of a metastable uncoating intermediate of echovirus 1. Together, these factors boosted the formation of the uncoating intermediate, and the infectivity of this intermediate was retained, as judged by end-point titration. Cryo-electron microscopy reconstruction of the virions treated with albumin and high potassium, low sodium, and low calcium concentrations resulted in a 3.6-Å resolution model revealing a fenestrated capsid showing 4% expansion and loss of the pocket factor, similarly to altered (A) particles described for other enteroviruses. The dimer interface between VP2 molecules was opened, the VP1 N termini disordered and most likely externalized. The RNA was clearly visible, anchored to the capsid. The results presented here suggest that extracellular albumin, partially saturated with fatty acids, likely leads to the formation of the infectious uncoating intermediate prior to the engagement with the cellular receptor. In addition, changes in mono- and divalent cations, likely occurring in endosomes, promote capsid opening and genome release.IMPORTANCE There is limited information about the uncoating of enteroviruses under physiological conditions. Here, we focused on physiologically relevant factors that likely contribute to opening of echovirus 1 and other B-group enteroviruses. By combining biochemical and structural data, we show that, before entering cells, extracellular albumin is capable of priming the virus into a metastable yet infectious intermediate state. The ionic changes that are suggested to occur in endosomes can further contribute to uncoating and promote genome release, once the viral particle is endocytosed. Importantly, we provide a detailed high-resolution structure of a virion after treatment with albumin and a preset ion composition, showing pocket factor release, capsid expansion, and fenestration and the clearly visible genome still anchored to the capsid. This study provides valuable information about the physiological factors that contribute to the opening of B group enteroviruses.
Collapse
|
38
|
Wen X, Sun D, Guo J, Elgner F, Wang M, Hildt E, Cheng A. Multifunctionality of structural proteins in the enterovirus life cycle. Future Microbiol 2019; 14:1147-1157. [PMID: 31368347 DOI: 10.2217/fmb-2019-0127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Members of the genus Enterovirus have a significant effect on human health, especially in infants and children. Since the viral genome has limited coding capacity, Enteroviruses subvert a range of cellular processes for viral infection via the interaction of viral proteins and numerous cellular factors. Intriguingly, the capsid-receptor interaction plays a crucial role in viral entry and has significant implications in viral pathogenesis. Moreover, interactions between structural proteins and host factors occur directly or indirectly in multiple steps of viral replication. In this review, we focus on the current understanding of the multifunctionality of structural proteins in the viral life cycle, which may constitute valuable targets for antiviral and therapeutic interventions.
Collapse
Affiliation(s)
- Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.,Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Jinlong Guo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Fabian Elgner
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| |
Collapse
|
39
|
Cryo-electron Microscopy Structures of Novel Viruses from Mud Crab Scylla paramamosain with Multiple Infections. J Virol 2019; 93:JVI.02255-18. [PMID: 30651355 DOI: 10.1128/jvi.02255-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022] Open
Abstract
Viruses associated with sleeping disease (SD) in crabs cause great economic losses to aquaculture, and no effective measures are available for their prevention. In this study, to help develop novel antiviral strategies, single-particle cryo-electron microscopy was applied to investigate viruses associated with SD. The results not only revealed the structure of mud crab dicistrovirus (MCDV) but also identified a novel mud crab tombus-like virus (MCTV) not previously detected using molecular biology methods. The structure of MCDV at a 3.5-Å resolution reveals three major capsid proteins (VP1 to VP3) organized into a pseudo-T=3 icosahedral capsid, and affirms the existence of VP4. Unusually, MCDV VP3 contains a long C-terminal region and forms a novel protrusion that has not been observed in other dicistrovirus. Our results also reveal that MCDV can release its genome via conformation changes of the protrusions when viral mixtures are heated. The structure of MCTV at a 3.3-Å resolution reveals a T= 3 icosahedral capsid with common features of both tombusviruses and nodaviruses. Furthermore, MCTV has a novel hydrophobic tunnel beneath the 5-fold vertex and 30 dimeric protrusions composed of the P-domains of the capsid protein at the 2-fold axes that are exposed on the virion surface. The structural features of MCTV are consistent with a novel type of virus.IMPORTANCE Pathogen identification is vital for unknown infectious outbreaks, especially for dual or multiple infections. Sleeping disease (SD) in crabs causes great economic losses to aquaculture worldwide. Here we report the discovery and identification of a novel virus in mud crabs with multiple infections that was not previously detected by molecular, immune, or traditional electron microscopy (EM) methods. High-resolution structures of pathogenic viruses are essential for a molecular understanding and developing new disease prevention methods. The three-dimensional (3D) structure of the mud crab tombus-like virus (MCTV) and mud crab dicistrovirus (MCDV) determined in this study could assist the development of antiviral inhibitors. The identification of a novel virus in multiple infections previously missed using other methods demonstrates the usefulness of this strategy for investigating multiple infectious outbreaks, even in humans and other animals.
Collapse
|
40
|
Anasir MI, Poh CL. Advances in Antigenic Peptide-Based Vaccine and Neutralizing Antibodies against Viruses Causing Hand, Foot, and Mouth Disease. Int J Mol Sci 2019; 20:ijms20061256. [PMID: 30871133 PMCID: PMC6471744 DOI: 10.3390/ijms20061256] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/13/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) commonly produces herpangina, but fatal neurological complications have been observed in children. Enterovirus 71 (EV-A71) and Coxsackievirus 16 (CV-A16) are the predominant viruses causing HFMD worldwide. With rising concern about HFMD outbreaks, there is a need for an effective vaccine against EV-A71 and CV-A16. Although an inactivated vaccine has been developed against EV-A71 in China, the inability of the inactivated vaccine to confer protection against CV-A16 infection and other HFMD etiological agents, such as CV-A6 and CV-A10, necessitates the exploration of other vaccine platforms. Thus, the antigenic peptide-based vaccines are promising platforms to develop safe and efficacious multivalent vaccines, while the monoclonal antibodies are viable therapeutic and prophylactic agents against HFMD etiological agents. This article reviews the available information related to the antigenic peptides of the etiological agents of HFMD and their neutralizing antibodies that can provide a basis for the design of future therapies against HFMD etiological agents.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, Subang Jaya, Selangor 47500, Malaysia.
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, Subang Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
41
|
Buchta D, Füzik T, Hrebík D, Levdansky Y, Sukeník L, Mukhamedova L, Moravcová J, Vácha R, Plevka P. Enterovirus particles expel capsid pentamers to enable genome release. Nat Commun 2019; 10:1138. [PMID: 30850609 PMCID: PMC6408523 DOI: 10.1038/s41467-019-09132-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/17/2019] [Indexed: 12/18/2022] Open
Abstract
Viruses from the genus Enterovirus are important human pathogens. Receptor binding or exposure to acidic pH in endosomes converts enterovirus particles to an activated state that is required for genome release. However, the mechanism of enterovirus uncoating is not well understood. Here, we use cryo-electron microscopy to visualize virions of human echovirus 18 in the process of genome release. We discover that the exit of the RNA from the particle of echovirus 18 results in a loss of one, two, or three adjacent capsid-protein pentamers. The opening in the capsid, which is more than 120 Å in diameter, enables the release of the genome without the need to unwind its putative double-stranded RNA segments. We also detect capsids lacking pentamers during genome release from echovirus 30. Thus, our findings uncover a mechanism of enterovirus genome release that could become target for antiviral drugs. Genome release of enteroviruses relies on exposure to acidic pH, but the mechanism of uncoating remains unclear. Here, Buchta et al. show that echovirus 18 loses one to three adjacent capsid-protein pentamers, resulting in an opening of more than 120 Å for genome release.
Collapse
Affiliation(s)
- David Buchta
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Yevgen Levdansky
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Lukáš Sukeník
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Liya Mukhamedova
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jana Moravcová
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Robert Vácha
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
42
|
Xi J, Ye F, Wang G, Han W, Wei Z, Yin B, Yuan J, Qiang B, Peng X. Polypyrimidine Tract-Binding Protein Regulates Enterovirus 71 Translation Through Interaction with the Internal Ribosomal Entry Site. Virol Sin 2019; 34:66-77. [PMID: 30796736 PMCID: PMC6420457 DOI: 10.1007/s12250-019-00089-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/19/2018] [Indexed: 02/05/2023] Open
Abstract
Enterovirus 71 (EV71), a major causative agent of hand, foot, and mouth disease, has caused periodic infection outbreaks in children in the Asia–Pacific region. In order to describe the largely unknown life cycle of EV71, the molecular basis of its virus-host interactions must first be determined. The 5′ untranslated region of EV71 contains a cloverleaf-like structure and internal ribosomal entry site (IRES), which play an important role in transcription and translation of viral protein. We found that polypyrimidine tract-binding protein 1 (PTB) bound to the IRES of EV71. RNA recognition motifs 1 and 2 of PTB were responsible for its binding to the EV71 IRES. Moreover, PTB protein was shuttled from nucleus to cytoplasm after EV71 infection. Additionally, IRES activity and viral protein production were inhibited by PTB knockdown. These results suggest that PTB interacts with the EV71 IRES, and positively regulates viral protein translation.
Collapse
Affiliation(s)
- Juemin Xi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, China
| | - Fei Ye
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Guanzhou Wang
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Wei Han
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Zhizhong Wei
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Bin Yin
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Jiangang Yuan
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Boqin Qiang
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiaozhong Peng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, China. .,The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
43
|
Wu CY, Yu SL, Chen YT, Chen YH, Hsiao PW, Chow YH, Chen JR. The mature EV71 virion induced a broadly cross-neutralizing VP1 antibody against subtypes of the EV71 virus. PLoS One 2019; 14:e0210553. [PMID: 30650163 PMCID: PMC6334917 DOI: 10.1371/journal.pone.0210553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022] Open
Abstract
Enterovirus 71 (EV71) has emerged as a neurological virus causing life-threatening diseases in young children and infants. Although EV71 vaccines in development have presented promising results in several clinical trials, the identified key antigen for improving the broad protective efficacy of EV71 vaccines has not been well investigated. In this report, we show that different multiplicities of infection (MOIs) of the B4(E59) virus significantly affect EV71 vaccine production in a serum-free microcarrier bioreactor system. The antigens produced from high MOIs of 10−1 and 10−2 exhibited higher yield and more infectious full particle (FP) contents in the EV71 vaccines than those produced with low MOIs of 10−4 and 10−6, leading to better cross-neutralizing efficacy. The C4(E36) neutralization results showed that only antisera raised from EV71 FPs provided substantial neutralizing titers against C4(E36), whereas empty particles (EPs) of EV71 conferred no efficacy. Competitive ELISA showed that anti-FP mainly binds to FPs and that 20% of antibodies bind to EPs, whereas most anti-EP binds EPs, with only 10% antibodies binding to FPs. VP1-adsorbed anti-FP lost most of the virus neutralization efficiency, suggesting that the VP1 subunit of FP is the major immunogenic antigen determining the ability of the EV71 vaccine to elicit cross-neutralizing antibodies against EV71 virus subtypes. These findings demonstrate that the high-MOI production approach is significantly correlated with FP productivity, thereby improving the cross-neutralization efficacy of an EV71 vaccine and providing the basis for a better vaccine design against widespread EV71 viruses.
Collapse
Affiliation(s)
| | - Shu-Ling Yu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | | | | | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yen-Hung Chow
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- * E-mail: (Juine-Ruey Chen); (Yen-Hung Chow)
| | - Juine-Ruey Chen
- Adimmune Corporation, Taichung, Taiwan
- * E-mail: (Juine-Ruey Chen); (Yen-Hung Chow)
| |
Collapse
|
44
|
Zhu L, Sun Y, Fan J, Zhu B, Cao L, Gao Q, Zhang Y, Liu H, Rao Z, Wang X. Structures of Coxsackievirus A10 unveil the molecular mechanisms of receptor binding and viral uncoating. Nat Commun 2018; 9:4985. [PMID: 30478256 PMCID: PMC6255764 DOI: 10.1038/s41467-018-07531-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Abstract
Coxsackievirus A10 (CVA10), a human type-A Enterovirus (HEV-A), can cause diseases ranging from hand-foot-and-mouth disease to polio-myelitis-like disease. CVA10, together with some other HEV-As, utilizing the molecule KREMEN1 as an entry receptor, constitutes a KREMEN1-dependent subgroup within HEV-As. Currently, there is no vaccine or antiviral therapy available for treating diseases caused by CVA10. The atomic-resolution structure of the CVA10 virion, which is within the KREMEN1-dependent subgroup, shows significant conformational differences in the putative receptor binding sites and serotype-specific epitopes, when compared to the SCARB2-dependent subgroup of HEV-A, such as EV71, highlighting specific differences between the sub-groups. We also report two expanded structures of CVA10, an empty particle and uncoating intermediate at atomic resolution, as well as a medium-resolution genome structure reconstructed using a symmetry-mismatch method. Structural comparisons coupled with previous results, reveal an ordered signal transmission process for enterovirus uncoating, converting exo-genetic receptor-attachment inputs into a generic RNA release mechanism. The disease-causing pathogen Coxsackievirus A10 (CVA10) is a human type-A Enterovirus. Here the authors present the cryo-EM structures of the mature CVA10 virion and the empty- and A-particles of CVA10, which is of interest for CVA10 vaccine development.
Collapse
Affiliation(s)
- Ling Zhu
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yao Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinyan Fan
- Beijing Productivity Center, Major Project Department, Beijing, 100088, China
| | - Bin Zhu
- College of Physics and Information Science, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory of Low-dimensional Quantum Structures, and Quantum Control of the Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Lei Cao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Gao
- Sinovac Biotech Co., Ltd, Beijing, 100085, China
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Hongrong Liu
- College of Physics and Information Science, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory of Low-dimensional Quantum Structures, and Quantum Control of the Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Zihe Rao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,Laboratory of Structural Biology, Tsinghua University, Beijing, 100084, China.
| | - Xiangxi Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
45
|
Atomic structures of enterovirus D68 in complex with two monoclonal antibodies define distinct mechanisms of viral neutralization. Nat Microbiol 2018; 4:124-133. [PMID: 30397341 DOI: 10.1038/s41564-018-0275-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/24/2018] [Indexed: 02/05/2023]
Abstract
Enterovirus D68 (EV-D68) undergoes structural transformation between mature, cell-entry intermediate (A-particle) and empty forms throughout its life cycle. Structural information for the various forms and antibody-bound capsids will facilitate the development of effective vaccines and therapeutics against EV-D68 infection, which causes childhood respiratory and paralytic diseases worldwide. Here, we report the structures of three EV-D68 capsid states representing the virus at major phases. We further describe two original monoclonal antibodies (15C5 and 11G1) with distinct structurally defined mechanisms for virus neutralization. 15C5 and 11G1 engage the capsid loci at icosahedral three-fold and five-fold axes, respectively. To block viral attachment, 15C5 binds three forms of capsids, and triggers mature virions to transform into A-particles, mimicking engagement by the functional receptor ICAM-5, whereas 11G1 exclusively recognizes the A-particle. Our data provide a structural and molecular explanation for the transition of picornavirus capsid conformations and demonstrate distinct mechanisms for antibody-mediated neutralization.
Collapse
|
46
|
Chia MY, Chung WY, Wang CH, Chang WH, Lee MS. Development of a high-growth enterovirus 71 vaccine candidate inducing cross-reactive neutralizing antibody responses. Vaccine 2018; 36:1167-1173. [PMID: 29398272 DOI: 10.1016/j.vaccine.2018.01.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 02/04/2023]
Abstract
Although Enterovirus 71 (EV71) has only one serotype based on serum neutralization tests using hyperimmune animal antisera, three major genogroups (A, B and C) including eleven genotypes (A, B1-B2, and C1-C5) can be well classified based on phylogenetic analysis. Since 1997, large-scale EV71 epidemics occurred cyclically with different genotypes in the Asia-Pacific region. Therefore, development of EV71 vaccines is a national priority in several Asian countries. Currently, five vaccine candidates have been evaluated in clinical trials in China (three C4 candidates), Singapore (one B2 candidate), and Taiwan (one B4 candidate). Overall, the peak viral titers of these 5 vaccine candidates could only reach about 107 TCID50/mL. Moreover, genotypes of these 5 candidates are different from the current predominant genotype B5 in Taiwan and South-Eastern Asia. We adapted a high-growth EV71 genotype B5 (HG-B5) virus after multiple passages and plaque selections in Vero cells and the HG-B5 virus could reach high titers (>108 TCID50/mL) in a microcarrier-based cell culture system. The viral particles were further purified and formulated with alum adjuvant. After two doses of intramuscular immunization in rabbits, the HG-B5 vaccine candidate could induce cross-reactive neutralizing antibodies against the three major EV71 genogroups. In conclusion, a high-growth EV71 virus was successfully adapted in Vero cells and could induce broad spectrum neutralizing antibody titers against three (A, B5, and C4) genotypes in rabbits.
Collapse
Affiliation(s)
- Min-Yuan Chia
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan; Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Yu Chung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | | | - Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
47
|
Zhu R, Xu L, Zheng Q, Cui Y, Li S, He M, Yin Z, Liu D, Li S, Li Z, Chen Z, Yu H, Que Y, Liu C, Kong Z, Zhang J, Baker TS, Yan X, Hong Zhou Z, Cheng T, Xia N. Discovery and structural characterization of a therapeutic antibody against coxsackievirus A10. SCIENCE ADVANCES 2018; 4:eaat7459. [PMID: 30255146 PMCID: PMC6155056 DOI: 10.1126/sciadv.aat7459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Coxsackievirus A10 (CVA10) recently emerged as a major pathogen of hand, foot, and mouth disease and herpangina in children worldwide, and lack of a vaccine or a cure against CVA10 infections has made therapeutic antibody identification a public health priority. By targeting a local isolate, CVA10-FJ-01, we obtained a potent antibody, 2G8, against all three capsid forms of CVA10. We show that 2G8 exhibited both 100% preventive and 100% therapeutic efficacy against CVA10 infection in mice. Comparisons of the near-atomic cryo-electron microscopy structures of the three forms of CVA10 capsid and their complexes with 2G8 Fab reveal that a single Fab binds a border region across the three capsid proteins (VP1 to VP3) and explain 2G8's remarkable cross-reactivities against all three capsid forms. The atomic structures of this first neutralizing antibody of CVA10 should inform strategies for designing vaccines and therapeutics against CVA10 infections.
Collapse
Affiliation(s)
- Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Zhichao Yin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Dongxiao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Shuxuan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Zizhen Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Che Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Timothy S. Baker
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093–0378, USA
| | - Xiaodong Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093–0378, USA
| | - Z. Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| |
Collapse
|
48
|
Corbic Ramljak I, Stanger J, Real-Hohn A, Dreier D, Wimmer L, Redlberger-Fritz M, Fischl W, Klingel K, Mihovilovic MD, Blaas D, Kowalski H. Cellular N-myristoyltransferases play a crucial picornavirus genus-specific role in viral assembly, virion maturation, and infectivity. PLoS Pathog 2018; 14:e1007203. [PMID: 30080883 PMCID: PMC6089459 DOI: 10.1371/journal.ppat.1007203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/13/2018] [Accepted: 07/05/2018] [Indexed: 01/06/2023] Open
Abstract
In nearly all picornaviruses the precursor of the smallest capsid protein VP4 undergoes co-translational N-terminal myristoylation by host cell N-myristoyltransferases (NMTs). Curtailing this modification by mutation of the myristoylation signal in poliovirus has been shown to result in severe assembly defects and very little, if any, progeny virus production. Avoiding possible pleiotropic effects of such mutations, we here used pharmacological abrogation of myristoylation with the NMT inhibitor DDD85646, a pyrazole sulfonamide originally developed against trypanosomal NMT. Infection of HeLa cells with coxsackievirus B3 in the presence of this drug decreased VP0 acylation at least 100-fold, resulting in a defect both early and late in virus morphogenesis, which diminishes the yield of viral progeny by about 90%. Virus particles still produced consisted mainly of provirions containing RNA and uncleaved VP0 and, to a substantially lesser extent, of mature virions with cleaved VP0. This indicates an important role of myristoylation in the viral maturation cleavage. By electron microscopy, these RNA-filled particles were indistinguishable from virus produced under control conditions. Nevertheless, their specific infectivity decreased by about five hundred fold. Since host cell-attachment was not markedly impaired, their defect must lie in the inability to transfer their genomic RNA into the cytosol, likely at the level of endosomal pore formation. Strikingly, neither parechoviruses nor kobuviruses are affected by DDD85646, which appears to correlate with their native capsid containing only unprocessed VP0. Individual knockout of the genes encoding the two human NMT isozymes in haploid HAP1 cells further demonstrated the pivotal role for HsNMT1, with little contribution by HsNMT2, in the virus replication cycle. Our results also indicate that inhibition of NMT can possibly be exploited for controlling the infection by a wide spectrum of picornaviruses. Picornaviruses are important human and animal pathogens. Protective vaccines are only available against very few representatives. Furthermore, antiviral drugs have not made it to the market because of serious side effects and viral mutational escape. We here show that pharmacological inhibition of cellular myristoyltransferases severely decreased myristoylation of enteroviral structural proteins as exemplified by coxsackievirus B3, a prominent pathogen causing virus-induced acute and chronic heart disease. The drug DDD85646 substantially diminished virus yield and almost abolished the infectivity of the residual progeny virus. It is highly effective against several other picornaviruses, except those two included in our study that naturally do not process VP0. Our work provides new insight into the role of myristoylation in the life cycle of picornaviruses and identifies the responsible cellular enzyme as a promising candidate for antiviral therapy.
Collapse
Affiliation(s)
- Irena Corbic Ramljak
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Julia Stanger
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Antonio Real-Hohn
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Dominik Dreier
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Laurin Wimmer
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | | | - Wolfgang Fischl
- Haplogen GmbH, Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | | | - Dieter Blaas
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Heinrich Kowalski
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- * E-mail:
| |
Collapse
|
49
|
Abstract
Honey bee pollination is required to sustain the biodiversity of wild flora and for agricultural production; however, honey bee populations in Europe and North America are declining due to virus infections. Sacbrood virus (SBV) infection is lethal to honey bee larvae and decreases the fitness of honey bee colonies. Here we present the structure of the SBV particle and show that it contains 60 copies of a minor capsid protein attached to its surface. No similar minor capsid proteins have been previously observed in any of the related viruses. We also present a structural analysis of the genome release of SBV. The possibility of blocking virus genome delivery may provide a tool to prevent the spread of this honey bee pathogen. Infection by sacbrood virus (SBV) from the family Iflaviridae is lethal to honey bee larvae but only rarely causes the collapse of honey bee colonies. Despite the negative effect of SBV on honey bees, the structure of its particles and mechanism of its genome delivery are unknown. Here we present the crystal structure of SBV virion and show that it contains 60 copies of a minor capsid protein (MiCP) attached to the virion surface. No similar MiCPs have been previously reported in any of the related viruses from the order Picornavirales. The location of the MiCP coding sequence within the SBV genome indicates that the MiCP evolved from a C-terminal extension of a major capsid protein by the introduction of a cleavage site for a virus protease. The exposure of SBV to acidic pH, which the virus likely encounters during cell entry, induces the formation of pores at threefold and fivefold axes of the capsid that are 7 Å and 12 Å in diameter, respectively. This is in contrast to vertebrate picornaviruses, in which the pores along twofold icosahedral symmetry axes are currently considered the most likely sites for genome release. SBV virions lack VP4 subunits that facilitate the genome delivery of many related dicistroviruses and picornaviruses. MiCP subunits induce liposome disruption in vitro, indicating that they are functional analogs of VP4 subunits and enable the virus genome to escape across the endosome membrane into the cell cytoplasm.
Collapse
|
50
|
Viso JF, Belelli P, Machado M, González H, Pantano S, Amundarain MJ, Zamarreño F, Branda MM, Guérin DMA, Costabel MD. Multiscale modelization in a small virus: Mechanism of proton channeling and its role in triggering capsid disassembly. PLoS Comput Biol 2018; 14:e1006082. [PMID: 29659564 PMCID: PMC5919690 DOI: 10.1371/journal.pcbi.1006082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/26/2018] [Accepted: 03/09/2018] [Indexed: 12/04/2022] Open
Abstract
In this work, we assess a previously advanced hypothesis that predicts the existence of ion channels in the capsid of small and non-enveloped icosahedral viruses. With this purpose we examine Triatoma Virus (TrV) as a case study. This virus has a stable capsid under highly acidic conditions but disassembles and releases the genome in alkaline environments. Our calculations range from a subtle sub-atomic proton interchange to the dismantling of a large-scale system representing several million of atoms. Our results provide structure-based explanations for the three roles played by the capsid to enable genome release. First, we observe, for the first time, the formation of a hydrophobic gate in the cavity along the five-fold axis of the wild-type virus capsid, which can be disrupted by an ion located in the pore. Second, the channel enables protons to permeate the capsid through a unidirectional Grotthuss-like mechanism, which is the most likely process through which the capsid senses pH. Finally, assuming that the proton leak promotes a charge imbalance in the interior of the capsid, we model an internal pressure that forces shell cracking using coarse-grained simulations. Although qualitatively, this last step could represent the mechanism of capsid opening that allows RNA release. All of our calculations are in agreement with current experimental data obtained using TrV and describe a cascade of events that could explain the destabilization and disassembly of similar icosahedral viruses. Plant and animal small non-enveloped viruses are composed of a capsid shell that encloses the genome. One of the multiple functions played by the capsid is to protect the genome against host defenses and to withstand environmental aggressions, such as dehydration. This highly specialized capsule selectively recognizes and binds to the target tissue infected by the virus. In the viral cycle, the ultimate function of the capsid is to release the genome. Observations of many viruses demonstrate that the pH of the medium can trigger genome release. Nevertheless, the mechanism underlying this process at the atomic level is poorly understood. In this work, we computationally modeled the mechanism by which the capsid senses environmental pH and the destabilization process that permits genome release. Our calculations predict that a cavity that traverses the capsid functions as a hydrophobic gate, a feature already observed in membrane ion channels. Moreover, our results predict that this cavity behaves as a proton diode because the proton transit can only occur from the capsid interior to the exterior. In turn, our calculations describe a cascade of events that could explain the destabilization and dismantling of an insect virus, but this description could also apply to many vertebrate viruses.
Collapse
Affiliation(s)
- Juan Francisco Viso
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Biofísica, Instituto de Física del Sur (IFISUR, UNS/CONICET), Bahía Blanca, Argentina
| | - Patricia Belelli
- DF-UNS, Grupo de Materiales y Sistemas Catalíticos (GRUMASICA), IFISUR, Bahía Blanca, Argentina
| | - Matías Machado
- Grupo de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Humberto González
- Grupo de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sergio Pantano
- Grupo de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Julia Amundarain
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Biofísica, Instituto de Física del Sur (IFISUR, UNS/CONICET), Bahía Blanca, Argentina
| | - Fernando Zamarreño
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Biofísica, Instituto de Física del Sur (IFISUR, UNS/CONICET), Bahía Blanca, Argentina
| | - Maria Marta Branda
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Materiales y Sistemas Catalíticos (GRUMASICA), IFISUR, Bahía Blanca, Argentina
| | - Diego M. A. Guérin
- Instituto Biofisika (UPV/EHU, CSIC), Department of Biochemistry and Molecular Biology, University of the Basque Country (EHU), Barrio Sarriena S/N, Leioa, Vizcaya, Spain
- * E-mail: (MDC); (DMAG)
| | - Marcelo D. Costabel
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Biofísica, Instituto de Física del Sur (IFISUR, UNS/CONICET), Bahía Blanca, Argentina
- * E-mail: (MDC); (DMAG)
| |
Collapse
|