1
|
Murillo-Léon M, Bastidas-Quintero AM, Steinfeldt T. Decoding Toxoplasma gondii virulence: the mechanisms of IRG protein inactivation. Trends Parasitol 2024; 40:805-819. [PMID: 39168720 DOI: 10.1016/j.pt.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Toxoplasmosis is a common parasitic zoonosis that can be life-threatening in immunocompromised patients. About one-third of the human population is infected with Toxoplasma gondii. Primary infection triggers an innate immune response wherein IFN-γ-induced host cell GTPases, namely IRG and GBP proteins, serve as a vital component for host cell resistance. In the past decades, interest in elucidating the function of these GTPase families in controlling various intracellular pathogens has emerged. Numerous T. gondii effectors were identified to inactivate particular IRG proteins. T. gondii is re-optimizing its effectors to combat IRG function and in this way secures transmission. We discuss the IRG-specific effectors employed by the parasite in murine infections, contributing to a better understanding of T. gondii virulence.
Collapse
Affiliation(s)
- Mateo Murillo-Léon
- Institute of Medical Microbiology and Hygiene, Medical Center University of Freiburg, 79104 Freiburg, Germany; CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Aura María Bastidas-Quintero
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Tobias Steinfeldt
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
2
|
Hu Z, Zhang Y, Xie Y, Yang J, Tang H, Fan B, Zeng K, Han Z, Lu J, Jiang H, Peng W, Li H, Chen H, Wu S, Shen B, Lun Z, Yu X. The Toxoplasma Effector GRA4 Hijacks Host TBK1 to Oppositely Regulate Anti-T. Gondii Immunity and Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400952. [PMID: 39031880 PMCID: PMC11348266 DOI: 10.1002/advs.202400952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/25/2024] [Indexed: 07/22/2024]
Abstract
Toxoplasma gondii (T. gondii)-associated polymorphic effector proteins are crucial in parasite development and regulating host anti-T. gondii immune responses. However, the mechanism remains obscure. Here, it is shown that Toxoplasma effector dense granules 4 (GRA4) restricts host IFN-I activation. Infection with Δgra4 mutant T. gondii strain induces stronger IFN-I responses and poses a severe threat to host health. Mechanistically, GRA4 binds to phosphorylated TBK1 to promote TRIM27-catalyzed K48-ubiquitination at Lys251/Lys372 residues, which enhances its recognition by autophagy receptor p62, ultimately leading to TBK1 autophagic degradation. Furthermore, an avirulent Δgra4 strain (ME49Δompdc/gra4) is constructed for tumor immunotherapy due to its ability to enhance IFN-I production. Earlier vaccination with ME49Δompdc/gra4 confers complete host resistance to the tumor compared with the classical ME49Δompdc treatment. Notably, ME49Δompdc/gra4 vaccination induces a specific CD64+MAR-1+CD11b+ dendritic cell subset, thereby enhancing T cell anti-tumor responses. Overall, these findings identify the negative role of T. gondii GRA4 in modulating host IFN-I signaling and suggest that GRA4 can be a potential target for the development of T. gondii vaccines and tumor immunotherapy.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational MedicineZhejiang University School of MedicineZhejiang UniversityHangzhou310029China
| | - Yufen Zhang
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Yingchao Xie
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jianwu Yang
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Haotian Tang
- State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Bolin Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Ke Zeng
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Zhongxin Han
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiansen Lu
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Department of Joint Surgerythe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510900China
| | - Huaji Jiang
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Yue Bei People's Hospital Postdoctoral Innovation Practice BaseSouthern Medical UniversityGuangzhou510515China
| | - Wenqiang Peng
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Hongyu Li
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Huadan Chen
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Sha Wu
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of ProteomicsSouthern Medical UniversityGuangzhou510515China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Zhao‐Rong Lun
- State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510000China
| |
Collapse
|
3
|
Song L, Wang R, Cao Y, Yu L. Mutual regulations between Toxoplasma gondii and type I interferon. Front Immunol 2024; 15:1428232. [PMID: 39040112 PMCID: PMC11260619 DOI: 10.3389/fimmu.2024.1428232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
In the decades since the discovery, Type I interferon (IFN-I) has been intensively studied for their antiviral activity. However, increasing evidences suggest that it may also play an important role in the infection of Toxoplasma gondii, a model organism for intracellular parasites. Recent studies demonstrated that the induction of IFN-I by the parasite depends on cell type, strain genotype, and mouse strain. IFN-I can inhibit the proliferation of T. gondii, but few studies showed that it is beneficial to the growth of the parasite. Meanwhile, T. gondii also can secrete proteins that impact the pathway of IFN-I production and downstream induced interferon-stimulated genes (ISGs) regulation, thereby escaping immune destruction by the host. This article reviews the major findings and progress in the production, function, and regulation of IFN-I during T. gondii infection, to thoroughly understand the innate immune mechanism of T. gondii infection, which provides a new target for subsequent intervention and treatment.
Collapse
Affiliation(s)
- Lingling Song
- Department of Microbiology and Parasitology, Anhui Province Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ruoyu Wang
- The Rausser College of Natural Resources, University of California, Berkeley, CA, United States
| | - Yuanyuan Cao
- Department of Microbiology and Parasitology, Anhui Province Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Province Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Gupta P, Hiller A, Chowdhury J, Lim D, Lim DY, Saeij JPJ, Babaian A, Rodriguez F, Pereira L, Morales-Tapia A. A parasite odyssey: An RNA virus concealed in Toxoplasma gondii. Virus Evol 2024; 10:veae040. [PMID: 38817668 PMCID: PMC11137675 DOI: 10.1093/ve/veae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/05/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
We are entering a 'Platinum Age of Virus Discovery', an era marked by exponential growth in the discovery of virus biodiversity, and driven by advances in metagenomics and computational analysis. In the ecosystem of a human (or any animal) there are more species of viruses than simply those directly infecting the animal cells. Viruses can infect all organisms constituting the microbiome, including bacteria, fungi, and unicellular parasites. Thus the complexity of possible interactions between host, microbe, and viruses is unfathomable. To understand this interaction network we must employ computationally assisted virology as a means of analyzing and interpreting the millions of available samples to make inferences about the ways in which viruses may intersect human health. From a computational viral screen of human neuronal datasets, we identified a novel narnavirus Apocryptovirus odysseus (Ao) which likely infects the neurotropic parasite Toxoplasma gondii. Previously, several parasitic protozoan viruses (PPVs) have been mechanistically established as triggers of host innate responses, and here we present in silico evidence that Ao is a plausible pro-inflammatory factor in human and mouse cells infected by T. gondii. T. gondii infects billions of people worldwide, yet the prognosis of toxoplasmosis disease is highly variable, and PPVs like Ao could function as a hitherto undescribed hypervirulence factor. In a broader screen of over 7.6 million samples, we explored phylogenetically proximal viruses to Ao and discovered nineteen Apocryptovirus species, all found in libraries annotated as vertebrate transcriptome or metatranscriptomes. While samples containing this genus of narnaviruses are derived from sheep, goat, bat, rabbit, chicken, and pigeon samples, the presence of virus is strongly predictive of parasitic Apicomplexa nucleic acid co-occurrence, supporting the fact that Apocryptovirus is a genus of parasite-infecting viruses. This is a computational proof-of-concept study in which we rapidly analyze millions of datasets from which we distilled a mechanistically, ecologically, and phylogenetically refined hypothesis. We predict that this highly diverged Ao RNA virus is biologically a T. gondii infection, and that Ao, and other viruses like it, will modulate this disease which afflicts billions worldwide.
Collapse
Affiliation(s)
- Purav Gupta
- The Woodlands Secondary School, 3225 Erindale Station Rd,Mississauga, ON L5C 1Y5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Aiden Hiller
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Jawad Chowdhury
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Declan Lim
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Dillon Yee Lim
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Road, Oxford, Oxfordshire, OX1 3PT, UK
| | - Jeroen P J Saeij
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Artem Babaian
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Felipe Rodriguez
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Luke Pereira
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Alejandro Morales-Tapia
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| |
Collapse
|
5
|
Lüder CGK. IFNs in host defence and parasite immune evasion during Toxoplasma gondii infections. Front Immunol 2024; 15:1356216. [PMID: 38384452 PMCID: PMC10879624 DOI: 10.3389/fimmu.2024.1356216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Interferons (IFNs) are a family of cytokines with diverse functions in host resistance to pathogens and in immune regulation. Type II IFN, i.e. IFN-γ, is widely recognized as a major mediator of resistance to intracellular pathogens, including the protozoan Toxoplasma gondii. More recently, IFN-α/β, i.e. type I IFNs, and IFN-λ (type III IFN) have been identified to also play important roles during T. gondii infections. This parasite is a widespread pathogen of humans and animals, and it is a model organism to study cell-mediated immune responses to intracellular infection. Its success depends, among other factors, on the ability to counteract the IFN system, both at the level of IFN-mediated gene expression and at the level of IFN-regulated effector molecules. Here, I review recent advances in our understanding of the molecular mechanisms underlying IFN-mediated host resistance and immune regulation during T. gondii infections. I also discuss those mechanisms that T. gondii has evolved to efficiently evade IFN-mediated immunity. Knowledge of these fascinating host-parasite interactions and their underlying signalling machineries is crucial for a deeper understanding of the pathogenesis of toxoplasmosis, and it might also identify potential targets of parasite-directed or host-directed supportive therapies to combat the parasite more effectively.
Collapse
Affiliation(s)
- Carsten G. K. Lüder
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Er-Lukowiak M, Hänzelmann S, Rothe M, Moamenpour DT, Hausmann F, Khatri R, Hansen C, Boldt J, Bärreiter VA, Honecker B, Bea A, Groneberg M, Fehling H, Marggraff C, Cadar D, Bonn S, Sellau J, Lotter H. Testosterone affects type I/type II interferon response of neutrophils during hepatic amebiasis. Front Immunol 2023; 14:1279245. [PMID: 38179044 PMCID: PMC10764495 DOI: 10.3389/fimmu.2023.1279245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/01/2023] [Indexed: 01/06/2024] Open
Abstract
Differences in immune response between men and women may influence the outcome of infectious diseases. Intestinal infection with Entamoeba histolytica leads to hepatic amebiasis, which is more common in males. Previously, we reported that innate immune cells contribute to liver damage in males in the murine model for hepatic amebiasis. Here, we focused on the influences of sex and androgens on neutrophils in particular. Infection associated with neutrophil accumulation in the liver was higher in male than in female mice and further increased after testosterone treatment in both sexes. Compared with female neutrophils, male neutrophils exhibit a more immature and less activated status, as evidenced by a lower proinflammatory N1-like phenotype and deconvolution, decreased gene expression of type I and type II interferon stimulated genes (ISGs) as well as downregulation of signaling pathways related to neutrophil activation. Neutrophils from females showed higher protein expression of the type I ISG viperin/RSAD2 during infection, which decreased by testosterone substitution. Moreover, ex vivo stimulation of human neutrophils revealed lower production of RSAD2 in neutrophils from men compared with women. These findings indicate that sex-specific effects on neutrophil physiology associated with maturation and type I IFN responsiveness might be important in the outcome of hepatic amebiasis.
Collapse
Affiliation(s)
- Marco Er-Lukowiak
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligenc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Rothe
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - David T. Moamenpour
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligenc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligenc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Hansen
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jennifer Boldt
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Valentin A. Bärreiter
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Barbara Honecker
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Annika Bea
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marie Groneberg
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Helena Fehling
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Claudia Marggraff
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Dániel Cadar
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stefan Bonn
- Center for Biomedical Artificial Intelligenc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julie Sellau
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna Lotter
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
7
|
Brito RMDM, de Lima Bessa G, Bastilho AL, Dantas-Torres F, de Andrade-Neto VF, Bueno LL, Fujiwara RT, Magalhães LMD. Genetic diversity of Toxoplasma gondii in South America: occurrence, immunity, and fate of infection. Parasit Vectors 2023; 16:461. [PMID: 38115102 PMCID: PMC10729521 DOI: 10.1186/s13071-023-06080-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023] Open
Abstract
Toxoplasma gondii is an intracellular parasite with a worldwide distribution. Toxoplasma gondii infections are of great concern for public health, and their impact is usually most severe in pregnant women and their foetuses, and in immunocompromised individuals. Displaying considerable genetic diversity, T. gondii strains differ widely according to geographical location, with archetypal strains predominantly found in the Northern Hemisphere and non-archetypal (atypical) strains, with highly diverse genotypes, found mainly in South America. In this review, we present an overview of the identification and distribution of non-archetypal strains of T. gondii. Special attention is paid to the strains that have been isolated in Brazil, their interaction with the host immunological response, and their impact on disease outcomes. The genetic differences among the strains are pivotal to the distinct immunological responses that they elicit. These differences arise from polymorphisms of key proteins released by the parasite, which represent important virulence factors. Infection with divergent non-archetypal strains can lead to unusual manifestations of the disease, even in immunocompetent individuals.
Collapse
Affiliation(s)
- Ramayana Morais de Medeiros Brito
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Alexandre Lazoski Bastilho
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Valter Ferreira de Andrade-Neto
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Luisa M D Magalhães
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Thind AC, Mota CM, Gonçalves APN, Sha J, Wohlschlegel JA, Mineo TWP, Bradley PJ. The Toxoplasma gondii effector GRA83 modulates the host's innate immune response to regulate parasite infection. mSphere 2023; 8:e0026323. [PMID: 37768053 PMCID: PMC10597413 DOI: 10.1128/msphere.00263-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
Toxoplasma gondii's propensity to infect its host and cause disease is highly dependent on its ability to modulate host cell functions. One of the strategies the parasite uses to accomplish this is via the export of effector proteins from the secretory dense granules. Dense granule (GRA) proteins are known to play roles in nutrient acquisition, host cell cycle manipulation, and immune regulation. Here, we characterize a novel dense granule protein named GRA83, which localizes to the parasitophorous vacuole (PV) in tachyzoites and bradyzoites. Disruption of GRA83 results in increased virulence, weight loss, and parasitemia during the acute infection, as well as a marked increase in the cyst burden during the chronic infection. This increased parasitemia was associated with an accumulation of inflammatory infiltrates in tissues in both acute and chronic infections. Murine macrophages infected with ∆gra83 tachyzoites produced less interleukin-12 (IL-12) in vitro, which was confirmed with reduced IL-12 and interferon-gamma in vivo. This dysregulation of cytokines correlates with reduced nuclear translocation of the p65 subunit of the nuclear factor-κB (NF-κB) complex. While GRA15 similarly regulates NF-κB, infection with ∆gra83/∆gra15 parasites did not further reduce p65 translocation to the host cell nucleus, suggesting these GRAs function in converging pathways. We also used proximity labeling experiments to reveal candidate GRA83 interacting T. gondii-derived partners. Taken together, this work reveals a novel effector that stimulates the innate immune response, enabling the host to limit the parasite burden. Importance Toxoplasma gondii poses a significant public health concern as it is recognized as one of the leading foodborne pathogens in the United States. Infection with the parasite can cause congenital defects in neonates, life-threatening complications in immunosuppressed patients, and ocular disease. Specialized secretory organelles, including the dense granules, play an important role in the parasite's ability to efficiently invade and regulate components of the host's infection response machinery to limit parasite clearance and establish an acute infection. Toxoplasma's ability to avoid early clearance, while also successfully infecting the host long enough to establish a persistent chronic infection, is crucial in allowing for its transmission to a new host. While multiple GRAs directly modulate host signaling pathways, they do so in various ways highlighting the parasite's diverse arsenal of effectors that govern infection. Understanding how parasite-derived effectors harness host functions to evade defenses yet ensure a robust infection is important for understanding the complexity of the pathogen's tightly regulated infection. In this study, we characterize a novel secreted protein named GRA83 that stimulates the host cell's response to limit infection.
Collapse
Affiliation(s)
- Amara C. Thind
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Caroline M. Mota
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana Paula N. Gonçalves
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Tiago W. P. Mineo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Peter J. Bradley
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
9
|
Orchanian SB, Lodoen MB. Monocytes as primary defenders against Toxoplasma gondii infection. Trends Parasitol 2023; 39:837-849. [PMID: 37633758 DOI: 10.1016/j.pt.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/28/2023]
Abstract
Monocytes are recruited from the bone marrow to sites of infection where they release cytokines and chemokines, function in antimicrobial immunity, and differentiate into macrophages and dendritic cells to control infection. Although many studies have focused on monocyte-derived macrophages and dendritic cells, recent work has examined the unique roles of monocytes during infection to promote immune defense. We focus on the effector functions of monocytes during infection with the parasite Toxoplasma gondii, and discuss the signals that mobilize monocytes to sites of infection, their production of inflammatory cytokines and antimicrobial mediators, their ability to shape the adaptive immune response, and their immunoregulatory functions. Insights from other infections, including Plasmodium and Listeria are also included for comparison and context.
Collapse
Affiliation(s)
- Stephanie B Orchanian
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA; Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Melissa B Lodoen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA; Institute for Immunology, University of California Irvine, Irvine, California, USA.
| |
Collapse
|
10
|
Hildebrandt F, Mohammed M, Dziedziech A, Bhandage AK, Divne AM, Barrenäs F, Barragan A, Henriksson J, Ankarklev J. scDual-Seq of Toxoplasma gondii-infected mouse BMDCs reveals heterogeneity and differential infection dynamics. Front Immunol 2023; 14:1224591. [PMID: 37575232 PMCID: PMC10415529 DOI: 10.3389/fimmu.2023.1224591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Dendritic cells and macrophages are integral parts of the innate immune system and gatekeepers against infection. The protozoan pathogen, Toxoplasma gondii, is known to hijack host immune cells and modulate their immune response, making it a compelling model to study host-pathogen interactions. Here we utilize single cell Dual RNA-seq to parse out heterogeneous transcription of mouse bone marrow-derived dendritic cells (BMDCs) infected with two distinct genotypes of T. gondii parasites, over multiple time points post infection. We show that the BMDCs elicit differential responses towards T. gondii infection and that the two parasite lineages distinctly manipulate subpopulations of infected BMDCs. Co-expression networks define host and parasite genes, with implications for modulation of host immunity. Integrative analysis validates previously established immune pathways and additionally, suggests novel candidate genes involved in host-pathogen interactions. Altogether, this study provides a comprehensive resource for characterizing host-pathogen interplay at high-resolution.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mubasher Mohammed
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexis Dziedziech
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Global Health, Institut Pasteur, Paris, France
| | - Amol K. Bhandage
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anna-Maria Divne
- Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| | - Fredrik Barrenäs
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Johan Henriksson
- Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
- Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Thind AC, Mota CM, Gonçalves APN, Sha J, Wohlschlegel JA, Mineo TWP, Bradley PJ. The Toxoplasma gondii effector GRA83 modulates the host's innate immune response to regulate parasite infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543158. [PMID: 37398161 PMCID: PMC10312501 DOI: 10.1101/2023.05.31.543158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Toxoplasma gondii 's propensity to infect its host and cause disease is highly dependent on its ability to modulate host cell functions. One of the strategies the parasite uses to accomplish this is via the export of effector proteins from the secretory dense granules. Dense granule (GRA) proteins are known to play roles in nutrient acquisition, host cell cycle manipulation, and immune regulation. Here, we characterize a novel dense granule protein named GRA83, which localizes to the parasitophorous vacuole in tachyzoites and bradyzoites. Disruption of GRA83 results in increased virulence, weight loss, and parasitemia during the acute infection, as well as a marked increase in the cyst burden during the chronic infection. This increased parasitemia was associated with an accumulation of inflammatory infiltrates in tissues in both the acute and chronic infection. Murine macrophages infected with Δ gra83 tachyzoites produced less interleukin-12 (IL-12) in vitro , which was confirmed with reduced IL-12 and interferon gamma (IFN-γ) in vivo . This dysregulation of cytokines correlates with reduced nuclear translocation of the p65 subunit of the NF-κB complex. While GRA15 similarly regulates NF-κB, infection with Δ gra83/ Δ gra15 parasites did not further reduce p65 translocation to the host cell nucleus, suggesting these GRAs function in converging pathways. We also used proximity labelling experiments to reveal candidate GRA83 interacting T. gondii derived partners. Taken together, this work reveals a novel effector that stimulates the innate immune response, enabling the host to limit parasite burden. Importance Toxoplasma gondii poses a significant public health concern as it is recognized as one of the leading foodborne pathogens in the United States. Infection with the parasite can cause congenital defects in neonates, life-threatening complications in immunosuppressed patients, and ocular disease. Specialized secretory organelles, including the dense granules, play an important role in the parasite's ability to efficiently invade and regulate components of the host's infection response machinery to limit parasite clearance and establish an acute infection. Toxoplasma' s ability to avoid early clearance, while also successfully infecting the host long enough to establish a persistent chronic infection, is crucial in allowing for its transmission to a new host. While multiple GRAs directly modulate host signaling pathways, they do so in various ways highlighting the parasite's diverse arsenal of effectors that govern infection. Understanding how parasite-derived effectors harness host functions to evade defenses yet ensure a robust infection are important for understanding the complexity of the pathogen's tightly regulated infection. In this study, we characterize a novel secreted protein named GRA83 that stimulates the host cell's response to limit infection.
Collapse
|
12
|
Fernández-Álvarez M, Horcajo P, Jiménez-Meléndez A, Diezma-Díaz C, Ferre I, Pastor-Fernández I, Miguel Ortega-Mora L, Álvarez-García G. Transcriptional changes associated with apoptosis and Type I IFN underlie the early interaction between Besnoitia besnoiti tachyzoites and monocyte-derived macrophages. Int J Parasitol 2023:S0020-7519(23)00094-2. [PMID: 37207972 DOI: 10.1016/j.ijpara.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023]
Abstract
Besnoitia besnoiti-infected bulls may develop severe systemic clinical signs and orchitis that may ultimately cause sterility during the acute infection. Macrophages might play a relevant role in pathogenesis of the disease and the immune response raised against B. besnoiti infection. This study aimed to dissect the early interaction between B. besnoiti tachyzoites and primary bovine monocyte-derived macrophages in vitro. First, the B. besnoiti tachyzoite lytic cycle was characterized. Next, dual transcriptomic profiling of B. besnoiti tachyzoites and macrophages was conducted at early infection (4 h and 8 h p.i. by high-throughput RNA sequencing. Macrophages inoculated with heat-killed tachyzoites (MO-hkBb) and non-infected macrophages (MO) were used as controls. Besnoitia besnoiti was able to invade and proliferate in macrophages. Upon infection, macrophage activation was demonstrated by morphological and transcriptomic changes. Infected macrophages were smaller, round and lacked filopodial structures, which might be associated with a migratory phenotype demonstrated in other apicomplexan parasites. The number of differentially expressed genes (DEGs) increased substantially during infection. In B. besnoiti-infected macrophages (MO-Bb), apoptosis and mitogen-activated protein kinase (MAPK) pathways were regulated at 4 h p.i., and apoptosis was confirmed by TUNEL assay. The Herpes simplex virus 1 infection pathway was the only significantly enriched pathway in MO-Bb at 8 h p.i. Relevant DEGs of the Herpes simplex virus 1 infection (IFNα) and the apoptosis pathways (CHOP-2) were also significantly regulated in the testicular parenchyma of naturally infected bulls. Furthermore, the parasite transcriptomic analysis revealed DEGs mainly related to host cell invasion and metabolism. These results provide a deep overview of the earliest macrophage modulation by B. besnoiti that may favour parasite survival and proliferation in a specialized phagocytic immune cell. Putative parasite effectors were also identified.
Collapse
Affiliation(s)
- María Fernández-Álvarez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain
| | - Pilar Horcajo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain
| | - Alejandro Jiménez-Meléndez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain
| | - Carlos Diezma-Díaz
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain
| | - Ignacio Ferre
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain
| | - Iván Pastor-Fernández
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain
| | - Gema Álvarez-García
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| |
Collapse
|
13
|
Deng S, Graham ML, Chen XM. The Complexity of Interferon Signaling in Host Defense against Protozoan Parasite Infection. Pathogens 2023; 12:319. [PMID: 36839591 PMCID: PMC9962834 DOI: 10.3390/pathogens12020319] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Protozoan parasites, such as Plasmodium, Leishmania, Toxoplasma, Cryptosporidium, and Trypanosoma, are causative agents of health-threatening diseases in both humans and animals, leading to significant health risks and socioeconomic losses globally. The development of effective therapeutic and prevention strategies for protozoan-caused diseases requires a full understanding of the pathogenesis and protective events occurring in infected hosts. Interferons (IFNs) are a family of cytokines with diverse biological effects in host antimicrobial defense and disease pathogenesis, including protozoan parasite infection. Type II IFN (IFN-γ) has been widely recognized as the essential defense cytokine in intracellular protozoan parasite infection, whereas recent studies also revealed the production and distinct function of type I and III IFNs in host defense against these parasites. Decoding the complex network of the IFN family in host-parasite interaction is critical for exploring potential new therapeutic strategies against intracellular protozoan parasite infection. Here, we review the complex effects of IFNs on the host defense against intracellular protozoan parasites and the crosstalk between distinct types of IFN signaling during infections.
Collapse
Affiliation(s)
- Silu Deng
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Marion L. Graham
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Xian-Ming Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Effects of Ovine Monocyte-Derived Macrophage Infection by Recently Isolated Toxoplasma gondii Strains Showing Different Phenotypic Traits. Animals (Basel) 2022; 12:ani12243453. [PMID: 36552372 PMCID: PMC9774764 DOI: 10.3390/ani12243453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Ovine toxoplasmosis is one the most relevant reproductive diseases in sheep. The genetic variability among different Toxoplasma gondii isolates is known to be related to different degrees of virulence in mice and humans, but little is known regarding its potential effects in sheep. The aim of this study was to investigate the effect of genetic variability (types II (ToxoDB #1 and #3) and III (#2)) of six recently isolated strains that showed different phenotypic traits both in a normalized mouse model and in ovine trophoblasts, in ovine monocyte-derived macrophages and the subsequent transcript expression of cytokines and iNOS (inducible nitric oxide synthase). The type III isolate (TgShSp24) showed the highest rate of internalization, followed by the type II clonal isolate (TgShSp2), while the type II PRU isolates (TgShSp1, TgShSp3, TgShSp11 and TgShSp16) showed the lowest rates. The type II PRU strains, isolated from abortions, exhibited higher levels of anti-inflammatory cytokines and iNOS than those obtained from the myocardium of chronically infected sheep (type II PRU strains and type III), which had higher levels of pro-inflammatory cytokines. The present results show the existence of significant intra- and inter-genotypic differences in the parasite-macrophage relationship that need to be confirmed in in vivo experiments.
Collapse
|
15
|
Guo G, Cui J, Song L, Tang L, Fan S, Shen B, Fang R, Hu M, Zhao J, Zhou Y. Activation of NF-κB signaling by the dense granule protein GRA15 of a newly isolated type 1 Toxoplasma gondii strain. Parasit Vectors 2022; 15:347. [PMID: 36175964 PMCID: PMC9523984 DOI: 10.1186/s13071-022-05429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background It has been reported that the NF-κB pathway, an important component of host defense system against pathogens infections, can be differentially modulated by different Toxoplasma gondii strains, depending on the polymorphism of the GRA15 protein. The recently isolated Toxoplasma strain T.gHB1 is a type 1 (ToxoDB#10) strain but shows different virulence determination mechanisms compared to the classic type 1 strains like RH (ToxoDB#10). Therefore, it is worth investigating whether the T.gHB1 strain (ToxoDB#10) affects the host NF-κB signaling pathway. Methods The effects of T.gHB1 (ToxoDB#10) on host NF-κB pathway were investigated in HEK293T cells. The GRA15 gene product was analyzed by bioinformatics, and its effect on NF-κB activation was examined by Western blotting and nuclear translocation of p65. Different truncations of T.gHB1 GRA15 were constructed to map the critical domains for NF-κB activation. Results We demonstrated that the NF-κB pathway signaling pathway could be activated by the newly identified type 1 T.gHB1 strain (ToxoDB#10) of Toxoplasma, while the classic type 1 strain RH (ToxoDB#10) did not. T.gHB1 GRA15 possesses only one transmembrane region with an extended C terminal region, which is distinct from that of classic type 1 (ToxoDB#10) and type 2 (ToxoDB#1) strains. T.gHB1 GRA15 could clearly induce IκBα phosphorylation and p65 nuclear translocation. Dual luciferase assays in HEK293T cells revealed a requirement for 194–518 aa of T.gHB1 GRA15 to effectively activate NF-κB. Conclusions The overall results indicated that the newly isolated type 1 isolate T.gHB1 (ToxoDB#10) had a unique GRA15, which could activate the host NF-κB signaling through inducing IκBα phosphorylation and p65 nuclear translocation. These results provide new insights for our understanding of the interaction between Toxoplasma parasites and its hosts. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Guanghao Guo
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Jianmin Cui
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Lindong Song
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Lvqing Tang
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Sijie Fan
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Bang Shen
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Min Hu
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Junlong Zhao
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yanqin Zhou
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China. .,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
16
|
Hakimi MA. Epigenetic Reprogramming in Host-Parasite Coevolution: The Toxoplasma Paradigm. Annu Rev Microbiol 2022; 76:135-155. [PMID: 35587934 DOI: 10.1146/annurev-micro-041320-011520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Like many intracellular pathogens, the protozoan parasite Toxoplasma gondii has evolved sophisticated mechanisms to promote its transmission and persistence in a variety of hosts by injecting effector proteins that manipulate many processes in the cells it invades. Specifically, the parasite diverts host epigenetic modulators and modifiers from their native functions to rewire host gene expression to counteract the innate immune response and to limit its strength. The arms race between the parasite and its hosts has led to accelerated adaptive evolution of effector proteins and the unconventional secretion routes they use. This review provides an up-to-date overview of how T. gondii effectors, through the evolution of intrinsically disordered domains, the formation of supramolecular complexes, and the use of molecular mimicry, target host transcription factors that act as coordinating nodes, as well as chromatin-modifying enzymes, to control the fate of infected cells and ultimately the outcome of infection. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France;
| |
Collapse
|
17
|
Chen M, Yao L, Zhou L, Yang P, Zou W, Xu L, Li S, Peng H. Toxoplasma gondii
ROP18
I
inhibits host innate immunity through cGAS‐STING signaling. FASEB J 2022; 36:e22171. [DOI: 10.1096/fj.202101347r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Min Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health Southern Medical University Guangzhou P. R. China
| | - Lijie Yao
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health Southern Medical University Guangzhou P. R. China
| | - Lijuan Zhou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health Southern Medical University Guangzhou P. R. China
| | - Pei Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health Southern Medical University Guangzhou P. R. China
| | - Weihao Zou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health Southern Medical University Guangzhou P. R. China
| | - Liqing Xu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health Southern Medical University Guangzhou P. R. China
| | - Shengmin Li
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health Southern Medical University Guangzhou P. R. China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health Southern Medical University Guangzhou P. R. China
| |
Collapse
|
18
|
Han S, Zhang XL, Jiang X, Li X, Ding J, Zuo LJ, Duan SS, Chen R, Sun BB, Hu XY, Gao YN, Zhang XL. Long Non-Coding RNA and mRNA Expression Analysis in Liver of Mice With Clonorchis sinensis Infection. Front Cell Infect Microbiol 2022; 11:754224. [PMID: 35127549 PMCID: PMC8807509 DOI: 10.3389/fcimb.2021.754224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Clonorchiasis is recognized as an important zoonotic parasitic disease worldwide. However, the roles of host long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in the response to Clonorchis sinensis (C. sinensis) infection remain unknown. Here we compared the expression of lncRNAs and mRNAs in the liver tissue of mice infected with C. sinensis, in order to further understand the molecular mechanisms of clonorchiasis. A total of 388 lncRNAs and 1,172 mRNAs were found to be differentially expressed with absolute value of fold change (FC) ≥ 2.0 and p < 0.05 by microarray. Compared with controls, Gm6135 and 4930581F22Rik were the most over- and under-expressed lncRNAs; flavin-containing monooxygenase 3 (Fmo3) and deleted in malignant brain tumors 1 (Dmbt1) were the most over- and under-expressed mRNAs. Moreover, functional annotation showed that the significantly different mRNAs were related with “FOXO signaling pathway”, “Wnt signaling pathway”, and “AMPK signaling pathway”. Remarkably, lncRNA Gm8801 were significantly correlated with mRNA glycerol-3-phosphate acyltransferase mitochondrial (Gpam), insulin receptor substrate 2 (Irs2), and tumor necrosis factor receptor superfamily member 19 (Tnfrsf19) in ceRNA networks. These results showed that the expression profiles of lncRNAs and mRNAs in the liver changed after C. sinensis infection. Our results provided valuable insights into the lncRNAs and mRNAs involved in clonorchiasis pathogenesis, which may be useful for future control strategies.
Collapse
Affiliation(s)
- Su Han
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xue-Li Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xu Jiang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiang Li
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Jian Ding
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Li-Jiao Zuo
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Shan-Shan Duan
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Rui Chen
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei-Bei Sun
- Clinical Laboratory, Zhuhai Maternal and Child Health Hospital, Zhuhai, China
| | - Xin-Yi Hu
- Department of Stomatology, Laixi People’s Hospital, Qingdao, China
| | - Yan-Nan Gao
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiao-Li Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
- *Correspondence: Xiao-Li Zhang,
| |
Collapse
|
19
|
Abstract
Toxoplasma gondii is a parasitic protist infecting a wide group of warm-blooded animals, ranging from birds to humans. While this infection is usually asymptomatic in healthy individuals, it can also lead to severe ocular or neurological outcomes in immunocompromised individuals or in developing fetuses. This obligate intracellular parasite has the ability to infect a considerable range of nucleated cells and can propagate in the intermediate host. Yet, under the pressure of the immune system it transforms into an encysted persistent form residing primarily in the brain and muscle tissues. Encysted parasites, which are resistant to current medication, may reactivate and give rise to an acute infection. The clinical outcome of toxoplasmosis depends on a complex balance between the host immune response and parasite virulence factors. Susceptibility to the disease is thus determined by both parasite strains and host species. Recent advances on our understanding of host cell-parasite interactions and parasite virulence have brought new insights into the pathophysiology of T. gondii infection and are summarized here.
Collapse
|
20
|
Gachet-Castro C, Freitas-Castro F, Gonzáles-Córdova RA, da Fonseca CK, Gomes MD, Ishikawa-Ankerhold HC, Baqui MMA. Modulation of the Host Nuclear Compartment by Trypanosoma cruzi Uncovers Effects on Host Transcription and Splicing Machinery. Front Cell Infect Microbiol 2021; 11:718028. [PMID: 34737973 PMCID: PMC8560699 DOI: 10.3389/fcimb.2021.718028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022] Open
Abstract
Host manipulation is a common strategy for invading pathogens. Trypanosoma cruzi, the causative agent of Chagas Disease, lives intracellularly within host cells. During infection, parasite-associated modifications occur to the host cell metabolism and morphology. However, little is known about the effect of T. cruzi infection on the host cell nucleus and nuclear functionality. Here, we show that T. cruzi can modulate host transcription and splicing machinery in non-professional phagocytic cells during infection. We found that T. cruzi regulates host RNA polymerase II (RNAPII) in a time-dependent manner, resulting in a drastic decrease in RNAPII activity. Furthermore, host cell ribonucleoproteins associated with mRNA transcription (hnRNPA1 and AB2) are downregulated concurrently. We reasoned that T. cruzi may hijack the host U2AF35 auxiliary factor, a key regulator for RNA processing, as a strategy to affect the splicing machinery activities directly. In support of our hypothesis, we carried out in vivo splicing assays using an adenovirus E1A pre-mRNA splicing reporter, showing that intracellular T. cruzi directly modulates the host cells by appropriating U2AF35. For the first time, our results provide evidence of a complex and intimate molecular relationship between T. cruzi and the host cell nucleus during infection.
Collapse
Affiliation(s)
- Camila Gachet-Castro
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe Freitas-Castro
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Raul Alexander Gonzáles-Córdova
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carol Kobori da Fonseca
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Damário Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Munira Muhammad Abdel Baqui
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Frickel EM, Hunter CA. Lessons from Toxoplasma: Host responses that mediate parasite control and the microbial effectors that subvert them. J Exp Med 2021; 218:212714. [PMID: 34670268 PMCID: PMC8532566 DOI: 10.1084/jem.20201314] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/29/2021] [Indexed: 11/15/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii has long provided a tractable experimental system to investigate how the immune system deals with intracellular infections. This review highlights the advances in defining how this organism was first detected and the studies with T. gondii that contribute to our understanding of how the cytokine IFN-γ promotes control of vacuolar pathogens. In addition, the genetic tractability of this eukaryote organism has provided the foundation for studies into the diverse strategies that pathogens use to evade antimicrobial responses and now provides the opportunity to study the basis for latency. Thus, T. gondii remains a clinically relevant organism whose evolving interactions with the host immune system continue to teach lessons broadly relevant to host–pathogen interactions.
Collapse
Affiliation(s)
- Eva-Maria Frickel
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Tomita T, Guevara RB, Shah LM, Afrifa AY, Weiss LM. Secreted Effectors Modulating Immune Responses to Toxoplasma gondii. Life (Basel) 2021; 11:988. [PMID: 34575137 PMCID: PMC8467511 DOI: 10.3390/life11090988] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that chronically infects a third of humans. It can cause life-threatening encephalitis in immune-compromised individuals. Congenital infection also results in blindness and intellectual disabilities. In the intracellular milieu, parasites encounter various immunological effectors that have been shaped to limit parasite infection. Parasites not only have to suppress these anti-parasitic inflammatory responses but also ensure the host organism's survival until their subsequent transmission. Recent advancements in T. gondii research have revealed a plethora of parasite-secreted proteins that suppress as well as activate immune responses. This mini-review will comprehensively examine each secreted immunomodulatory effector based on the location of their actions. The first section is focused on secreted effectors that localize to the parasitophorous vacuole membrane, the interface between the parasites and the host cytoplasm. Murine hosts are equipped with potent IFNγ-induced immune-related GTPases, and various parasite effectors subvert these to prevent parasite elimination. The second section examines several cytoplasmic and ER effectors, including a recently described function for matrix antigen 1 (MAG1) as a secreted effector. The third section covers the repertoire of nuclear effectors that hijack transcription factors and epigenetic repressors that alter gene expression. The last section focuses on the translocation of dense-granule effectors and effectors in the setting of T. gondii tissue cysts (the bradyzoite parasitophorous vacuole).
Collapse
Affiliation(s)
- Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (T.T.); (R.B.G.)
| | - Rebekah B. Guevara
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (T.T.); (R.B.G.)
| | - Lamisha M. Shah
- Department of Biological Science, Lehman College of the City University of New York, Bronx, NY 10468, USA; (L.M.S.); (A.Y.A.)
| | - Andrews Y. Afrifa
- Department of Biological Science, Lehman College of the City University of New York, Bronx, NY 10468, USA; (L.M.S.); (A.Y.A.)
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (T.T.); (R.B.G.)
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
23
|
Muglia Amancio A, Mittereder L, Carletti A, Tosh KW, Green D, Antonelli LR, Gazzinelli RT, Sher A, Jankovic D. IFNs Reset the Differential Capacity of Human Monocyte Subsets to Produce IL-12 in Response to Microbial Stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1642-1652. [PMID: 33627376 PMCID: PMC8034562 DOI: 10.4049/jimmunol.2001194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022]
Abstract
Human primary monocytes are composed of a minor, more mature CD16+(CD14low/neg) population and a major CD16neg(CD14+) subset. The specific functions of CD16+ versus CD16neg monocytes in steady state or inflammation remain poorly understood. In previous work, we found that IL-12 is selectively produced by the CD16+ subset in response to the protozoan pathogen, Toxoplasma gondii In this study, we demonstrated that this differential responsiveness correlates with the presence of an IFN-induced transcriptional signature in CD16+ monocytes already at baseline. Consistent with this observation, we found that in vitro IFN-γ priming overcomes the defect in the IL-12 response of the CD16neg subset. In contrast, pretreatment with IFN-γ had only a minor effect on IL-12p40 secretion by the CD16+ population. Moreover, inhibition of the mTOR pathway also selectively increased the IL-12 response in CD16neg but not in CD16+ monocytes. We further demonstrate that in contrast to IFN-γ, IFN-α fails to promote IL-12 production by the CD16neg subset and blocks the effect of IFN-γ priming. Based on these observations, we propose that the acquisition of IL-12 responsiveness by peripheral blood monocyte subsets depends on extrinsic signals experienced during their developmental progression in vivo. This process can be overridden during inflammation by the opposing regulatory effects of type I and II IFN as well as the mTOR inhibition.
Collapse
Affiliation(s)
- Alice Muglia Amancio
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Lara Mittereder
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexie Carletti
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kevin W Tosh
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Daniel Green
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lis R Antonelli
- Instituto de Pesquisas Rene Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Ricardo T Gazzinelli
- Instituto de Pesquisas Rene Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais 30190-002, Brazil
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
- Plataforma de Medicina Translacional, FIOCRUZ, Ribeirão Preto, São Paulo 14040-030, Brazil
| | - Alan Sher
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Dragana Jankovic
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
24
|
Arranz-Solís D, Mukhopadhyay D, Saeij JJP. Toxoplasma Effectors that Affect Pregnancy Outcome. Trends Parasitol 2021; 37:283-295. [PMID: 33234405 PMCID: PMC7954850 DOI: 10.1016/j.pt.2020.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
As an immune-privileged organ, the placenta can tolerate the introduction of antigens without inducing a strong inflammatory response that would lead to abortion. However, for the control of intracellular pathogens, a strong Th1 response characterized by the production of interferon-γ is needed. Thus, invasion of the placenta by intracellular parasites puts the maternal immune system in a quandary: The proinflammatory response needed to eliminate the pathogen can also lead to abortion. Toxoplasma is a highly successful parasite that causes lifelong chronic infections and is a major cause of abortions in humans and livestock. Here, we discuss how Toxoplasma strain type and parasite effectors influence host cell signaling pathways, and we speculate about how this might affect the outcome of gestation.
Collapse
Affiliation(s)
- David Arranz-Solís
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Jeroen J P Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
25
|
Menard KL, Bu L, Denkers EY. Transcriptomics analysis of Toxoplasma gondii-infected mouse macrophages reveals coding and noncoding signatures in the presence and absence of MyD88. BMC Genomics 2021; 22:130. [PMID: 33622246 PMCID: PMC7903719 DOI: 10.1186/s12864-021-07437-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is a globally distributed protozoan parasite that establishes life-long asymptomatic infection in humans, often emerging as a life-threatening opportunistic pathogen during immunodeficiency. As an intracellular microbe, Toxoplasma establishes an intimate relationship with its host cell from the outset of infection. Macrophages are targets of infection and they are important in early innate immunity and possibly parasite dissemination throughout the host. Here, we employ an RNA-sequencing approach to identify host and parasite transcriptional responses during infection of mouse bone marrow-derived macrophages (BMDM). We incorporated into our analysis infection with the high virulence Type I RH strain and the low virulence Type II strain PTG. Because the well-known TLR-MyD88 signaling axis is likely of less importance in humans, we examined transcriptional responses in both MyD88+/+ and MyD88-/- BMDM. Long noncoding (lnc) RNA molecules are emerging as key regulators in infection and immunity, and were, therefore, included in our analysis. RESULTS We found significantly more host genes were differentially expressed in response to the highly virulent RH strain rather than with the less virulent PTG strain (335 versus 74 protein coding genes for RH and PTG, respectively). Enriched in these protein coding genes were subsets associated with the immune response as well as cell adhesion and migration. We identified 249 and 83 non-coding RNAs as differentially expressed during infection with RH and PTG strains, respectively. Although the majority of these are of unknown function, one conserved lncRNA termed mir17hg encodes the mir17 microRNA gene cluster that has been implicated in down-regulating host cell apoptosis during T. gondii infection. Only a minimal number of transcripts were differentially expressed between MyD88 knockout and wild type cells. However, several immune genes were among the differences. While transcripts for parasite secretory proteins were amongst the most highly expressed T. gondii genes during infection, no differentially expressed parasite genes were identified when comparing infection in MyD88 knockout and wild type host BMDM. CONCLUSIONS The large dataset presented here lays the groundwork for continued studies on both the MyD88-independent immune response and the function of lncRNAs during Toxoplasma gondii infection.
Collapse
Affiliation(s)
- Kayla L Menard
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Eric Y Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
26
|
Greigert V, Bittich-Fahmi F, Pfaff AW. Pathophysiology of ocular toxoplasmosis: Facts and open questions. PLoS Negl Trop Dis 2020; 14:e0008905. [PMID: 33382688 PMCID: PMC7774838 DOI: 10.1371/journal.pntd.0008905] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infections with the protozoan parasite Toxoplasma gondii are frequent, but one of its main consequences, ocular toxoplasmosis (OT), remains poorly understood. While its clinical description has recently attracted more attention and publications, the underlying pathophysiological mechanisms are only sparsely elucidated, which is partly due to the inherent difficulties to establish relevant animal models. Furthermore, the particularities of the ocular environment explain why the abundant knowledge on systemic toxoplasmosis cannot be just transferred to the ocular situation. However, studies undertaken in mouse models have revealed a central role of interferon gamma (IFNγ) and, more surprisingly, interleukin 17 (IL17), in ocular pathology and parasite control. These studies also show the importance of the genetic background of the infective Toxoplasma strain. Indeed, infections due to exotic strains show a completely different pathophysiology, which translates in a different clinical outcome. These elements should lead to more individualized therapy. Furthermore, the recent advance in understanding the immune response during OT paved the way to new research leads, involving immune pathways poorly studied in this particular setting, such as type I and type III interferons. In any case, deeper knowledge of the mechanisms of this pathology is needed to establish new, more targeted treatment schemes.
Collapse
Affiliation(s)
- Valentin Greigert
- Institut de Parasitologie et Pathologie Tropicale, UR 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Faiza Bittich-Fahmi
- Institut de Parasitologie et Pathologie Tropicale, UR 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Alexander W. Pfaff
- Institut de Parasitologie et Pathologie Tropicale, UR 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
- Service de Parasitologie et Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
27
|
Wang Y, Sangaré LO, Paredes-Santos TC, Hassan MA, Krishnamurthy S, Furuta AM, Markus BM, Lourido S, Saeij JPJ. Genome-wide screens identify Toxoplasma gondii determinants of parasite fitness in IFNγ-activated murine macrophages. Nat Commun 2020; 11:5258. [PMID: 33067458 PMCID: PMC7567896 DOI: 10.1038/s41467-020-18991-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages play an essential role in the early immune response against Toxoplasma and are the cell type preferentially infected by the parasite in vivo. Interferon gamma (IFNγ) elicits a variety of anti-Toxoplasma activities in macrophages. Using a genome-wide CRISPR screen we identify 353 Toxoplasma genes that determine parasite fitness in naїve or IFNγ-activated murine macrophages, seven of which are further confirmed. We show that one of these genes encodes dense granule protein GRA45, which has a chaperone-like domain, is critical for correct localization of GRAs into the PVM and secretion of GRA effectors into the host cytoplasm. Parasites lacking GRA45 are more susceptible to IFNγ-mediated growth inhibition and have reduced virulence in mice. Together, we identify and characterize an important chaperone-like GRA in Toxoplasma and provide a resource for the community to further explore the function of Toxoplasma genes that determine fitness in IFNγ-activated macrophages.
Collapse
Affiliation(s)
- Yifan Wang
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Lamba Omar Sangaré
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Tatiana C. Paredes-Santos
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Musa A. Hassan
- grid.4305.20000 0004 1936 7988College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK ,grid.4305.20000 0004 1936 7988The Roslin Institute, The University of Edinburgh, Edinburgh, UK ,grid.4305.20000 0004 1936 7988Center for Tropical Livestock Health and Genetics, The University of Edinburgh, Edinburgh, UK
| | - Shruthi Krishnamurthy
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Anna M. Furuta
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Benedikt M. Markus
- grid.270301.70000 0001 2292 6283Whitehead Institute for Biomedical Research, Cambridge, MA USA ,grid.5963.9Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sebastian Lourido
- grid.270301.70000 0001 2292 6283Whitehead Institute for Biomedical Research, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Biology, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Jeroen P. J. Saeij
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| |
Collapse
|
28
|
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Influence of the Host and Parasite Strain on the Immune Response During Toxoplasma Infection. Front Cell Infect Microbiol 2020; 10:580425. [PMID: 33178630 PMCID: PMC7593385 DOI: 10.3389/fcimb.2020.580425] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is an exceptionally successful parasite that infects a very broad host range, including humans, across the globe. The outcome of infection differs remarkably between hosts, ranging from acute death to sterile infection. These differential disease patterns are strongly influenced by both host- and parasite-specific genetic factors. In this review, we discuss how the clinical outcome of toxoplasmosis varies between hosts and the role of different immune genes and parasite virulence factors, with a special emphasis on Toxoplasma-induced ileitis and encephalitis.
Collapse
Affiliation(s)
| | | | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
29
|
Gossner A, Hassan MA. Transcriptional Analyses Identify Genes That Modulate Bovine Macrophage Response to Toxoplasma Infection and Immune Stimulation. Front Cell Infect Microbiol 2020; 10:437. [PMID: 33014886 PMCID: PMC7508302 DOI: 10.3389/fcimb.2020.00437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/16/2020] [Indexed: 11/26/2022] Open
Abstract
The obligate intracellular parasite, Toxoplasma gondii, is highly prevalent among livestock species. Although cattle are generally resistant to Toxoplasma strains circulating in Europe and North America, the underlying mechanisms are largely unknown. Here, we report that bovine bone marrow-derived macrophage (BMDM) pre-stimulated with interferon gamma (IFNγ) restricts intracellular Toxoplasma growth independently of nitric oxide. While Toxoplasma promoted the expression of genes associated with alternative macrophage activation and lipid metabolism, IFNγ abrogated parasite-induced transcriptional responses and promoted the expression of genes linked to the classical macrophage activation phenotype. Additionally, several chemokines, including CCL22, that are linked to parasite-induced activation of the Wnt/β-catenin signaling were highly expressed in Toxoplasma-exposed naïve BMDMs. A chemical Wnt/β-catenin signaling pathway antagonist (IWR-1-endo) significantly reduced intracellular parasite burden in naïve BMDMs, suggesting that Toxoplasma activates this pathway to evade bovine macrophage anti-parasitic responses. Congruently, intracellular burden of a mutant Toxoplasma strain (RHΔASP5) that does not secrete dense granule proteins into the host cell, which is an essential requirement for parasite-induced activation of the Wnt/β-catenin pathway, was significantly reduced in naïve BMDMs. However, both the Wnt/β-catenin antagonist and RHASPΔ5 did not abolish parasite burden differences in naïve and IFNγ-stimulated BMDMs. Finally, we observed that parasites infecting IFNγ-stimulated BMDMs largely express genes associated with the slow dividing bradyzoite stage. Overall, this study provides novel insights into bovine macrophage transcriptional response to Toxoplasma. It establishes a foundation for a mechanistic analysis IFNγ-induced bovine anti-Toxoplasma responses and the counteracting Toxoplasma survival strategies.
Collapse
Affiliation(s)
- Anton Gossner
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Musa A Hassan
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Tropical Livestock Genetics and Health, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Song Y, Song L, Wan X, Shen B, Fang R, Hu M, Zhao J, Zhou Y. A Comparison of Transcriptional Diversity of Swine Macrophages Infected With TgHB1 Strain of Toxoplasma gondii Isolated in China. Front Cell Infect Microbiol 2020; 10:526876. [PMID: 33102248 PMCID: PMC7546811 DOI: 10.3389/fcimb.2020.526876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite infecting human and animals, causing huge public health concerns and economic losses. Swine alveolar macrophage plays an important role in controlling T. gondii infection. However, the mechanism by which macrophages infected with T. gondii function in the immunity to the infection is unclear, especially for local isolates such as TgHB1 isolated in China. RNA-seq as a valuable tool was applied to simultaneously analyze transcriptional changes of pig alveolar macrophages infected with TgRH (typeI), TgME49 (typeII) or TgHB1 at different time points post infection (6, 12, and 24 h). Paired-end clean reads were aligned to the Sscrofa10.2 pig genome and T. gondii ME49 genome. The differentially expressed genes of macrophages and T. gondii were enriched through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, respectively. Compared to the TgRH and TgME49 infection groups, 307 down-regulated macrophage genes (mainly enriched for development and metabolism) and 419 up-regulated genes (mainly enriched for immune pathways) were uniquely expressed in the TgHB1 infection group. Additionally, 557 down-regulated and 674 up-regulated T. gondii genes (mainly enriched in metabolism and biosynthesis) were uniquely expressed in the TgHB1 infection group. For validation purposes, some of the differentially expressed genes of macrophages involved in immune-related signaling pathways were used for further analysis via real time quantitative reverse-transcription polymerase-chain reaction (qRT-PCR). This work provides important insights into the temporal immune responses of swine alveolar macrophages to infection by the strain TgHB1 isolated from China, and is helpful for better understanding of the T. gondii genotype-associated activation of macrophages during early phase of the infection.
Collapse
Affiliation(s)
- Yongle Song
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Lindong Song
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoting Wan
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Bang Shen
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Min Hu
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yanqin Zhou
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
31
|
Kongsomboonvech AK, Rodriguez F, Diep AL, Justice BM, Castallanos BE, Camejo A, Mukhopadhyay D, Taylor GA, Yamamoto M, Saeij JPJ, Reese ML, Jensen KDC. Naïve CD8 T cell IFNγ responses to a vacuolar antigen are regulated by an inflammasome-independent NLRP3 pathway and Toxoplasma gondii ROP5. PLoS Pathog 2020; 16:e1008327. [PMID: 32853276 PMCID: PMC7480859 DOI: 10.1371/journal.ppat.1008327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/09/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
Host resistance to Toxoplasma gondii relies on CD8 T cell IFNγ responses, which if modulated by the host or parasite could influence chronic infection and parasite transmission between hosts. Since host-parasite interactions that govern this response are not fully elucidated, we investigated requirements for eliciting naïve CD8 T cell IFNγ responses to a vacuolar resident antigen of T. gondii, TGD057. Naïve TGD057 antigen-specific CD8 T cells (T57) were isolated from transnuclear mice and responded to parasite-infected bone marrow-derived macrophages (BMDMs) in an antigen-dependent manner, first by producing IL-2 and then IFNγ. T57 IFNγ responses to TGD057 were independent of the parasite’s protein export machinery ASP5 and MYR1. Instead, host immunity pathways downstream of the regulatory Immunity-Related GTPases (IRG), including partial dependence on Guanylate-Binding Proteins, are required. Multiple T. gondii ROP5 isoforms and allele types, including ‘avirulent’ ROP5A from clade A and D parasite strains, were able to suppress CD8 T cell IFNγ responses to parasite-infected BMDMs. Phenotypic variance between clades B, C, D, F, and A strains suggest T57 IFNγ differentiation occurs independently of parasite virulence or any known IRG-ROP5 interaction. Consistent with this, removal of ROP5 is not enough to elicit maximal CD8 T cell IFNγ production to parasite-infected cells. Instead, macrophage expression of the pathogen sensors, NLRP3 and to a large extent NLRP1, were absolute requirements. Other members of the conventional inflammasome cascade are only partially required, as revealed by decreased but not abrogated T57 IFNγ responses to parasite-infected ASC, caspase-1/11, and gasdermin D deficient cells. Moreover, IFNγ production was only partially reduced in the absence of IL-12, IL-18 or IL-1R signaling. In summary, T. gondii effectors and host machinery that modulate parasitophorous vacuolar membranes, as well as NLR-dependent but inflammasome-independent pathways, determine the full commitment of CD8 T cells IFNγ responses to a vacuolar antigen. Parasites are excellent “students” of our immune system as they can deflect, antagonize and confuse the immune response making it difficult to vaccinate against these pathogens. In this report, we analyzed how a widespread parasite of mammals, Toxoplasma gondii, manipulates an immune cell needed for immunity to many intracellular pathogens, the CD8 T cell. Host pathways that govern CD8 T cell production of the immune protective cytokine, IFNγ, were also explored. We hypothesized the secreted T. gondii virulence factor, ROP5, work to inhibit the MHC 1 antigen presentation pathway therefore making it difficult for CD8 T cells to see T. gondii antigens sequestered inside a parasitophorous vacuole. However, manipulation through T. gondii ROP5 does not fully explain how CD8 T cells commit to making IFNγ in response to infection. Importantly, CD8 T cell IFNγ responses to T. gondii require the pathogen sensor NLRP3 to be expressed in the infected cell. Other proteins associated with NLRP3 activation, including members of the conventional inflammasome activation cascade pathway, are only partially involved. Our results identify a novel pathway by which NLRP3 regulates T cell function and underscore the need for NLRP3-activating adjuvants in vaccines aimed at inducing CD8 T cell IFNγ responses to parasites.
Collapse
Affiliation(s)
- Angel K. Kongsomboonvech
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Felipe Rodriguez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Anh L. Diep
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Brandon M. Justice
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Brayan E. Castallanos
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Ana Camejo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Gregory A. Taylor
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, United States of America
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, United States of America
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jeroen P. J. Saeij
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Michael L. Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California, Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Wong ZS, Sokol-Borrelli SL, Olias P, Dubey JP, Boyle JP. Head-to-head comparisons of Toxoplasma gondii and its near relative Hammondia hammondi reveal dramatic differences in the host response and effectors with species-specific functions. PLoS Pathog 2020; 16:e1008528. [PMID: 32574210 PMCID: PMC7360062 DOI: 10.1371/journal.ppat.1008528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/14/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii and Hammondia hammondi are closely-related coccidian intracellular parasites that differ in their ability to cause disease in animal and (likely) humans. The role of the host response in these phenotypic differences is not known and to address this we performed a transcriptomic analysis of a monocyte cell line (THP-1) infected with these two parasite species. The pathways altered by infection were shared between species ~95% the time, but the magnitude of the host response to H. hammondi was significantly higher compared to T. gondii. Accompanying this divergent host response was an equally divergent impact on the cell cycle of the host cell. In contrast to T. gondii, H. hammondi infection induces cell cycle arrest via pathways linked to DNA-damage responses and cellular senescence and robust secretion of multiple chemokines that are known to be a part of the senescence associated secretory phenotype (SASP). Remarkably, prior T. gondii infection or treatment with T. gondii-conditioned media suppressed responses to H. hammondi infection, and promoted the replication of H. hammondi in recipient cells. Suppression of inflammatory responses to H. hammondi was found to be mediated by the T. gondii effector IST, and this finding was consistent with reduced functionality of the H. hammondi IST ortholog compared to its T. gondii counterpart. Taken together our data suggest that T. gondii manipulation of the host cell is capable of suppressing previously unknown stress and/or DNA-damage induced responses that occur during infection with H. hammondi, and that one important impact of this T. gondii mediated suppression is to promote parasite replication.
Collapse
Affiliation(s)
- Zhee Sheen Wong
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah L. Sokol-Borrelli
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - J. P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland, United States of America
| | - Jon P. Boyle
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
33
|
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Toxoplasma GRA15 and GRA24 are important activators of the host innate immune response in the absence of TLR11. PLoS Pathog 2020; 16:e1008586. [PMID: 32453782 PMCID: PMC7274473 DOI: 10.1371/journal.ppat.1008586] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/05/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The murine innate immune response against Toxoplasma gondii is predominated by the interaction of TLR11/12 with Toxoplasma profilin. However, mice lacking Tlr11 or humans, who do not have functional TLR11 or TLR12, still elicit a strong innate immune response upon Toxoplasma infection. The parasite factors that determine this immune response are largely unknown. Herein, we investigated two dense granule proteins (GRAs) secreted by Toxoplasma, GRA15 and GRA24, for their role in stimulating the innate immune response in Tlr11-/- mice and in human cells, which naturally lack TLR11/TLR12. Our results show that GRA15 and GRA24 synergistically shape the early immune response and parasite virulence in Tlr11-/- mice, with GRA15 as the predominant effector. Nevertheless, acute virulence in Tlr11-/- mice is still dominated by allelic combinations of ROP18 and ROP5, which are effectors that determine evasion of the immunity-related GTPases. In human macrophages, GRA15 and GRA24 play a major role in the induction of IL12, IL18 and IL1β secretion. We further show that GRA15/GRA24-mediated IL12, IL18 and IL1β secretion activates IFNγ secretion by peripheral blood mononuclear cells (PBMCs), which controls Toxoplasma proliferation. Taken together, our study demonstrates the important role of GRA15 and GRA24 in activating the innate immune response in hosts lacking TLR11.
Collapse
Affiliation(s)
- Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - David Arranz-Solís
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
In Vivo CRISPR Screen Identifies TgWIP as a Toxoplasma Modulator of Dendritic Cell Migration. Cell Host Microbe 2020; 26:478-492.e8. [PMID: 31600500 DOI: 10.1016/j.chom.2019.09.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 09/12/2019] [Indexed: 11/23/2022]
Abstract
Toxoplasma can reach distant organs, especially the brain, leading to a lifelong chronic phase. However, genes involved in related in vivo processes are currently unknown. Here, we use focused CRISPR libraries to identify Toxoplasma genes that affect in vivo fitness. We focus on TgWIP, whose deletion affects Toxoplasma dissemination to distant organs. We show that TgWIP is secreted into the host cell upon invasion and interacts with the host WAVE regulatory complex and SHP2 phosphatase, both of which regulate actin dynamics. TgWIP affects the morphology of dendritic cells and mediates the dissolution of podosomes, which dendritic cells use to adhere to extracellular matrix. TgWIP enhances the motility and transmigration of parasitized dendritic cells, likely explaining its effect on in vivo fitness. Our results provide a framework for systemic identification of Toxoplasma genes with in vivo effects at the site of infection or on dissemination to distant organs, including the brain.
Collapse
|
35
|
Waldman BS, Schwarz D, Wadsworth MH, Saeij JP, Shalek AK, Lourido S. Identification of a Master Regulator of Differentiation in Toxoplasma. Cell 2020; 180:359-372.e16. [PMID: 31955846 PMCID: PMC6978799 DOI: 10.1016/j.cell.2019.12.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 01/06/2023]
Abstract
Toxoplasma gondii chronically infects a quarter of the world's population, and its recrudescence can cause life-threatening disease in immunocompromised individuals and recurrent ocular lesions in the immunocompetent. Acute-stage tachyzoites differentiate into chronic-stage bradyzoites, which form intracellular cysts resistant to immune clearance and existing therapies. The molecular basis of this differentiation is unknown, despite being efficiently triggered by stresses in culture. Through Cas9-mediated screening and single-cell profiling, we identify a Myb-like transcription factor (BFD1) necessary for differentiation in cell culture and in mice. BFD1 accumulates during stress and its synthetic expression is sufficient to drive differentiation. Consistent with its function as a transcription factor, BFD1 binds the promoters of many stage-specific genes and represents a counterpoint to the ApiAP2 factors that dominate our current view of parasite gene regulation. BFD1 provides a genetic switch to study and control Toxoplasma differentiation and will inform prevention and treatment of chronic infections.
Collapse
Affiliation(s)
- Benjamin S Waldman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Dominic Schwarz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Marc H Wadsworth
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02319, USA
| | - Jeroen P Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Alex K Shalek
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02319, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
36
|
Arranz-Solís D, Cordeiro C, Young LH, Dardé ML, Commodaro AG, Grigg ME, Saeij JPJ. Serotyping of Toxoplasma gondii Infection Using Peptide Membrane Arrays. Front Cell Infect Microbiol 2019; 9:408. [PMID: 31850240 PMCID: PMC6895565 DOI: 10.3389/fcimb.2019.00408] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii can cause chronic infections in most warm-blooded animals, including humans. In the USA, strains belonging to four different Toxoplasma clonal lineages (types 1, 2, 3, and 12) are commonly isolated, whereas strains not belonging to these lineages are predominant in other continents such as South America. Strain type plays a pivotal role in determining the severity of Toxoplasma infection. Therefore, it is epidemiologically relevant to develop a non-invasive and inexpensive method for determining the strain type in Toxoplasma infections and to correlate the genotype with disease outcome. Serological typing is based on the fact that many host antibodies are raised against immunodominant parasite proteins that are highly polymorphic between strains. However, current serological assays can only reliably distinguish type 2 from non-type 2 infections. To improve these assays, mouse, rabbit, and human infection serum were reacted against 950 peptides from 62 different polymorphic Toxoplasma proteins by using cellulose membrane peptide arrays. This allowed us to identify the most antigenic peptides and to pinpoint the most relevant polymorphisms that determine strain specificity. Our results confirm the utility of previously described peptides and identify novel peptides that improve and increase the specificity of the assay. In addition, a large number of novel proteins showed potential to be used for Toxoplasma diagnosis. Among these, peptides derived from several rhoptry, dense granule, and surface proteins represented promising candidates that may be used in future experiments to improve Toxoplasma serotyping. Moreover, a redesigned version of the published GRA7 typing peptide performed better and specifically distinguished type 3 from non-type 3 infections in sera from mice, rabbits, and humans.
Collapse
Affiliation(s)
- David Arranz-Solís
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Cynthia Cordeiro
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States.,Biology Department, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Lucy H Young
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Marie Laure Dardé
- Faculty of Medicine, Parasitologie-Mycologie, UMR INSERM 1094, National Reference Center and Biological Resource Center for Toxoplasmosis, CHU Dupuytren 2, Limoges, France
| | - Alessandra G Commodaro
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
37
|
García-Sánchez M, Jiménez-Pelayo L, Horcajo P, Regidor-Cerrillo J, Collantes-Fernández E, Ortega-Mora LM. Gene Expression Profiling of Neospora caninum in Bovine Macrophages Reveals Differences Between Isolates Associated With Key Parasite Functions. Front Cell Infect Microbiol 2019; 9:354. [PMID: 31681630 PMCID: PMC6803445 DOI: 10.3389/fcimb.2019.00354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Intraspecific differences in biological traits between Neospora caninum isolates have been widely described and associated with variations in virulence. However, the molecular basis underlying these differences has been poorly studied. We demonstrated previously that Nc-Spain7 and Nc-Spain1H, high- and low-virulence isolates, respectively, show different invasion, proliferation and survival capabilities in bovine macrophages (boMØs), a key cell in the immune response against Neospora, and modulate the cell immune response in different ways. Here, we demonstrate that these differences are related to specific tachyzoite gene expression profiles. Specifically, the low-virulence Nc-Spain1H isolate showed enhanced expression of genes encoding for surface antigens and genes related to the bradyzoite stage. Among the primary up-regulated genes in Nc-Spain7, genes involved in parasite growth and redox homeostasis are particularly noteworthy because of their correlation with the enhanced proliferation and survival rates of Nc-Spain7 in boMØs relative to Nc-Spain1H. Genes potentially implicated in induction of proinflammatory immune responses were found to be up-regulated in the low-virulence isolate, whereas the high-virulence isolate showed enhanced expression of genes that may be involved in immune evasion. These results represent a further step in understanding the parasite effector molecules that may be associated to virulence and thus to disease traits as abortion and transmission.
Collapse
Affiliation(s)
- Marta García-Sánchez
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Laura Jiménez-Pelayo
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Pilar Horcajo
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Javier Regidor-Cerrillo
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain.,Saluvet-Innova, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Esther Collantes-Fernández
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
38
|
Wang P, Li S, Zhao Y, Zhang B, Li Y, Liu S, Du H, Cao L, Ou M, Ye X, Li P, Gao X, Wang P, Jing C, Shao F, Yang G, You F. The GRA15 protein from Toxoplasma gondii enhances host defense responses by activating the interferon stimulator STING. J Biol Chem 2019; 294:16494-16508. [PMID: 31416833 DOI: 10.1074/jbc.ra119.009172] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/02/2019] [Indexed: 01/25/2023] Open
Abstract
Toxoplasma gondii is an important neurotropic pathogen that establishes latent infections in humans that can cause toxoplasmosis in immunocompromised individuals. It replicates inside host cells and has developed several strategies to manipulate host immune responses. However, the cytoplasmic pathogen-sensing pathway that detects T. gondii is not well-characterized. Here, we found that cyclic GMP-AMP synthase (cGAS), a sensor of foreign dsDNA, is required for activation of anti-T. gondii immune signaling in a mouse model. We also found that mice deficient in STING (Sting gt/gt mice) are much more susceptible to T. gondii infection than WT mice. Of note, the induction of inflammatory cytokines, type I IFNs, and interferon-stimulated genes in the spleen from Sting gt/gt mice was significantly impaired. Sting gt/gt mice exhibited more severe symptoms than cGAS-deficient mice after T. gondii infection. Interestingly, we found that the dense granule protein GRA15 from T. gondii is secreted into the host cell cytoplasm and then localizes to the endoplasmic reticulum, mediated by the second transmembrane motif in GRA15, which is essential for activating STING and innate immune responses. Mechanistically, GRA15 promoted STING polyubiquitination at Lys-337 and STING oligomerization in a TRAF protein-dependent manner. Accordingly, GRA15-deficient T. gondii failed to elicit robust innate immune responses compared with WT T. gondii. Consequently, GRA15-/- T. gondii was more virulent and caused higher mortality of WT mice but not Sting gt/gt mice upon infection. Together, T. gondii infection triggers cGAS/STING signaling, which is enhanced by GRA15 in a STING- and TRAF-dependent manner.
Collapse
Affiliation(s)
- Peiyan Wang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Siji Li
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Yingchi Zhao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Baohuan Zhang
- Departments of Parasitology and Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Yunfei Li
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Shengde Liu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Hongqiang Du
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Lili Cao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Meiling Ou
- Departments of Parasitology and Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Xiaohong Ye
- Departments of Parasitology and Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Peng Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, School of Life Science, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| | - Penghua Wang
- Department of Immunology, University of Connecticut School of Medicine, Farmington, Connecticut 06030
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Guang Yang
- Departments of Parasitology and Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
39
|
Toxoplasma gondii effector TgIST blocks type I interferon signaling to promote infection. Proc Natl Acad Sci U S A 2019; 116:17480-17491. [PMID: 31413201 DOI: 10.1073/pnas.1904637116] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In contrast to the importance of type II interferon-γ (IFN-γ) in control of toxoplasmosis, the role of type I IFN is less clear. We demonstrate here that TgIST, a secreted effector previously implicated in blocking type II IFN-γ signaling, also blocked IFN-β responses by inhibiting STAT1/STAT2-mediated transcription in infected cells. Consistent with a role for type I IFN in cell intrinsic control, ∆Tgist mutants were more susceptible to growth inhibition by murine and human macrophages activated with IFN-β. Additionally, type I IFN was important for production of IFN-γ by natural killer (NK) cells and recruitment of inflammatory monocytes at the site of infection. Mice lacking type I IFN receptors (Ifnar1-/-) showed increased mortality following infection with wild-type parasites and decreased virulence of ∆Tgist parasites was restored in Ifnar1-/- mice. The findings highlight the importance of type I IFN in control of toxoplasmosis and illuminate a parasite mechanism to counteract the effects of both type I and II IFN-mediated host defenses.
Collapse
|
40
|
Toxoplasma GRA15 Activates the NF-κB Pathway through Interactions with TNF Receptor-Associated Factors. mBio 2019; 10:mBio.00808-19. [PMID: 31311877 PMCID: PMC6635525 DOI: 10.1128/mbio.00808-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The parasite Toxoplasma can cause birth defects and severe disease in immunosuppressed patients. Strain differences in pathogenicity exist, and these differences are due to polymorphic effector proteins that Toxoplasma secretes into the host cell to coopt host cell functions. The effector protein GRA15 of some Toxoplasma strains activates the nuclear factor kappa B (NF-κB) pathway, which plays an important role in cell death, innate immunity, and inflammation. We show that GRA15 interacts with TNF receptor-associated factors (TRAFs), which are adaptor proteins functioning upstream of the NF-κB transcription factor. Deletion of TRAF-binding sites in GRA15 greatly reduces its ability to activate the NF-κB pathway, and TRAF2 knockout cells have impaired GRA15-mediated NF-κB activation. Thus, we determined the mechanism for GRA15-dependent NF-κB activation. The protozoan parasite Toxoplasma gondii secretes proteins from specialized organelles, the rhoptries, and dense granules, which are involved in the modulation of host cell processes. Dense granule protein GRA15 activates the nuclear factor kappa B (NF-κB) pathway, which plays an important role in cell death, innate immunity, and inflammation. Exactly how GRA15 activates the NF-κB pathway is unknown. Here we show that GRA15 interacts with tumor necrosis factor receptor-associated factors (TRAFs), which are adaptor proteins functioning upstream of the NF-κB transcription factor. We identified several TRAF binding sites in the GRA15 amino acid sequence and showed that these are involved in NF-κB activation. Furthermore, a TRAF2 knockout cell line has impaired GRA15-mediated NF-κB activation. Thus, we determined the mechanism for GRA15-dependent NF-κB activation.
Collapse
|
41
|
Loeuillet C, Mondon A, Kamche S, Curri V, Boutonnat J, Cavaillès P, Cesbron-Delauw MF. Toxoplasma Hypervirulence in the Rat Model Parallels Human Infection and Is Modulated by the Toxo1 Locus. Front Cell Infect Microbiol 2019; 9:134. [PMID: 31119105 PMCID: PMC6504788 DOI: 10.3389/fcimb.2019.00134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/15/2019] [Indexed: 11/17/2022] Open
Abstract
Toxoplasmosis is considered as an opportunistic parasitic disease. If post-natally acquired in children or adults, it may pass unnoticed, at least with strains of European origin. However, in the wild biotopes especially in South America, Toxoplasma gondii strains display a greater genetic diversity, which correlates to higher virulence for humans, particularly along the Amazon River and its tributaries. In French Guiana, several atypical strains have been associated with severe clinical forms: ocular toxoplasmosis and acute respiratory distress syndrome both of which can result in death. Among these, the GUY008-ABE strain was responsible for an epidemic of severe disseminated toxoplasmosis in Suriname, which led to the death of one immunocompetent individual. To better understand the mechanism underlying the hypervirulence of the GUY008-ABE strain, we have tested the rat model which compared to the mouse, better reflects the immune resistance of humans to Toxoplasma infection. Here we compare the outcome of toxoplasmosis in F344 rats infected either by the GUY008-ABE strain or the type II Prugniaud strain. We show that the GUY008-ABE strain displays a higher virulence phenotype leading to the death of all infected rats observed in this study. GUY008-ABE infection was characterized by an increase of the parasite load in several organs, especially the heart and lung, and was mainly associated with severe histological changes in lungs. Moreover, correlating with its hypervirulence trait, the GUY008-ABE strain was able to form cysts in the LEW rat model otherwise known to be refractory to infection by other Toxoplasma strains. Together, these results show that the rat is a discriminating experimental model to study Toxoplasma virulence factors relevant to the pathogenesis of human infection and that the degree of virulence is linked to the Toxo1 locus.
Collapse
Affiliation(s)
- Corinne Loeuillet
- BNI Team, Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Anais Mondon
- BNI Team, Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Salima Kamche
- BNI Team, Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Véronique Curri
- Therex Team, Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Jean Boutonnat
- Therex Team, Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France.,Unit of Anatomopathology, Institute of Biology and Pathology, Grenoble Alpes Hospital, Grenoble, France
| | - Pierre Cavaillès
- BNI Team, Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | | |
Collapse
|
42
|
Ali S, Mann-Nüttel R, Schulze A, Richter L, Alferink J, Scheu S. Sources of Type I Interferons in Infectious Immunity: Plasmacytoid Dendritic Cells Not Always in the Driver's Seat. Front Immunol 2019; 10:778. [PMID: 31031767 PMCID: PMC6473462 DOI: 10.3389/fimmu.2019.00778] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Type I Interferons (IFNs) are hallmark cytokines produced in immune responses to all classes of pathogens. Type I IFNs can influence dendritic cell (DC) activation, maturation, migration, and survival, but also directly enhance natural killer (NK) and T/B cell activity, thus orchestrating various innate and adaptive immune effector functions. Therefore, type I IFNs have long been considered essential in the host defense against virus infections. More recently, it has become clear that depending on the type of virus and the course of infection, production of type I IFN can also lead to immunopathology or immunosuppression. Similarly, in bacterial infections type I IFN production is often associated with detrimental effects for the host. Although most cells in the body are thought to be able to produce type I IFN, plasmacytoid DCs (pDCs) have been termed the natural "IFN producing cells" due to their unique molecular adaptations to nucleic acid sensing and ability to produce high amounts of type I IFN. Findings from mouse reporter strains and depletion experiments in in vivo infection models have brought new insights and established that the role of pDCs in type I IFN production in vivo is less important than assumed. Production of type I IFN, especially the early synthesized IFNβ, is rather realized by a variety of cell types and cannot be mainly attributed to pDCs. Indeed, the cell populations responsible for type I IFN production vary with the type of pathogen, its tissue tropism, and the route of infection. In this review, we summarize recent findings from in vivo models on the cellular source of type I IFN in different infectious settings, ranging from virus, bacteria, and fungi to eukaryotic parasites. The implications from these findings for the development of new vaccination and therapeutic designs targeting the respectively defined cell types are discussed.
Collapse
Affiliation(s)
- Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Anja Schulze
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Lisa Richter
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Judith Alferink
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
43
|
Hou Z, Liu D, Su S, Wang L, Zhao Z, Ma Y, Li Q, Jia C, Xu J, Zhou Y, Tao J. Comparison of splenocyte microRNA expression profiles of pigs during acute and chronic toxoplasmosis. BMC Genomics 2019; 20:97. [PMID: 30700253 PMCID: PMC6354428 DOI: 10.1186/s12864-019-5458-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular parasite that infects humans and other warm-blooded animals. Previous quantitative proteomic analyses of infected host cells revealed that the expression of many host proteins is modulated by T. gondii infection. However, at present limited data are available on the differentially expressed miRNAs (DEMs) associated with the pathology and host immune responses induced by acute and chronic infection with T. gondii in pigs in vivo. In this study, high-throughput sequencing was used to investigate expression profiles of spleen miRNAs at 10, 25 and 50 days post-infection (DPI) in pigs infected with Chinese I genotype strain T. gondii isolated from a dead pig. RESULTS When compared to the control group, 34, 6 and 86 DEMs were found in spleens of infected pigs at 10, 25 and 50 DPI, respectively. Gene Ontology (GO) enrichment analysis of the target genes of DEMs showed that no GO terms were enriched at 25 DPI, whereas 28 and 241 GO terms, of which two and 215 were sample-specific, were significantly enriched at 10 and 50 DPI, respectively. The top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the target genes of DEMs included signal transduction, immune system, metabolism and diseases. miRNA-gene network analysis revealed that the DEMs played important roles in the host immune response to T. gondii infection by modulating expression levels of cellular immunity-related cytokines and immune-related C-type lectins. CONCLUSION Our results not only showed that host miRNA expression is altered by T. gondii but also revealed differences in the regulation of key biological processes and pathways involved in host responses to acute versus chronic T. gondii infection. This will aid future research into miRNA-target interactions during T. gondii infection in pigs and the development of novel therapies against T. gondii.
Collapse
Affiliation(s)
- Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zhenxing Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yifei Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qiaoqiao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Chuanli Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yonghua Zhou
- Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China. .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
44
|
LaMonte GM, Orjuela-Sanchez P, Calla J, Wang LT, Li S, Swann J, Cowell AN, Zou BY, Abdel-Haleem Mohamed AM, Villa Galarce ZH, Moreno M, Tong Rios C, Vinetz JM, Lewis N, Winzeler EA. Dual RNA-seq identifies human mucosal immunity protein Mucin-13 as a hallmark of Plasmodium exoerythrocytic infection. Nat Commun 2019; 10:488. [PMID: 30700707 PMCID: PMC6353872 DOI: 10.1038/s41467-019-08349-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 12/24/2018] [Indexed: 12/28/2022] Open
Abstract
The exoerythrocytic stage of Plasmodium infection is a critical window for prophylactic intervention. Using genome-wide dual RNA sequencing of flow-sorted infected and uninfected hepatoma cells we show that the human mucosal immunity gene, mucin-13 (MUC13), is strongly upregulated during Plasmodium exoerythrocytic hepatic-stage infection. We confirm MUC13 transcript increases in hepatoma cell lines and primary hepatocytes. In immunofluorescence assays, host MUC13 protein expression distinguishes infected cells from adjacent uninfected cells and shows similar colocalization with parasite biomarkers such as UIS4 and HSP70. We further show that localization patterns are species independent, marking both P. berghei and P. vivax infected cells, and that MUC13 can be used to identify compounds that inhibit parasite replication in hepatocytes. This data provides insights into host-parasite interactions in Plasmodium infection, and demonstrates that a component of host mucosal immunity is reprogrammed during the progression of infection.
Collapse
Affiliation(s)
- Gregory M LaMonte
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Pamela Orjuela-Sanchez
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Jaeson Calla
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Lawrence T Wang
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Shangzhong Li
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Justine Swann
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Annie N Cowell
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bing Yu Zou
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Alyaa M Abdel-Haleem Mohamed
- Computational Bioscience Research Centre (CBRC) and Biological and Environmental Sciences and Engineering (BESE) division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Zaira Hellen Villa Galarce
- Laboratorio ICEMR-Amazonia, Laboratorio de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Laboratorio ICEMR-Amazonia, Laboratorio de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- London School of Hygiene and Tropical Medicine, Department of Immunology and Infection, London, UK
| | - Carlos Tong Rios
- Laboratorio ICEMR-Amazonia, Laboratorio de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Laboratorio ICEMR-Amazonia, Laboratorio de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Yale School of Medicine, Section of Infectious Diseases, Department of Internal Medicine, New Haven, CT, USA
| | - Nathan Lewis
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
45
|
Cong W, Dottorini T, Khan F, Emes RD, Zhang FK, Zhou CX, He JJ, Zhang XX, Elsheikha HM, Zhu XQ. Acute Toxoplasma Gondii Infection in Cats Induced Tissue-Specific Transcriptional Response Dominated by Immune Signatures. Front Immunol 2018; 9:2403. [PMID: 30405608 PMCID: PMC6202952 DOI: 10.3389/fimmu.2018.02403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022] Open
Abstract
RNA-sequencing was used to detect transcriptional changes in six tissues of cats, seven days after T. gondii infection. A total of 737 genes were differentially expressed (DEGs), of which 410 were up-regulated and 327 were down-regulated. The liver exhibited 151 DEGs, lung (149 DEGs), small intestine (130 DEGs), heart (123 DEGs), brain (104 DEGs), and spleen (80 DEGs)-suggesting tissue-specific transcriptional patterns. Gene ontology and KEGG analyses identified DEGs enriched in immune pathways, such as cytokine-cytokine receptor interaction, Jak-STAT signaling pathway, NOD-like receptor signaling pathway, NF-kappa B signaling pathway, MAPK signaling pathway, T cell receptor signaling pathway, and the cytosolic DNA sensing pathway. C-X-C motif chemokine 10 (CXCL10) was involved in most of the immune-related pathways. PI3K/Akt expression was down-regulated in all tissues, except the spleen. The genes for phosphatase, indoleamine 2,3-dioxygenase, Hes Family BHLH Transcription Factor 1, and guanylate-binding protein 5, playing various roles in immune defense, were co-expressed across various feline tissues. Multivariate K-means clustering analysis produced seven gene clusters featuring similar gene expression patterns specific to individual tissues, with lung tissue cluster having the largest number of DEGs. These findings suggest the presence of a broad immune defense mechanism across various tissues in cats against acute T. gondii infection.
Collapse
Affiliation(s)
- Wei Cong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Department of Marine Engineering, Marine College, Shandong University, Weihai, China
| | - Tania Dottorini
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom.,Advanced Data Analysis Centre, University of Nottingham, Loughborough, United Kingdom
| | - Faraz Khan
- Advanced Data Analysis Centre, University of Nottingham, Loughborough, United Kingdom
| | - Richard D Emes
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom.,Advanced Data Analysis Centre, University of Nottingham, Loughborough, United Kingdom
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chun-Xue Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Xuan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
46
|
He H, Brenier-Pinchart MP, Braun L, Kraut A, Touquet B, Couté Y, Tardieux I, Hakimi MA, Bougdour A. Characterization of a Toxoplasma effector uncovers an alternative GSK3/β-catenin-regulatory pathway of inflammation. eLife 2018; 7:39887. [PMID: 30320549 PMCID: PMC6214654 DOI: 10.7554/elife.39887] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/14/2018] [Indexed: 12/13/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii, hijacks evolutionarily conserved host processes by delivering effector proteins into the host cell that shift gene expression in a timely fashion. We identified a parasite dense granule protein as GRA18 that once released in the host cell cytoplasm forms versatile complexes with regulatory elements of the β-catenin destruction complex. By interacting with GSK3/PP2A-B56, GRA18 drives β-catenin up-regulation and the downstream effects on host cell gene expression. In the context of macrophages infection, GRA18 induces the expression of a specific set of genes commonly associated with an anti-inflammatory response that includes those encoding chemokines CCL17 and CCL22. Overall, this study adds another original strategy by which T. gondii tachyzoites reshuffle the host cell interactome through a GSK3/β-catenin axis to selectively reprogram immune gene expression.
Collapse
Affiliation(s)
- Huan He
- Team Host-pathogen interactions & immunity to infection, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Marie-Pierre Brenier-Pinchart
- Team Host-pathogen interactions & immunity to infection, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Laurence Braun
- Team Host-pathogen interactions & immunity to infection, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Alexandra Kraut
- University of Grenoble Alpes, CEA, Inserm, BIG-BGE, Grenoble, France
| | - Bastien Touquet
- Team Membrane and Cell Dynamics of Host Parasite Interactions, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Yohann Couté
- University of Grenoble Alpes, CEA, Inserm, BIG-BGE, Grenoble, France
| | - Isabelle Tardieux
- Team Membrane and Cell Dynamics of Host Parasite Interactions, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Mohamed-Ali Hakimi
- Team Host-pathogen interactions & immunity to infection, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Alexandre Bougdour
- Team Host-pathogen interactions & immunity to infection, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| |
Collapse
|
47
|
Napolitano A, van der Veen AG, Bunyan M, Borg A, Frith D, Howell S, Kjaer S, Beling A, Snijders AP, Knobeloch KP, Frickel EM. Cysteine-Reactive Free ISG15 Generates IL-1β-Producing CD8α + Dendritic Cells at the Site of Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:604-614. [PMID: 29891555 PMCID: PMC6036233 DOI: 10.4049/jimmunol.1701322] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/11/2018] [Indexed: 02/04/2023]
Abstract
IFN-stimulated gene (ISG) 15 is a ubiquitin-like protein induced after type I IFN stimulation. There is a dearth of in vivo models to study free unconjugated ISG15 function. We found that free ISG15 enhances the production of IFN-γ and IL-1β during murine infection with Toxoplasma gondii. In our model, ISG15 is induced in a type I IFN–dependent fashion and released into the serum. Increased ISG15 levels are dependent on an actively invading and replicating parasite. Two cysteine residues in the hinge domain are necessary determinants for ISG15 to induce increased cytokine levels during infection. Increased ISG15 is concurrent with an influx of IL-1β–producing CD8α+ dendritic cells to the site of infection. In this article, we present Toxoplasma infection as a novel in vivo murine model to study the immunomodulatory properties of free ISG15 and uniquely link it to IL-1β production by CD8α+ dendritic cells driven by two cysteines in the hinge region of the protein.
Collapse
Affiliation(s)
- Anna Napolitano
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | | | - Monique Bunyan
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Annabel Borg
- Structural Biology, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - David Frith
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Steven Howell
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Svend Kjaer
- Structural Biology, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Antje Beling
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, 10117 Berlin, Germany; and
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | | | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| |
Collapse
|
48
|
Liu W, Huang L, Wei Q, Zhang Y, Zhang S, Zhang W, Cai L, Liang S. Microarray analysis of long non-coding RNA expression profiles uncovers a Toxoplasma-induced negative regulation of host immune signaling. Parasit Vectors 2018. [PMID: 29530077 PMCID: PMC5848448 DOI: 10.1186/s13071-018-2697-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular protozoan parasite that can infect mammalian cells and thereby regulate host gene expression. The long non-coding RNAs (lncRNAs) have been demonstrated to be an important class of RNA molecules that regulate many biological processes, including host-pathogen interactions. However, the role of host lncRNAs in the response to T. gondii infection remains largely unknown. METHODS We applied a microarray approach to determine the differential expression profiles of both lncRNAs and mRNAs in the human foreskin fibroblast (HFF) cells after T. gondii infection. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to reveal the potential functions of T. gondii-induced genes. Based on the co-expression networks of lncRNAs and immune-related genes, the role of NONSHAT022487 on the regulation of UNC93B1 related immune signaling was investigated by the knockdown and over-expression of lncRNA in human macrophage derived from the PMA-induced promonocytic cell line THP-1. RESULTS Our data showed that 996 lncRNAs and 109 mRNAs in HFF cells were significantly and differentially expressed following T. gondii infection (fold change ≥ 5, P < 0.05). The results from the GO and KEGG pathway analyses indicated that the mRNAs with differential expression were mainly involved in the host immune response. Remarkably, we identified a novel lncRNA, NONSHAT022487, which suppresses the expression of the immune-related molecule UNC93B1. After T. gondii infection, NONSHAT022487 impaired the secretion of the cytokines IL-12, TNF-α, IL-1β and IFN-γ by downregulating UNC93B1 expression in human macrophage cells. CONCLUSIONS Our study identified infection-induced lncRNA expression as a novel mechanism by which the Toxoplasma parasite regulates host immune signaling, which advances our understanding of the interaction of T. gondii parasites and host cells.
Collapse
Affiliation(s)
- Wenquan Liu
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liyang Huang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qimei Wei
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yu Zhang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shengnan Zhang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenting Zhang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liya Cai
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shaohui Liang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
49
|
Sun S, Li C, Liu S, Luo J, Chen Z, Zhang C, Zhang T, Huang J, Xi L. RNA sequencing and differential expression reveals the effects of serial oestrus synchronisation on ovarian genes in dairy goats. Reprod Fertil Dev 2018; 30:1622-1633. [DOI: 10.1071/rd17511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/05/2018] [Indexed: 11/23/2022] Open
Abstract
A total of 24 female Xinong Saanen dairy goats were used to examine differentially expressed genes (DEGs) in the ovaries of goats treated once or three times for oestrus synchronisation (ES). The goats were randomly divided into two groups: one group received three ES treatments at fortnightly intervals (repeated or triple ES group), whereas the other was only treated once on the same day as the third ES treatment for the triple group (control group) during the breeding season. Ovaries of three goats in oestrus from each group were collected for morphological examination and transcriptome sequencing, while the rest of the goats were artificially inseminated twice. Litter size and fecundity rate tended (P = 0.06) to be lower in the triple ES group. A total of 319 DEGs were identified, including carbohydrate sulphotransferase 8 (CHST8), corticosteroid-binding globulin (CBG), oestradiol 17-β-dehydrogenase 1 (DHB1), oestrogen receptor 1 (ESR1), progestin and adipoQ receptor family member 4 (PAQR4), PAQR9, prostacyclin synthase (PTGIS), contactin-associated protein (CNTNAP4), matrix metalloproteinase-2 (MMP-2), regulator of G-protein signalling 9-2 (RGS9-2) and sperm surface protein Sp17 (Sp17); these were the most promising novel candidate genes for reproductive performances in goats. Our study indicates that triple ES could cause DNA damage and alter gene expression in goat ovaries, potentially affecting ovary function, neural regulation and hormone secretion.
Collapse
|
50
|
Arenas AF, Salcedo GE, Gomez-Marin JE. R Script Approach to Infer Toxoplasma Infection Mechanisms From Microarrays and Domain-Domain Protein Interactions. Bioinform Biol Insights 2017; 11:1177932217747256. [PMID: 29317802 PMCID: PMC5753922 DOI: 10.1177/1177932217747256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/18/2017] [Indexed: 01/25/2023] Open
Abstract
Pathogen-host protein-protein interaction systems examine the interactions between the protein repertoires of 2 distinct organisms. Some of these pathogen proteins interact with the host protein system and may manipulate it for their own advantages. In this work, we designed an R script by concatenating 2 functions called rowDM and rowCVmed to infer pathogen-host interaction using previously reported microarray data, including host gene enrichment analysis and the crossing of interspecific domain-domain interactions. We applied this script to the Toxoplasma-host system to describe pathogen survival mechanisms from human, mouse, and Toxoplasma Gene Expression Omnibus series. Our outcomes exhibited similar results with previously reported microarray analyses, but we found other important proteins that could contribute to toxoplasma pathogenesis. We observed that Toxoplasma ROP38 is the most differentially expressed protein among toxoplasma strains. Enrichment analysis and KEGG mapping indicated that the human retinal genes most affected by Toxoplasma infections are those related to antiapoptotic mechanisms. We suggest that proteins PIK3R1, PRKCA, PRKCG, PRKCB, HRAS, and c-JUN could be the possible substrates for differentially expressed Toxoplasma kinase ROP38. Likewise, we propose that Toxoplasma causes overexpression of apoptotic suppression human genes.
Collapse
Affiliation(s)
- Ailan F Arenas
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Universidad del Quindío, Armenia, Colombia
- Ailan F Arenas, Grupo de Estudio en Parasitología Molecular (GEPAMOL), Universidad del Quindío, Carrera 15 Calle 12N, Armenia, 630001 Quindío, Colombia.
| | - Gladys E Salcedo
- Grupo de Investigación y Asesoría en Estadística, Universidad del Quindío, Armenia, Colombia
| | - Jorge E Gomez-Marin
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Universidad del Quindío, Armenia, Colombia
| |
Collapse
|