1
|
Ali B, Chauhan A, Kumar M, Kumar P, Carolus H, Lobo Romero C, Vergauwen R, Singh A, Banerjee A, Prakash A, Rudramurthy SM, Van Dijck P, Ibrahim AS, Prasad R. A Comprehensive Analysis of the Lipidomic Signatures in Rhizopus delemar. J Fungi (Basel) 2024; 10:760. [PMID: 39590679 PMCID: PMC11595932 DOI: 10.3390/jof10110760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Certain species of Mucorales have been identified as causative agents of mucormycosis, a rare yet often lethal fungal infection. Notably, these fungi exhibit intrinsic resistance to common azole drugs, which target lipids. Given the pivotal role of lipids in drug resistance and their contribution to innate resistance to azoles, this study provides a comprehensive overview of key lipid classes, including sphingolipids (SLs), glycerophospholipids (GPLs), and sterols, in Rhizopus delemar 99-880, a well-characterized reference strain among Mucorales. Using shotgun lipidomics as well as liquid- and gas-chromatography-based mass spectrometric analyses, we identified the lipid intermediates and elucidated the biosynthetic pathways of SLs, PGLs, and sterols. The acidic SLs were not found, probably because the acidic branch of the SL biosynthesis pathway terminates at α-hydroxy phytoceramides, as evident by their high abundance. Intermediates in the neutral SL pathway incorporated higher levels of 16:0 fatty acid compared to other pathogenic fungi. A strikingly high phosphatidylethanolamine (PE)/phosphatdylcholine (PC) ratio was observed among GPLs. Ergosterol remains the major sterol, similar to other fungi, and our analysis confirms the existence of alternate ergosterol biosynthesis pathways. The total lipidomic profile of R. delemar 99-880 offers insights into its lipid metabolism and potential implications for studying pathogenesis and drug resistance mechanisms.
Collapse
Affiliation(s)
- Basharat Ali
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anshu Chauhan
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
| | - Mohit Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Praveen Kumar
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Celia Lobo Romero
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Rudy Vergauwen
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Atanu Banerjee
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
| | - Amresh Prakash
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
| |
Collapse
|
2
|
Crawford C, Liporagi-Lopes L, Coelho C, Santos Junior SR, Moraes Nicola A, Wear MP, Vij R, Oscarson S, Casadevall A. Semisynthetic Glycoconjugate Vaccine Candidates against Cryptococcus neoformans. ACS Infect Dis 2024; 10:2089-2100. [PMID: 38819951 PMCID: PMC11184550 DOI: 10.1021/acsinfecdis.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Cryptococcus neoformans is a fungus classified by the World Health Organization as a critically important pathogen, which poses a significant threat to immunocompromised individuals. In this study, we present the chemical synthesis and evaluation of two semisynthetic vaccine candidates targeting the capsular polysaccharide glucuronoxylomannan (GXM) of C. neoformans. These semisynthetic glycoconjugate vaccines contain an identical synthetic decasaccharide (M2 motif) antigen. This antigen is present in serotype A strains, which constitute 95% of the clinical cryptococcosis cases. This synthetic oligosaccharide was conjugated to two proteins (CRM197 and Anthrax 63 kDa PA) and tested for immunogenicity in mice. The conjugates elicited a specific antibody response that bound to the M2 motif but also exhibited additional cross-reactivity toward M1 and M4 GXM motifs. Both glycoconjugates produced antibodies that bound to GXM in ELISA assays and to live fungal cells. Mice immunized with the CRM197 glycoconjugate produced weakly opsonic antibodies and displayed trends toward increased median survival relative to mice given a mock PBS injection (18 vs 15 days, p = 0.06). These findings indicate promise, achieving a successful vaccine demands further optimization of the glycoconjugate. This antigen could serve as a component in a multivalent GXM motif vaccine.
Collapse
Affiliation(s)
- Conor
J. Crawford
- Centre
for Synthesis and Chemical Biology, University
College Dublin, Belfield, Dublin D04 V1W8, Ireland
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Livia Liporagi-Lopes
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Carolina Coelho
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Samuel R. Santos Junior
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - André Moraes Nicola
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Maggie P. Wear
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Raghav Vij
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Stefan Oscarson
- Centre
for Synthesis and Chemical Biology, University
College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Arturo Casadevall
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| |
Collapse
|
3
|
Crawford CJ, Liporagi-Lopes L, Coelho C, Santos SR, Nicola AM, Wear MP, Vij R, Oscarson S, Casadevall A. Semi-synthetic glycoconjugate vaccine candidate against Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578725. [PMID: 38352552 PMCID: PMC10862886 DOI: 10.1101/2024.02.02.578725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Cryptococcus neoformans is a fungus classified by the World Health Organization as a critically important pathogen, posing a significant threat to immunocompromised individuals. In this study, we present the chemical synthesis and evaluation of two semi-synthetic vaccine candidates targeting the capsular polysaccharide glucuronoxylomannan (GXM) of C. neoformans. These semi-synthetic glycoconjugate vaccines contain the identical synthetic decasaccharide (M2 motif) antigen. This motif is present in serotype A strains, which constitute 95% of clinical cryptococcosis cases. This synthetic oligosaccharide was conjugated to two proteins (CRM197 and Anthrax 63 kDa PA) and tested for immunogenicity in mice. The conjugates elicited a specific antibody response that bound to the M2 motif but also exhibited additional cross-reactivity towards M1 and M4 GXM motifs. Both glycoconjugates produced antibodies that bound to GXM in ELISA assays and to live fungal cells. Mice immunized with the CRM197 glycoconjugate produced opsonic antibodies and displayed trends toward increased median survival relative to mice given a mock PBS injection (18 vs 15 days, p = 0.06). While these findings indicate promise, achieving a successful vaccine demands further optimization of the glycoconjugate. It could serve as a component in a multi-valent GXM motif vaccine, enhancing both strength and breadth of immune responses.
Collapse
Affiliation(s)
- Conor J Crawford
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
- Present Address: Max Planck Institute of Colloids and Interfaces, Am Mühlenberg1, 14476 Potsdam, Germany
| | - Livia Liporagi-Lopes
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
- Present Address: Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
- Present Address: MRC Centre for Medical Mycology, University of Exeter, Exeter Devon UK
| | - Samuel R Santos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - André Moraes Nicola
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
- Present Address: Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Maggie P Wear
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Raghav Vij
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
- Present address: Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Ali B, Kumar M, Kumar P, Chauhan A, Usmani SA, Rudramurthy SM, Meis JF, Chakrabarti A, Singh A, Gaur NA, Mondal AK, Prasad R. Sphingolipid diversity in Candida auris: unraveling interclade and drug resistance fingerprints. FEMS Yeast Res 2024; 24:foae008. [PMID: 38444195 PMCID: PMC10941814 DOI: 10.1093/femsyr/foae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024] Open
Abstract
In this study, we explored the sphingolipid (SL) landscape in Candida auris, which plays pivotal roles in fungal biology and drug susceptibility. The composition of SLs exhibited substantial variations at both the SL class and molecular species levels among clade isolates. Utilizing principal component analysis, we successfully differentiated the five clades based on their SL class composition. While phytoceramide (PCer) was uniformly the most abundant SL class in all the isolates, other classes showed significant variations. These variations were not limited to SL class level only as the proportion of different molecular species containing variable number of carbons in fatty acid chains also differed between the isolates. Also a comparative analysis revealed abundance of ceramides and glucosylceramides in fluconazole susceptible isolates. Furthermore, by comparing drug-resistant and susceptible isolates within clade IV, we uncovered significant intraclade differences in key SL classes such as high PCer and low long chain base (LCB) content in resistant strains, underscoring the impact of SL heterogeneity on drug resistance development in C. auris. These findings shed light on the multifaceted interplay between genomic diversity, SLs, and drug resistance in this emerging fungal pathogen.
Collapse
Affiliation(s)
- Basharat Ali
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, 122413, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohit Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, 122413, India
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Praveen Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, 122413, India
| | - Anshu Chauhan
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, 122413, India
| | - Sana Akhtar Usmani
- Department of Biochemistry, University of Lucknow, Lucknow, 226007 India
| | | | - Jacques F Meis
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, 50931 Germany
| | | | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow, 226007 India
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Alok K Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, 122413, India
| |
Collapse
|
5
|
Rodrigues ML, Alviano DS, Kneipp LF, Alviano CS, Barreto-Bergter E, Nimrichter L. Professor Luiz R. Travassos and the study of surface structures of fungal pathogens. Braz J Microbiol 2023; 54:2571-2575. [PMID: 36720842 PMCID: PMC9889240 DOI: 10.1007/s42770-023-00916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 02/02/2023] Open
Abstract
Brazilian medical mycology considerably expanded in the last decades due to the efforts of several pioneers who started and expanded mycology during the twentieth century. In this manuscript, we highlight some of the contributions of one of these pioneers: Professor Luiz R. Travassos, who started his career in the field of microbiology in the 1960s. We will discuss his contributions to the areas of medical mycology and glycobiology, with a focus on glycosphingolipids, sialic acids, and surface enzymes.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil.
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Daniela S Alviano
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucimar F Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo, Rio de Janeiro, Brazil
| | - Celuta S Alviano
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Rollin-Pinheiro R, de Moraes DC, Bayona-Pacheco B, Curvelo JADR, dos Santos-Freitas GMP, Xisto MIDDS, Borba-Santos LP, Rozental S, Ferreira-Pereira A, Barreto-Bergter E. Structural and Functional Alterations Caused by Aureobasidin A in Clinical Resistant Strains of Candida spp. J Fungi (Basel) 2023; 9:1115. [PMID: 37998920 PMCID: PMC10672136 DOI: 10.3390/jof9111115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Candida species are one of the most concerning causative agents of fungal infections in humans. The treatment of invasive Candida infections is based on the use of fluconazole, but the emergence of resistant isolates has been an increasing concern which has led to the study of alternative drugs with antifungal activity. Sphingolipids have been considered a promising target due to their roles in fungal growth and virulence. Inhibitors of the sphingolipid biosynthetic pathway have been described to display antifungal properties, such as myriocin and aureobasidin A, which are active against resistant Candida isolates. In the present study, aureobasidin A did not display antibiofilm activity nor synergism with amphotericin B, but its combination with fluconazole was effective against Candida biofilms and protected the host in an in vivo infection model. Alterations in treated cells revealed increased oxidative stress, reduced mitochondrial membrane potential and chitin content, as well as altered morphology, enhanced DNA leakage and a greater susceptibility to sodium dodecyl sulphate (SDS). In addition, it seems to inhibit the efflux pump CaCdr2p. All these data contribute to elucidating the role of aureobasidin A on fungal cells, especially evidencing its promising use in clinical resistant isolates of Candida species.
Collapse
Affiliation(s)
- Rodrigo Rollin-Pinheiro
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (G.M.P.d.S.-F.); (M.I.D.d.S.X.)
| | - Daniel Clemente de Moraes
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (D.C.d.M.); (B.B.-P.); (J.A.d.R.C.); (A.F.-P.)
| | - Brayan Bayona-Pacheco
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (D.C.d.M.); (B.B.-P.); (J.A.d.R.C.); (A.F.-P.)
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5, Vía Puerto Colombia, Área Metropolitana de Barranquilla, Barranquilla 081007, Colombia
| | - Jose Alexandre da Rocha Curvelo
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (D.C.d.M.); (B.B.-P.); (J.A.d.R.C.); (A.F.-P.)
| | - Giulia Maria Pires dos Santos-Freitas
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (G.M.P.d.S.-F.); (M.I.D.d.S.X.)
| | - Mariana Ingrid Dutra da Silva Xisto
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (G.M.P.d.S.-F.); (M.I.D.d.S.X.)
| | - Luana Pereira Borba-Santos
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.P.B.-S.); (S.R.)
| | - Sonia Rozental
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.P.B.-S.); (S.R.)
| | - Antonio Ferreira-Pereira
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (D.C.d.M.); (B.B.-P.); (J.A.d.R.C.); (A.F.-P.)
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (G.M.P.d.S.-F.); (M.I.D.d.S.X.)
| |
Collapse
|
7
|
Matos GS, Fernandes CM, Del Poeta M. Role of sphingolipids in the host-pathogen interaction. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159384. [PMID: 37673393 PMCID: PMC11218662 DOI: 10.1016/j.bbalip.2023.159384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 09/08/2023]
Abstract
Fungal pathogens have been under the spotlight as their expanding geographic range combined with their potential harm to vulnerable populations turns them into increasingly threats to public health. Therefore, it is ultimately important to unveil the mechanisms associated with their infection process for further new treatment discovery. With this purpose, sphingolipid-based research has gained attention over the last years as these molecules have key properties that can regulate fungal pathogenicity. Here we discuss some of these properties as well as their role in fungal diseases, focusing on the subgroup of glycosphingolipids, as they represent promising molecules for drug discovery and for the development of fungal vaccines.
Collapse
Affiliation(s)
- Gabriel Soares Matos
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | | | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery (ICB&DD), Stony Brook, NY, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, USA; Veterans Administration Medical Center, Northport, NY, USA.
| |
Collapse
|
8
|
Shoma JF, Ernan B, Keiser G, Heiss C, Azadi P, Free SJ. Genetic Characterization of the Acidic and Neutral Glycosphingolipid Biosynthetic Pathways in Neurospora crassa. Microorganisms 2023; 11:2093. [PMID: 37630653 PMCID: PMC10457978 DOI: 10.3390/microorganisms11082093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Fungal glycosphingolipids (GSLs) are important membrane components which play a key role in vesicle trafficking. To assess the importance of GSLs in the fungal life cycle, we performed a mutant phenotypic study of the acidic and neutral GSL biosynthetic pathways in Neurospora crassa. GSL biosynthesis begins with two reactions leading up to the formation of dihydrosphingosine. The first of these reactions is catalyzed by serine palmitoyltransferase and generates 3-keto dihydrosphinganine. In N. crassa, this reaction is catalyzed by GSL-1 and GSL-2 and is required for viability. The second reaction is carried out by GSL-3, a 3-keto dihydrosphinoganine reductase to generate dihydrosphingosine, which is used for the synthesis of neutral and acidic GSLs. We found that deletion mutations in the acidic GSL pathway leading up to the formation of mannosylinositol-phosphoceramide are lethal, indicating that acidic GSLs are essential for viability in N. crassa. Once mannosylinositol-phosphoceramide is made, it is further modified by GSL-5, an inositol-phosphoceramide-B C26 hydroxylase, which adds a hydroxyl group to the amide-linked fatty acid. GSL-5 is not required for viability but gives a clear mutant phenotype affecting all stages of the life cycle. Our results show that the synthesis of mannosylinositol-phosphoceramide is required for viability and that the modification of the amide-linked fatty acid is important for acidic GSL functionality. We also examined the neutral GSL biosynthetic pathway and identified the presence of glucosylceramide. The deletion of neutral GSL biosynthetic genes affected hyphal morphology, vegetative growth rate, conidiation, and female development. Our results indicate that the synthesis of neutral GSLs is essential for normal growth and development of N. crassa.
Collapse
Affiliation(s)
- Jannatul F. Shoma
- Department of Biological Sciences, SUNY University at Buffalo, Cooke Hall Room 109, Buffalo, NY 14260, USA
| | - Ben Ernan
- Department of Biological Sciences, SUNY University at Buffalo, Cooke Hall Room 109, Buffalo, NY 14260, USA
| | - Griffin Keiser
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA (P.A.)
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA (P.A.)
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA (P.A.)
| | - Stephen J. Free
- Department of Biological Sciences, SUNY University at Buffalo, Cooke Hall Room 109, Buffalo, NY 14260, USA
| |
Collapse
|
9
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
10
|
Guegan H, Poirier W, Ravenel K, Dion S, Delabarre A, Desvillechabrol D, Pinson X, Sergent O, Gallais I, Gangneux JP, Giraud S, Gastebois A. Deciphering the Role of PIG1 and DHN-Melanin in Scedosporium apiospermum Conidia. J Fungi (Basel) 2023; 9:jof9020134. [PMID: 36836250 PMCID: PMC9965090 DOI: 10.3390/jof9020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Scedosporium apiospermum is a saprophytic filamentous fungus involved in human infections, of which the virulence factors that contribute to pathogenesis are still poorly characterized. In particular, little is known about the specific role of dihydroxynaphtalene (DHN)-melanin, located on the external layer of the conidia cell wall. We previously identified a transcription factor, PIG1, which may be involved in DHN-melanin biosynthesis. To elucidate the role of PIG1 and DHN-melanin in S. apiospermum, a CRISPR-Cas9-mediated PIG1 deletion was carried out from two parental strains to evaluate its impact on melanin biosynthesis, conidia cell-wall assembly, and resistance to stress, including the ability to survive macrophage engulfment. ΔPIG1 mutants did not produce melanin and showed a disorganized and thinner cell wall, resulting in a lower survival rate when exposed to oxidizing conditions, or high temperature. The absence of melanin increased the exposure of antigenic patterns on the conidia surface. PIG1 regulates the melanization of S. apiospermum conidia, and is involved in the survival to environmental injuries and to the host immune response, that might participate in virulence. Moreover, a transcriptomic analysis was performed to explain the observed aberrant septate conidia morphology and found differentially expressed genes, underlining the pleiotropic function of PIG1.
Collapse
Affiliation(s)
- Hélène Guegan
- CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
- Correspondence: ; Tel.: +33-223233496
| | - Wilfried Poirier
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Kevin Ravenel
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Sarah Dion
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Aymeric Delabarre
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Dimitri Desvillechabrol
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Xavier Pinson
- CNRS, INSERM, Biosit UAR 3480 US_S 018, MRic Core Facility, 35000 Rennes, France
| | - Odile Sergent
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Isabelle Gallais
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Jean-Pierre Gangneux
- CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Sandrine Giraud
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Amandine Gastebois
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| |
Collapse
|
11
|
Glucosylceramide Changes Bacterial Metabolism and Increases Gram-Positive Bacteria through Tolerance to Secondary Bile Acids In Vitro. Int J Mol Sci 2022; 23:ijms23105300. [PMID: 35628110 PMCID: PMC9141989 DOI: 10.3390/ijms23105300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Glucosylceramide is present in many foods, such as crops and fermented foods. Most glucosylceramides are not degraded or absorbed in the small intestine and pass through the large intestine. Glucosylceramide exerts versatile effects on colon tumorigenesis, skin moisture, cholesterol metabolism and improvement of intestinal microbes in vivo. However, the mechanism of action has not yet been fully elucidated. To gain insight into the effect of glucosylceramide on intestinal microbes, glucosylceramide was anaerobically incubated with the dominant intestinal microbe, Blautia coccoides, and model intestinal microbes. The metabolites of the cultured broth supplemented with glucosylceramide were significantly different from those of broth not treated with glucosylceramide. The number of Gram-positive bacteria was significantly increased upon the addition of glucosylceramide compared to that in the control. Glucosylceramide endows intestinal microbes with tolerance to secondary bile acid. These results first demonstrated that glucosylceramide plays a role in the modification of intestinal microbes.
Collapse
|
12
|
Fernández-Remolar DC, Carrizo D, Harir M, Huang T, Amils R, Schmitt-Kopplin P, Sánchez-García L, Gomez-Ortiz D, Malmberg P. Unveiling microbial preservation under hyperacidic and oxidizing conditions in the Oligocene Rio Tinto deposit. Sci Rep 2021; 11:21543. [PMID: 34728655 PMCID: PMC8563943 DOI: 10.1038/s41598-021-00730-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022] Open
Abstract
The preservation of biosignatures on Mars is largely associated with extensive deposits of clays formed under mild early Noachian conditions (> 3.9 Ga). They were followed by widespread precipitation of acidic sulfates considered adverse for biomolecule preservation. In this paper, an exhaustive mass spectrometry investigation of ferric subsurface materials in the Rio Tinto gossan deposit (~ 25 Ma) provides evidence of well-preserved molecular biosignatures under oxidative and acidic conditions. Time of flight secondary ion mass spectrometry (ToF–SIMS) analysis shows a direct association between physical-templating biological structures and molecular biosignatures. This relation implies that the quality of molecular preservation is exceptional and provides information on microbial life formerly operating in the shallow regions of the Rio Tinto subsurface. Consequently, low-pH oxidative environments on Mars could also record molecular information about ancient life in the same way as the Noachian clay-rich deposits.
Collapse
Affiliation(s)
- David C Fernández-Remolar
- CEA, CNRS, IBS, Metalloproteins Unit, Université Grenoble Alpes, 38000, Grenoble, France. .,State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, 999078, PR China. .,CNSA Macau Center for Space Exploration and Science, Macau, 999078, PR China.
| | | | - Mourad Harir
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ting Huang
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, China
| | - Ricardo Amils
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Analytical Food Chemistry, Technical University Munich, 85354, Freising-Weihenstephan, Germany
| | | | - David Gomez-Ortiz
- ESCET-Área de Geología, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
| | - Per Malmberg
- Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| |
Collapse
|
13
|
Fernández-Remolar DC, Gomez-Ortiz D, Huang T, Anglés A, Shen Y, Hu Q, Amils R, Rodríguez N, Escudero C, Banerjee NR. The Molecular Record of Metabolic Activity in the Subsurface of the Río Tinto Mars Analog. ASTROBIOLOGY 2021; 21:1387-1405. [PMID: 34449260 DOI: 10.1089/ast.2020.2431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the subsurface, the interplay between microbial communities and the surrounding mineral substrate, potentially used as an energy source, results in different mineralized structures. The molecular composition of such structures can record and preserve information about the metabolic pathways that have produced them. To characterize the molecular composition of the subsurface biosphere, we have analyzed some core samples by time-of-flight secondary ion mass spectrometry (ToF-SIMS) that were collected in the borehole BH8 during the operations of the Mars Analog and Technology Experiment (MARTE) project. The molecular analysis at a micron-scale mapped the occurrence of several inorganic complexes bearing PO3-, SOx(2 to 4)-, NOx(2,3)-, FeOx(1,2)-, SiO2-, and Cl-. Their distribution correlates with organic molecules that were tentatively assigned to saturated and monounsaturated fatty acids, polyunsaturated fatty acids, saccharides, phospholipids, sphingolipids, and potential peptide fragments. SOx- appear to be mineralizing some microstructures larger than 25 microns, which have branched morphologies, and that source SO3-bearing adducts. PO3-rich compounds occur in two different groups of microstructures which size, morphology, and composition are different. While a group of >40-micron sized circular micronodules lacks organic compounds, an ovoidal microstructure is associated with m/z of other lipids. The NO2-/NO3- and Cl- ions occur as small microstructure clusters (<20 microns), but their distribution is dissimilar to the mineralized microstructures bearing PO3-, and SO3-. However, they have a higher density in areas with more significant enrichment in iron oxides that are traced by different Fe-bearing anions like FeO2-. The distribution of the organic and inorganic negative ions, which we suggest, resulted from the preservation of at least three microbial consortia (PO4--, and NO2--/NO3--mineralizers PO4-lipid bearing microstructures), would have resulted from different metabolic and preservation pathways.
Collapse
Affiliation(s)
- David C Fernández-Remolar
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, SAR China
- CNSA Macau Center for Space Exploration and Science, Macau, PR China
| | - David Gomez-Ortiz
- ESCET-Área de Geología, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Ting Huang
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, SAR China
- CNSA Macau Center for Space Exploration and Science, Macau, PR China
| | - Angélica Anglés
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, SAR China
- CNSA Macau Center for Space Exploration and Science, Macau, PR China
| | - Yan Shen
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, SAR China
- CNSA Macau Center for Space Exploration and Science, Macau, PR China
| | - Qitao Hu
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, SAR China
- CNSA Macau Center for Space Exploration and Science, Macau, PR China
| | - Ricardo Amils
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria Rodríguez
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Spain
| | | | - Neil R Banerjee
- Department of Earth Sciences, Faculty of Science, University of Western Ontario, London, Ontario, Canada
- Institute for Earth and Space Exploration, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
14
|
Deshmukh R, Tiwari S. Molecular interaction of charcoal rot pathogenesis in soybean: a complex interaction. PLANT CELL REPORTS 2021; 40:1799-1812. [PMID: 34232377 DOI: 10.1007/s00299-021-02747-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Charcoal rot (CR) is a major disease of soybean, which is caused by Macrophomina phaseolina (Mp). Increasing temperatures and low rainfall in recent years have immensely benefitted the pathogen. Hence, the search for genetically acquired resistance to this pathogen is essential. The pathogen is a hemibiotroph, which germinates on the root surface and colonizes epidermal tissue. Several surface receptors initiate pathogenesis, followed by the secretion of various enzymes that provide entry to host tissue. Several enzymes and other converging cascades in the pathogen participate against host defensive responses. β-glucan of the fungal cell wall is recognized as MAMPs (microbe-associated molecular patterns) in plants, which trigger host immune responses. Kinase receptors, resistance, and pathogenesis-related genes correspond to host defense response. They work in conjunction with hormone-mediated defense pathway especially, the systemic acquired resistance, calcium-signaling, and production of phytoalexins. Due to its quantitative nature, limited QTLs have been identified in soybean for CR resistance. The present review attempts to provide a functional link between M. phaseolina pathogenicity and soybean responses. Elucidation of CR resistance responses would facilitate improved designing of breeding programs, and may help in the selection of corresponding genes to introgress CR resistant traits.
Collapse
Affiliation(s)
- Reena Deshmukh
- Biotechnology Centre, Jawaharlal Nehru Agriculture University, Jabalpur, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India.
| | - Sharad Tiwari
- Biotechnology Centre, Jawaharlal Nehru Agriculture University, Jabalpur, India
| |
Collapse
|
15
|
Jiang C, Ge J, He B, Zeng B. Glycosphingolipids in Filamentous Fungi: Biological Roles and Potential Applications in Cosmetics and Health Foods. Front Microbiol 2021; 12:690211. [PMID: 34367090 PMCID: PMC8341767 DOI: 10.3389/fmicb.2021.690211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Filamentous fungi are a group of economically important fungi used in the production of fermented foods, industrial enzymes, and secondary metabolites. Glycosphingolipids (GSLs) as constituents of lipid rafts are involved in growth, differentiation, and response to environment stress in filamentous fungi. In addition to these key roles, GSLs are also important in the barrier function of skin to retain moisture as a moisturizing ingredient in cosmetics or health products for their strong biological activity as a functional component. GSLs found in filamentous fungi are divided in two major classes: neutral GSLs (glycosylceramides), glucosylceramides (GlcCers), and/or galactosylceramides (GalCers) and acidic GSLs, mannosylinositol phosphorylceramide (MIPC) and mannosyldiinositol phosphorylceramide [M(IP)2C]. Glycosylceramides are one of the abundant GSLs in Aspergillus and known to improve skin-barrier function and prevent intestinal impairment as a prebiotic. Some filamentous fungi of Aspergillus spp., synthesizing both GlcCer and GalCer, would be an amenable source to exploit glycosylceramides that wildly adding in cosmetics as moisturizing ingredients or health food as dietary supplements. In this minireview, the types, structures, and biosynthetic pathways of GSLs in filamentous fungi, and the relevance of GSLs in fungal growth, spore formation, and environmental stress response are explained. Furthermore, the advantage, potential development, and application of GlcCer and GalCer from filamentous fungi Aspergillus spp. are also investigate based on the use of plant GlcCer in health foods and cosmetics.
Collapse
Affiliation(s)
- Chunmiao Jiang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jinxin Ge
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China.,College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
16
|
Dingjan T, Futerman AH. The role of the 'sphingoid motif' in shaping the molecular interactions of sphingolipids in biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183701. [PMID: 34302797 DOI: 10.1016/j.bbamem.2021.183701] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022]
Abstract
Sphingolipids can be differentiated from other membrane lipids by the distinctive chemistry of the sphingoid long chain base (LCB), which is generated by the condensation of an amino acid (normally but not always serine) and a fatty acyl CoA (normally palmitoyl CoA) by the pyridoxal phosphate-dependent enzyme, serine palmitoyl transferase (SPT). The first five carbon atoms of the sphingoid LCB, herein defined as the 'sphingoid motif', are largely responsible for the unique chemical and biophysical properties of sphingolipids since they can undergo a relatively large number (compared to other lipid species) of molecular interactions with other membrane lipids, via hydrogen-bonding, charge-pairing, hydrophobic and van der Waals interactions. These interactions are responsible, for instance, for the association of sphingolipids with cholesterol in the membrane lipid bilayer. Here, we discuss some of the unique properties of this sphingoid motif, and in addition to outlining how this structural motif drives intra-bilayer interactions, discuss the atomic details of the interactions with two critical players in the biosynthetic pathway, namely SPT, and the ceramide transport protein, CERT. In the former, the selectivity of sphingolipid synthesis relies on a hydrogen bond interaction between Lys379 of SPTLC2 and the l-serine sidechain hydroxyl moiety. In the latter, the entire sphingoid motif is stereoselectively recognized by a hydrogen-bonding network involving all three sphingoid motif heteroatoms. The remarkable selectivity of these interactions, and the subtle means by which these interactions are modified and regulated in eukaryotic cells raises a number of challenging questions about the generation of these proteins, and of their interactions with the sphingoid motif in evolutionary history.
Collapse
Affiliation(s)
- Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
17
|
Struyfs C, Cammue BPA, Thevissen K. Membrane-Interacting Antifungal Peptides. Front Cell Dev Biol 2021; 9:649875. [PMID: 33912564 PMCID: PMC8074791 DOI: 10.3389/fcell.2021.649875] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of invasive fungal infections is increasing worldwide, resulting in more than 1.6 million deaths every year. Due to growing antifungal drug resistance and the limited number of currently used antimycotics, there is a clear need for novel antifungal strategies. In this context, great potential is attributed to antimicrobial peptides (AMPs) that are part of the innate immune system of organisms. These peptides are known for their broad-spectrum activity that can be directed toward bacteria, fungi, viruses, and/or even cancer cells. Some AMPs act via rapid physical disruption of microbial cell membranes at high concentrations causing cell leakage and cell death. However, more complex mechanisms are also observed, such as interaction with specific lipids, production of reactive oxygen species, programmed cell death, and autophagy. This review summarizes the structure and mode of action of antifungal AMPs, thereby focusing on their interaction with fungal membranes.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Reactive oxygen mediated apoptosis as a therapeutic approach against opportunistic Candida albicans. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:25-49. [PMID: 33931141 DOI: 10.1016/bs.apcsb.2020.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Candida albicans are polymorphic fungal species commonly occurs in a symbiotic association with the host's usual microflora. Certain specific changes in its usual microenvironment can lead to diseases ranging from external mucosal to severally lethal systemic infections like invasive candidiasis hospital-acquired fatal infection caused by different species of Candida. The patient acquired with this infection has a high mortality and morbidity rate, ranging from 40% to 60%. This is an ill-posed problem by its very nature. Hence, early diagnosis and management is a crucial part. Antifungal drug resistance against the first and second generation of antifungal drugs has made it difficult to treat such fatal diseases. After a few dormant years, recently, there has been a rapid turnover of identifying novel drugs with low toxicity to limit the problem of drug resistance. After an initial overview of related work, we examine specific prior work on how a change in oxidative stress can facilitate apoptosis in C. albicans. Subsequently, it was investigated that Candida spp. suppresses the production of ROS mediated host defense system. Here, we have reviewed possibly all the small molecule inhibitors, natural products, antimicrobial peptide, and some naturally derived semi-synthetic compounds which are known to influence oxidative stress, to generate a proper apoptotic response in C. albicans and thus might be a novel therapeutic approach to augment the current treatment options.
Collapse
|
19
|
Puccia R. Current Status on Extracellular Vesicles from the Dimorphic Pathogenic Species of Paracoccidioides. Curr Top Microbiol Immunol 2021; 432:19-33. [DOI: 10.1007/978-3-030-83391-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Saromi K, England P, Tang W, Kostrzewa M, Corran A, Woscholski R, Larrouy-Maumus G. Rapid glycosyl-inositol-phospho-ceramide fingerprint from filamentous fungal pathogens using the MALDI Biotyper Sirius system. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8904. [PMID: 32700347 DOI: 10.1002/rcm.8904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Glycosyl-inositol-phospho-ceramides (GIPCs) or glycosylphosphatidylinositol-anchored fungal polysaccharides are known to be major lipids in plant and fungal plasma membranes and to play an important role in stress adaption. However, their analysis remains challenging due to the several steps involved for their extractions and purifications prior to mass spectrometric analysis. To address this challenge, we developed a rapid and sensitive method to identify GIPCs from the four common fungal plant pathogens Botrytis cinerea, Fusarium graminearium, Neurospora crassa and Ustilago maydis. METHODS Fungal plant pathogens were cultured, harvested, heat-inactivated and washed three times with double-distilled water. Intact fungi were deposited on a matrix-assisted laser desorption ionization (MALDI) target plate, mixed with the matrix consisting of a 9:1 mixture of 2,5-dihydroxybenzoic acid and 2-hydroxy-5-methoxybenzoic acid solubilized at 10 mg/mL in chloroform-methanol (9:1 v/v) and analyzed using a Bruker MALDI Biotyper Sirius system in the linear negative ion mode. Mass spectra were acquired from m/z 700 to 2000. RESULTS MALDI time-of-flight (TOF) mass spectrometric analysis of cultured fungi showed clear signature of GIPCs in B. cinerea, F. graminearium, N. crassa and U. maydis. CONCLUSIONS We have demonstrated that routine MALDI-TOF in the linear negative ion mode combined with an apolar solvent system to solubilize the matrix is applicable to the detection of filamentous fungal GIPCs.
Collapse
Affiliation(s)
- Kofo Saromi
- Department of Chemistry, Faculty of Natural Sciences and Institute of Chemical Biology (ICB), Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Philippa England
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Wenhao Tang
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
| | | | - Andy Corran
- Syngenta Group, Bioscience, Jealott's Hill Research Station, Bracknell RG42 6EY, UK
| | - Rudiger Woscholski
- Department of Chemistry, Faculty of Natural Sciences and Institute of Chemical Biology (ICB), Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
21
|
Santos FC, Marquês JT, Bento‐Oliveira A, Almeida RF. Sphingolipid‐enriched domains in fungi. FEBS Lett 2020; 594:3698-3718. [DOI: 10.1002/1873-3468.13986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Filipa C. Santos
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Joaquim T. Marquês
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Andreia Bento‐Oliveira
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Rodrigo F.M. Almeida
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| |
Collapse
|
22
|
Fernandes CM, Poeta MD. Fungal sphingolipids: role in the regulation of virulence and potential as targets for future antifungal therapies. Expert Rev Anti Infect Ther 2020; 18:1083-1092. [PMID: 32673125 PMCID: PMC7657966 DOI: 10.1080/14787210.2020.1792288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The antifungal therapy currently available includes three major classes of drugs: polyenes, azoles and echinocandins. However, the clinical use of these compounds faces several challenges: while polyenes are toxic to the host, antifungal resistance to azoles and echinocandins has been reported. AREAS COVERED Fungal sphingolipids (SL) play a pivotal role in growth, morphogenesis and virulence. In addition, fungi possess unique enzymes involved in SL synthesis, leading to the production of lipids which are absent or differ structurally from the mammalian counterparts. In this review, we address the enzymatic reactions involved in the SL synthesis and their relevance to the fungal pathogenesis, highlighting their potential as targets for novel drugs and the inhibitors described so far. EXPERT OPINION The pharmacological inhibition of fungal serine palmitoyltransferase depends on the development of specific drugs, as myriocin also targets the mammalian enzyme. Inhibitors of ceramide synthase might constitute potent antifungals, by depleting the pool of complex SL and leading to the accumulation of the toxic intermediates. Acylhydrazones and aureobasidin A, which inhibit GlcCer and IPC synthesis, are not toxic to the host and effectively treat invasive mycoses, emerging as promising new classes of antifungal drugs.
Collapse
Affiliation(s)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, NY, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, NY, USA
- Veterans Administration Medical Center, Northport, NY, USA
| |
Collapse
|
23
|
Rollin-Pinheiro R, Xisto MIDDS, Rochetti VP, Barreto-Bergter E. Scedosporium Cell Wall: From Carbohydrate-Containing Structures to Host-Pathogen Interactions. Mycopathologia 2020; 185:931-946. [PMID: 32990888 DOI: 10.1007/s11046-020-00480-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Scedosporium species are filamentous fungi usually found in sewage and soil from human-impacted areas. They cause a wide range of diseases in humans, from superficial infections, such as mycetoma, to invasive and disseminated cases, especially associated in immunocompromised patients. Scedosporium species are also related to lung colonization in individuals presenting cystic fibrosis and are considered one of the most frequent fungal pathogens associated to this pathology. Scedosporium cell wall contains glycosylated molecules involved in important biological events related to virulence and pathogenicity and represents a significant source of antigens. Polysaccharides, peptidopolysaccharides, O-linked oligosaccharides and glycosphingolipids have been identified on the Scedosporium surface. Their primary structures were determined based on a combination of techniques including gas chromatography, ESI-MS, and 1H and 13C nuclear magnetic resonance. Peptidorhamnnomannans are common cell wall components among Scedosporium species. Comparing different species, minor structural differences in the carbohydrate portions were detected which could be useful to understand variations in virulence observed among the species. N- and O-linked peptidorhamnomannans are major pathogen-associated molecular patterns and, along with α-glucans, play important roles in triggering host innate immunity. Glycosphingolipids, such as glucosylceramides, have highly conserved structures in Scedosporium species and are crucial for fungal growth and virulence. The present review presents current knowledge on structural and functional aspects of Scedosporium glycoconjugates that are relevant for understanding pathogenicity mechanisms and could contribute to the design of new agents capable of inhibiting growth and differentiation of Scedosporium species. Other cell components such as melanin and ectophosphatases will be also included.
Collapse
Affiliation(s)
- Rodrigo Rollin-Pinheiro
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Mariana Ingrid Dutra da Silva Xisto
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Victor Pereira Rochetti
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
24
|
Sphingolipidomics of drug resistant Candida auris clinical isolates reveal distinct sphingolipid species signatures. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158815. [PMID: 32942047 PMCID: PMC7695621 DOI: 10.1016/j.bbalip.2020.158815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
Independent studies from our group and others have provided evidence that sphingolipids (SLs) influence the antimycotic susceptibility of Candida species. We analyzed the molecular SL signatures of drug-resistant clinical isolates of Candida auris, which have emerged as a global threat over the last decade. This included Indian hospital isolates of C. auris, which were either resistant to fluconazole (FLCR) or amphotericin B (AmBR) or both drugs. Relative to Candida glabrata and Candida albicans strains, these C. auris isolates were susceptible to SL pathway inhibitors such as myriocin and aureobasidin A, suggesting that SL content may influence azole and AmB susceptibilities. Our analysis of SLs confirmed the presence of 140 SL species within nine major SL classes, namely the sphingoid bases, Cer, αOH-Cer, dhCer, PCer, αOH-PCer, αOH-GlcCer, GlcCer, and IPC. Other than for αOH-GlcCer, most of the SLs were found at higher concentrations in FLCR isolates as compared to the AmBR isolates. SLs were at intermediate levels in FLCR + AmBR isolates. The observed diversity of molecular species of SL classes based on fatty acyl composition was further reflected in their distinct specific imprint, suggesting their influence in drug resistance. Together, the presented data improves our understanding of the dynamics of SL structures, their synthesis, and link to the drug resistance in C. auris. Candida auris isolates are susceptible to sphingolipid inhibitors myriocin and aureobasidin A. The distribution of sphingolipid species is distinct among C. auris isolates resistant to different antifungals. Phytoceramides are the most abundant class of sphingolipid. Cer(d18:1/18:1) is the major of ceramide species in C. auris. d19:2 glucosylceramide backbone is typically in abundance in AmB resistant C. auris isolates.
Collapse
|
25
|
Song J, Liu X, Li R. Sphingolipids: Regulators of azole drug resistance and fungal pathogenicity. Mol Microbiol 2020; 114:891-905. [PMID: 32767804 DOI: 10.1111/mmi.14586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022]
Abstract
In recent years, the role of sphingolipids in pathogenic fungi, in terms of pathogenicity and resistance to azole drugs, has been a rapidly growing field. This review describes evidence about the roles of sphingolipids in azole resistance and fungal virulence. Sphingolipids can serve as signaling molecules that contribute to azole resistance through modulation of the expression of drug efflux pumps. They also contribute to azole resistance by participating in various microbial pathways such as the unfolded protein response (UPR), pH-responsive Rim pathway, and pleiotropic drug resistance (PDR) pathway. In addition, sphingolipid signaling and eisosomes also coordinately regulate sphingolipid biosynthesis in response to azole-induced membrane stress. Sphingolipids are important for fungal virulence, playing roles during growth in hosts under stressful conditions, maintenance of cell wall integrity, biofilm formation, and production of various virulence factors. Finally, we discuss the possibility of exploiting fungal sphingolipids for the development of new therapeutic strategies to treat infections caused by pathogenic fungi.
Collapse
Affiliation(s)
- Jinxing Song
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| | - Xiao Liu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| |
Collapse
|
26
|
Calvano CD, Coniglio D, D'Alesio PE, Losito I, Cataldi TRI. The occurrence of inositolphosphoceramides in spirulina microalgae. Electrophoresis 2020; 41:1760-1767. [PMID: 32297342 DOI: 10.1002/elps.202000031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/09/2020] [Accepted: 04/01/2020] [Indexed: 12/28/2022]
Abstract
Spirulina microalga (Arthrospira platensis) is an interesting phototrophic organism because of its high content of nutrients including proteins, lipids, essential amino acids, antioxidants, vitamins, polysaccharides, and minerals. Hydrophilic interaction liquid chromatography (HILIC) coupled to linear ion trap (LIT) and Orbitrap Fourier transform mass spectrometry (FTMS) via ESI was employed for the separation and characterization of lipid species in A. platensis. Inositolphosphoceramides (IPC) are minor but important constituents of spirulina; their investigation was accomplished by HILIC-ESI-MS including collision-induced dissociation (MS2 , MS3 ) of deprotonated molecules in the LIT analyzer and a schematic fragmentation pattern is described. All four commercial spirulina samples revealed the occurrence of the same IPC species at m/z 796.6 (d18:0/16:0;1), 810.6 (d18:0/17:0;1), 824.6 (d18:0/18:0;1), and 826.6 (d18:0/17:0;2) but in diverse relative abundance. This study sets the stage for future investigations on IPC in other algae and microalgae.
Collapse
Affiliation(s)
- C D Calvano
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy.,Dipartimento di Farmacia- Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - D Coniglio
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - P E D'Alesio
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - I Losito
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - T R I Cataldi
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
27
|
Cheng Y, Lin Y, Cao H, Li Z. Citrus Postharvest Green Mold: Recent Advances in Fungal Pathogenicity and Fruit Resistance. Microorganisms 2020; 8:E449. [PMID: 32209982 PMCID: PMC7143998 DOI: 10.3390/microorganisms8030449] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 01/04/2023] Open
Abstract
As the major postharvest disease of citrus fruit, postharvest green mold is caused by the necrotrophic fungus Penicillium digitatum (Pd), which leads to huge economic losses worldwide. Fungicides are still the main method currently used to control postharvest green mold in citrus fruit storage. Investigating molecular mechanisms of plant-pathogen interactions, including pathogenicity and plant resistance, is crucial for developing novel and safer strategies for effectively controlling plant diseases. Despite fruit-pathogen interactions remaining relatively unexplored compared with well-studied leaf-pathogen interactions, progress has occurred in the citrus fruit-Pd interaction in recent years, mainly due to their genome sequencing and establishment or optimization of their genetic transformation systems. Recent advances in Pd pathogenicity on citrus fruit and fruit resistance against Pd infection are summarized in this review.
Collapse
Affiliation(s)
- Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Yunlong Lin
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Haohao Cao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| |
Collapse
|
28
|
Species-Specific Differences in the Susceptibility of Fungi to the Antifungal Protein AFP Depend on C-3 Saturation of Glycosylceramides. mSphere 2019; 4:4/6/e00741-19. [PMID: 31826973 PMCID: PMC6908424 DOI: 10.1128/msphere.00741-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Our data suggest a fundamental role of glycosylceramides in the susceptibility of fungi to AFP. We discovered that only a minor structural difference in these molecules—namely, the saturation level of their fatty acid chain, controlled by a 2-hydroxy fatty N-acyl-Δ3(E)-desaturase—represents a key to understanding the inhibitory activity of AFP. As glycosylceramides are important components of fungal plasma membranes, we propose a model which links AFP-mediated inhibition of chitin synthesis in fungi with its potential to disturb plasma membrane integrity. AFP is an antimicrobial peptide (AMP) produced by the filamentous fungus Aspergillus giganteus and is a very potent inhibitor of fungal growth that does not affect the viability of bacteria, plant, or mammalian cells. It targets chitin synthesis and causes plasma membrane permeabilization in many human- and plant-pathogenic fungi, but its exact mode of action is not known. After adoption of the “damage-response framework of microbial pathogenesis” regarding the analysis of interactions between AMPs and microorganisms, we have recently proposed that the cytotoxic capacity of a given AMP depends not only on the presence/absence of its target(s) in the host and the AMP concentration applied but also on other variables, such as microbial survival strategies. We show here using the examples of three filamentous fungi (Aspergillus niger, Aspergillus fumigatus, and Fusarium graminearum) and two yeasts (Saccharomyces cerevisiae and Pichia pastoris) that the important parameters defining the AFP susceptibilities of these fungi are (i) the presence/absence of glycosylceramides, (ii) the presence/absence of Δ3(E) desaturation of the fatty acid chain therein, and (iii) the (dis)ability of these fungi to respond to AFP inhibitory effects with the fortification of their cell walls via increased chitin and β-(1,3)-glucan synthesis. These observations support the idea of the adoption of the damage-response framework to holistically understand the outcome of AFP inhibitory effects. IMPORTANCE Our data suggest a fundamental role of glycosylceramides in the susceptibility of fungi to AFP. We discovered that only a minor structural difference in these molecules—namely, the saturation level of their fatty acid chain, controlled by a 2-hydroxy fatty N-acyl-Δ3(E)-desaturase—represents a key to understanding the inhibitory activity of AFP. As glycosylceramides are important components of fungal plasma membranes, we propose a model which links AFP-mediated inhibition of chitin synthesis in fungi with its potential to disturb plasma membrane integrity.
Collapse
|
29
|
Wang R, Clarke BB, Belanger FC. Transcriptome Analysis of Choke Stroma and Asymptomatic Inflorescence Tissues Reveals Changes in Gene Expression in Both Epichloë festucae and Its Host Plant Festuca rubra subsp. rubra. Microorganisms 2019; 7:E567. [PMID: 31744076 PMCID: PMC6921078 DOI: 10.3390/microorganisms7110567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Many cool-season grasses have symbiotic relationships with Epichloë (Ascomycota, Clavicipitaceae) fungal endophytes that inhabit the intercellular spaces of the above-ground parts of the host plants. The presence of the Epichloë endophytes is generally beneficial to the hosts due to enhanced tolerance to biotic and abiotic stresses conferred by the endophytes. Many Epichloë spp. are asexual, and those infections always remain asymptomatic. However, some Epichloë spp. have a sexual stage and produce a macroscopic fruiting body, a stroma, that envelops the developing inflorescence causing a syndrome termed "choke disease". Here, we report a fungal and plant gene expression analysis of choke stroma tissue and asymptomatic inflorescence tissue of Epichloë festucae-infected strong creeping red fescue (Festuca rubra subsp. rubra). Hundreds of fungal genes and over 10% of the plant genes were differentially expressed when comparing the two tissue types. The differentially expressed fungal genes in the choke stroma tissue indicated a change in carbohydrate and lipid metabolism, as well as a change in expression of numerous genes for candidate effector proteins. Plant stress-related genes were up-regulated in the stroma tissue, suggesting the plant host was responding to the epiphytic stage of E. festucae as a pathogen.
Collapse
Affiliation(s)
| | | | - Faith C. Belanger
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (R.W.); (B.B.C.)
| |
Collapse
|
30
|
Rizzo J, Stanchev LD, da Silva VK, Nimrichter L, Pomorski TG, Rodrigues ML. Role of lipid transporters in fungal physiology and pathogenicity. Comput Struct Biotechnol J 2019; 17:1278-1289. [PMID: 31921394 PMCID: PMC6944739 DOI: 10.1016/j.csbj.2019.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 02/08/2023] Open
Abstract
The fungal cell wall and membrane are the most common targets of antifungal agents, but the potential of membrane lipid organization in regulating drug-target interactions has yet to be investigated. Energy-dependent lipid transporters have been recently associated with virulence and drug resistance in many pathogenic fungi. To illustrate this view, we discuss (i) the structural and biological aspects of ATP-driven lipid transporters, comprising P-type ATPases and ATP-binding cassette transporters, (ii) the role of these transporters in fungal physiology and virulence, and (iii) the potential of lipid transporters as targets for the development of novel antifungals. These recent observations indicate that the lipid-trafficking machinery in fungi is a promising target for studies on physiology, pathogenesis and drug development.
Collapse
Affiliation(s)
- Juliana Rizzo
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lyubomir Dimitrov Stanchev
- Department of Molecular Biochemistry, Ruhr University Bochum, Faculty of Chemistry and Biochemistry, 44780 Bochum, Germany
- Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C,Denmark
| | - Vanessa K.A. da Silva
- Programa de Pós-Graduação em Biologia Parasitária do Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Ruhr University Bochum, Faculty of Chemistry and Biochemistry, 44780 Bochum, Germany
- Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C,Denmark
| | - Marcio L. Rodrigues
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| |
Collapse
|
31
|
Duarte TT, Ellis CC, Grajeda BI, De Chatterjee A, Almeida IC, Das S. A Targeted Mass Spectrometric Analysis Reveals the Presence of a Reduced but Dynamic Sphingolipid Metabolic Pathway in an Ancient Protozoan, Giardia lamblia. Front Cell Infect Microbiol 2019; 9:245. [PMID: 31396488 PMCID: PMC6668603 DOI: 10.3389/fcimb.2019.00245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Giardia lamblia, a single-celled eukaryote, colonizes and thrives in the small intestine of humans. Because of its compact and reduced genome, Giardia has adapted a “minimalistic” life style, as it becomes dependent on available resources of the small intestine. Because Giardia expresses fewer sphingolipid (SL) genes—and glycosphingolipids are critical for encystation—we investigated the SL metabolic cycle in this parasite. A tandem mass spectrometry (MS/MS) analysis reveals that major SLs in Giardia include sphingomyelins, sphingoid bases, ceramides, and glycosylceramides. Many of these lipids are obtained by Giardia from the growth medium, remodeled at their fatty acyl chains and end up in the spent medium. For instance, ceramide-1-phosphate, a proinflammatory molecule that is not present in the culture medium, is generated from sphingosine (abundant in the culture medium) possibly by remodeling reactions. It is then subsequently released into the spent medium. Thus, the secretion of ceramide-1-phospate and other SL derivatives by Giardia could be associated with inflammatory bowel disease observed in acute giardiasis. Additionally, we found that the levels of SLs increase in encysting Giardia and are differentially regulated throughout the encystation cycle. We propose that SL metabolism is important for this parasite and, could serve as potential targets for developing novel anti-giardial agents.
Collapse
Affiliation(s)
- Trevor T Duarte
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Cameron C Ellis
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Brian I Grajeda
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Atasi De Chatterjee
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Igor C Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States.,Infectious Disease and Immunology Cluster, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Siddhartha Das
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States.,Infectious Disease and Immunology Cluster, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
32
|
Huang Y, Li B, Yin J, Yang Q, Sheng O, Deng G, Li C, Hu C, Dong T, Dou T, Gao H, Bi F, Yi G. CgGCS, Encoding a Glucosylceramide Synthase, Is Required for Growth, Conidiation and Pathogenicity in Colletotrichum gloeosporioides. Front Microbiol 2019; 10:1016. [PMID: 31164871 PMCID: PMC6536669 DOI: 10.3389/fmicb.2019.01016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/24/2019] [Indexed: 01/11/2023] Open
Abstract
Fungal glucosylceramide plays important role in cell division, hyphal formation and growth, spore germination and the modulation of virulence and has recently been considered as target for small molecule inhibitors. In this study, we characterized CgGCS, a protein encoding a glucosylceramide synthase (GCS) in Colletotrichum gloeosporioides. Disruption of CgGCS resulted in a severe reduction of mycelial growth and defects in conidiogenesis. Sphingolipid profile analysis revealed large decreases in glucosylceramide production in the mutant strains. Pathogenicity assays indicated that the ability of the ΔCgGCS mutants to invade both tomato and mango hosts was almost lost. In addition, the expression levels of many genes, especially those related to metabolism, were shown to be affected by the mutation of CgGCS via transcriptome analysis. Overall, our results demonstrate that C. gloeosporioides glucosylceramide is an important regulatory factor in fungal growth, conidiation, and pathogenesis in hosts.
Collapse
Affiliation(s)
- Yimei Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Bin Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China.,College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jian Yin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiaosong Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Ou Sheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Chunhua Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Tao Dong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Tongxin Dou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Huijun Gao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Fangcheng Bi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| |
Collapse
|
33
|
Hartmann DO, Piontkivska D, Moreira CJS, Silva Pereira C. Ionic Liquids Chemical Stress Triggers Sphingoid Base Accumulation in Aspergillus nidulans. Front Microbiol 2019; 10:864. [PMID: 31105664 PMCID: PMC6491925 DOI: 10.3389/fmicb.2019.00864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/04/2019] [Indexed: 11/30/2022] Open
Abstract
Understanding stress responses and signaling pathways in fungi became a fundamental need for the discovery of new specific antifungal targets for fighting emerging life-threatening pathogens and drug resistance. Ionic liquids constitute a unique class of chemicals, which structural diversity and tunable physical and chemical properties can provide a great diversity of stimuli. In this study, we propose the use of ionic liquids as tools to unravel signaling of stress responses in the filamentous fungus Aspergillus nidulans. We assessed how three ionic liquids with distinct effects over the cell wall and plasma membrane affect the biosynthesis of sphingolipids and accumulation of free sphingoid bases in this fungus. The stress imposed by each ionic liquid triggered the sphingolipid biosynthetic pathway and led to distinct profiles of sphingoid bases accumulation. Dodecyltributylphosphonium chloride and 1-decyl-3-methylimidazolium chloride induced the accumulation of sphingosine and of a yet unknown sphingoid base, respectively, while cholinium decanoate did not seem to accumulate any of these intermediates. This study brings further light to the roles of sphingoid bases in A. nidulans. In particular, sphingosine as a possible response mediator to cell wall damage induced by dodecyltributylphosphonium chloride, and involvement of an unknown sphingoid base in the response to plasma membrane permeabilization caused by 1-decyl-3-methylimidazolium chloride. In addition, we completed the genetic assignment of the glucosylceramide pathway in A. nidulans through the identification of the sphingolipid Δ4-desaturase gene (AN4405). The knowledge established reinforces the idea of targeting sphingolipids biosynthesis in the search of improved antifungal compounds.
Collapse
Affiliation(s)
- Diego O Hartmann
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Daryna Piontkivska
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Carlos J S Moreira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| |
Collapse
|
34
|
Huber A, Oemer G, Malanovic N, Lohner K, Kovács L, Salvenmoser W, Zschocke J, Keller MA, Marx F. Membrane Sphingolipids Regulate the Fitness and Antifungal Protein Susceptibility of Neurospora crassa. Front Microbiol 2019; 10:605. [PMID: 31031714 PMCID: PMC6471014 DOI: 10.3389/fmicb.2019.00605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
The membrane sphingolipid glucosylceramide (GlcCer) plays an important role in fungal fitness and adaptation to most diverse environments. Moreover, reported differences in the structure of GlcCer between fungi, plants and animals render this pathway a promising target for new generation therapeutics. Our knowledge about the GlcCer biosynthesis in fungi is mainly based on investigations of yeasts, whereas this pathway is less well characterized in molds. We therefore performed a detailed lipidomic profiling of GlcCer species present in Neurospora crassa and comprehensively show that the deletion of genes encoding enzymes involved in GlcCer biosynthesis affects growth, conidiation and stress response in this model fungus. Importantly, our study evidences that differences in the pathway intermediates and their functional role exist between N. crassa and other fungal species. We further investigated the role of GlcCer in the susceptibility of N. crassa toward two small cysteine-rich and cationic antimicrobial proteins (AMPs), PAF and PAFB, which originate from the filamentous ascomycete Penicillium chrysogenum. The interaction of these AMPs with the fungal plasma membrane is crucial for their antifungal toxicity. We found that GlcCer determines the susceptibility of N. crassa toward PAF, but not PAFB. A higher electrostatic affinity of PAFB than PAF to anionic membrane surfaces might explain the difference in their antifungal mode of action.
Collapse
Affiliation(s)
- Anna Huber
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Oemer
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Nermina Malanovic
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Graz, Austria
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Graz, Austria
| | - Laura Kovács
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Johannes Zschocke
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
35
|
Fabri JHTM, Godoy NL, Rocha MC, Munshi M, Cocio TA, von Zeska Kress MR, Fill TP, da Cunha AF, Del Poeta M, Malavazi I. The AGC Kinase YpkA Regulates Sphingolipids Biosynthesis and Physically Interacts With SakA MAP Kinase in Aspergillus fumigatus. Front Microbiol 2019; 9:3347. [PMID: 30692984 PMCID: PMC6339957 DOI: 10.3389/fmicb.2018.03347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
Sphingolipids (SL) are complex lipids and components of the plasma membrane which are involved in numerous cellular processes, as well as important for virulence of different fungal pathogens. In yeast, SL biosynthesis is regulated by the "AGC kinases" Ypk1 and Ypk2, which also seem to connect the SL biosynthesis with the cell wall integrity (CWI) and the High Osmolarity Glycerol (HOG) pathways. Here, we investigate the role of ypkA Y PK1 in SL biosynthesis and its relationship with the CWI and the HOG pathways in the opportunistic human pathogen Aspergillus fumigatus. We found that ypkA is important for fungal viability, since the ΔypkA strain presented a drastically sick phenotype and complete absence of conidiation. We observed that under repressive condition, the conditional mutant niiA::ypkA exhibited vegetative growth defects, impaired germination and thermosensitivity. In addition, the ypkA loss of function caused a decrease in glycosphingolipid (GSL) levels, especially the metabolic intermediates belonging to the neutral GSL branch including dihydroceramide (DHC), ceramide (Cer), and glucosylceramide (GlcCer), but interestingly a small increase in ergosterol content. Genetic analyzes showed that ypkA genetically interacts with the MAP kinases of CWI and HOG pathways, mpkA and sakA, respectively, while only SakA physically interacts with YpkA. Our results suggest that YpkA is important for fungal survival through the regulation of GSL biosynthesis and cross talks with A. fumigatus MAP kinase pathways.
Collapse
Affiliation(s)
| | - Naiane Lima Godoy
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Mansa Munshi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - Tiago Alexandre Cocio
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Marcia Regina von Zeska Kress
- Departamento de Análises Clínicas Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States.,Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States.,Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States.,Veterans Administration Medical Center, Northport, NY, United States
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
36
|
Zheng YH, Ma YY, Ding Y, Chen XQ, Gao GX. An insight into new strategies to combat antifungal drug resistance. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3807-3816. [PMID: 30464412 PMCID: PMC6225914 DOI: 10.2147/dddt.s185833] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Invasive fungal infections especially in immunocompromised patients represent a dominating cause of mortality. The most commonly used antifungal agents can be divided into three broad categories, including triazoles, echinocandins and polyenes. Antifungal resistance is on the increase, posing a growing threat to the stewardship of immunocompromised patients with fungal infections. The paucity of currently available antifungals leads to the rapid emergence of drug resistance and thus aggravates the refractoriness of invasive fungal infections. Therefore, deep exploration into mechanisms of drug resistance and search for new antifungal targets are required. This review highlights the therapeutic strategies targeting Hsp90, calcineurin, trehalose biosynthesis and sphingolipids biosynthesis, in an attempt to provide clinical evidence for overcoming drug resistance and to form the rationale for combination therapy of conventional antifungals and agents with novel mechanisms of action. What’s more, this review also gives a concise introduction of three new-fashioned antifungals, including carboxymethyl chitosan, silver nanoparticles and chromogranin A-N46.
Collapse
Affiliation(s)
- Yan-Hua Zheng
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, ;
| | - Yue-Yun Ma
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xie-Qun Chen
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, ;
| | - Guang-Xun Gao
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, ;
| |
Collapse
|
37
|
Ochiai A, Ogawa K, Fukuda M, Ohori M, Kanaoka T, Tanaka T, Taniguchi M, Sagehashi Y. Rice Defensin OsAFP1 is a New Drug Candidate against Human Pathogenic Fungi. Sci Rep 2018; 8:11434. [PMID: 30061724 PMCID: PMC6065317 DOI: 10.1038/s41598-018-29715-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022] Open
Abstract
Fungal infections, such as candidiasis and aspergillosis, are some of the most frequent infections in humans. Although antifungal drugs are available for the treatment of these infections, antifungal agents with new mechanisms of action should be developed because of the increasing incidence of drug-resistant pathogens in recent years. In this study, a basic functional analysis of rice defensin OsAFP1, a novel antifungal drug candidate, was conducted. OsAFP1 exerted fungicidal activity against Candida albicans, the most common pathogenic fungus in humans, at 4 μM concentration, but it did not inhibit the growth of human pathogenic bacteria. In addition, OsAFP1 retained structural stability after heat treatment at 100 °C for 10 min and after serum treatment at 37 °C for 24 h. A propidium iodide (PI) uptake assay and mutational analysis revealed that amino acid residues within the C-terminal γ-core motif of OsAFP1, particularly Leu-39 and Lys-41, play an important role in its antifungal activity. Further, PI uptake and apoptosis assays suggested that OsAFP1 exerts its antifungal activity by inducing apoptosis of target cells. Immunohistochemistry showed that the OsAFP1 target molecule was located in the cell wall. These findings indicate that OsAFP1 may be developed into a potent antifungal drug.
Collapse
Affiliation(s)
- Akihito Ochiai
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, Japan.
| | - Kodai Ogawa
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, Japan
| | - Minami Fukuda
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, Japan
| | - Masahiro Ohori
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, Japan
| | - Takumi Kanaoka
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, Japan
| | - Masayuki Taniguchi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, Japan
| | - Yoshiyuki Sagehashi
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hokkaido, Japan.
| |
Collapse
|
38
|
Abstract
Filamentous and dimorphic fungi cause invasive mycoses associated with high mortality rates. Among the fungal determinants involved in the establishment of infection, glycosphingolipids (GSLs) have gained increased interest in the last few decades. GSLs are ubiquitous membrane components that have been isolated from both filamentous and dimorphic species and play a crucial role in polarized growth as well as hypha-to-yeast transition. In fungi, two major classes of GSLs are found: neutral and acidic GSLs. Neutral GSLs comprise glucosylceramide and galactosylceramide, which utilize Δ4-Δ8-9-methyl-sphingadienine as a sphingoid base, linked to a C16-18 fatty acid chain, forming ceramide, and to a sugar residue, such as glucose or galactose. In contrast, acidic GSLs include glycosylinositol phosphorylceramides (GIPCs), composed of phytosphingosine attached to a long or very long fatty acid chain (C18-26) and to diverse and complex glycan groups via an inositol-phosphate linker. GIPCs are absent in mammalian cells, while fungal glucosylceramide and galactosylceramide are present but diverge structurally from their counterparts. Therefore, these compounds and their biosynthetic pathways represent potential targets for the development of selective therapeutic strategies. In this minireview, we discuss the enzymatic steps involved in the production of fungal GSLs, analyze their structure, and address the role of the currently characterized genes in the biology and pathogenesis of filamentous and dimorphic fungi.
Collapse
|
39
|
Agustinho DP, Miller LC, Li LX, Doering TL. Peeling the onion: the outer layers of Cryptococcus neoformans. Mem Inst Oswaldo Cruz 2018; 113:e180040. [PMID: 29742198 PMCID: PMC5951675 DOI: 10.1590/0074-02760180040] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen
that is ubiquitous in the environment. It causes a deadly meningitis that is
responsible for over 180,000 deaths worldwide each year, including 15% of all
AIDS-related deaths. The high mortality rates for this infection, even with
treatment, suggest a need for improved therapy. Unique characteristics of
C. neoformans may suggest directions for drug discovery.
These include features of three structures that surround the cell: the plasma
membrane, the cell wall around it, and the outermost polysaccharide capsule. We
review current knowledge of the fundamental biology of these fascinating
structures and highlight open questions in the field, with the goal of
stimulating further investigation that will advance basic knowledge and human
health.
Collapse
Affiliation(s)
- Daniel P Agustinho
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Liza C Miller
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lucy X Li
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
40
|
Rizzo J, Colombo AC, Zamith-Miranda D, Silva VKA, Allegood JC, Casadevall A, Del Poeta M, Nosanchuk JD, Kronstad JW, Rodrigues ML. The putative flippase Apt1 is required for intracellular membrane architecture and biosynthesis of polysaccharide and lipids in Cryptococcus neoformans. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:532-541. [PMID: 29291962 PMCID: PMC6052768 DOI: 10.1016/j.bbamcr.2017.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/15/2017] [Accepted: 12/28/2017] [Indexed: 12/27/2022]
Abstract
Flippases are responsible for the asymmetric distribution of phospholipids in biological membranes. In the encapsulated fungal pathogen Cryptococcus neoformans, the putative flippase Apt1 is an important regulator of polysaccharide secretion and pathogenesis in mice by unknown mechanisms. In this study, we analyzed the role of C. neoformans Apt1 in intracellular membrane architecture and synthesis of polysaccharide and lipids. Analysis of wild type (WT), apt1Δ (mutant) and apt1Δ::APT1 (complemented) strains by transmission electron microscopy revealed that deletion of APT1 resulted in the formation of irregular vacuoles. Disorganization of vacuolar membranes in apt1Δ cells was accompanied by a significant increase in the amounts of intra-vacuolar and pigment-containing vesicles. Quantitative immunogold labeling of C. neoformans cells with a monoclonal antibody raised to a major capsular component suggested impaired polysaccharide synthesis. APT1 deletion also affected synthesis of phosphatidylserine, phosphatidylethanolamine, inositolphosphoryl ceramide, glucosylceramide and ergosterylglycoside. These results reveal novel functions of Apt1 and are in agreement with the notion that this putative flippase plays an important role in the physiology of C. neoformans.
Collapse
Affiliation(s)
- Juliana Rizzo
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana C Colombo
- Departments of Biochemistry and Molecular Genetics and Microbiology, Stony Brook University, New York, USA; Programa de Pós-Graduação em Química Biológica do Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Zamith-Miranda
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, New York, USA
| | - Vanessa K A Silva
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Biologia Parasitária do Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jeremy C Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Maurizio Del Poeta
- Departments of Biochemistry and Molecular Genetics and Microbiology, Stony Brook University, New York, USA; Veterans Administration Medical Center, Northport, USA; Division of Infectious Diseases, Stony Brook University, New York, USA
| | - Joshua D Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, New York, USA
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Marcio L Rodrigues
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
41
|
Muszewska A, Piłsyk S, Perlińska-Lenart U, Kruszewska JS. Diversity of Cell Wall Related Proteins in Human Pathogenic Fungi. J Fungi (Basel) 2017; 4:E6. [PMID: 29371499 PMCID: PMC5872309 DOI: 10.3390/jof4010006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/25/2017] [Indexed: 02/06/2023] Open
Abstract
The cell wall is one of the major keys to fungal identity. Fungi use their cell wall to sense the environment, and localize nutrients and competing microorganism. Pathogenic species additionally modify their cell walls to hide from a host's immune system. With the growing number of fungal infections and alarming shortage of available drugs, we are in need of new approaches to fight pathogens. The cell wall seems to be a natural target, since animal host cells are devoid of it. The current knowledge about fungal cell wall components is often limited, and there is huge diversity both in structure and composition between species. In order to compare the distribution of diverse proteins involved in cell wall biosynthesis and maintenance, we performed sequence homology searches against 24 fungal proteomes from distinct taxonomic groups, all reported as human pathogens. This approach led to identification of 4014 cell wall proteins (CWPs), and enabled us to speculate about cell wall composition in recently sequenced pathogenic fungi with limited experimental information. We found large expansions of several CWP families, in particular taxa, and a number of new CWPs possibly involved in evading host immune recognition. Here, we present a comprehensive evolutionary history of fungal CWP families in the context of the fungal tree of life.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-792 Warsaw, Poland.
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-792 Warsaw, Poland.
| | | | - Joanna S Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-792 Warsaw, Poland.
| |
Collapse
|
42
|
Raj S, Nazemidashtarjandi S, Kim J, Joffe L, Zhang X, Singh A, Mor V, Desmarini D, Djordjevic J, Raleigh DP, Rodrigues ML, London E, Del Poeta M, Farnoud AM. Changes in glucosylceramide structure affect virulence and membrane biophysical properties of Cryptococcus neoformans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2224-2233. [PMID: 28865794 DOI: 10.1016/j.bbamem.2017.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/03/2017] [Accepted: 08/27/2017] [Indexed: 11/19/2022]
Abstract
Fungal glucosylceramide (GlcCer) is a plasma membrane sphingolipid in which the sphingosine backbone is unsaturated in carbon position 8 (C8) and methylated in carbon position 9 (C9). Studies in the fungal pathogen, Cryptococcus neoformans, have shown that loss of GlcCer synthase activity results in complete loss of virulence in the mouse model. However, whether the loss of virulence is due to the lack of the enzyme or to the loss of the sphingolipid is not known. In this study, we used genetic engineering to alter the chemical structure of fungal GlcCer and studied its effect on fungal growth and pathogenicity. Here we show that unsaturation in C8 and methylation in C9 is required for virulence in the mouse model without affecting fungal growth in vitro or common virulence factors. However, changes in GlcCer structure led to a dramatic susceptibility to membrane stressors resulting in increased cell membrane permeability and rendering the fungal mutant unable to grow within host macrophages. Biophysical studies using synthetic vesicles containing GlcCer revealed that the saturated and unmethylated sphingolipid formed vesicles with higher lipid order that were more likely to phase separate into ordered domains. Taken together, these studies show for the first time that a specific structure of GlcCer is a major regulator of membrane permeability required for fungal pathogenicity.
Collapse
Affiliation(s)
- Shriya Raj
- Department of Mycology, Institut Pasteur, Paris, France
| | | | - Jihyun Kim
- Department of Chemistry and Biochemistry, Stony Brook University, Stony Brook, NY, USA
| | - Luna Joffe
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Xiaoxue Zhang
- Department of Chemistry and Biochemistry, Stony Brook University, Stony Brook, NY, USA
| | - Ashutosh Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Visesato Mor
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Desmarini Desmarini
- Fungal Pathogenesis Laboratory, Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Julianne Djordjevic
- Fungal Pathogenesis Laboratory, Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW, Australia; Westmead Clinical School, University of Sydney at Westmead Hospital, Westmead, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, NSW, Australia
| | - Daniel P Raleigh
- Department of Chemistry and Biochemistry, Stony Brook University, Stony Brook, NY, USA
| | - Marcio L Rodrigues
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Brazil; Centro de Desenvolvimento Tecnológico em Saúde (CDTS) da Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Erwin London
- Department of Chemistry and Biochemistry, Stony Brook University, Stony Brook, NY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA; Veterans Administration Medical Center, Northport, NY, USA; Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, USA.
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, USA.
| |
Collapse
|
43
|
Singh A, MacKenzie A, Girnun G, Del Poeta M. Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains. J Lipid Res 2017; 58:2017-2036. [PMID: 28811322 DOI: 10.1194/jlr.m078600] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/13/2017] [Indexed: 01/07/2023] Open
Abstract
Cryptococcus species cause invasive infections in humans. Lipids play an important role in the progression of these infections. Independent studies done by our group and others provide some detail about the functions of these lipids in Cryptococcus infections. However, the pathways of biosynthesis and the metabolism of these lipids are not completely understood. To thoroughly understand the physiological role of these Cryptococcus lipids, a proper structure and composition analysis of Cryptococcus lipids is demanded. In this study, a detailed spectroscopic analysis of lipid extracts from Cryptococcus gattii and Cryptococcus grubii strains is presented. Sphingolipid profiling by LC-ESI-MS/MS was used to analyze sphingosine, dihydrosphingosine, sphingosine-1-phosphate, dihydrosphingosine-1-phosphate, ceramide, dihydroceramide, glucosylceramide, phytosphingosine, phytosphingosine-1-phosphate, phytoceramide, α-hydroxy phytoceramide, and inositolphosphorylceramide species. A total of 13 sterol species were identified using GC-MS, where ergosterol is the most abundant species. The 31P-NMR-based phospholipid analysis identified phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidyl-N,N-dimethylethanolamine, phosphatidyl-N-monomethylethanolamine, phosphatidylglycerol, phosphatidic acid, and lysophosphatidylethanolamine. A comparison of lipid profiles among different Cryptococcus strains illustrates a marked change in the metabolic flux of these organisms, especially sphingolipid metabolism. These data improve our understanding of the structure, biosynthesis, and metabolism of common lipid groups of Cryptococcus and should be useful while studying their functional significance and designing therapeutic interventions.
Collapse
Affiliation(s)
- Ashutosh Singh
- Department of Molecular Genetics and Microbiology and Stony Brook University, Stony Brook, NY 11794
| | | | - Geoffrey Girnun
- Department of Pathology, Stony Brook School of Medicine, Stony Brook, NY 11794
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology and Stony Brook University, Stony Brook, NY 11794 .,Veterans Administration Medical Center, Northport, NY 11768.,Division of Infectious Diseases, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
44
|
De Castro Levatti EV, Toledo MS, Watanabe Costa R, Bahia D, Mortara RA, Takahashi HK, Straus AH. Leishmania (Viannia) braziliensis Inositol Phosphorylceramide: Distinctive Sphingoid Base Composition. Front Microbiol 2017; 8:1453. [PMID: 28824583 PMCID: PMC5543781 DOI: 10.3389/fmicb.2017.01453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/18/2017] [Indexed: 11/13/2022] Open
Abstract
Inositol phosphorylceramide (IPC), the major sphingolipid in the genus Leishmania but not found in mammals, is considered a potentially useful target for chemotherapy against leishmaniasis. Leishmania (Viannia) braziliensis is endemic in Latin America and causes American tegumentary leishmaniasis. We demonstrated that IPCs are localized internally in parasites, using a specific monoclonal antibody. Treatment with 5 μM myriocin (a serine palmitoyltransferase inhibitor) rendered promastigotes 8-fold less infective than controls in experimental hamster infection, as determined by number of parasites per inguinal lymph node after 8 weeks infection, suggesting the importance of parasite IPC or sphingolipid derivatives in parasite infectivity or survival in the host. IPC was isolated from promastigotes of three L. (V.) braziliensis strains and analyzed by positive- and negative-ion ESI-MS. The major IPC ions were characterized as eicosasphinganine and eicosasphingosine. Negative-ion ESI-MS revealed IPC ion species at m/z 778.6 (d20:1/14:0), 780.6 (d20:0/14:0), 796.6 (t20:0/14:0), 806.6 (d20:1/16:0), and 808.6 (d20:0/16:0). IPCs isolated from L. (V.) braziliensis and L. (L.) major showed significant differences in IPC ceramide composition. The major IPC ion from L. (L.) major, detected in negative-ion ESI-MS at m/z 780.6, was composed of ceramide d16:1/18:0. Our results suggest that sphingosine synthase (also known as serine palmitoyltransferase; SPT) in L. (V.) braziliensis is responsible for synthesis of a long-chain base of 20 carbons (d20), whereas SPT in L. (L.) major synthesizes a 16-carbon long-chain base (d16). A phylogenetic tree based on SPT proteins was constructed by analysis of sequence homologies in species of the Leishmania and Viannia subgenera. Results indicate that SPT gene position in L. (V.) braziliensis is completely separated from that of members of subgenus Leishmania, including L. (L.) major, L. (L.) infantum, and L. (L.) mexicana. Our findings clearly demonstrate sphingoid base differences between L. (V.) braziliensis and members of subgenus Leishmania, and are relevant to future development of more effective targeted anti-leishmaniasis drugs.
Collapse
Affiliation(s)
- Erica V De Castro Levatti
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| | - Marcos S Toledo
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| | - Renata Watanabe Costa
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| | - Diana Bahia
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil.,Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Renato A Mortara
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| | - Helio K Takahashi
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| | - Anita H Straus
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| |
Collapse
|
45
|
De Coninck B, Verheesen P, Vos CM, Van Daele I, De Bolle MF, Vieira JV, Peferoen M, Cammue BPA, Thevissen K. Fungal Glucosylceramide-Specific Camelid Single Domain Antibodies Are Characterized by Broad Spectrum Antifungal Activity. Front Microbiol 2017; 8:1059. [PMID: 28659884 PMCID: PMC5469901 DOI: 10.3389/fmicb.2017.01059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/26/2017] [Indexed: 01/19/2023] Open
Abstract
Chemical crop protection is widely used to control plant diseases. However, the adverse effects of pesticide use on human health and environment, resistance development and the impact of regulatory requirements on the crop protection market urges the agrochemical industry to explore innovative and alternative approaches. In that context, we demonstrate here the potential of camelid single domain antibodies (VHHs) generated against fungal glucosylceramides (fGlcCer), important pathogenicity factors. To this end, llamas were immunized with purified fGlcCer and a mixture of mycelium and spores of the fungus Botrytis cinerea, one of the most important plant pathogenic fungi. The llama immune repertoire was subsequently cloned in a phage display vector to generate a library with a diversity of at least 108 different clones. This library was incubated with fGlcCer to identify phages that bind to fGlcCer, and VHHs that specifically bound fGlcCer but not mammalian or plant-derived GlcCer were selected. They were shown to inhibit the growth of B. cinerea in vitro, with VHH 41D01 having the highest antifungal activity. Moreover, VHH 41D01 could reduce disease symptoms induced by B. cinerea when sprayed on tomato leaves. Based on all these data, anti-fGlcCer VHHs show the potential to be used as an alternative approach to combat fungal plant diseases.
Collapse
Affiliation(s)
- Barbara De Coninck
- Centre of Microbial and Plant Genetics, KU LeuvenLeuven, Belgium.,Department of Plant Systems Biology, VIBGhent, Belgium
| | | | - Christine M Vos
- Centre of Microbial and Plant Genetics, KU LeuvenLeuven, Belgium.,Department of Plant Systems Biology, VIBGhent, Belgium
| | | | | | | | | | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU LeuvenLeuven, Belgium.,Department of Plant Systems Biology, VIBGhent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU LeuvenLeuven, Belgium
| |
Collapse
|
46
|
Palmeira VF, Alviano DS, Braga-Silva LA, Goulart FRV, Granato MQ, Rozental S, Alviano CS, Santos ALS, Kneipp LF. HIV Aspartic Peptidase Inhibitors Modulate Surface Molecules and Enzyme Activities Involved with Physiopathological Events in Fonsecaea pedrosoi. Front Microbiol 2017; 8:918. [PMID: 28579986 PMCID: PMC5437157 DOI: 10.3389/fmicb.2017.00918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/04/2017] [Indexed: 01/19/2023] Open
Abstract
Fonsecaea pedrosoi is the main etiological agent of chromoblastomycosis, a recalcitrant disease that is extremely difficult to treat. Therefore, new chemotherapeutics to combat this fungal infection are urgently needed. Although aspartic peptidase inhibitors (PIs) currently used in the treatment of human immunodeficiency virus (HIV) have shown anti-F. pedrosoi activity their exact mechanisms of action have not been elucidated. In the present study, we have investigated the effects of four HIV-PIs on crucial virulence attributes expressed by F. pedrosoi conidial cells, including surface molecules and secreted enzymes, both of which are directly involved in the disease development. In all the experiments, conidia were treated with indinavir, nelfinavir, ritonavir and saquinavir (100 μM) for 24 h, and then fungal cells were used to evaluate the effects of HIV-PIs on different virulence attributes expressed by F. pedrosoi. In comparison to untreated controls, exposure of F. pedrosoi cells to HIV-PIs caused (i) reduction on the conidial granularity; (ii) irreversible surface ultrastructural alterations, such as shedding of electron dense and amorphous material from the cell wall, undulations/invaginations of the plasma membrane with and withdrawal of this membrane from the cell wall; (iii) a decrease in both mannose-rich glycoconjugates and melanin molecules and an increase in glucosylceramides on the conidial surface; (iv) inhibition of ergosterol and lanosterol production; (v) reduction in the secretion of aspartic peptidase, esterase and phospholipase; (vi) significant reduction in the viability of non-pigmented conidia compared to pigmented ones. In summary, HIV-PIs are efficient drugs with an ability to block crucial biological processes of F. pedrosoi and can be seriously considered as potential compounds for the development of new chromoblastomycosis chemotherapeutics.
Collapse
Affiliation(s)
- Vanila F Palmeira
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Daniela S Alviano
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lys A Braga-Silva
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Fátima R V Goulart
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Marcela Q Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo CruzRio de Janeiro, Brazil
| | - Sonia Rozental
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Celuta S Alviano
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lucimar F Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo CruzRio de Janeiro, Brazil
| |
Collapse
|
47
|
Cools TL, Struyfs C, Cammue BPA, Thevissen K. Antifungal plant defensins: increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiol 2017; 12:441-454. [DOI: 10.2217/fmb-2016-0181] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Plant defensins are small, cationic peptides with a highly conserved 3D structure. They have been studied extensively in the past decades. Various biological activities have been attributed to plant defensins, such as anti-insect and antimicrobial activities, but they are also known to affect ion channels and display antitumor activity. This review focuses on the structure, biological activity and antifungal mode of action of some well-characterized plant defensins, with particular attention to their fungal membrane target(s), their induced cell death mechanisms as well as their antibiofilm activity. As plant defensins are, in general, not toxic to human cells, show in vivo efficacy and have low frequencies of resistance occurrence, they are of particular interest in the fight against fungal infections.
Collapse
Affiliation(s)
- Tanne L Cools
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Caroline Struyfs
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Bruno PA Cammue
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| |
Collapse
|
48
|
Azevedo RVDM, Rizzo J, Rodrigues ML. Virulence Factors as Targets for Anticryptococcal Therapy. J Fungi (Basel) 2016; 2:jof2040029. [PMID: 29376946 PMCID: PMC5715936 DOI: 10.3390/jof2040029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/18/2016] [Accepted: 11/25/2016] [Indexed: 12/24/2022] Open
Abstract
The global mortality due to cryptococcosis caused by Cryptococcus neoformans or C. gattii is unacceptably high. Currently available therapies are decades old and may be impacted by drug resistance. Therefore, the need for more effective antifungal drugs for cryptococcosis is evident. A number of Cryptococcus virulence factors have been studied in detail, providing crucial information about the fungal biology and putative molecular targets for antifungals. This review focuses on the use of well-described virulence factors of Cryptococcus as potential anticryptococcal agents.
Collapse
Affiliation(s)
- Renata V D M Azevedo
- Fundação Oswaldo Cruz-Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), 21040-361 Rio de Janeiro, Brazil.
| | - Juliana Rizzo
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
- Instituto de Bioquímica Médica (IBqM), Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| | - Marcio L Rodrigues
- Fundação Oswaldo Cruz-Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), 21040-361 Rio de Janeiro, Brazil.
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
49
|
Fernandes CM, de Castro PA, Singh A, Fonseca FL, Pereira MD, Vila TVM, Atella GC, Rozental S, Savoldi M, Del Poeta M, Goldman GH, Kurtenbach E. Functional characterization of the Aspergillus nidulans glucosylceramide pathway reveals that LCB Δ8-desaturation and C9-methylation are relevant to filamentous growth, lipid raft localization and Psd1 defensin activity. Mol Microbiol 2016; 102:488-505. [PMID: 27479571 DOI: 10.1111/mmi.13474] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 12/22/2022]
Abstract
C8-desaturated and C9-methylated glucosylceramide (GlcCer) is a fungal-specific sphingolipid that plays an important role in the growth and virulence of many species. In this work, we investigated the contribution of Aspergillus nidulans sphingolipid Δ8-desaturase (SdeA), sphingolipid C9-methyltransferases (SmtA/SmtB) and glucosylceramide synthase (GcsA) to fungal phenotypes, sensitivity to Psd1 defensin and Galleria mellonella virulence. We showed that ΔsdeA accumulated C8-saturated and unmethylated GlcCer, while gcsA deletion impaired GlcCer synthesis. Although increased levels of unmethylated GlcCer were observed in smtA and smtB mutants, ΔsmtA and wild-type cells showed a similar 9,Me-GlcCer content, reduced by 50% in the smtB disruptant. The compromised 9,Me-GlcCer production in the ΔsmtB strain was not accompanied by reduced filamentation or defects in cell polarity. When combined with the smtA deletion, smtB repression significantly increased unmethylated GlcCer levels and compromised filamentous growth. Furthermore, sdeA and gcsA mutants displayed growth defects and raft mislocalization, which were accompanied by reduced neutral lipids levels and attenuated G. mellonella virulence in the ΔgcsA strain. Finally, ΔsdeA and ΔgcsA showed increased resistance to Psd1, suggesting that GlcCer synthesis and fungal sphingoid base structure specificities are relevant not only to differentiation but also to proper recognition by this antifungal defensin.
Collapse
Affiliation(s)
- C M Fernandes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P A de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - A Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - F L Fonseca
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - M D Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - T V M Vila
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - G C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - S Rozental
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Savoldi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - M Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - G H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - E Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
50
|
Abstract
Invasive fungal infections have significantly increased in the last few decades. Three classes of drugs are commonly used to treat these infections: polyenes, azoles and echinocandins. Unfortunately each of these drugs has drawbacks; polyenes are toxic, resistance against azoles is emerging and echinocandins have narrow spectrum of activity. Thus, the development of new antifungals is urgently needed. In this context, fungal sphingolipids have emerged as a potential target for new antifungals, because their biosynthesis in fungi is structurally different than in mammals. Besides, some fungal sphingolipids play an important role in the regulation of virulence in a variety of fungi. This review aims to highlight the diverse strategies that could be used to block the synthesis or/and function of fungal sphingolipids.
Collapse
|