1
|
McManus CM, Maizels RM. Regulatory T cells in parasite infections: susceptibility, specificity and specialisation. Trends Parasitol 2023; 39:547-562. [PMID: 37225557 DOI: 10.1016/j.pt.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/26/2023]
Abstract
Regulatory T cells (Tregs) are essential to control immune system responses to innocuous self-specificities, intestinal and environmental antigens. However, they may also interfere with immunity to parasites, particularly in chronic infection. Susceptibility to many parasite infections is, to a greater or lesser extent, controlled by Tregs, but often they play a more prominent role in moderating the immunopathological consequences of parasitism, and dampening bystander reactions in an antigen-nonspecific manner. More recently, Treg subtypes have been defined which may preferentially act in different contexts; we also discuss the degree to which this specialisation is now being mapped onto how Tregs maintain the delicate balance between tolerance, immunity, and pathology in infection.
Collapse
Affiliation(s)
- Caitlin M McManus
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
2
|
Zhang Q, Zhang S, Chen J, Xie Z. The Interplay between Integrins and Immune Cells as a Regulator in Cancer Immunology. Int J Mol Sci 2023; 24:6170. [PMID: 37047140 PMCID: PMC10093897 DOI: 10.3390/ijms24076170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Integrins are a group of heterodimers consisting of α and β subunits that mediate a variety of physiological activities of immune cells, including cell migration, adhesion, proliferation, survival, and immunotolerance. Multiple types of integrins act differently on the same immune cells, while the same integrin may exert various effects on different immune cells. In the development of cancer, integrins are involved in the regulation of cancer cell proliferation, invasion, migration, and angiogenesis; conversely, integrins promote immune cell aggregation to mediate the elimination of tumors. The important roles of integrins in cancer progression have provided valuable clues for the diagnosis and targeted treatment of cancer. Furthermore, many integrin inhibitors have been investigated in clinical trials to explore effective regimens and reduce side effects. Due to the complexity of the mechanism of integrin-mediated cancer progression, challenges remain in the research and development of cancer immunotherapies (CITs). This review enumerates the effects of integrins on four types of immune cells and the potential mechanisms involved in the progression of cancer, which will provide ideas for more optimal CIT in the future.
Collapse
Affiliation(s)
- Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China
| |
Collapse
|
3
|
El-kady AM, Abdel-Rahman IAM, Sayed E, Wakid MH, Alobaid HM, Mohamed K, Alshehri EA, Elshazly H, Al-Megrin WAI, Iqbal F, Elshabrawy HA, Timsah AG. A potential herbal therapeutic for trichinellosis. Front Vet Sci 2022; 9:970327. [PMID: 36082215 PMCID: PMC9445247 DOI: 10.3389/fvets.2022.970327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTrichinellosis is a helminthic disease caused by Trichinella spiralis via the ingestion of raw or undercooked meat of infected animals. Current estimates indicate that 11 million humans have trichinellosis, worldwide. The effective use of anti-trichinella medications is limited by side effects and resistance which highlight the critical need for safe and effective drugs, particularly those derived from medicinal plants. Therefore, in the present study, we aimed to evaluate the efficacy of the ethanolic extract of Artemisia annua (A. annua) in treatment of experimentally induced trichinellosis.Materials and methodsTrichinellosis was induced experimentally in male 6–8 weeks BALB/c mice. BALB/c mice were divided into four groups, 10 mice each. One group was left uninfected and untreated, whereas three groups were infected with T. spiralis. One infected group of mice was left untreated (negative control) while the remaining two infected groups received either 300 mg/kg of the ethanolic extract of A. annua or 50 mg/kg of albendazole (positive control). All treatments started from the third day post-infection (dpi) for 3 successive days. All animals were sacrificed on the 7th dpi for evaluation of treatment efficacy.ResultsOur findings showed that A. annua treatment reduced the T. spiralis adult-worm count in the intestine of infected animals. Moreover, treatment with A. annua restored the normal intestinal architecture, reduced edema, alleviated inflammation as demonstrated by reduced inflammatory infiltrate and expression of TGF-β in intestinal tissues of A. annua-treated animals compared to infected untreated animals.ConclusionsOur findings show that A. annua extract is effective in treating experimentally induced trichinellosis which highlight the therapeutic potential of A. annua for intestinal trichinellosis.
Collapse
Affiliation(s)
- Asmaa M. El-kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
- *Correspondence: Asmaa M. El-kady
| | | | - Eman Sayed
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Majed H. Wakid
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
| | - Hussah M. Alobaid
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalil Mohamed
- Department of Epidemiology, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | | | - Hayam Elshazly
- Department of Biology, Faculty of Sciences-Scientific Departments, Qassim University, Buraidah, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Adbulrahman University, Riyadh, Saudi Arabia
| | - Furhan Iqbal
- Zoology Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, United States
- Hatem A. Elshabrawy
| | - Ashraf G. Timsah
- Department of Microbiology, Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
- Department of Parasitology, Faculty of Medicine, Al-Azhar University, New Damietta City, Egypt
| |
Collapse
|
4
|
This S, Paidassi H. New perspectives on the regulation of germinal center reaction via αvβ8- mediated activation of TGFβ. Front Immunol 2022; 13:942468. [PMID: 36072589 PMCID: PMC9441935 DOI: 10.3389/fimmu.2022.942468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a long-known modulator of immune responses but has seemingly contradictory effects on B cells. Among cytokines, TGFβ has the particularity of being produced and secreted in a latent form and must be activated before it can bind to its receptor and induce signaling. While the concept of controlled delivery of TGFβ signaling via αvβ8 integrin-mediated activation has gained some interest in the field of mucosal immunity, the role of this molecular mechanism in regulating T-dependent B cell responses is just emerging. We review here the role of TGFβ and its activation, in particular by αvβ8 integrin, in the regulation of mucosal IgA responses and its demonstrated and putative involvement in regulating germinal center (GC) B cell responses. We examine both the direct effect of TGFβ on GC B cells and its ability to modulate the functions of helper cells, namely follicular T cells (Tfh and Tfr) and follicular dendritic cells. Synthetizing recently published works, we reconcile apparently conflicting data and propose an innovative and unified view on the regulation of the GC reaction by TGFβ, highlighting the role of its activation by αvβ8 integrin.
Collapse
Affiliation(s)
- Sébastien This
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de microbiologie, immunologie et infectiologie, Université de Montréal, Montréal, QC, Canada
| | - Helena Paidassi
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
5
|
Min KY, Koo J, Noh G, Lee D, Jo MG, Lee JE, Kang M, Hyun SY, Choi WS, Kim HS. CD1d hiPD-L1 hiCD27 + Regulatory Natural Killer Subset Suppresses Atopic Dermatitis. Front Immunol 2022; 12:752888. [PMID: 35069528 PMCID: PMC8766675 DOI: 10.3389/fimmu.2021.752888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Effector and regulatory functions of various leukocytes in allergic diseases have been well reported. Although the role of conventional natural killer (NK) cells has been established, information on its regulatory phenotype and function are very limited. Therefore, the objective of this study was to investigate the phenotype and inhibitory functions of transforming growth factor (TGF)-β-producing regulatory NK (NKreg) subset in mice with MC903-induced atopic dermatitis (AD). Interestingly, the population of TGF-β-producing NK cells in peripheral blood monocytes (PBMCs) was decreased in AD patients than in healthy subjects. The number of TGF-β+ NK subsets was decreased in the spleen or cervical lymph node (cLN), but increased in ear tissues of mice with AD induced by MC903 than those of normal mice. We further observed that TGF-β+ NK subsets were largely included in CD1dhiPD-L1hiCD27+ NK cell subset. We also found that numbers of ILC2s and TH2 cells were significantly decreased by adoptive transfer of CD1dhiPD-L1hiCD27+ NK subsets. Notably, the ratio of splenic Treg per TH2 was increased by the adoptive transfer of CD1dhiPD-L1hiCD27+ NK cells in mice. Taken together, our findings demonstrate that the TGF-β-producing CD1dhiPD-L1hiCD27+ NK subset has a previously unrecognized role in suppressing TH2 immunity and ILC2 activation in AD mice, suggesting that the function of TGF-β-producing NK subset is closely associated with the severity of AD in humans.
Collapse
Affiliation(s)
- Keun Young Min
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Jimo Koo
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Geunwoong Noh
- Department of Allergy, Allergy and Clinical Immunology Center Cheju Halla General Hospital, Jeju, South Korea
| | - Dajeong Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Min Geun Jo
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Ji Eon Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Minseong Kang
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Seung Yeun Hyun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Wahn Soo Choi
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Hyuk Soon Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea.,Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan, South Korea
| |
Collapse
|
6
|
Moharami S, Nourazarian A, Nikanfar M, Laghousi D, Shademan B, Joodi Khanghah O, Khaki-Khatibi F. Investigation of serum levels of orexin-A, transforming growth factor β, and leptin in patients with multiple sclerosis. J Clin Lab Anal 2021; 36:e24170. [PMID: 34894407 PMCID: PMC8761413 DOI: 10.1002/jcla.24170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 01/24/2023] Open
Abstract
Background Multiple sclerosis (MS) is a chronic inflammatory and autoimmune disease affecting various inflammatory and nutritional parameters. Therefore, this study aimed to investigate the relationship between the Body Mass Index (BMI) of MS patients and the serum levels of leptin, orexin‐A, and Transforming Growth Factor β (TGF‐β). Methods This cross‐sectional study included 25 patients suffering from MS and 40 healthy individuals as the case and control groups, respectively. The serum levels of leptin, orexin‐A, and TGF‐β were assessed in the participants using the Enzyme‐Linked Immunosorbent Assay methods. Moreover, data were analyzed using the descriptive statistical indices, t‐test, chi‐square test, and linear regression test. Results According to our results, the participants’ mean age was 38.04 ± 7.53 and 40.23 ± 5.88 in the case and control groups, respectively. Also, the groups were not significantly different in gender, age, alcohol consumption, and smoking (p > 0.05). It was found that the mean serum levels of orexin‐A and TGF‐β were significantly lower in the MS patients compared to the control group, while the mean serum leptin levels were significantly higher (42.8 vs. 18.9 ng/ml, p < 0.001). Moreover, there was no significant relationship between the BMI of the MS patients and their serum levels of orexin‐A, TGF‐β, and leptin (p > 0.05). Conclusions In conclusion, we found significantly lower levels of orexin‐A and TGF‐β and a significantly higher level of leptin in the MS patients compared to the control group. In addition, there was no significant relationship between the BMI and the serum levels of orexin‐A, TGF‐β, and leptin in MS patients.
Collapse
Affiliation(s)
- Sepideh Moharami
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Delara Laghousi
- Social Determinant of Health Research Center, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Omid Joodi Khanghah
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Khaki-Khatibi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Abstract
Transforming Growth Factor-β is a potent regulator of the immune system, acting at every stage from thymic differentiation, population of the periphery, control of responsiveness, tissue repair and generation of memory. It is therefore a central player in the immune response to infectious pathogens, but its contribution is often clouded by multiple roles acting on different cells in time and space. Hence, context is all-important in understanding when TGF-β is beneficial or detrimental to the outcome of infection. In this review, a full range of infectious agents from viruses to helminth parasites are explored within this framework, drawing contrasts and general conclusions about the importance of TGF-β in these diseases.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
8
|
Hayes KS, Grencis RK. Trichuris muris and comorbidities - within a mouse model context. Parasitology 2021; 148:1-9. [PMID: 34078488 PMCID: PMC8660644 DOI: 10.1017/s0031182021000883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 01/15/2023]
Abstract
Trichuris muris is a mouse intestinal parasitic nematode that inhabits the large intestine of its host and induces a strong immune response. The effects of this strong anti-parasite response can be found locally within the intestinal niche and also systemically, having effects on multiple organs. Additionally, the anti-parasite response can have multiple effects on infectious organisms and on microbiota that the host is harbouring. It has been shown that Th1 responses induced by T. muris can affect progression of bowel inflammation, cause colitic-like intestinal inflammation, reduce barrier function and intestinal mucosal responses. In the brain, T. muris can exacerbate stroke outcome and other neurological conditions. In the lung, T. muris can suppress airway inflammation and alter immune responses to other parasites. Additionally, T. muris induced responses can inhibit anti-tumour immunity. Although this parasite maintains a localized niche in the large intestine, its effects can be far-reaching and substantially impact other infections through modulation of bystander immune responses.
Collapse
Affiliation(s)
- Kelly S. Hayes
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard K. Grencis
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Immune Response and Microbiota Profiles during Coinfection with Plasmodium vivax and Soil-Transmitted Helminths. mBio 2020; 11:mBio.01705-20. [PMID: 33082257 PMCID: PMC7587435 DOI: 10.1128/mbio.01705-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plasmodium (malaria) and helminth parasite coinfections are frequent, and both infections can be affected by the host gut microbiota. However, the relationship between coinfection and the gut microbiota is unclear. By performing comprehensive analyses on blood/stool samples from 130 individuals in Colombia, we found that the gut microbiota may have a stronger relationship with the number of P. vivax (malaria) parasites than with the number of helminth parasites infecting a host. Microbiota analysis identified more predictors of the P. vivax parasite burden, whereas analysis of blood samples identified predictors of the helminth parasite burden. These results were unexpected, because we expected each parasite to be associated with greater differences in its biological niche (blood for P. vivax and the intestine for helminths). Instead, we find that bacterial taxa were the strongest predictors of P. vivax parasitemia levels, while circulating TGF-β levels were the strongest predictor of helminth parasite burdens. The role of the gut microbiota during coinfection with soil-transmitted helminths (STH) and Plasmodium spp. is poorly understood. We examined peripheral blood and fecal samples from 130 individuals who were either infected with Plasmodium vivax only, coinfected with P. vivax and STH, infected with STH alone, or not infected with either P. vivax or STH. In addition to a complete blood count (CBC) with differential, transcriptional profiling of peripheral blood samples was performed by transcriptome sequencing (RNA-Seq), fecal microbial communities were determined by 16S rRNA gene sequencing, and circulating cytokine levels were measured by bead-based immunoassays. Differences in blood cell counts, including an increased percentage of neutrophils, associated with a transcriptional signature of neutrophil activation, were driven primarily by P. vivax infection. P. vivax infection was also associated with increased levels of interleukin 6 (IL-6), IL-8, and IL-10; these cytokine levels were not affected by STH coinfection. Surprisingly, P. vivax infection was more strongly associated with differences in the microbiota than STH infection. Children infected with only P. vivax exhibited elevated Bacteroides and reduced Prevotella and Clostridiaceae levels, but these differences were not observed in individuals coinfected with STH. We also observed that P. vivax parasitemia was higher in the STH-infected population. When we used machine learning to identify the most important predictors of the P. vivax parasite burden (among P. vivax-infected individuals), bacterial taxa were the strongest predictors of parasitemia. In contrast, circulating transforming growth factor β (TGF-β) was the strongest predictor of the Trichuris trichiura egg burden. This study provides unexpected evidence that the gut microbiota may have a stronger link with P. vivax than with STH infection.
Collapse
|
10
|
Investigating the importance of B cells and antibodies during Trichuris muris infection using the IgMi mouse. J Mol Med (Berl) 2020; 98:1301-1317. [PMID: 32778925 PMCID: PMC7447682 DOI: 10.1007/s00109-020-01954-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/24/2020] [Accepted: 07/17/2020] [Indexed: 02/02/2023]
Abstract
Abstract The IgMi mouse has normal B cell development; its B cells express an IgM B cell receptor but cannot class switch or secrete antibody. Thus, the IgMi mouse offers a model system by which to dissect out antibody-dependent and antibody-independent B cell function. Here, we provide the first detailed characterisation of the IgMi mouse post-Trichuris muris (T. muris) infection, describing expulsion phenotype, cytokine production, gut pathology and changes in T regulatory cells, T follicular helper cells and germinal centre B cells, in addition to RNA sequencing (RNA seq) analyses of wild-type littermates (WT) and mutant B cells prior to and post infection. IgMi mice were susceptible to a high-dose infection, with reduced Th2 cytokines and elevated B cell-derived IL-10 in mesenteric lymph nodes (MLN) compared to controls. A low-dose infection regime revealed IgMi mice to have significantly more apoptotic cells in the gut compared to WT mice, but no change in intestinal inflammation. IL-10 levels were again elevated. Collectively, this study showcases the potential of the IgMi mouse as a tool for understanding B cell biology and suggests that the B cell plays both antibody-dependent and antibody-independent roles post high- and low-dose T. muris infection. Key messages During a high-dose T. muris infection, B cells are important in maintaining the Th1/Th2 balance in the MLN through an antibody-independent mechanism. High levels of IL-10 in the MLN early post-infection, and the presence of IL-10-producing B cells, correlates with susceptibility to T. muris infection. B cells maintain gut homeostasis during chronic T. muris infection via an antibody-dependent mechanism.
Electronic supplementary material The online version of this article (10.1007/s00109-020-01954-3) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Kaelberer MM, Rupprecht LE, Liu WW, Weng P, Bohórquez DV. Neuropod Cells: The Emerging Biology of Gut-Brain Sensory Transduction. Annu Rev Neurosci 2020; 43:337-353. [PMID: 32101483 PMCID: PMC7573801 DOI: 10.1146/annurev-neuro-091619-022657] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Guided by sight, scent, texture, and taste, animals ingest food. Once ingested, it is up to the gut to make sense of the food's nutritional value. Classic sensory systems rely on neuroepithelial circuits to convert stimuli into signals that guide behavior. However, sensation of the gut milieu was thought to be mediated only by the passive release of hormones until the discovery of synapses in enteroendocrine cells. These are gut sensory epithelial cells, and those that form synapses are referred to as neuropod cells. Neuropod cells provide the foundation for the gut to transduce sensory signals from the intestinal milieu to the brain through fast neurotransmission onto neurons, including those of the vagus nerve. These findings have sparked a new field of exploration in sensory neurobiology-that of gut-brain sensory transduction.
Collapse
Affiliation(s)
- Melanie Maya Kaelberer
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Laura E Rupprecht
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Winston W Liu
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
- School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Peter Weng
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
- School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Diego V Bohórquez
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
12
|
Kaelberer MM, Rupprecht LE, Liu WW, Weng P, Bohórquez DV. Neuropod Cells: The Emerging Biology of Gut-Brain Sensory Transduction. Annu Rev Neurosci 2020. [PMID: 32101483 DOI: 10.1146/annurev‐neuro‐091619‐022657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Guided by sight, scent, texture, and taste, animals ingest food. Once ingested, it is up to the gut to make sense of the food's nutritional value. Classic sensory systems rely on neuroepithelial circuits to convert stimuli into signals that guide behavior. However, sensation of the gut milieu was thought to be mediated only by the passive release of hormones until the discovery of synapses in enteroendocrine cells. These are gut sensory epithelial cells, and those that form synapses are referred to as neuropod cells. Neuropod cells provide the foundation for the gut to transduce sensory signals from the intestinal milieu to the brain through fast neurotransmission onto neurons, including those of the vagus nerve. These findings have sparked a new field of exploration in sensory neurobiology-that of gut-brain sensory transduction.
Collapse
Affiliation(s)
- Melanie Maya Kaelberer
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Laura E Rupprecht
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Winston W Liu
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA; .,School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Peter Weng
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA; .,School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Diego V Bohórquez
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA; .,Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
13
|
White MPJ, McManus CM, Maizels RM. Regulatory T-cells in helminth infection: induction, function and therapeutic potential. Immunology 2020; 160:248-260. [PMID: 32153025 PMCID: PMC7341546 DOI: 10.1111/imm.13190] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Helminth parasites infect an alarmingly large proportion of the world's population, primarily within tropical regions, and their ability to down‐modulate host immunity is key to their persistence. Helminths have developed multiple mechanisms that induce a state of hyporesponsiveness or immune suppression within the host; of particular interest are mechanisms that drive the induction of regulatory T‐cells (Tregs). Helminths actively induce Tregs either directly by secreting factors, such as the TGF‐β mimic Hp‐TGM, or indirectly by interacting with bystander cell types such as dendritic cells and macrophages that then induce Tregs. Expansion of Tregs not only enhances parasite survival but, in cases such as filarial infection, Tregs also play a role in preventing parasite‐associated pathologies. Furthermore, Tregs generated during helminth infection have been associated with suppression of bystander immunopathologies in a range of inflammatory conditions such as allergy and autoimmune disease. In this review, we discuss evidence from natural and experimental infections that point to the pathways and molecules involved in helminth Treg induction, and postulate how parasite‐derived molecules and/or Tregs might be applied as anti‐inflammatory therapies in the future.
Collapse
Affiliation(s)
- Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Caitlin M McManus
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
14
|
Nolte M, Margadant C. Controlling Immunity and Inflammation through Integrin-Dependent Regulation of TGF-β. Trends Cell Biol 2020; 30:49-59. [DOI: 10.1016/j.tcb.2019.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022]
|
15
|
McEntee CP, Gunaltay S, Travis MA. Regulation of barrier immunity and homeostasis by integrin-mediated transforming growth factor β activation. Immunology 2019; 160:139-148. [PMID: 31792952 PMCID: PMC7218408 DOI: 10.1111/imm.13162] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGF‐β) is a multifunctional cytokine that regulates cell growth, differentiation, adhesion, migration and death dependent on cell type, developmental stage, or tissue conditions. Various cell types secrete TGF‐β, but always as an inactive complex. Hence, for TGF‐β to function, this latent complex must somehow be activated. Work in recent years has highlighted a critical role for members of the αv integrin family, including αvβ1, αvβ3, αvβ5, αvβ6 and αvβ8 that are involved in TGF‐β activation in various contexts, particularly at barrier sites such as the gut, lung and skin. The integrins facilitating this context‐ and location‐specific regulation can be dysregulated in certain diseases, so are potential therapeutic targets in a number of disorders. In this review, we discuss the role of TGF‐β at these barrier sites with a focus on how integrin‐mediated TGF‐β activation regulates tissue and immune homeostasis, and how this is altered in disease.
Collapse
Affiliation(s)
- Craig P McEntee
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Sezin Gunaltay
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Mark A Travis
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Lodyga M, Hinz B. TGF-β1 - A truly transforming growth factor in fibrosis and immunity. Semin Cell Dev Biol 2019; 101:123-139. [PMID: 31879265 DOI: 10.1016/j.semcdb.2019.12.010] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
'Jack of all trades, master of everything' is a fair label for transforming growth factor β1 (TGF-β) - a cytokine that controls our life at many levels. In the adult organism, TGF-β1 is critical for the development and maturation of immune cells, maintains immune tolerance and homeostasis, and regulates various aspects of immune responses. Following acute tissue damages, TGF-β1 becomes a master regulator of the healing process with impacts on about every cell type involved. Divergence from the tight control of TGF-β1 actions, for instance caused by chronic injury, severe trauma, or infection can tip the balance from regulated physiological to excessive pathological repair. This condition of fibrosis is characterized by accumulation and stiffening of collagenous scar tissue which impairs organ functions to the point of failure. Fibrosis and dysregulated immune responses are also a feature of cancer, in which tumor cells escape immune control partly by manipulating TGF-β1 regulation and where immune cells are excluded from the tumor by fibrotic matrix created during the stroma 'healing' response. Despite the obvious potential of TGF-β-signalling therapies, globally targeting TGF-β1 receptor, downstream pathways, or the active growth factor have proven to be extremely difficult if not impossible in systemic treatment regimes. However, TGF-β1 binding to cell receptors requires prior activation from latent complexes that are extracellularly presented on the surface of immune cells or within the extracellular matrix. These different locations have led to some divergence in the field which is often either seen from the perspective of an immunologists or a fibrosis/matrix researcher. Despite these human boundaries, there is considerable overlap between immune and tissue repair cells with respect to latent TGF-β1 presentation and activation. Moreover, the mechanisms and proteins employed by different cells and spatiotemporal control of latent TGF-β1 activation provide specificity that is amenable to drug development. This review aims at synthesizing the knowledge on TGF-β1 extracellular activation in the immune system and in fibrosis to further stimulate cross talk between the two research communities in solving the TGF-β conundrum.
Collapse
Affiliation(s)
- Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5G1G6, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5G1G6, Canada.
| |
Collapse
|
17
|
Bourque J, Hawiger D. Immunomodulatory Bonds of the Partnership between Dendritic Cells and T Cells. Crit Rev Immunol 2019; 38:379-401. [PMID: 30792568 DOI: 10.1615/critrevimmunol.2018026790] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
By acquiring, processing, and presenting both foreign and self-antigens, dendritic cells (DCs) initiate T cell activation that is shaped through the immunomodulatory functions of a variety of cell-membrane-bound molecules including BTLA-HVEM, CD40-CD40L, CTLA-4-CD80/CD86, CD70-CD27, ICOS-ICOS-L, OX40-OX40L, and PD-L1-PD-1, as well as several key cytokines and enzymes such as interleukin-6 (IL-6), IL-12, IL-23, IL-27, transforming growth factor-beta 1 (TGF-β1), retinaldehyde dehydrogenase (Raldh), and indoleamine 2,3-dioxygenase (IDO). Some of these distinct immunomodulatory signals are mediated by specific subsets of DCs, therefore contributing to the functional specialization of DCs in the priming and regulation of immune responses. In addition to responding to the DC-mediated signals, T cells can reciprocally modulate the immunomodulatory capacities of DCs, further refining immune responses. Here, we review recent studies, particularly in experimental mouse systems, that have delineated the integrated mechanisms of crucial immunomodulatory pathways that enable specific populations of DCs and T cells to work intimately together as single functional units that are indispensable for the maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
18
|
Cohen TS, Takahashi V, Bonnell J, Tovchigrechko A, Chaerkady R, Yu W, Jones-Nelson O, Lee Y, Raja R, Hess S, Stover CK, Worthington JJ, Travis MA, Sellman BR. Staphylococcus aureus drives expansion of low-density neutrophils in diabetic mice. J Clin Invest 2019; 129:2133-2144. [PMID: 30985291 PMCID: PMC6486344 DOI: 10.1172/jci126938] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic individuals are at considerable risk for invasive infection by Staphylococcus aureus, however, the mechanisms underlying this enhanced susceptibility to infection are unclear. We observed increased mortality following i.v. S. aureus infection in diabetic mice compared with nondiabetic controls, correlating with increased numbers of low-density neutrophils (LDNs) and neutrophil extracellular traps (NETs). LDNs have been implicated in the inflammatory pathology of diseases such as lupus, given their release of large amounts of NETs. Our goal was to describe what drives LDN increases during S. aureus infection in the diabetic host and mechanisms that promote increased NET production by LDNs. LDN development is dependent on TGF-β, which we found to be more activated in the diabetic host. Neutralization of TGF-β, or the TGF-β-activating integrin αvβ8, reduced LDN numbers and improved survival during S. aureus infection. Targeting S. aureus directly with MEDI4893*, an α toxin-neutralizing monoclonal antibody, blocked TGF-β activation, reduced LDNs and NETs, and significantly improved survival. A comparison of gene and protein expression in high-density neutrophils and LDNs identified increased GPCRs and elevated phosphatase and tensin homolog (PTEN) in the LDN subset. Inhibition of PTEN improved the survival of infected diabetic mice. Our data identify a population of neutrophils in infected diabetic mice that correlated with decreased survival and increased NET production and describe 3 therapeutic targets, a bacterial target and 2 host proteins, that prevented NET production and improved survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Wen Yu
- Bioinformatics, AstraZeneca, Gaithersburg, Maryland, USA
| | | | - Young Lee
- Department of Translational Medicine and Pharmacogenetics
| | - Rajiv Raja
- Department of Translational Medicine and Pharmacogenetics
| | - Sonja Hess
- Department of Antibody Discovery and Protein Engineering, and
| | | | - John J. Worthington
- Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster, United Kingdom
| | - Mark A. Travis
- Lydia Becker Institute of Immunology and Inflammation
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, and
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
19
|
Steel N, Faniyi AA, Rahman S, Swietlik S, Czajkowska BI, Chan BT, Hardgrave A, Steel A, Sparwasser TD, Assas MB, Grencis RK, Travis MA, Worthington JJ. TGFβ-activation by dendritic cells drives Th17 induction and intestinal contractility and augments the expulsion of the parasite Trichinella spiralis in mice. PLoS Pathog 2019; 15:e1007657. [PMID: 30998782 PMCID: PMC6472816 DOI: 10.1371/journal.ppat.1007657] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Helminths are highly prevalent metazoan parasites that infect over a billion of the world's population. Hosts have evolved numerous mechanisms to drive the expulsion of these parasites via Th2-driven immunity, but these responses must be tightly controlled to prevent equally devastating immunopathology. However, mechanisms that regulate this balance are still unclear. Here we show that the vigorous Th2 immune response driven by the small intestinal helminth Trichinella spiralis, is associated with increased TGFβ signalling responses in CD4+ T-cells. Mechanistically, enhanced TGFβ signalling in CD4+ T-cells is dependent on dendritic cell-mediated TGFβ activation which requires expression of the integrin αvβ8. Importantly, mice lacking integrin αvβ8 on DCs had a delayed ability to expel a T. spiralis infection, indicating an important functional role for integrin αvβ8-mediated TGFβ activation in promoting parasite expulsion. In addition to maintaining regulatory T-cell responses, the CD4+ T-cell signalling of this pleiotropic cytokine induces a Th17 response which is crucial in promoting the intestinal muscle hypercontractility that drives worm expulsion. Collectively, these results provide novel insights into intestinal helminth expulsion beyond that of classical Th2 driven immunity, and highlight the importance of IL-17 in intestinal contraction which may aid therapeutics to numerous diseases of the intestine.
Collapse
Affiliation(s)
- Nicola Steel
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Aduragbemi A. Faniyi
- Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster, United Kingdom
| | - Sayema Rahman
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stefanie Swietlik
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Beata I. Czajkowska
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Bethany T. Chan
- Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster, United Kingdom
| | - Alexander Hardgrave
- Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster, United Kingdom
| | - Anthony Steel
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Tim D. Sparwasser
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany
| | - Mushref B. Assas
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Faculty of Applied Medical Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Richard K. Grencis
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Mark A. Travis
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom
| | - John J. Worthington
- Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster, United Kingdom
| |
Collapse
|
20
|
Kelly A, Gunaltay S, McEntee CP, Shuttleworth EE, Smedley C, Houston SA, Fenton TM, Levison S, Mann ER, Travis MA. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med 2018; 215:2725-2736. [PMID: 30355614 PMCID: PMC6219736 DOI: 10.1084/jem.20171491] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/13/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022] Open
Abstract
Monocytes are crucial immune cells involved in regulation of inflammation either directly or via differentiation into macrophages in tissues. However, many aspects of how their function is controlled in health and disease are not understood. Here we show that human blood monocytes activate high levels of the cytokine TGFβ, a pathway that is not evident in mouse monocytes. Human CD14+, but not CD16+, monocytes activate TGFβ via expression of the integrin αvβ8 and matrix metalloproteinase 14, which dampens their production of TNFα in response to LPS. Additionally, when monocytes differentiate into macrophages, integrin expression and TGFβ-activating ability are maintained in anti-inflammatory macrophages but down-regulated in pro-inflammatory macrophages. In the healthy human intestine, integrin αvβ8 is highly expressed on mature tissue macrophages, with these cells and their integrin expression being significantly reduced in active inflammatory bowel disease. Thus, our data suggest that integrin αvβ8-mediated TGFβ activation plays a key role in regulation of monocyte inflammatory responses and intestinal macrophage homeostasis.
Collapse
Affiliation(s)
- Aoife Kelly
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sezin Gunaltay
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Craig P McEntee
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Elinor E Shuttleworth
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Gastroenterology Unit, Manchester Royal Infirmary, Manchester University National Health Service Foundation Trust, Manchester, UK
| | - Catherine Smedley
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Stephanie A Houston
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Thomas M Fenton
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Scott Levison
- Gastroenterology Unit, Manchester Royal Infirmary, Manchester University National Health Service Foundation Trust, Manchester, UK
| | - Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mark A Travis
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK .,Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Immunity to gastrointestinal nematode infections. Mucosal Immunol 2018; 11:304-315. [PMID: 29297502 DOI: 10.1038/mi.2017.113] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
Abstract
Numerous species of nematodes have evolved to inhabit the gastrointestinal tract of animals and humans, with over a billion of the world's population infected with at least one species. These large multicellular pathogens present a considerable and complex challenge to the host immune system given that individuals are continually exposed to infective stages, as well as the high prevalence in endemic areas. This review summarizes our current understanding of host-parasite interactions, detailing induction of protective immunity, mechanisms of resistance, and resolution of the response. It is clear from studies of well-defined laboratory model systems that these responses are dominated by innate and adaptive type 2 cytokine responses, regulating cellular and soluble effectors that serve to disrupt the niche in which the parasites live by strengthening the physical mucosal barrier and ultimately promoting tissue repair.
Collapse
|
22
|
Demiri M, Müller-Luda K, Agace WW, Svensson-Frej M. Distinct DC subsets regulate adaptive Th1 and 2 responses during Trichuris muris infection. Parasite Immunol 2017; 39. [PMID: 28802050 DOI: 10.1111/pim.12458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/05/2017] [Indexed: 12/13/2022]
Abstract
Low- and high-dose infections with the murine large intestinal nematode Trichuris muris are associated with induction of adaptive Th1 and Th2 responses, respectively, in mesenteric lymph nodes (MLN). Classical dendritic cells (cDC) accumulate in the large intestinal mucosa and MLN upon T. muris infection, yet their role in driving adaptive responses to infection remains largely unknown. We performed low- and high-dose T. muris infections of mice deficient in defined cDC subsets to investigate their role in induction of adaptive immune responses. Mice lacking IRF4-dependent cDC failed to clear a high-dose infection and displayed impaired Th2 responses. Conversely, mice lacking IRF8-dependent cDC cleared a low-dose infection and displayed an impaired Th1 response while increased production of Th2 cytokines. Finally, mice lacking both IRF4- and IRF8-dependent cDC were able to generate a Th2 response and clear a low-dose infection. Collectively, these results suggest that IRF4- and IRF8-dependent cDC act antagonistically during T. muris infection, and demonstrate that intestinal Th2 responses can be generated towards T. muris in the absence of IRF4-dependent cDC.
Collapse
Affiliation(s)
- M Demiri
- Immunology Section, Lund University, Lund, Sweden
| | | | - W W Agace
- Immunology Section, Lund University, Lund, Sweden.,Section of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - M Svensson-Frej
- Immunology Section, Lund University, Lund, Sweden.,Section of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
23
|
Cortés A, Muñoz-Antoli C, Esteban JG, Toledo R. Th2 and Th1 Responses: Clear and Hidden Sides of Immunity Against Intestinal Helminths. Trends Parasitol 2017; 33:678-693. [DOI: 10.1016/j.pt.2017.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022]
|
24
|
Fenton TM, Kelly A, Shuttleworth EE, Smedley C, Atakilit A, Powrie F, Campbell S, Nishimura SL, Sheppard D, Levison S, Worthington JJ, Lehtinen MJ, Travis MA. Inflammatory cues enhance TGFβ activation by distinct subsets of human intestinal dendritic cells via integrin αvβ8. Mucosal Immunol 2017; 10:624-634. [PMID: 27782111 PMCID: PMC5439516 DOI: 10.1038/mi.2016.94] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/26/2016] [Indexed: 02/04/2023]
Abstract
Regulation of intestinal T-cell responses is crucial for immune homeostasis and prevention of inflammatory bowel disease (IBD). A vital cytokine in regulating intestinal T cells is transforming growth factor-β (TGFβ), which is secreted by cells as a latent complex that requires activation to function. However, how TGFβ activation is regulated in the human intestine, and how such pathways are altered in IBD is completely unknown. Here we show that a key activator of TGFβ, integrin αvβ8, is highly expressed on human intestinal dendritic cells (DCs), specifically on the CD1c+ but not the CD141+ intestinal DC subset. Expression was significantly upregulated on intestinal DC from IBD patients, indicating that inflammatory signals may upregulate expression of this key TGFβ-activating molecule. Indeed, we found that the Toll-like receptor 4 ligand lipopolysaccharide upregulates integrin αvβ8 expression and TGFβ activation by human DC. We also show that DC expression of integrin αvβ8 enhanced induction of FOXP3 in CD4+ T cells, suggesting functional importance of integrin αvβ8 expression by human DC. These results show that microbial signals enhance the TGFβ-activating ability of human DC via regulation of integrin αvβ8 expression, and that intestinal inflammation may drive this pathway in patients with IBD.
Collapse
Affiliation(s)
- TM Fenton
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK,Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK,Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - A Kelly
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK,Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK,Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - EE Shuttleworth
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK,Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK,Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - C Smedley
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK,Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK,Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - A Atakilit
- Lung Biology Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - F Powrie
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK,Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - S Campbell
- Gastroenterology Unit, Manchester Royal Infirmary, Central Manchester University Hospital NHS Foundation Trust, Manchester, UK
| | - SL Nishimura
- Department of Pathology, University of California, San Francisco, CA, USA
| | - D Sheppard
- Lung Biology Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - S Levison
- Gastroenterology Unit, Manchester Royal Infirmary, Central Manchester University Hospital NHS Foundation Trust, Manchester, UK
| | - JJ Worthington
- Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - MJ Lehtinen
- DuPont Nutrition & Health, Global Health and Nutrition Science, Kantvik, Finland
| | - MA Travis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK,Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK,Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
25
|
Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of Innate and Adaptive Immunity by TGFβ. Adv Immunol 2017; 134:137-233. [PMID: 28413021 DOI: 10.1016/bs.ai.2017.01.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immune regulation by cytokines is crucial in maintaining immune homeostasis, promoting responses to infection, resolving inflammation, and promoting immunological memory. Additionally, cytokine responses drive pathology in immune-mediated disease. A crucial cytokine in the regulation of all aspects of an immune response is transforming growth factor beta (TGFβ). Although best known as a crucial regulator of T cell responses, TGFβ plays a vital role in regulating responses mediated by virtually every innate and adaptive immune cell, including dendritic cells, B cells, NK cells, innate lymphoid cells, and granulocytes. Here, we review our current knowledge of how TGFβ regulates the immune system, highlighting the multifunctional nature of TGFβ and how its function can change depending on location and context of action.
Collapse
Affiliation(s)
- Aoife Kelly
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stephanie A Houston
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Eleanor Sherwood
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark A Travis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
26
|
Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol 2016; 9:428-43. [PMID: 26286232 PMCID: PMC4677460 DOI: 10.1038/mi.2015.73] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 06/26/2015] [Indexed: 02/04/2023]
Abstract
Helminth infection is frequently associated with the expansion of regulatory T cells (Tregs) and suppression of immune responses to bystander antigens. We show that infection of mice with the chronic gastrointestinal helminth Heligmosomoides polygyrus drives rapid polyclonal expansion of Foxp3(+)Helios(+)CD4(+) thymic (t)Tregs in the lamina propria and mesenteric lymph nodes while Foxp3(+)Helios(-)CD4(+) peripheral (p)Treg expand more slowly. Notably, in partially resistant BALB/c mice parasite survival positively correlates with Foxp3(+)Helios(+)CD4(+) tTreg numbers. Boosting of Foxp3(+)Helios(+)CD4(+) tTreg populations by administration of recombinant interleukin-2 (rIL-2):anti-IL-2 (IL-2C) complex increased worm persistence by diminishing type-2 responsiveness in vivo, including suppression of alternatively activated macrophage and granulomatous responses at the sites of infection. IL-2C also increased innate lymphoid cell (ILC) numbers, indicating that Treg functions dominate over ILC effects in this setting. Surprisingly, complete removal of Tregs in transgenic Foxp3-DTR mice also resulted in increased worm burdens, with "immunological chaos" evident in high levels of the pro-inflammatory cytokines IL-6 and interferon-γ. In contrast, worm clearance could be induced by anti-CD25 antibody-mediated partial depletion of early Treg, alongside increased T helper type 2 responses and without incurring pathology. These findings highlight the overarching importance of the early Treg response to infection and the non-linear association between inflammation and the prevailing Treg frequency.
Collapse
|
27
|
Obieglo K, Feng X, Bollampalli VP, Dellacasa-Lindberg I, Classon C, Österblad M, Helmby H, Hewitson JP, Maizels RM, Gigliotti Rothfuchs A, Nylén S. Chronic Gastrointestinal Nematode Infection Mutes Immune Responses to Mycobacterial Infection Distal to the Gut. THE JOURNAL OF IMMUNOLOGY 2016; 196:2262-71. [PMID: 26819205 DOI: 10.4049/jimmunol.1500970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 12/22/2015] [Indexed: 01/13/2023]
Abstract
Helminth infections have been suggested to impair the development and outcome of Th1 responses to vaccines and intracellular microorganisms. However, there are limited data regarding the ability of intestinal nematodes to modulate Th1 responses at sites distal to the gut. In this study, we have investigated the effect of the intestinal nematode Heligmosomoides polygyrus bakeri on Th1 responses to Mycobacterium bovis bacillus Calmette-Guérin (BCG). We found that H. polygyrus infection localized to the gut can mute BCG-specific CD4(+) T cell priming in both the spleen and skin-draining lymph nodes. Furthermore, H. polygyrus infection reduced the magnitude of delayed-type hypersensitivity (DTH) to PPD in the skin. Consequently, H. polygyrus-infected mice challenged with BCG had a higher mycobacterial load in the liver compared with worm-free mice. The excretory-secretory product from H. polygyrus (HES) was found to dampen IFN-γ production by mycobacteria-specific CD4(+) T cells. This inhibition was dependent on the TGF-βR signaling activity of HES, suggesting that TGF-β signaling plays a role in the impaired Th1 responses observed coinfection with worms. Similar to results with mycobacteria, H. polygyrus-infected mice displayed an increase in skin parasite load upon secondary infection with Leishmania major as well as a reduction in DTH responses to Leishmania Ag. We show that a nematode confined to the gut can mute T cell responses to mycobacteria and impair control of secondary infections distal to the gut. The ability of intestinal helminths to reduce DTH responses may have clinical implications for the use of skin test-based diagnosis of microbial infections.
Collapse
Affiliation(s)
- Katja Obieglo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xiaogang Feng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Vishnu Priya Bollampalli
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Cajsa Classon
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Markus Österblad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Helena Helmby
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom; and
| | - James P Hewitson
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden;
| |
Collapse
|
28
|
Affiliation(s)
- John J Worthington
- Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Mark A Travis
- Manchester Collaborative Centre for Inflammation Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Tatler AL, Jenkins G. Reducing affinity of αvβ8 interactions with latent TGFβ: dialling down fibrosis. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:S31. [PMID: 26046078 DOI: 10.3978/j.issn.2305-5839.2015.02.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Amanda L Tatler
- Division of Respiratory Medicine, City Hospital Campus, University of Nottingham, Nottingham, UK
| | - Gisli Jenkins
- Division of Respiratory Medicine, City Hospital Campus, University of Nottingham, Nottingham, UK
| |
Collapse
|
30
|
Worthington JJ, Kelly A, Smedley C, Bauché D, Campbell S, Marie JC, Travis MA. Integrin αvβ8-Mediated TGF-β Activation by Effector Regulatory T Cells Is Essential for Suppression of T-Cell-Mediated Inflammation. Immunity 2015; 42:903-15. [PMID: 25979421 PMCID: PMC4448149 DOI: 10.1016/j.immuni.2015.04.012] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 12/22/2014] [Accepted: 04/23/2015] [Indexed: 01/19/2023]
Abstract
Regulatory T (Treg) cells play a pivotal role in suppressing self-harmful T cell responses, but how Treg cells mediate suppression to maintain immune homeostasis and limit responses during inflammation is unclear. Here we show that effector Treg cells express high amounts of the integrin αvβ8, which enables them to activate latent transforming growth factor-β (TGF-β). Treg-cell-specific deletion of integrin αvβ8 did not result in a spontaneous inflammatory phenotype, suggesting that this pathway is not important in Treg-cell-mediated maintenance of immune homeostasis. However, Treg cells lacking expression of integrin αvβ8 were unable to suppress pathogenic T cell responses during active inflammation. Thus, our results identify a mechanism by which Treg cells suppress exuberant immune responses, highlighting a key role for effector Treg-cell-mediated activation of latent TGF-β in suppression of self-harmful T cell responses during active inflammation. Human and mouse effector Treg cells express functional TGF-β-activating integrin αvβ8 Treg cell integrin αvβ8-mediated TGF-β activation is not needed for T cell homeostasis Integrin αvβ8 expression by Treg cells suppresses active inflammation Pathway could be targeted to promote Treg-cell-mediated suppression of inflammation
Collapse
Affiliation(s)
- John J Worthington
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK; Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK; Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| | - Aoife Kelly
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK; Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK; Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Catherine Smedley
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK; Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK; Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - David Bauché
- Immunology Virology and Inflammation Department, CRCL, UMR INSERM1052, CNRS 5286, Centre Léon Bérard, 28 rue Laennec, 69373 Cedex 08 Lyon, France; Université Lyon 1, 69000 Lyon, France; Labex DEVweCAN, 69008 Lyon, France; TGFβ and Immuno-evasion Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Simon Campbell
- Gastroenterology Unit, Manchester Royal Infirmary, Central Manchester University Hospital NHS Foundation Trust, Manchester M13 9WL, UK
| | - Julien C Marie
- Immunology Virology and Inflammation Department, CRCL, UMR INSERM1052, CNRS 5286, Centre Léon Bérard, 28 rue Laennec, 69373 Cedex 08 Lyon, France; Université Lyon 1, 69000 Lyon, France; Labex DEVweCAN, 69008 Lyon, France; TGFβ and Immuno-evasion Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mark A Travis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK; Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK; Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
31
|
Grencis RK. Immunity to Helminths: Resistance, Regulation, and Susceptibility to Gastrointestinal Nematodes. Annu Rev Immunol 2015; 33:201-25. [DOI: 10.1146/annurev-immunol-032713-120218] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard K. Grencis
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
32
|
Grencis RK, Humphreys NE, Bancroft AJ. Immunity to gastrointestinal nematodes: mechanisms and myths. Immunol Rev 2015; 260:183-205. [PMID: 24942690 PMCID: PMC4141702 DOI: 10.1111/imr.12188] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immune responses to gastrointestinal nematodes have been studied extensively for over 80 years and intensively investigated over the last 30–40 years. The use of laboratory models has led to the discovery of new mechanisms of protective immunity and made major contributions to our fundamental understanding of both innate and adaptive responses. In addition to host protection, it is clear that immunoregulatory processes are common in infected individuals and resistance often operates alongside modulation of immunity. This review aims to discuss the recent discoveries in both host protection and immunoregulation against gastrointestinal nematodes, placing the data in context of the specific life cycles imposed by the different parasites studied and the future challenges of considering the mucosal/immune axis to encompass host, parasite, and microbiome in its widest sense.
Collapse
|
33
|
Karmaus PWF, Chi H. Genetic dissection of dendritic cell homeostasis and function: lessons from cell type-specific gene ablation. Cell Mol Life Sci 2013; 71:1893-906. [PMID: 24366237 DOI: 10.1007/s00018-013-1534-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/25/2013] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are a heterogeneous cell population of great importance in the immune system. The emergence of new genetic technology utilizing the CD11c promoter and Cre recombinase has facilitated the dissection of functional significance and molecular regulation of DCs in immune responses and homeostasis in vivo. For the first time, this strategy allows observation of the effects of DC-specific gene deletion on immune system function in an intact organism. In this review, we present the latest findings from studies using the Cre recombinase system for cell type-specific deletion of key molecules that mediate DC homeostasis and function. Our focus is on the molecular pathways that orchestrate DC life span, migration, antigen presentation, pattern recognition, and cytokine production and signaling.
Collapse
Affiliation(s)
- Peer W F Karmaus
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | | |
Collapse
|