1
|
Leeman-Neill RJ, Bhagat G, Basu U. AID in non-Hodgkin B-cell lymphomas: The consequences of on- and off-target activity. Adv Immunol 2024; 161:127-164. [PMID: 38763700 DOI: 10.1016/bs.ai.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Activation induced cytidine deaminase (AID) is a key element of the adaptive immune system, required for immunoglobulin isotype switching and affinity maturation of B-cells as they undergo the germinal center (GC) reaction in peripheral lymphoid tissue. The inherent DNA damaging activity of this enzyme can also have off-target effects in B-cells, producing lymphomagenic chromosomal translocations that are characteristic features of various classes of non-Hodgkin B-cell lymphoma (B-NHL), and generating oncogenic mutations, so-called aberrant somatic hypermutation (aSHM). Additionally, AID has been found to affect gene expression through demethylation as well as altered interactions between gene regulatory elements. These changes have been most thoroughly studied in B-NHL arising from GC B-cells. Here, we describe the most common classes of GC-derived B-NHL and explore the consequences of on- and off-target AID activity in B and plasma cell neoplasms. The relationships between AID expression, including effects of infection and other exposures/agents, mutagenic activity and lymphoma biology are also discussed.
Collapse
Affiliation(s)
- Rebecca J Leeman-Neill
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
2
|
Hviid L, Jensen AR, Deitsch KW. PfEMP1 and var genes - Still of key importance in Plasmodium falciparum malaria pathogenesis and immunity. ADVANCES IN PARASITOLOGY 2024; 125:53-103. [PMID: 39095112 DOI: 10.1016/bs.apar.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The most severe form of malaria, caused by infection with Plasmodium falciparum parasites, continues to be an important cause of human suffering and poverty. The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of clonally variant antigens, which mediates the adhesion of infected erythrocytes to the vascular endothelium in various tissues and organs, is a central component of the pathogenesis of the disease and a key target of the acquired immune response to malaria. Much new knowledge has accumulated since we published a systematic overview of the PfEMP1 family almost ten years ago. In this chapter, we therefore aim to summarize research progress since 2015 on the structure, function, regulation etc. of this key protein family of arguably the most important human parasite. Recent insights regarding PfEMP1-specific immune responses and PfEMP1-specific vaccination against malaria, as well as an outlook for the coming years are also covered.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Anja R Jensen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
3
|
Nalwoga A, Sabourin KR, Miley W, Jackson C, Maktabi M, Labo N, Mugisha J, Whitby D, Rochford R, Newton R. Plasmodium falciparum Malaria Is Associated With Increased Kaposi Sarcoma-Associated Herpesvirus (KSHV) Seropositivity and Higher KSHV Antibody Breadth and Magnitude: Results of a Case-Control Study From Rural Uganda. J Infect Dis 2024; 229:432-442. [PMID: 37536670 PMCID: PMC10873168 DOI: 10.1093/infdis/jiad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Previously, we showed that children with asymptomatic Plasmodium falciparum (Pf) malaria infection had higher Kaposi sarcoma-associated herpesvirus (KSHV) viral load, increased risk of KSHV seropositivity, and higher KSHV antibody levels. We hypothesize that clinical malaria has an even larger association with KSHV seropositivity. In the current study, we investigated the association between clinical malaria and KSHV seropositivity and antibody levels. METHODS Between December 2020 and March 2022, sick children (aged 5-10 years) presenting at a clinic in Uganda were enrolled in a case-control study. Pf was detected using malaria rapid diagnostic tests (RDTs) and subsequently with quantitative real-time polymerase chain reaction (qPCR). Children with malaria were categorized into 2 groups: RDT+/PfPCR+ and RDT-/PfPCR+. RESULTS The seropositivity of KSHV was 60% (47/78) among Pf-uninfected children, 79% (61/77) among children who were RDT-/PfPCR+ (odds ratio [OR], 2.41 [95% confidence interval {CI}, 1.15-5.02]), and 95% (141/149) in children who were RDT+/PfPCR+ (OR, 10.52 [95% CI, 4.17-26.58]; Ptrend < .001). Furthermore, RDT+/PfPCR+ children followed by RDT-/PfPCR+ children had higher KSHV IgG and IgM antibody levels and reacted to more KSHV antigens compared to uninfected children. CONCLUSIONS Clinical malaria is associated with both increased KSHV seropositivity and antibody magnitude, suggesting that Pf is affecting KSHV immunity.
Collapse
Affiliation(s)
- Angela Nalwoga
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Cancer Epidemiology Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Katherine R Sabourin
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Conner Jackson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, Colorado
| | - Mahdi Maktabi
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Nazzarena Labo
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Joseph Mugisha
- Cancer Epidemiology Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Robert Newton
- Cancer Epidemiology Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Health Sciences, University of York, York, United Kingdom
| |
Collapse
|
4
|
Liu Z, Luo Y, Kirimunda S, Verboom M, Onabajo OO, Gouveia MH, Ogwang MD, Kerchan P, Reynolds SJ, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Kinyera T, Otim I, Legason ID, Nabalende H, Dhudha H, Ayers LW, Bhatia K, Goedert JJ, Cole N, Luo W, Liu J, Manning M, Hicks B, Prokunina-Olsson L, Chagaluka G, Johnston WT, Mutalima N, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Molyneux EM, Newton R, Hsing AW, Mensah JE, Adjei AA, Hutchinson A, Carrington M, Yeager M, Blasczyk R, Chanock SJ, Raychaudhuri S, Mbulaiteye SM. Human leukocyte antigen-DQA1*04:01 and rs2040406 variants are associated with elevated risk of childhood Burkitt lymphoma. Commun Biol 2024; 7:41. [PMID: 38182727 PMCID: PMC10770398 DOI: 10.1038/s42003-023-05701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Burkitt lymphoma (BL) is responsible for many childhood cancers in sub-Saharan Africa, where it is linked to recurrent or chronic infection by Epstein-Barr virus or Plasmodium falciparum. However, whether human leukocyte antigen (HLA) polymorphisms, which regulate immune response, are associated with BL has not been well investigated, which limits our understanding of BL etiology. Here we investigate this association among 4,645 children aged 0-15 years, 800 with BL, enrolled in Uganda, Tanzania, Kenya, and Malawi. HLA alleles are imputed with accuracy >90% for HLA class I and 85-89% for class II alleles. BL risk is elevated with HLA-DQA1*04:01 (adjusted odds ratio [OR] = 1.61, 95% confidence interval [CI] = 1.32-1.97, P = 3.71 × 10-6), with rs2040406(G) in HLA-DQA1 region (OR = 1.43, 95% CI = 1.26-1.63, P = 4.62 × 10-8), and with amino acid Gln at position 53 versus other variants in HLA-DQA1 (OR = 1.36, P = 2.06 × 10-6). The associations with HLA-DQA1*04:01 (OR = 1.29, P = 0.03) and rs2040406(G) (OR = 1.68, P = 0.019) persist in mutually adjusted models. The higher risk rs2040406(G) variant for BL is associated with decreased HLA-DQB1 expression in eQTLs in EBV transformed lymphocytes. Our results support the role of HLA variation in the etiology of BL and suggest that a promising area of research might be understanding the link between HLA variation and EBV control.
Collapse
Affiliation(s)
- Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yang Luo
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel Kirimunda
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Murielle Verboom
- Institute of Transfusion Medicine and Transplant Engineering, Hanover, Germany
| | - Olusegun O Onabajo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mateus H Gouveia
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Martin D Ogwang
- St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Kuluva Hospital, Arua, Uganda
| | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constance N Tenge
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Moi University College of Health Sciences, Eldoret, Kenya
| | - Pamela A Were
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Robert T Kuremu
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Moi University College of Health Sciences, Eldoret, Kenya
| | - Walter N Wekesa
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Moi University College of Health Sciences, Eldoret, Kenya
| | | | - Esther Kawira
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Tobias Kinyera
- St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Isaac Otim
- St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D Legason
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Kuluva Hospital, Arua, Uganda
| | - Hadijah Nabalende
- St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Herry Dhudha
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nathan Cole
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jia Liu
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michelle Manning
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - George Chagaluka
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - W Thomas Johnston
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Eric Borgstein
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - George N Liomba
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - Steve Kamiza
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - Nyengo Mkandawire
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - Collins Mitambo
- National Health Sciences Research Committee, Research Department, Ministry of Health, Lilongwe, Malawi
| | - Elizabeth M Molyneux
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Ann W Hsing
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | | | | | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hanover, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
5
|
Hong HG, Gouveia MH, Ogwang MD, Kerchan P, Reynolds SJ, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Kinyera T, Wang X, Zhou J, Leal TP, Otim I, Legason ID, Nabalende H, Dhudha H, Mumia M, Baker FS, Okusolubo T, Ayers LW, Bhatia K, Goedert JJ, Woo J, Manning M, Cole N, Luo W, Hicks B, Chagaluka G, Johnston WT, Mutalima N, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Molyneux EM, Newton R, Hutchinson A, Yeager M, Adeyemo AA, Thein SL, Rotimi CN, Chanock SJ, Prokunina-Olsson L, Mbulaiteye SM. Sickle cell allele HBB-rs334(T) is associated with decreased risk of childhood Burkitt lymphoma in East Africa. Am J Hematol 2024; 99:113-123. [PMID: 38009642 PMCID: PMC10872868 DOI: 10.1002/ajh.27149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/30/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023]
Abstract
Burkitt lymphoma (BL) is an aggressive B-cell lymphoma that significantly contributes to childhood cancer burden in sub-Saharan Africa. Plasmodium falciparum, which causes malaria, is geographically associated with BL, but the evidence remains insufficient for causal inference. Inference could be strengthened by demonstrating that mendelian genes known to protect against malaria-such as the sickle cell trait variant, HBB-rs334(T)-also protect against BL. We investigated this hypothesis among 800 BL cases and 3845 controls in four East African countries using genome-scan data to detect polymorphisms in 22 genes known to affect malaria risk. We fit generalized linear mixed models to estimate odds ratios (OR) and 95% confidence intervals (95% CI), controlling for age, sex, country, and ancestry. The ORs of the loci with BL and P. falciparum infection among controls were correlated (Spearman's ρ = 0.37, p = .039). HBB-rs334(T) was associated with lower P. falciparum infection risk among controls (OR = 0.752, 95% CI 0.628-0.9; p = .00189) and BL risk (OR = 0.687, 95% CI 0.533-0.885; p = .0037). ABO-rs8176703(T) was associated with decreased risk of BL (OR = 0.591, 95% CI 0.379-0.992; p = .00271), but not of P. falciparum infection. Our results increase support for the etiological correlation between P. falciparum and BL risk.
Collapse
Affiliation(s)
- Hyokyoung G. Hong
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Mateus H. Gouveia
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Martin D. Ogwang
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Arua, Uganda
| | - Steven J. Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Pamela A. Were
- EMBLEM Study, Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Robert T. Kuremu
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | - Walter N. Wekesa
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | | | - Esther Kawira
- EMBLEM Study, Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Tobias Kinyera
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Xunde Wang
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USAs
| | - Jiefu Zhou
- Department of Statistics and Probability, Michigan State University, MI, USA
| | - Thiago Peixoto Leal
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Isaac Otim
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D. Legason
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Arua, Uganda
| | - Hadijah Nabalende
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Herry Dhudha
- EMBLEM Study, Bugando Medical Center, Mwanza, Tanzania
| | - Mediatrix Mumia
- EMBLEM Study, Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Francine S. Baker
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Temiloluwa Okusolubo
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USAs
| | - Leona W. Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - James J Goedert
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Joshua Woo
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Michelle Manning
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nathan Cole
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - George Chagaluka
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - W Thomas Johnston
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Eric Borgstein
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - George N. Liomba
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Steve Kamiza
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Nyengo Mkandawire
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | | | - Elizabeth M. Molyneux
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Adebowale A. Adeyemo
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USAs
| | - Charles N. Rotimi
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Sam M. Mbulaiteye
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
6
|
Münz C. Modulation of Epstein-Barr-Virus (EBV)-Associated Cancers by Co-Infections. Cancers (Basel) 2023; 15:5739. [PMID: 38136285 PMCID: PMC10741436 DOI: 10.3390/cancers15245739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The oncogenic and persistent Epstein Barr virus (EBV) is carried by more than 95% of the human adult population. While asymptomatic in most of these, EBV can cause a wide variety of malignancies of lymphoid or epithelial cell origin. Some of these are also associated with co-infections that either increase EBV-induced tumorigenesis or weaken its immune control. The respective pathogens include Kaposi-sarcoma-associated herpesvirus (KSHV), Plasmodium falciparum and human immunodeficiency virus (HIV). In this review, I will discuss the respective tumor entities and possible mechanisms by which co-infections increase the EBV-associated cancer burden. A better understanding of the underlying mechanisms could allow us to identify crucial features of EBV-associated malignancies and defects in their immune control. These could then be explored to develop therapies against the respective cancers by targeting EBV and/or the respective co-infections with pathogen-specific therapies or vaccinations.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Owusu WE, Burger JR, Lubbe MS, Joubert R, Cockeran M. Incidence patterns of childhood cancer in two tertiary hospitals in Ghana from 2015 to 2019: A retrospective observational study. Cancer Epidemiol 2023; 87:102470. [PMID: 37832243 DOI: 10.1016/j.canep.2023.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Accurate epidemiological data are vital in estimating the burden of disease in a country. Little is known about the incidence of childhood cancer in Ghana. This study describes the incidence patterns of cancer in children below 14 years and 11 months from 2015 to 2019 at the only two main pediatric cancer referral centers in Ghana: Korle Bu Teaching Hospital (KBTH) and Komfo Anokye Teaching Hospital (KATH). METHOD Data on the incidence of cancer in children below 14 years and 11 months were collected retrospectively between 1st January 2015 and 31st December 2019 from patients' medical folders at KBTH and the cancer registry at the pediatric units of KATH. Descriptive statistics were used to describe the data. Incident rates expressed as age-specific rates (ASRs) per 100,000 person-years using population estimates for age groups and sex in each year, were determined by age groups (0-4, 5-9, 10-14 years and 11 months), sex, region of residence and cancer types based on the International Childhood Cancer Classification, third edition. RESULTS The total ASR per 100,000 person-years from 2015 to 2019 was 9.36 based on 1073 cases observed. The ASR increased from 1.6 per 100,000 person-years in 2015-2.41 in 2017, thereafter decreasing to 1.45 in 2019. The ASR was higher in male children (2.10 per 100,000 person-years), children between 0 and 4 years (0.27 per 100,000 person-years), and children living in the Greater Accra region (4.17 per 100,000 person-years). The most prevalent cancers were lymphomas (2.17 per 100,000 person-years) and leukemia (1.88 per 100,000 person-years). CONCLUSION The study provides baseline information on the incidence patterns of childhood cancer from 2015 to 2019, addressing a critical gap in childhood cancer epidemiology in Ghana.
Collapse
Affiliation(s)
- Winifred E Owusu
- Medicine Usage in South Africa, North-West University, Faculty of Health Sciences, Potchefstroom, South Africa
| | - Johanita R Burger
- Medicine Usage in South Africa, North-West University, Faculty of Health Sciences, Potchefstroom, South Africa.
| | - Martha S Lubbe
- Medicine Usage in South Africa, North-West University, Faculty of Health Sciences, Potchefstroom, South Africa
| | - Rianda Joubert
- Medicine Usage in South Africa, North-West University, Faculty of Health Sciences, Potchefstroom, South Africa
| | - Marike Cockeran
- Statistical Consultation Services, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Huang W, Bai L, Tang H. Epstein-Barr virus infection: the micro and macro worlds. Virol J 2023; 20:220. [PMID: 37784180 PMCID: PMC10546641 DOI: 10.1186/s12985-023-02187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Epstein‒Barr virus (EBV) is a DNA virus that belongs to the human B lymphotropic herpesvirus family and is highly prevalent in the human population. Once infected, a host can experience latent infection because EBV evades the immune system, leading to hosts harboring the virus for their lifetime. EBV is associated with many diseases and causes significant challenges to human health. This review first offers a description of the natural history of EBV infection, clarifies the interaction between EBV and the immune system, and finally focuses on several major types of diseases caused by EBV infection.
Collapse
Affiliation(s)
- Wei Huang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Baker FS, Wang J, Florez-Vargas O, Brand NR, Ogwang MD, Kerchan P, Reynolds SJ, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Kinyera T, Otim I, Legason ID, Nabalende H, Chagaluka G, Mutalima N, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Molyneux EM, Newton R, Prokunina-Olsson L, Mbulaiteye SM. IFNL4 Genotypes and Risk of Childhood Burkitt Lymphoma in East Africa. J Interferon Cytokine Res 2023; 43:394-402. [PMID: 37366802 PMCID: PMC10623078 DOI: 10.1089/jir.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/20/2023] [Indexed: 06/28/2023] Open
Abstract
Interferon lambda 4 (IFN-λ4) is a novel type-III interferon that can be expressed only by carriers of the genetic variant rs368234815-dG within the first exon of the IFNL4 gene. Genetic inability to produce IFN-λ4 (in carriers of the rs368234815-TT/TT genotype) has been associated with improved clearance of hepatitis C virus (HCV) infection. The IFN-λ4-expressing rs368234815-dG allele (IFNL4-dG) is most common (up to 78%) in West sub-Saharan Africa (SSA), compared to 35% of Europeans and 5% of individuals from East Asia. The negative selection of IFNL4-dG outside Africa suggests that its retention in African populations could provide survival benefits, most likely in children. To explore this hypothesis, we conducted a comprehensive association analysis between IFNL4 genotypes and the risk of childhood Burkitt lymphoma (BL), a lethal infection-associated cancer most common in SSA. We used genetic, epidemiologic, and clinical data for 4,038 children from the Epidemiology of Burkitt Lymphoma in East African Children and Minors (EMBLEM) and the Malawi Infections and Childhood Cancer case-control studies. Generalized linear mixed models fit with the logit link controlling for age, sex, country, P. falciparum infection status, population stratification, and relatedness found no significant association between BL risk and 3 coding genetic variants within IFNL4 (rs368234815, rs117648444, and rs142981501) and their combinations. Because BL occurs in children 6-9 years of age who survived early childhood infections, our results suggest that additional studies should explore the associations of IFNL4-dG allele in younger children. This comprehensive study represents an important baseline in defining the health effects of IFN-λ4 in African populations.
Collapse
Affiliation(s)
- Francine S. Baker
- Laboratory of Translational Genomics, National Cancer Institute, Rockville, Maryland, USA
| | - Jeanny Wang
- Laboratory of Translational Genomics, National Cancer Institute, Rockville, Maryland, USA
| | - Oscar Florez-Vargas
- Laboratory of Translational Genomics, National Cancer Institute, Rockville, Maryland, USA
| | - Nathan R. Brand
- Department of Surgery, University of California, San Francisco, California, USA
| | - Martin D. Ogwang
- EMBLEM Study, St. Mary's Hospital, Lacor, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Arua, Uganda
| | - Steven J. Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Pamela A. Were
- EMBLEM Study, Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Robert T. Kuremu
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | - Walter N. Wekesa
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | | | - Esther Kawira
- EMBLEM Study, Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Tobias Kinyera
- EMBLEM Study, St. Mary's Hospital, Lacor, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Isaac Otim
- EMBLEM Study, St. Mary's Hospital, Lacor, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D. Legason
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Arua, Uganda
| | - Hadijah Nabalende
- EMBLEM Study, St. Mary's Hospital, Lacor, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - George Chagaluka
- Department of Pediatrics and Surgery, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
- Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom
| | - Eric Borgstein
- Department of Pediatrics and Surgery, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - George N. Liomba
- Department of Pediatrics and Surgery, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Steve Kamiza
- Department of Pediatrics and Surgery, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Nyengo Mkandawire
- Department of Pediatrics and Surgery, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Elizabeth M. Molyneux
- Department of Pediatrics and Surgery, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | | | - Sam M. Mbulaiteye
- Laboratory of Translational Genomics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
10
|
Nalwoga A, Marshall V, Miley W, Labo N, Whitby D, Newton R, Rochford R. Comparison of Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus viral load in peripheral blood mononuclear cells and oral fluids of HIV-negative individuals aged 3-89 years from Uganda. Infect Agent Cancer 2023; 18:38. [PMID: 37316814 DOI: 10.1186/s13027-023-00516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
We previously found that age, sex and malaria were associated with KSHV in individuals from Uganda. In this study, we have evaluated these same factors in relation to EBV in the same specimens. Overall, 74% (oral fluids) and 46% (PBMCs) had detectable EBV. This was significantly higher than observed for KSHV (24% oral fluids and 11% PBMCs). Individuals with EBV in PBMCs were more likely to have KSHV in PBMCs (P = 0.011). The peak age for detection of EBV in oral fluids was 3-5 years while that of KSHV was 6-12 years. In PBMCs, there was a bimodal peak age for detection of EBV (at 3-5 years and 66 + years) while for KSHV there was a single peak at 3-5 years. Individuals with malaria had higher levels of EBV in PBMCs compared to malaria-negative individuals (P = 0.002). In summary, our results show that younger age and malaria are associated with higher levels of EBV and KSHV in PBMCs suggesting malaria impacts immunity to both gamma-herpesviruses.
Collapse
Affiliation(s)
- Angela Nalwoga
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda.
| | - Vickie Marshall
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nazzarena Labo
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert Newton
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda.
- University of York, York, UK.
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
11
|
Diakite M, Shaw-Saliba K, Lau CY. Malignancy and viral infections in Sub-Saharan Africa: A review. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1103737. [PMID: 37476029 PMCID: PMC10358275 DOI: 10.3389/fviro.2023.1103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The burden of malignancy related to viral infection is increasing in Sub-Saharan Africa (SSA). In 2018, approximately 2 million new cancer cases worldwide were attributable to infection. Prevention or treatment of these infections could reduce cancer cases by 23% in less developed regions and about 7% in developed regions. Contemporaneous increases in longevity and changes in lifestyle have contributed to the cancer burden in SSA. African hospitals are reporting more cases of cancer related to infection (e.g., cervical cancer in women and stomach and liver cancer in men). SSA populations also have elevated underlying prevalence of viral infections compared to other regions. Of 10 infectious agents identified as carcinogenic by the International Agency for Research on Cancer, six are viruses: hepatitis B and C viruses (HBV and HCV, respectively), Epstein-Barr virus (EBV), high-risk types of human papillomavirus (HPV), Human T-cell lymphotropic virus type 1 (HTLV-1), and Kaposi's sarcoma herpesvirus (KSHV, also known as human herpesvirus type 8, HHV-8). Human immunodeficiency virus type 1 (HIV) also facilitates oncogenesis. EBV is associated with lymphomas and nasopharyngeal carcinoma; HBV and HCV are associated with hepatocellular carcinoma; KSHV causes Kaposi's sarcoma; HTLV-1 causes T-cell leukemia and lymphoma; HPV causes carcinoma of the oropharynx and anogenital squamous cell cancer. HIV-1, for which SSA has the greatest global burden, has been linked to increasing risk of malignancy through immunologic dysregulation and clonal hematopoiesis. Public health approaches to prevent infection, such as vaccination, safer injection techniques, screening of blood products, antimicrobial treatments and safer sexual practices could reduce the burden of cancer in Africa. In SSA, inequalities in access to cancer screening and treatment are exacerbated by the perception of cancer as taboo. National level cancer registries, new screening strategies for detection of viral infection and public health messaging should be prioritized in SSA's battle against malignancy. In this review, we discuss the impact of carcinogenic viruses in SSA with a focus on regional epidemiology.
Collapse
Affiliation(s)
- Mahamadou Diakite
- University Clinical Research Center, University of Sciences, Techniques, and Technologies, Bamako, Mali
| | - Kathryn Shaw-Saliba
- Collaborative Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Chuen-Yen Lau
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
12
|
Nalwoga A, Marshall V, Miley W, Labo N, Whitby D, Newton R, Rochford R. Comparison of Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus viral load in peripheral blood mononuclear cells and oral fluids of HIV-negative individuals aged 3 to 89 years from Uganda. RESEARCH SQUARE 2023:rs.3.rs-2613771. [PMID: 36909626 PMCID: PMC10002824 DOI: 10.21203/rs.3.rs-2613771/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
We previously found that age, sex, and malaria were associated with KSHV viral load in individuals from Uganda. In this study, we have evaluated factors associated with presence of EBV DNA in blood and oral fluids among the same individuals, using the same biological samples. Overall, 74% of oral fluids samples and 46% of PBMCs had detectable EBV, compared to 24% and 11% for KSHV respectively Individuals with EBV in PBMCs were more likely to have KSHV in PBMCs (P=0.016). The peak age for detection of EBV in oral fluids was 3-5 years while that of KSHV was 6-12 years. In PBMCs, the peak age for detection of EBV was 66+ years and KSHV was 3-5 years. Individuals with malaria had higher levels of EBV in PBMCs compared to malaria-negative individuals (P=0.002). In summary, our results show that younger age and malaria are associated with higher levels of EBV and KSHV in PBMCs suggesting malaria impacts immunity to EBV and KSHV.
Collapse
Affiliation(s)
| | - Vickie Marshall
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research
| | - Wendell Miley
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research
| | - Nazzarena Labo
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research
| | - Denise Whitby
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research
| | | | | |
Collapse
|
13
|
López C, Burkhardt B, Chan JKC, Leoncini L, Mbulaiteye SM, Ogwang MD, Orem J, Rochford R, Roschewski M, Siebert R. Burkitt lymphoma. Nat Rev Dis Primers 2022; 8:78. [PMID: 36522349 DOI: 10.1038/s41572-022-00404-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/16/2022]
Abstract
Burkitt lymphoma (BL) is an aggressive form of B cell lymphoma that can affect children and adults. The study of BL led to the identification of the first recurrent chromosomal aberration in lymphoma, t(8;14)(q24;q32), and subsequent discovery of the central role of MYC and Epstein-Barr virus (EBV) in tumorigenesis. Most patients with BL are cured with chemotherapy but those with relapsed or refractory disease usually die of lymphoma. Historically, endemic BL, non-endemic sporadic BL and the immunodeficiency-associated BL have been recognized, but differentiation of these epidemiological variants is confounded by the frequency of EBV positivity. Subtyping into EBV+ and EBV- BL might better describe the biological heterogeneity of the disease. Phenotypically resembling germinal centre B cells, all types of BL are characterized by dysregulation of MYC due to enhancer activation via juxtaposition with one of the three immunoglobulin loci. Additional molecular changes commonly affect B cell receptor and sphingosine-1-phosphate signalling, proliferation, survival and SWI-SNF chromatin remodelling. BL is diagnosed on the basis of morphology and high expression of MYC. BL can be effectively treated in children and adolescents with short durations of high dose-intensity multiagent chemotherapy regimens. Adults are more susceptible to toxic effects but are effectively treated with chemotherapy, including modified versions of paediatric regimens. The outcomes in patients with BL are good in high-income countries with low mortality and few late effects, but in low-income and middle-income countries, BL is diagnosed late and is usually treated with less-effective regimens affecting the overall good outcomes in patients with this lymphoma.
Collapse
Affiliation(s)
- Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Birgit Burkhardt
- Non-Hodgkin's Lymphoma Berlin-Frankfurt-Münster (NHL-BFM) Study Center and Paediatric Hematology, Oncology and BMT, University Hospital Muenster, Muenster, Germany
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Lorenzo Leoncini
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | | | | | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
14
|
Ward BJH, Schaal DL, Nkadi EH, Scott RS. EBV Association with Lymphomas and Carcinomas in the Oral Compartment. Viruses 2022; 14:2700. [PMID: 36560704 PMCID: PMC9783324 DOI: 10.3390/v14122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus infecting approximately 90% of the world's population. The oral cavity serves a central role in the life cycle, transmission, and pathogenesis of EBV. Transmitted to a new host via saliva, EBV circulates between cellular compartments within oral lymphoid tissues. Epithelial cells primarily support productive viral replication, while B lymphocytes support viral latency and reactivation. EBV infections are typically asymptomatic and benign; however, the latent virus is associated with multiple lymphomas and carcinomas arising in the oral cavity. EBV association with cancer is complex as histologically similar cancers often test negative for the virus. However, the presence of EBV is associated with distinct features in certain cancers. The intrinsic ability of EBV to immortalize B-lymphocytes, via manipulation of survival and growth signaling, further implicates the virus as an oncogenic cofactor. A distinct mutational profile and burden have been observed in EBV-positive compared to EBV-negative tumors, suggesting that viral infection can drive alternative pathways that converge on oncogenesis. Taken together, EBV is also an important prognostic biomarker that can direct alternative therapeutic approaches. Here, we discuss the prevalence of EBV in oral malignancies and the EBV-dependent mechanisms associated with tumorigenesis.
Collapse
Affiliation(s)
| | | | | | - Rona S. Scott
- Department of Microbiology and Immunology, Center for Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
15
|
Dey S, Kaur H, Mazumder M, Brodsky E. Analysis of gene expression profiles to study malaria vaccine dose efficacy and immune response modulation. Genomics Inform 2022; 20:e32. [PMID: 36239109 PMCID: PMC9576474 DOI: 10.5808/gi.22049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 09/04/2022] [Indexed: 11/20/2022] Open
Abstract
Malaria is a life-threatening disease, and Africa is still one of the most affected endemic regions despite years of policy to limit infection and transmission rates. Further, studies into the variable efficacy of the vaccine are needed to provide a better understanding of protective immunity. Thus, the current study is designed to delineate the effect of each dose of vaccine on the transcriptional profiles of subjects to determine its efficacy and understand the molecular mechanisms underlying the protection this vaccine provides. Here, we used gene expression profiles of pre and post-vaccination patients after various doses of RTS,S based on samples collected from the Gene Expression Omnibus datasets. Subsequently, differential gene expression analysis using edgeR revealed the significantly (false discovery rate < 0.005) 158 downregulated and 61 upregulated genes between control vs. controlled human malaria infection samples. Further, enrichment analysis of significant genes delineated the involvement of CCL8, CXCL10, CXCL11, XCR1, CSF3, IFNB1, IFNE, IL12B, IL22, IL6, IL27, etc., genes which found to be upregulated after earlier doses but downregulated after the 3rd dose in cytokine-chemokine pathways. Notably, we identified 13 cytokine genes whose expression significantly varied during three doses. Eventually, these findings give insight into the dual role of cytokine responses in malaria pathogenesis. The variations in their expression patterns after various doses of vaccination are linked to the protection as it decreases the severe inflammatory effects in malaria patients. This study will be helpful in designing a better vaccine against malaria and understanding the functions of cytokine response as well.
Collapse
Affiliation(s)
- Supantha Dey
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
- Pine Biotech, New Orleans, LA 70112, USA
- Corresponding author: ,
| | | | | | | |
Collapse
|
16
|
Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: Biology and clinical disease. Cell 2022; 185:3652-3670. [PMID: 36113467 PMCID: PMC9529843 DOI: 10.1016/j.cell.2022.08.026] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous, oncogenic virus that is associated with a number of different human malignancies as well as autoimmune disorders. The expression of EBV viral proteins and non-coding RNAs contribute to EBV-mediated disease pathologies. The virus establishes life-long latency in the human host and is adept at evading host innate and adaptive immune responses. In this review, we discuss the life cycle of EBV, the various functions of EBV-encoded proteins and RNAs, the ability of the virus to activate and evade immune responses, as well as the neoplastic and autoimmune diseases that are associated with EBV infection in the human population.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Shannon C Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, and Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nancy Raab-Traub
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Vega-Benedetti AF, Loi E, Zavattari P. DNA methylation alterations caused by Leishmania infection may generate a microenvironment prone to tumour development. Front Cell Infect Microbiol 2022; 12:984134. [PMID: 36105147 PMCID: PMC9465093 DOI: 10.3389/fcimb.2022.984134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/10/2022] [Indexed: 01/10/2023] Open
Abstract
DNA methylation is an epigenetic signature consisting of a methyl group at the 5’ cytosine of CpG dinucleotides. Modifications in DNA methylation pattern have been detected in cancer and infectious diseases and may be associated with gene expression changes. In cancer development DNA methylation aberrations are early events whereas in infectious diseases these epigenetic changes may be due to host/pathogen interaction. In particular, in leishmaniasis, a parasitic disease caused by the protozoan Leishmania, DNA methylation alterations have been detected in macrophages upon infection with Leishmania donovani and in skin lesions from patients with cutaneous leishmaniasis. Interestingly, different types of cancers, such as cutaneous malignant lesions, lymphoma and hepatocellular carcinoma, have been diagnosed in patients with a history of leishmaniasis. In fact, it is known that there exists an association between cancer and infectious diseases. Leishmania infection may increase susceptibility to develop cancer, but the mechanisms involved are not entirely clear. Considering these aspects, in this review we discuss the hypothesis that DNA methylation alterations induced by Leishmania may trigger tumorigenesis in long term infection since these epigenetic modifications may enhance and accumulate during chronic leishmaniasis.
Collapse
|
18
|
Dias MHF, Guimarães LFF, Barcelos MG, Moreira EUM, do Nascimento MFA, de Souza TN, Pires CV, Monteiro TAF, Middeldorp JM, Soares IS, Fontes CJF, Ntumngia FB, Adams JH, Kano FS, Carvalho LH. Impact of Epstein-Barr virus co-infection on natural acquired Plasmodium vivax antibody response. PLoS Negl Trop Dis 2022; 16:e0010305. [PMID: 35921373 PMCID: PMC9377613 DOI: 10.1371/journal.pntd.0010305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/15/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Background
The simultaneous infection of Plasmodium falciparum and Epstein-Barr virus (EBV) could promote the development of the aggressive endemic Burkitt’s Lymphoma (eBL) in children living in P. falciparum holoendemic areas. While it is well-established that eBL is not related to other human malaria parasites, the impact of EBV infection on the generation of human malaria immunity remains largely unexplored. Considering that this highly prevalent herpesvirus establishes a lifelong persistent infection on B-cells with possible influence on malaria immunity, we hypothesized that EBV co-infection could have impact on the naturally acquired antibody responses to P. vivax, the most widespread human malaria parasite.
Methodology/Principal findings
The study design involved three cross-sectional surveys at six-month intervals (baseline, 6 and 12 months) among long-term P. vivax exposed individuals living in the Amazon rainforest. The approach focused on a group of malaria-exposed individuals whose EBV-DNA (amplification of balf-5 gene) was persistently detected in the peripheral blood (PersVDNA, n = 27), and an age-matched malaria-exposed group whose EBV-DNA could never be detected during the follow-up (NegVDNA, n = 29). During the follow-up period, the serological detection of EBV antibodies to lytic/ latent viral antigens showed that IgG antibodies to viral capsid antigen (VCA-p18) were significantly different between groups (PersVDNA > NegVDNA). A panel of blood-stage P. vivax antigens covering a wide range of immunogenicity confirmed that in general PersVDNA group showed low levels of antibodies as compared with NegVDNA. Interestingly, more significant differences were observed to a novel DBPII immunogen, named DEKnull-2, which has been associated with long-term neutralizing antibody response. Differences between groups were less pronounced with blood-stage antigens (such as MSP1-19) whose levels can fluctuate according to malaria transmission.
Conclusions/Significance
In a proof-of-concept study we provide evidence that a persistent detection of EBV-DNA in peripheral blood of adults in a P. vivax semi-immune population may impact the long-term immune response to major malaria vaccine candidates.
Collapse
Affiliation(s)
| | | | | | | | | | - Taís N. de Souza
- Instituto René Rachou/FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Camilla V. Pires
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Talita A. F. Monteiro
- Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde (IEC/SVS/MS), Belém, Pará, Brazil
| | - Jaap M. Middeldorp
- Department of Pathology, Free University Medical Center, Amsterdam, The Netherlands
| | - Irene S. Soares
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Cor J. F. Fontes
- Julio Müller School Hospital, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Flora S. Kano
- Instituto René Rachou/FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Luzia H. Carvalho
- Instituto René Rachou/FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
19
|
Bock T, Bewarder M, Cetin O, Fadle N, Regitz E, Schwarz EC, Held J, Roth S, Lohse S, Pfuhl T, Wagener R, Smola S, Becker SL, Bohle RM, Trümper L, Siebert R, Hansmann M, Pfreundschuh M, Drexler HG, Hoth M, Kubuschok B, Roemer K, Preuss K, Hartmann S, Thurner L. B-cell receptors of EBV-negative Burkitt lymphoma bind modified isoforms of autoantigens. EJHAEM 2022; 3:739-747. [PMID: 36051037 PMCID: PMC9421956 DOI: 10.1002/jha2.475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/08/2022]
Abstract
Burkitt lymphoma (BL) represents the most aggressive B-cell-lymphoma. Beside the hallmark of IG-MYC-translocation, surface B-cell receptor (BCR) is expressed, and mutations in the BCR pathway are frequent. Coincidental infections in endemic BL, and specific extra-nodal sites suggest antigenic triggers. To explore this hypothesis, BCRs of BL cell lines and cases were screened for reactivities against a panel of bacterial lysates, lysates of Plasmodium falciparum, a custom-made virome array and against self-antigens, including post-translationally modified antigens. An atypically modified, SUMOylated isoform of Bystin, that is, SUMO1-BYSL was identified as the antigen of the BCR of cell line CA46. SUMO1-BYSL was exclusively expressed in CA46 cells with K139 as site of the SUMOylation. Secondly, an atypically acetylated isoform of HSP40 was identified as the antigen of the BCR of cell line BL41. K104 and K179 were the sites of immunogenic acetylation, and the acetylated HSP40 isoform was solely present in BL41 cells. Functionally, addition of SUMO1-BYSL and acetylated HSP40 induced BCR pathway activation in CA46 and BL41 cells, respectively. Accordingly, SUMO1-BYSL-ETA' immunotoxin, produced by a two-step intein-based conjugation, led to the specific killing of CA46 cells. Autoantibodies directed against SUMO1-BYSL were found in 3 of 14 (21.4%), and autoantibodies against acetylated HSP40 in 1/14(7.1%) patients with sporadic Burkitt-lymphoma. No reactivities against antigens of the infectious agent spectrum could be observed. These results indicate a pathogenic role of autoreactivity evoked by immunogenic post-translational modifications in a subgroup of sporadic BL including two EBV-negative BL cell lines.
Collapse
Affiliation(s)
- Theresa Bock
- Department of Internal Medicine I and José Carreras Center for Immuno‐ and Gene TherapySaarland University Medical SchoolHomburg/SaarGermany
| | - Moritz Bewarder
- Department of Internal Medicine I and José Carreras Center for Immuno‐ and Gene TherapySaarland University Medical SchoolHomburg/SaarGermany
| | - Onur Cetin
- Department of Internal Medicine I and José Carreras Center for Immuno‐ and Gene TherapySaarland University Medical SchoolHomburg/SaarGermany
| | - Natalie Fadle
- Department of Internal Medicine I and José Carreras Center for Immuno‐ and Gene TherapySaarland University Medical SchoolHomburg/SaarGermany
| | - Evi Regitz
- Department of Internal Medicine I and José Carreras Center for Immuno‐ and Gene TherapySaarland University Medical SchoolHomburg/SaarGermany
| | - Eva C. Schwarz
- Center for Integrative Physiology and Molecular Medicine (CIPMM)School of MedicineHomburgGermany
| | - Jana Held
- Institute of Tropical MedicineEberhard Karls Universität TübingenTübingenGermany
| | - Sophie Roth
- Institute of Medical Microbiology and HygieneSaarland UniversityHomburg/SaarGermany
| | - Stefan Lohse
- Institute of VirologyUniversity of SaarlandHomburgGermany
| | - Thorsten Pfuhl
- Institute of VirologyUniversity of SaarlandHomburgGermany
| | - Rabea Wagener
- Institute of Human GeneticsUlm University and Ulm University Medical CenterUlmGermany
| | - Sigrun Smola
- Institute of VirologyUniversity of SaarlandHomburgGermany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany
| | - Sören L. Becker
- Institute of Medical Microbiology and HygieneSaarland UniversityHomburg/SaarGermany
| | - Rainer Maria Bohle
- Institute of PathologySaarland University Medical SchoolHomburg/SaarGermany
| | - Lorenz Trümper
- Department of Hematology and OncologyGeorg August University GöttingenGöttingenGermany
| | - Reiner Siebert
- Institute of Human GeneticsUlm University and Ulm University Medical CenterUlmGermany
| | - Martin‐Leo Hansmann
- Dr. Senckenberg Institute of PathologyGoethe University Hospital of Frankfurt a. MainFrankfurt a. MainGermany
| | - Michael Pfreundschuh
- Department of Internal Medicine I and José Carreras Center for Immuno‐ and Gene TherapySaarland University Medical SchoolHomburg/SaarGermany
| | - Hans G. Drexler
- Faculty of Life sciencesTechnical University of BraunschweigBraunschweigGermany
| | - Markus Hoth
- Center for Integrative Physiology and Molecular Medicine (CIPMM)School of MedicineHomburgGermany
| | - Boris Kubuschok
- Department of Internal Medicine IIAugsburg University Medical CenterAugsburgGermany
| | - Klaus Roemer
- Department of Internal Medicine I and José Carreras Center for Immuno‐ and Gene TherapySaarland University Medical SchoolHomburg/SaarGermany
| | - Klaus‐Dieter Preuss
- Department of Internal Medicine I and José Carreras Center for Immuno‐ and Gene TherapySaarland University Medical SchoolHomburg/SaarGermany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of PathologyGoethe University Hospital of Frankfurt a. MainFrankfurt a. MainGermany
| | - Lorenz Thurner
- Department of Internal Medicine I and José Carreras Center for Immuno‐ and Gene TherapySaarland University Medical SchoolHomburg/SaarGermany
| |
Collapse
|
20
|
Summerauer AM, Jäggi V, Ogwang R, Traxel S, Colombo L, Amundsen E, Eyer T, Subramanian B, Fehr J, Mantel P, Idro R, Bürgler S. Epstein-Barr virus and malaria upregulate AID and APOBEC3 enzymes, but only AID seems to play a major mutagenic role in Burkitt lymphoma. Eur J Immunol 2022; 52:1273-1284. [PMID: 35503749 PMCID: PMC7613445 DOI: 10.1002/eji.202249820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022]
Abstract
Endemic Burkitt lymphoma (eBL) is characterized by an oncogenic IGH/c‐MYC translocation and Epstein–Barr virus (EBV) positivity, and is epidemiologically linked to Plasmodium falciparum malaria. Both EBV and malaria are thought to contribute to eBL by inducing the expression of activation‐induced cytidine deaminase (AID), an enzyme involved in the IGH/c‐MYC translocation. AID/apolipoprotein B mRNA editing catalytic polypeptide‐like (AID/APOBEC) family enzymes have recently emerged as potent mutagenic sources in a variety of cancers, but apart from AID, their involvement in eBL and their regulation by EBV and P. falciparum is unknown. Here, we show that upon inoculation with EBV, human B cells strongly upregulate the expression of enzymatically active APOBEC3B and APOBEC3G. In addition, we found significantly increased levels of APOBEC3A in B cells of malaria patients, which correlated with parasite load. Interestingly, despite the fact that APOBEC3A, APOBEC3B, and APOBEC3G caused c‐MYC mutations when overexpressed in HEK293T cells, a mutational enrichment in eBL tumors was only detected in AID motifs. This suggests that even though the EBV‐ and P. falciparum‐directed immune response triggers the expression and activity of several AID/APOBEC members, only the upregulation of AID has oncogenic consequences, while the induction of the APOBEC3 subfamily may primarily have immunoprotective functions.
Collapse
Affiliation(s)
- Andrea M. Summerauer
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichZurichSwitzerland
| | - Vera Jäggi
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Rodney Ogwang
- College of Health SciencesMakerere UniversityKampalaUganda
- Centre of Tropical NeuroscienceKitgum SiteKampalaUganda
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
| | - Sabrina Traxel
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Lorenzo Colombo
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Eivind Amundsen
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Tatjana Eyer
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Bibin Subramanian
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Jan Fehr
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichZurichSwitzerland
| | - Pierre‐Yves Mantel
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Richard Idro
- College of Health SciencesMakerere UniversityKampalaUganda
- Centre of Tropical NeuroscienceKitgum SiteKampalaUganda
| | - Simone Bürgler
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| |
Collapse
|
21
|
Wong Y, Meehan MT, Burrows SR, Doolan DL, Miles JJ. Estimating the global burden of Epstein-Barr virus-related cancers. J Cancer Res Clin Oncol 2022; 148:31-46. [PMID: 34705104 PMCID: PMC8752571 DOI: 10.1007/s00432-021-03824-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND More than 90% of the adult population globally is chronically infected by the Epstein-Barr virus (EBV). It is well established that EBV is associated with a number of malignancies, and advances in knowledge of EBV-related malignancies are being made every year. Several studies have analysed the global epidemiology and geographic distribution of EBV-related cancers. However, most have only described a single cancer type or subtype in isolation or limited their study to the three or four most common EBV-related cancers. This review will present an overview on the spectrum of cancers linked to EBV based on observations of associations and proportions in the published literature while also using these observations to estimate the incidence and mortality burden of some of these cancers. METHOD We have reviewed the literature on defining features, distribution and outcomes across six cancers with a relatively large EBV-related case burden: Nasopharyngeal carcinoma (NPC), Gastric carcinoma (GC), Hodgkin lymphoma (HL), Burkitt lymphoma (BL), Diffuse large B-cell lymphoma (DLBCL) and Extranodal NK/T-cell lymphoma, Nasal type (ENKTL-NT). We retrieved published region-specific EBV-related case proportions for NPC, GC, HL and BL and performed meta-analyses on pooled region-specific studies of EBV-related case proportions for DLBCL and ENKTL-NT. We match these pooled proportions with their respective regional incidence and mortality numbers retrieved from a publicly available cancer database. Additionally, we also reviewed the literature on several other less common EBV-related cancers to summarize their key characteristics herein. CONCLUSION We estimated that EBV-related cases from these six cancers accounted for 239,700-357,900 new cases and 137,900-208,700 deaths in 2020. This review highlights the significant global impact of EBV-related cancers and extends the spectrum of disease that could benefit from an EBV-specific therapeutic.
Collapse
Affiliation(s)
- Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia.
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, 4870, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, 4878, Australia.
| | - Michael T Meehan
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Scott R Burrows
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
| | - Denise L Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, 4870, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, 4878, Australia
| | - John J Miles
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, 4870, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
22
|
Budiningsih I, Dachlan YP, Hadi U, Middeldorp JM. Quantitative cytokine level of TNF-α, IFN-γ, IL-10, TGF-β and circulating Epstein-Barr virus DNA load in individuals with acute Malaria due to P. falciparum or P. vivax or double infection in a Malaria endemic region in Indonesia. PLoS One 2021; 16:e0261923. [PMID: 34962938 PMCID: PMC8714090 DOI: 10.1371/journal.pone.0261923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/13/2021] [Indexed: 01/15/2023] Open
Abstract
Plasmodium falciparum Malaria and Epstein-Barr Virus (EBV) infection are risk factors in the development of Burkitt’s lymphoma. In Indonesia, 100% of the population is persistently infected with EBV early in life and at risk of developing EBV-linked cancers. Currently, 10.7 million people in Indonesia are living in Malaria-endemic areas. This cross-sectional study was initiated to investigate how acute Malaria dysregulates immune control over latent EBV infection. Using blood and plasma samples of 68 patients with acute Malaria and 27 healthy controls, we measured the level of parasitemia for each plasmodium type (P. falciparum, P. vivax, and mixed) by microscopy and rapid test. The level of 4 regulatory cytokines was determined by quantitative ELISA and the level of circulating EBV genome by real-time PCR targeting the single copy EBNA-1 sequence. All Plasmodium-infected cases had high-level parasitemia (>1000 parasites/ul blood) except for one case. EBV-DNA levels were significantly more elevated in P. falciparum and P. vivax infections (P<0.05) compared to controls. EBV-DNA levels were not related to age, gender, Malaria symptoms, or plasmodium type. TNF-α and IL-10 levels were increased in Malaria cases versus controls, but IFN-γ and TGF- β levels were comparable between the groups. Only TNF-α levels in P. falciparum cases showed a clear correlation with elevated EBV DNA levels (R2 = 0.8915). This is the first study addressing the relation between EBV (re)activation and cytokine responses during acute Malaria, revealing a clear correlation between pro-inflammatory cytokine TNF-α and EBV-DNA levels, specifically in P. falciparum cases, suggesting this cytokine to be key in dysregulating EBV homeostasis during acute P. falciparum Malaria.
Collapse
Affiliation(s)
- Insani Budiningsih
- Post Graduate Doctoral Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yoes Prijatna Dachlan
- Department of Parasitology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Usman Hadi
- Department of Internal Medicine, Dr. Soetomo Hospital-School of Medicine, Universitas Airlangga, Surabaya, Indonesia
- * E-mail: (UH); (JMM)
| | - Jaap Michiel Middeldorp
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail: (UH); (JMM)
| |
Collapse
|
23
|
Münz C. Modification of EBV-Associated Pathologies and Immune Control by Coinfections. Front Oncol 2021; 11:756480. [PMID: 34778072 PMCID: PMC8581224 DOI: 10.3389/fonc.2021.756480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
The oncogenic Epstein–Barr virus (EBV) persistently infects more than 95% of the human adult population. Even so it can readily transform human B cells after infection in vitro, it only rarely causes tumors in patients. A substantial proportion of the 1% of all human cancers that are associated with EBV occurs during coinfections, including those with the malaria parasite Plasmodium falciparum, the human immunodeficiency virus (HIV), and the also oncogenic and closely EBV-related Kaposi sarcoma-associated herpesvirus (KSHV). In this review, I will discuss how these infections interact with EBV, modify its immune control, and shape its tumorigenesis. The underlying mechanisms reveal new aspects of EBV-associated pathologies and point toward treatment possibilities for their prevention by the human immune system.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
24
|
Gressel GM, Usyk M, Frimer M, Kuo DYS, Burk RD. Characterization of the endometrial, cervicovaginal and anorectal microbiota in post-menopausal women with endometrioid and serous endometrial cancers. PLoS One 2021; 16:e0259188. [PMID: 34739493 PMCID: PMC8570463 DOI: 10.1371/journal.pone.0259188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/14/2021] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To characterize the microbiota of postmenopausal women undergoing hysterectomy for endometrioid (EAC) or uterine serous cancers (USC) compared to controls with non-malignant conditions. METHODS Endometrial, cervicovaginal and anorectal microbial swabs were obtained from 35 postmenopausal women (10 controls, 14 EAC and 11 USC) undergoing hysterectomy. Extracted DNA was PCR amplified using barcoded 16S rRNA gene V4 primers. Sequenced libraries were processed using QIIME2. Phyloseq was used to calculate α- and β- diversity measures. Biomarkers associated with case status were identified using ANCOM after adjustment for patient age, race and BMI. PICRUSt was used to identify microbial pathways associated with case status. RESULTS Beta-diversity of microbial communities across each niche was significantly different (R2 = 0.25, p < 0.001). Alpha-diversity of the uterine microbiome was reduced in USC (Chao1, p = 0.004 and Fisher, p = 0.007) compared to EAC. Biomarkers from the three anatomical sites allowed samples to be clustered into two distinct clades that distinguished controls from USC cases (p = 0.042). The USC group was defined by 13 bacterial taxa across the three sites (W-stat>10, FDR<0.05) including depletion of cervicovaginal Lactobacillus and elevation of uterine Pseudomonas. PICRUSTt analysis revealed highly significant differences between the USC-associated clades within the cervicovaginal and uterine microbiota. CONCLUSIONS The microbial diversity of anatomic niches in postmenopausal women with EAC and USC is different compared to controls. Multiple bacteria are associated with USC case status including elevated levels of cervicovaginal Lactobacillus, depletion of uterine Pseudomonas, and substantially different functional potentials identified within cervicovaginal and uterine niches.
Collapse
Affiliation(s)
- Gregory M. Gressel
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States of America
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Mykhaylo Usyk
- Department of Pediatrics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States of America
| | - Marina Frimer
- Department of Obstetrics & Gynecology, Karches Center for Oncology Research, Feinstein Institutes at Northwell Health, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
| | - D. Y. S. Kuo
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States of America
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Robert D. Burk
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States of America
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Pediatrics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States of America
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, United States of America
| |
Collapse
|
25
|
Rochford R. Reframing Burkitt lymphoma: virology not epidemiology defines clinical variants. ANNALS OF LYMPHOMA 2021; 5:22. [PMID: 34888589 PMCID: PMC8654190 DOI: 10.21037/aol-21-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In 1964, Epstein-Barr virus (EBV) was identified in a biopsy from a patient with Burkitt lymphoma (BL) launching a new field of study into this ubiquitous human virus. Almost 60 years later, insights into the role of EBV in lymphomagenesis are still emerging. While all BL carry the hallmark c-myc translocation, the epidemiologic classification of BL (e.g., endemic, sporadic or immunodeficiency-associated) has traditionally been used to define BL clinical variants. However, recent studies using molecular methods to characterize the transcriptional and genetic landscape of BL have identified several unique features are observed that distinguish EBV+ BL including a high level of activation induced deaminase mutation load, evidence of antigen selection in the B cell receptor, and a decreased mutation frequency of TCF3/ID3, all found predominantly in EBV+ compared to EBV- BL. In this review, the focus will be on summarizing recent studies that have done in depth characterization of genetic and transcriptional profiles of BL, describing the differences and similarities of EBV+ and EBV- BL, and what they reveal about the etiology of BL. The new studies put forth a compelling argument that the association with EBV should be the defining etiologic feature of clinical variants of BL. This reframing of BL has important implications for therapeutic interventions for BL that distinguish the EBV+ from the EBV- lymphomas.
Collapse
Affiliation(s)
- Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
26
|
The Role of Coinfections in the EBV-Host Broken Equilibrium. Viruses 2021; 13:v13071399. [PMID: 34372605 PMCID: PMC8310153 DOI: 10.3390/v13071399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
The Epstein–Barr virus (EBV) is a well-adapted human virus, and its infection is exclusive to our species, generally beginning in the childhood and then persisting throughout the life of most of the affected adults. Although this infection generally remains asymptomatic, EBV can trigger life-threatening conditions under unclear circumstances. The EBV lifecycle is characterized by interactions with other viruses or bacteria, which increases the probability of awakening its pathobiont capacity. For instance, EBV infects B cells with the potential to alter the germinal center reaction (GCR)—an adaptive immune structure wherein mutagenic-driven processes take place. HIV- and Plasmodium falciparum-induced B cell hyperactivation also feeds the GCR. These agents, along with the B cell tropic KSHV, converge in the ontogeny of germinal center (GC) or post-GC lymphomas. EBV oral transmission facilitates interactions with local bacteria and HPV, thereby increasing the risk of periodontal diseases and head and neck carcinomas. It is less clear as to how EBV is localized in the stomach, but together with Helicobacter pylori, they are known to be responsible for gastric cancer. Perhaps this mechanism is reminiscent of the local inflammation that attracts different herpesviruses and enhances graft damage and chances of rejection in transplanted patients. In this review, we discussed the existing evidence suggestive of EBV possessing the potential to synergize or cooperate with these agents to trigger or worsen the disease.
Collapse
|
27
|
Peprah S, Ogwang MD, Kerchan P, Reynolds SJ, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Otim I, Legason ID, Ayers LW, Bhatia K, Goedert JJ, Pfeiffer RM, Mbulaiteye SM. Inverse association of falciparum positivity with endemic Burkitt lymphoma is robust in analyses adjusting for pre-enrollment malaria in the EMBLEM case-control study. Infect Agent Cancer 2021; 16:40. [PMID: 34099001 PMCID: PMC8186042 DOI: 10.1186/s13027-021-00377-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Falciparum and endemic Burkitt lymphoma (eBL) are co-endemic in Africa, but the malaria experience in eBL patients is unknown. A lower prevalence of falciparum has been reported in eBL patients, but those results are anecdotally attributed to pre-enrollment anti-malaria treatment. METHODS We studied 677 eBL patients and 2920 community controls aged 0-15 years enrolled in six regions in Uganda, Tanzania, and Kenya during 2010-2016. Falciparum was diagnosed using thick blood film microscopy (TFM) and antigen-capture rapid diagnostic tests (RDTs). Guardians of the children answered a 40-item structured questionnaire about their child's pre-enrollment lifetime malaria history and treatment, demographics, socioeconomics, animal exposures, fevers, and hospitalizations. We utilized exploratory factor analysis to reduce the 40 questionnaire variables into six factors, including Inpatient malaria and Outpatient malaria factors that were surrogates of pre-enrollment anti-malaria treatment. The six factors accounted for 83-90% of the variance in the questionnaire data. We calculated odds ratios and 95% confidence intervals (OR 95% CI) of association of eBL with falciparum positivity, defined as positive both on TFM or RDTs, or only RDTs (indicative of recent infection) or TFM (indicative of current falciparum infection) versus no infection, using multivariable logistic regression, controlling for group of age (0-2, 3-5, 6-8, 9-11 and 12-15 years), sex, and study site and the afore-mentioned pre-enrollment factors. RESULTS The prevalence of falciparum infection was 25.6% in the eBL cases and 45.7% in community controls (aOR = 0.43, 95% CI: 0.40, 0.47; P < 0.0001). The results were similar for recent falciparum infection (6.9% versus 13.5%, aOR = 0.44, 95% CI: 0.38, 0.50; P < 0.0001) and current falciparum infection (18.7% versus 32.1%, aOR = 0.47, 95% CI: 0.43, 0.51; P < 0.0001). These aORs for any, recent and current falciparum infection did not change when we adjusted for pre-enrollment factors (aORs = 0.46, =0.44, and = 0.51, respectively) were significantly lower in stratified analysis for any infection in children < 5 years (aOR = 0.46; 95% CI: 0.29, 0.75) or ≥ 10 years (aOR = 0.47; 95% CI: 0.32, 0.71). CONCLUSION Our study results reduce support for pre-enrollment antimalaria treatment as a sole explanation for the observed lower falciparum prevalence in eBL cases and open a space to consider alternative immunology-based hypotheses.
Collapse
Affiliation(s)
- Sally Peprah
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Infections and Immunoepidemiology Branch, 9609 Medical Center Dr, Rm. 6E-118, MSC 3330, Bethesda, MD, 20892, USA
| | - Martin D Ogwang
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
| | - Patrick Kerchan
- EMBLEM Study, Kuluva Hospital, Arua & African Field Epidemiology Network, Kampala, Uganda
| | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constance N Tenge
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
- Moi Teaching and Referral Hospital (MTRH), Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Pamela A Were
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
- Moi Teaching and Referral Hospital (MTRH), Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Robert T Kuremu
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
- Moi Teaching and Referral Hospital (MTRH), Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Walter N Wekesa
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
- Moi Teaching and Referral Hospital (MTRH), Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | | | - Esther Kawira
- EMBLEM Study, Shirati Health and Educational Foundation, Shirati, Tanzania
| | - Isaac Otim
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D Legason
- EMBLEM Study, Kuluva Hospital, Arua & African Field Epidemiology Network, Kampala, Uganda
| | - Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Infections and Immunoepidemiology Branch, 9609 Medical Center Dr, Rm. 6E-118, MSC 3330, Bethesda, MD, 20892, USA
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Infections and Immunoepidemiology Branch, 9609 Medical Center Dr, Rm. 6E-118, MSC 3330, Bethesda, MD, 20892, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Infections and Immunoepidemiology Branch, 9609 Medical Center Dr, Rm. 6E-118, MSC 3330, Bethesda, MD, 20892, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Infections and Immunoepidemiology Branch, 9609 Medical Center Dr, Rm. 6E-118, MSC 3330, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Arisue N, Chagaluka G, Palacpac NMQ, Johnston WT, Mutalima N, Peprah S, Bhatia K, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Goedert JJ, Molyneux EM, Newton R, Horii T, Mbulaiteye SM. Assessment of Mixed Plasmodium falciparum sera5 Infection in Endemic Burkitt Lymphoma: A Case-Control Study in Malawi. Cancers (Basel) 2021; 13:1692. [PMID: 33918470 PMCID: PMC8038222 DOI: 10.3390/cancers13071692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Endemic Burkitt lymphoma (eBL) is the most common childhood cancer in Africa and is linked to Plasmodium falciparum (Pf) malaria infection, one of the most common and deadly childhood infections in Africa; however, the role of Pf genetic diversity is unclear. A potential role of Pf genetic diversity in eBL has been suggested by a correlation of age-specific patterns of eBL with the complexity of Pf infection in Ghana, Uganda, and Tanzania, as well as a finding of significantly higher Pf genetic diversity, based on a sensitive molecular barcode assay, in eBL cases than matched controls in Malawi. We examined this hypothesis by measuring diversity in Pf-serine repeat antigen-5 (Pfsera5), an antigenic target of blood-stage immunity to malaria, among 200 eBL cases and 140 controls, all Pf polymerase chain reaction (PCR)-positive, in Malawi. METHODS We performed Pfsera5 PCR and sequencing (~3.3 kb over exons II-IV) to determine single or mixed PfSERA5 infection status. The patterns of Pfsera5 PCR positivity, mixed infection, sequence variants, and haplotypes among eBL cases, controls, and combined/pooled were analyzed using frequency tables. The association of mixed Pfsera5 infection with eBL was evaluated using logistic regression, controlling for age, sex, and previously measured Pf genetic diversity. RESULTS Pfsera5 PCR was positive in 108 eBL cases and 70 controls. Mixed PfSERA5 infection was detected in 41.7% of eBL cases versus 24.3% of controls; the odds ratio (OR) was 2.18, and the 95% confidence interval (CI) was 1.12-4.26, which remained significant in adjusted results (adjusted odds ratio [aOR] of 2.40, 95% CI of 1.11-5.17). A total of 29 nucleotide variations and 96 haplotypes were identified, but these were unrelated to eBL. CONCLUSIONS Our results increase the evidence supporting the hypothesis that infection with mixed Pf infection is increased with eBL and suggest that measuring Pf genetic diversity may provide new insights into the role of Pf infection in eBL.
Collapse
Affiliation(s)
- Nobuko Arisue
- Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - George Chagaluka
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (N.M.Q.P.); (T.H.)
| | - W. Thomas Johnston
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK; (W.T.J.); (N.M.); (R.N.)
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK; (W.T.J.); (N.M.); (R.N.)
- Cancer Epidemiology Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Sally Peprah
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| | - Kishor Bhatia
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| | - Eric Borgstein
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - George N. Liomba
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Steve Kamiza
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Nyengo Mkandawire
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Collins Mitambo
- National Health Sciences Research Committee, Research Department, Ministry of Health, P.O. Box 30377, Capital City, Lilongwe 3, Malawi;
| | - James J. Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| | - Elizabeth M. Molyneux
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK; (W.T.J.); (N.M.); (R.N.)
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (N.M.Q.P.); (T.H.)
| | - Sam M. Mbulaiteye
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| |
Collapse
|
29
|
Omarova KG, Aleshina NI, Ponezhevа ZB, Gorelov AV, Maleev VV, Akimkin VG. [Risks of oncologic pathology in parasitosis at the present time]. TERAPEVT ARKH 2020; 92:82-85. [PMID: 33720610 DOI: 10.26442/00403660.2020.11.000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 11/22/2022]
Abstract
An analysis of published literature data on the relationship of parasitic diseases and oncogenesis is carried out. Current knowledge about the association of parasitic infections and cancer formation has revealed several carcinogenic mechanisms, but the severity of the relationship between parasites and cancer formation (except for schistosome, opisthorchis and clonorchis) should be confirmed in future experimental and population studies.
Collapse
Affiliation(s)
| | | | | | | | - V V Maleev
- Central Research Institute of Epidemiology
| | | |
Collapse
|
30
|
Proteomic approaches to investigate gammaherpesvirus biology and associated tumorigenesis. Adv Virus Res 2020; 109:201-254. [PMID: 33934828 DOI: 10.1016/bs.aivir.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The DNA viruses, Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), are members of the gammaherpesvirus subfamily, a group of viruses whose infection is associated with multiple malignancies, including cancer. The primary host for these viruses is humans and, like all herpesviruses, infection with these pathogens is lifelong. Due to the persistence of gammaherpesvirus infection and the potential for cancer formation in infected individuals, there is a driving need to understand not only the biology of these viruses and how they remain undetected in host cells but also the mechanism(s) by which tumorigenesis occurs. One of the methods that has provided much insight into these processes is proteomics. Proteomics is the study of all the proteins that are encoded by a genome and allows for (i) identification of existing and novel proteins derived from a given genome, (ii) interrogation of protein-protein interactions within a system, and (iii) discovery of druggable targets for the treatment of malignancies. In this chapter, we explore how proteomics has contributed to our current understanding of gammaherpesvirus biology and their oncogenic processes, as well as the clinical applications of proteomics for the detection and treatment of gammaherpesvirus-associated cancers.
Collapse
|
31
|
Wyss K, Granath F, Wångdahl A, Djärv T, Fored M, Naucler P, Färnert A. Malaria and risk of lymphoid neoplasms and other cancer: a nationwide population-based cohort study. BMC Med 2020; 18:296. [PMID: 33121475 PMCID: PMC7596993 DOI: 10.1186/s12916-020-01759-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Malaria is associated with Burkitt lymphoma among children in Sub-Saharan Africa. No longitudinal studies have assessed the long-term risk of other lymphoma or cancer overall. Here, we investigated the risk of lymphoid neoplasms and other cancer after malaria. METHODS We included 4125 patients diagnosed with malaria in Sweden in 1987-2015, identified either through the National Surveillance Database at the Public Health Agency of Sweden, the National Inpatient and Outpatient Register, or by reports from microbiology departments. A comparator cohort (N = 66,997) matched on sex, age and birth region was retrieved from the general population and an additional cohort with all individuals born in Sub-Saharan Africa registered in the Total Population Register in 1987-2015 (N = 171,756). Incident lymphomas and other cancers were identified through linkage with the Swedish Cancer Register. Hazard ratios (HRs) were assessed using Cox regression with attained age as the timescale. RESULTS A total of 20 lymphoid neoplasms and 202 non-haematological cancers were identified among malaria patients during a mean follow-up of 13.3 and 13.7 years, respectively. The overall risk of lymphoid neoplasms was not significantly increased (hazard ratio [HR] 1.24, 95% confidence interval [CI] 0.79-1.94), neither did we find any association with all-site non-haematological cancer (HR 0.89, 95% CI 0.77-1.02). However, in the Sub-Saharan Africa cohort, we observed an increased risk of lymphoid neoplasms after malaria diagnosis (HR 2.39, 95% CI 1.06-5.40), but no difference in the risk of other cancer (HR 1.01, 95% CI 0.70-1.45). The association could not be explained by co-infection with HIV or chronic hepatitis B or C, since the risk estimate was largely unchanged after excluding patients with these comorbidities (HR 2.63, 95% CI 1.08-6.42). The risk became more pronounced when restricting analyses to only including non-Hodgkin and Hodgkin lymphomas (HR 3.49, 95% CI 1.42-8.56). CONCLUSION Individuals born in malaria-endemic areas and diagnosed with malaria in Sweden had an increased risk of lymphoid neoplasms, especially B cell lymphoma. There was no association with cancer overall nor did single malaria episodes confer an increased risk in travellers.
Collapse
Affiliation(s)
- Katja Wyss
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden. .,Department of Infectious Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Fredrik Granath
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Wångdahl
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Västerås Hospital, Västerås, Sweden
| | - Therese Djärv
- Division of Clinical Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Function of Emergency Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Fored
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Pontus Naucler
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| |
Collapse
|
32
|
Epstein-Barr Virus Promotes B Cell Lymphomas by Manipulating the Host Epigenetic Machinery. Cancers (Basel) 2020; 12:cancers12103037. [PMID: 33086505 PMCID: PMC7603164 DOI: 10.3390/cancers12103037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV)-induced lymphomas have a significant global incidence, given the widespread infection to the human population. EBV adopts several mechanisms to replicate and persist in the host, by hijacking its epigenetic machinery. The main topic of this review details the current insights of EBV interactions with the host epigenetic system, and it will be discussed the potential relationship between the EBV-induced chronic inflammation and the dysregulation of epigenetic modifiers that might lead to tumorigenesis. Promising novel therapies against several types of cancer involve the use of epigenetic modifier inhibitors. To design new therapeutical strategies targeting lymphomas, it is crucial to conduct exhaustive reaserch on the regulation of these enzymes. Abstract During the past decade, the rapid development of high-throughput next-generation sequencing technologies has significantly reinforced our understanding of the role of epigenetics in health and disease. Altered functions of epigenetic modifiers lead to the disruption of the host epigenome, ultimately inducing carcinogenesis and disease progression. Epstein–Barr virus (EBV) is an endemic herpesvirus that is associated with several malignant tumours, including B-cell related lymphomas. In EBV-infected cells, the epigenomic landscape is extensively reshaped by viral oncoproteins, which directly interact with epigenetic modifiers and modulate their function. This process is fundamental for the EBV life cycle, particularly for the establishment and maintenance of latency in B cells; however, the alteration of the host epigenetic machinery also contributes to the dysregulated expression of several cellular genes, including tumour suppressor genes, which can drive lymphoma development. This review outlines the molecular mechanisms underlying the epigenetic manipulation induced by EBV that lead to transformed B cells, as well as novel therapeutic interventions to target EBV-associated B-cell lymphomas.
Collapse
|
33
|
Epstein-Barr Virus Genomes Reveal Population Structure and Type 1 Association with Endemic Burkitt Lymphoma. J Virol 2020; 94:JVI.02007-19. [PMID: 32581102 DOI: 10.1128/jvi.02007-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Endemic Burkitt lymphoma (eBL), the most prevalent pediatric cancer in sub-Saharan Africa, is distinguished by its inclusion of Epstein-Barr virus (EBV). In order to better understand the impact of EBV variation in eBL tumorigenesis, we improved viral DNA enrichment methods and generated a total of 98 new EBV genomes from both eBL cases (n = 58) and healthy controls (n = 40) residing in the same geographic region in Kenya. Using our unbiased methods, we found that EBV type 1 was significantly more prevalent in eBL patients (74.5%) than in healthy children (47.5%) (odds ratio = 3.24, 95% confidence interval = 1.36 to 7.71, P = 0.007), as opposed to similar proportions in both groups. Controlling for EBV type, we also performed a genome-wide association study identifying six nonsynonymous variants in the genes EBNA1, EBNA2, BcLF1, and BARF1 that were enriched in eBL patients. In addition, viruses isolated from plasma of eBL patients were identical to their tumor counterparts consistent with circulating viral DNA originating from the tumor. We also detected three intertypic recombinants carrying type 1 EBNA2 and type 2 EBNA3 regions, as well as one novel genome with a 20-kb deletion, resulting in the loss of multiple lytic and virion genes. Comparing EBV types, viral genes displayed differential variation rates as type 1 appeared to be more divergent, while type 2 demonstrated novel substructures. Overall, our findings highlight the complexities of the EBV population structure and provide new insight into viral variation, potentially deepening our understanding of eBL oncogenesis.IMPORTANCE Improved viral enrichment methods conclusively demonstrate EBV type 1 to be more prevalent in eBL patients than in geographically matched healthy controls, which previously underrepresented the prevalence of EBV type 2. Genome-wide association analysis between cases and controls identifies six eBL-associated nonsynonymous variants in EBNA1, EBNA2, BcLF1, and BARF1 genes. Analysis of population structure reveals that EBV type 2 exists as two genomic subgroups and was more commonly found in female than in male eBL patients.
Collapse
|
34
|
Activation-induced cytidine deaminase: in sickness and in health. J Cancer Res Clin Oncol 2020; 146:2721-2730. [PMID: 32772231 DOI: 10.1007/s00432-020-03348-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Activation Induced cytidine Deaminase (AID) is an essential enzyme of the adaptive immune system. Its canonical activity is restricted to B lymphocytes, playing an essential role in the diversification of antibodies by enhancing specificity and changing affinity. This is possible through its DNA deaminase function, leading to mutations in DNA. In the last decade, AID has been assigned an additional function: that of a powerful DNA demethylator. Adverse cellular conditions such as chronic inflammation can lead to its deregulation and overexpression. It is an important driver of B-cell lymphoma due to its natural ability to modify DNA through deamination, leading to mutations and epigenetic changes. However, the deregulation of AID is not restricted to lymphoid cells. Recent findings have provided new insights into the role that this protein plays in the development of non-lymphoid cancers, with some research shedding light on novel AID-driven mechanisms of cellular transformation. In this review, we provide an updated narrative of the normal physiological functions of AID. Additionally, we review and discuss the recent research studies that have implicated AID in carcinogenesis in varying tissue types including lymphoid and non-lymphoid cancers. We review the mechanisms, whereby AID promotes carcinogenesis and highlight important areas of future research.
Collapse
|
35
|
Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire. Viruses 2020; 12:v12080788. [PMID: 32717815 PMCID: PMC7472090 DOI: 10.3390/v12080788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
A common biologic property of the gammaherpesviruses Epstein–Barr Virus and Kaposi sarcoma herpesvirus is their use of B lymphocytes as a reservoir of latency in healthy individuals that can undergo oncogenic transformation later in life. Gammaherpesviruses (GHVs) employ an impressive arsenal of proteins and non-coding RNAs to reprogram lymphocytes for proliferative expansion. Within lymphoid tissues, the germinal center (GC) reaction is a hub of B cell proliferation and death. The goal of a GC is to generate and then select for a pool of immunoglobulin (Ig) genes that will provide a protective humoral adaptive immune response. B cells infected with GHVs are detected in GCs and bear the hallmark signatures of the mutagenic processes of somatic hypermutation and isotype class switching of the Ig genes. However, data also supports extrafollicular B cells as a reservoir engaged by GHVs. Next-generation sequencing technologies provide unprecedented detail of the Ig sequence that informs the natural history of infection at the single cell level. Here, we review recent reports from human and murine GHV systems that identify striking differences in the immunoglobulin repertoire of infected B cells compared to their uninfected counterparts. Implications for virus biology, GHV-associated cancers, and host immune dysfunction will be discussed.
Collapse
|
36
|
Quintana MDP, Smith-Togobo C, Moormann A, Hviid L. Endemic Burkitt lymphoma - an aggressive childhood cancer linked to Plasmodium falciparum exposure, but not to exposure to other malaria parasites. APMIS 2020; 128:129-135. [PMID: 32133709 DOI: 10.1111/apm.13018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Burkitt lymphoma (BL) is an aggressive non-Hodgkin lymphoma. The prevalence of BL is ten-fold higher in areas with stable transmission of Plasmodium falciparum malaria, where it is the most common childhood cancer, and is referred to as endemic BL (eBL). In addition to its association with exposure to P. falciparum infection, eBL is strongly associated with Epstein-Barr virus (EBV) infection (>90%). This is in contrast to BL as it occurs outside P. falciparum-endemic areas (sporadic BL), where only a minority of the tumours are EBV-positive. Although the striking geographical overlap in the distribution of eBL and P. falciparum was noted shortly after the first detailed description of eBL in 1958, the molecular details of the interaction between malaria and eBL remain unresolved. It is furthermore unexplained why exposure to P. falciparum appears to be essentially a prerequisite to the development of eBL, whereas other types of malaria parasites that infect humans have no impact. In this brief review, we summarize how malaria exposure may precipitate the malignant transformation of a B-cell clone that leads to eBL, and propose an explanation for why P. falciparum uniquely has this capacity.
Collapse
Affiliation(s)
- Maria Del Pilar Quintana
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilia Smith-Togobo
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biochemistry, Cell and Molecular Biology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Ann Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
37
|
Münz C. Latency and lytic replication in Epstein-Barr virus-associated oncogenesis. Nat Rev Microbiol 2019; 17:691-700. [PMID: 31477887 DOI: 10.1038/s41579-019-0249-7] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
Epstein-Barr virus (EBV) was the first tumour virus identified in humans. The virus is primarily associated with lymphomas and epithelial cell cancers. These tumours express latent EBV antigens and the oncogenic potential of individual latent EBV proteins has been extensively explored. Nevertheless, it was presumed that the pro-proliferative and anti-apoptotic functions of these oncogenes allow the virus to persist in humans; however, recent evidence suggests that cellular transformation is not required for virus maintenance. Vice versa, lytic EBV replication was assumed to destroy latently infected cells and thereby inhibit tumorigenesis, but at least the initiation of the lytic cycle has now been shown to support EBV-driven malignancies. In addition to these changes in the roles of latent and lytic EBV proteins during tumorigenesis, the function of non-coding RNAs has become clearer, suggesting that they might mainly mediate immune escape rather than cellular transformation. In this Review, these recent findings will be discussed with respect to the role of EBV-encoded oncogenes in viral persistence and the contributions of lytic replication as well as non-coding RNAs in virus-driven tumour formation. Accordingly, early lytic EBV antigens and attenuated viruses without oncogenes and microRNAs could be harnessed for immunotherapies and vaccination.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
38
|
Dheilly NM, Ewald PW, Brindley PJ, Fichorova RN, Thomas F. Parasite-microbe-host interactions and cancer risk. PLoS Pathog 2019; 15:e1007912. [PMID: 31415672 PMCID: PMC6695093 DOI: 10.1371/journal.ppat.1007912] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Paul W. Ewald
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington DC, United States of America
| | - Raina N. Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | | |
Collapse
|
39
|
Grande BM, Gerhard DS, Jiang A, Griner NB, Abramson JS, Alexander TB, Allen H, Ayers LW, Bethony JM, Bhatia K, Bowen J, Casper C, Choi JK, Culibrk L, Davidsen TM, Dyer MA, Gastier-Foster JM, Gesuwan P, Greiner TC, Gross TG, Hanf B, Harris NL, He Y, Irvin JD, Jaffe ES, Jones SJM, Kerchan P, Knoetze N, Leal FE, Lichtenberg TM, Ma Y, Martin JP, Martin MR, Mbulaiteye SM, Mullighan CG, Mungall AJ, Namirembe C, Novik K, Noy A, Ogwang MD, Omoding A, Orem J, Reynolds SJ, Rushton CK, Sandlund JT, Schmitz R, Taylor C, Wilson WH, Wright GW, Zhao EY, Marra MA, Morin RD, Staudt LM. Genome-wide discovery of somatic coding and noncoding mutations in pediatric endemic and sporadic Burkitt lymphoma. Blood 2019; 133:1313-1324. [PMID: 30617194 PMCID: PMC6428665 DOI: 10.1182/blood-2018-09-871418] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022] Open
Abstract
Although generally curable with intensive chemotherapy in resource-rich settings, Burkitt lymphoma (BL) remains a deadly disease in older patients and in sub-Saharan Africa. Epstein-Barr virus (EBV) positivity is a feature in more than 90% of cases in malaria-endemic regions, and up to 30% elsewhere. However, the molecular features of BL have not been comprehensively evaluated when taking into account tumor EBV status or geographic origin. Through an integrative analysis of whole-genome and transcriptome data, we show a striking genome-wide increase in aberrant somatic hypermutation in EBV-positive tumors, supporting a link between EBV and activation-induced cytidine deaminase (AICDA) activity. In addition to identifying novel candidate BL genes such as SIN3A, USP7, and CHD8, we demonstrate that EBV-positive tumors had significantly fewer driver mutations, especially among genes with roles in apoptosis. We also found immunoglobulin variable region genes that were disproportionally used to encode clonal B-cell receptors (BCRs) in the tumors. These include IGHV4-34, known to produce autoreactive antibodies, and IGKV3-20, a feature described in other B-cell malignancies but not yet in BL. Our results suggest that tumor EBV status defines a specific BL phenotype irrespective of geographic origin, with particular molecular properties and distinct pathogenic mechanisms. The novel mutation patterns identified here imply rational use of DNA-damaging chemotherapy in some patients with BL and targeted agents such as the CDK4/6 inhibitor palbociclib in others, whereas the importance of BCR signaling in BL strengthens the potential benefit of inhibitors for PI3K, Syk, and Src family kinases among these patients.
Collapse
Affiliation(s)
- Bruno M Grande
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Aixiang Jiang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Nicholas B Griner
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jeremy S Abramson
- Center for Lymphoma, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Thomas B Alexander
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, OH
| | | | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Jay Bowen
- Nationwide Children's Hospital, Columbus, OH
| | - Corey Casper
- Infectious Disease Research Institute, Seattle, WA
| | - John Kim Choi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Luka Culibrk
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Tanja M Davidsen
- Cancer Informatics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Maureen A Dyer
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD
| | - Julie M Gastier-Foster
- Nationwide Children's Hospital, Columbus, OH
- Departments of Pathology and Pediatrics, The Ohio State University, Columbus, OH
| | - Patee Gesuwan
- Cancer Informatics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Thomas G Gross
- Center for Global Health, National Cancer Institute, National Institutes of Health, Rockville, MD
| | | | - Nancy Lee Harris
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yiwen He
- Cancer Informatics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - John D Irvin
- Foundation for Burkitt Lymphoma Research, Geneva, Switzerland
| | - Elaine S Jaffe
- Laboratory of Pathology, Clinical Center, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven J M Jones
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Nicole Knoetze
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Fabio E Leal
- Programa de Oncovirologia, Instituto Nacional de Câncer José de Alencar, Rio de Janeiro, Brazil
| | | | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | | | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | - Karen Novik
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Ariela Noy
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | | | | | | | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Christopher K Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - John T Sandlund
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Roland Schmitz
- Lymphoid Malignancies Branch, Center for Cancer Research and
| | | | | | - George W Wright
- Biometric Research Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Eric Y Zhao
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research and
| |
Collapse
|
40
|
Sehrawat S, Kumar D, Rouse BT. Herpesviruses: Harmonious Pathogens but Relevant Cofactors in Other Diseases? Front Cell Infect Microbiol 2018; 8:177. [PMID: 29888215 PMCID: PMC5981231 DOI: 10.3389/fcimb.2018.00177] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/08/2018] [Indexed: 11/24/2022] Open
Abstract
Most vertebrates are infected with one or more herpesviruses and remain so for the rest of their lives. The relationship of immunocompetent healthy host with herpesviruses may sometime be considered as harmonious. However, clinically severe diseases can occur when host immunity is compromised due to aging, during some stress response, co-infections or during neoplastic disease conditions. Discord can also occur during iatrogenic immunosuppression used for controlling graft rejection, in some primary genetic immunodeficiencies as well as when the virus infects a non-native host. In this review, we discuss such issues and their influence on host-herpesvirus interaction.
Collapse
Affiliation(s)
- Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Dhaneshwar Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
41
|
Sall FB, Germini D, Kovina AP, Ribrag V, Wiels J, Toure AO, Iarovaia OV, Lipinski M, Vassetzky Y. Effect of Environmental Factors on Nuclear Organization and Transformation of Human B Lymphocytes. BIOCHEMISTRY (MOSCOW) 2018; 83:402-410. [DOI: 10.1134/s0006297918040119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
|
43
|
Abstract
Systemic inflammation mediated by Plasmodium parasites is central to malaria disease and its complications. Plasmodium parasites reside in erythrocytes and can theoretically reach all host tissues via the circulation. However, actual interactions between parasitized erythrocytes and host tissues, along with the consequent damage and pathological changes, are limited locally to specific tissue sites. Such tissue specificity of the parasite can alter the outcome of malaria disease, determining whether acute or chronic complications occur. Here, we give an overview of the recent progress that has been made in understanding tissue-specific immunopathology during Plasmodium infection. As knowledge on tissue-specific host-parasite interactions accumulates, better treatment modalities and targets may emerge for intervention in malaria disease.
Collapse
|
44
|
Shannon-Lowe C, Rickinson AB, Bell AI. Epstein-Barr virus-associated lymphomas. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160271. [PMID: 28893938 PMCID: PMC5597738 DOI: 10.1098/rstb.2016.0271] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Epstein-Barr virus (EBV), originally discovered through its association with Burkitt lymphoma, is now aetiologically linked to a remarkably wide range of lymphoproliferative lesions and malignant lymphomas of B-, T- and NK-cell origin. Some occur as rare accidents of virus persistence in the B lymphoid system, while others arise as a result of viral entry into unnatural target cells. The early finding that EBV is a potent B-cell growth transforming agent hinted at a simple oncogenic mechanism by which this virus could promote lymphomagenesis. In reality, the pathogenesis of EBV-associated lymphomas involves a complex interplay between different patterns of viral gene expression and cellular genetic changes. Here we review recent developments in our understanding of EBV-associated lymphomagenesis in both the immunocompetent and immunocompromised host.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, The Medical School, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alan B Rickinson
- Institute of Immunology and Immunotherapy, The Medical School, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Andrew I Bell
- Institute for Cancer and Genomic Sciences, The Medical School, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
45
|
Mawson AR, Majumdar S. Malaria, Epstein-Barr virus infection and the pathogenesis of Burkitt's lymphoma. Int J Cancer 2017; 141:1849-1855. [PMID: 28707393 DOI: 10.1002/ijc.30885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/10/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023]
Abstract
A geographical and causal connection has long been recognized between malaria, Epstein-Barr virus (EBV) infection and Burkitt's lymphoma (BL), but the underlying mechanisms remain obscure. Potential clues are that the malaria parasite Plasmodium falciparum selectively absorbs vitamin A from the host and depends on it for its biological activities; secondly, alterations in vitamin A (retinoid) metabolism have been implicated in many forms of cancer, including BL. The first author has proposed that the merozoite-stage malaria parasite, emerging from the liver, uses its absorbed vitamin A as a cell membrane destabilizer to invade the red blood cells, causing anemia and other signs and symptoms of the disease as manifestations of an endogenous form of hypervitaminosis A (Mawson AR, Path Global Health 2013;107(3):122-9). Repeated episodes of malaria would therefore be expected to expose the tissues of affected individuals to potentially toxic doses of vitamin A. It is proposed that such episodes activate latent EBV infection, which in turn activates retinoid-responsive genes. Expression of these genes enhances viral replication and induces germinal center (GC) B cell expansion, activation-induced cytidine deaminase (AID) expression, and c-myc translocation, which in turn predisposes to BL. Thus, an endogenous form of retinoid toxicity related to malaria infection may be the common factor linking frequent malaria, EBV infection and BL, whereby prolonged exposure of lymphatic tissues to high concentrations of retinoids may combine to induce B-cell translocation and increase the risk of Burkitt's lymphoma.
Collapse
Affiliation(s)
- Anthony R Mawson
- Professor, Department of Epidemiology and Biostatistics, School of Public Health, Jackson State University, Jackson, MS
| | - Suvankar Majumdar
- Chief, Division of Hematology, Center for Cancer and Blood Disorders, Children's National Medical Center, Associate Professor of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
46
|
Hernandez-Vargas H, Gruffat H, Cros MP, Diederichs A, Sirand C, Vargas-Ayala RC, Jay A, Durand G, Le Calvez-Kelm F, Herceg Z, Manet E, Wild CP, Tommasino M, Accardi R. Viral driven epigenetic events alter the expression of cancer-related genes in Epstein-Barr-virus naturally infected Burkitt lymphoma cell lines. Sci Rep 2017; 7:5852. [PMID: 28724958 PMCID: PMC5517637 DOI: 10.1038/s41598-017-05713-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) was identified as the first human virus to be associated with a human malignancy, Burkitt's lymphoma (BL), a pediatric cancer endemic in sub-Saharan Africa. The exact mechanism of how EBV contributes to the process of lymphomagenesis is not fully understood. Recent studies have highlighted a genetic difference between endemic (EBV+) and sporadic (EBV-) BL, with the endemic variant showing a lower somatic mutation load, which suggests the involvement of an alternative virally-driven process of transformation in the pathogenesis of endemic BL. We tested the hypothesis that a global change in DNA methylation may be induced by infection with EBV, possibly thereby accounting for the lower mutation load observed in endemic BL. Our comparative analysis of the methylation profiles of a panel of BL derived cell lines, naturally infected or not with EBV, revealed that the presence of the virus is associated with a specific pattern of DNA methylation resulting in altered expression of cellular genes with a known or potential role in lymphomagenesis. These included ID3, a gene often found to be mutated in sporadic BL. In summary this study provides evidence that EBV may contribute to the pathogenesis of BL through an epigenetic mechanism.
Collapse
Affiliation(s)
| | - Henri Gruffat
- CIRI, (Oncogenic Herpesviruses Team), Lyon, France.,Inserm, U1111, Lyon, France.,Université Claude Bernard Lyon 1, CNRS, UMR5308, Lyon, France.,École Normale Supérieure de Lyon, Lyon, France.,Université Lyon, F-69007, Lyon, France
| | - Marie Pierre Cros
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Audrey Diederichs
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Cécilia Sirand
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Romina C Vargas-Ayala
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Antonin Jay
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Geoffroy Durand
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | | | - Zdenko Herceg
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Evelyne Manet
- CIRI, (Oncogenic Herpesviruses Team), Lyon, France.,Inserm, U1111, Lyon, France.,Université Claude Bernard Lyon 1, CNRS, UMR5308, Lyon, France.,École Normale Supérieure de Lyon, Lyon, France.,Université Lyon, F-69007, Lyon, France
| | - Christopher P Wild
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Massimo Tommasino
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Rosita Accardi
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France.
| |
Collapse
|
47
|
Rajagopala SV, Vashee S, Oldfield LM, Suzuki Y, Venter JC, Telenti A, Nelson KE. The Human Microbiome and Cancer. Cancer Prev Res (Phila) 2017; 10:226-234. [PMID: 28096237 DOI: 10.1158/1940-6207.capr-16-0249] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/27/2016] [Accepted: 12/30/2016] [Indexed: 11/16/2022]
Abstract
Recent scientific advances have significantly contributed to our understanding of the complex connection between the microbiome and cancer. Our bodies are continuously exposed to microbial cells, both resident and transient, as well as their byproducts, including toxic metabolites. Circulation of toxic metabolites may contribute to cancer onset or progression at locations distant from where a particular microbe resides. Moreover, microbes may migrate to other locations in the human body and become associated with tumor development. Several case-control metagenomics studies suggest that dysbiosis in the commensal microbiota is also associated with inflammatory disorders and various cancer types throughout the body. Although the microbiome influences carcinogenesis through mechanisms independent of inflammation and immune system, the most recognizable link is between the microbiome and cancer via the immune system, as the resident microbiota plays an essential role in activating, training, and modulating the host immune response. Immunologic dysregulation is likely to provide mechanistic explanations as to how our microbiome influences cancer development and cancer therapies. In this review, we discuss recent developments in understanding the human gut microbiome's relationship with cancer and the feasibility of developing novel cancer diagnostics based on microbiome profiles. Cancer Prev Res; 10(4); 226-34. ©2017 AACR.
Collapse
Affiliation(s)
| | - Sanjay Vashee
- J. Craig Venter Institute (JCVI), Rockville, Maryland
| | | | - Yo Suzuki
- J. Craig Venter Institute (JCVI), Rockville, Maryland
| | - J Craig Venter
- J. Craig Venter Institute (JCVI), Rockville, Maryland.,Human Longevity, Inc., San Diego, California
| | - Amalio Telenti
- J. Craig Venter Institute (JCVI), Rockville, Maryland.,Human Longevity, Inc., San Diego, California
| | - Karen E Nelson
- J. Craig Venter Institute (JCVI), Rockville, Maryland. .,Human Longevity, Inc., San Diego, California
| |
Collapse
|
48
|
Abstract
Epstein-Barr virus (EBV) infection is associated with several distinct hematological and epithelial malignancies, e.g., Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and others. The association with several malignant tumors of local and worldwide distribution makes EBV one of the most important tumor viruses. Furthermore, because EBV can cause posttransplant lymphoproliferative disease, transplant medicine has to deal with EBV as a major pathogenic virus second only to cytomegalovirus. In this review, we summarize briefly the natural history of EBV infection and outline some of the recent advances in the pathogenesis of the major EBV-associated neoplasms. We present alternative scenarios and discuss them in the light of most recent experimental data. Emerging research areas including EBV-induced patho-epigenetic alterations in host cells and the putative role of exosome-mediated information transfer in disease development are also within the scope of this review. This book contains an in-depth description of a series of modern methodologies used in EBV research. In this introductory chapter, we thoroughly refer to the applications of these methods and demonstrate how they contributed to the understanding of EBV-host cell interactions. The data gathered using recent technological advancements in molecular biology and immunology as well as the application of sophisticated in vitro and in vivo experimental models certainly provided deep and novel insights into the pathogenetic mechanisms of EBV infection and EBV-associated tumorigenesis. Furthermore, the development of adoptive T cell immunotherapy has provided a novel approach to the therapy of viral disease in transplant medicine and hematology.
Collapse
Affiliation(s)
- Janos Minarovits
- Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza Lajos krt. 64, H-6720, Szeged, Hungary.
| | - Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
49
|
van Tong H, Brindley PJ, Meyer CG, Velavan TP. Parasite Infection, Carcinogenesis and Human Malignancy. EBioMedicine 2016; 15:12-23. [PMID: 27956028 PMCID: PMC5233816 DOI: 10.1016/j.ebiom.2016.11.034] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic. Trypanosoma cruzi has a dual role in cancer development including both carcinogenic and anticancer properties. Initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by EBV. Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas.
We searched MEDLINE database and PubMed for articles from 1970 through June 30, 2016. Search terms used in various combinations were “parasite infection”, “carcinogenesis”, “cancer”, “human malignancy”, “parasite and cancer”, “infection-associated cancer”, “parasite-associated cancer” “schistosomiasis”, “opisthorchiasis”, “malaria”, “Chagas disease”, and “strongyloidiasis”. Articles resulting from these searches and relevant references cited in those articles were selected based on their related topics and were reviewed. Abstracts and reports from meetings were also included. Articles published in English were included.
Collapse
Affiliation(s)
- Hoang van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Biomedical and Pharmaceutical Applied Research Center, Vietnam Military Medical University, Hanoi, Vietnam.
| | - Paul J Brindley
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, D.C., USA
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Health Focus GmbH, Potsdam, Germany; Duy Tan University, Da Nang, Viet Nam; Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Viet Nam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Duy Tan University, Da Nang, Viet Nam; Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Viet Nam.
| |
Collapse
|
50
|
Abstract
It is more than 50 years since the Epstein-Barr virus (EBV), the first human tumour virus, was discovered. EBV has subsequently been found to be associated with a diverse range of tumours of both lymphoid and epithelial origin. Progress in the molecular analysis of EBV has revealed fundamental mechanisms of more general relevance to the oncogenic process. This Timeline article highlights key milestones in the 50-year history of EBV and discusses how this virus provides a paradigm for exploiting insights at the molecular level in the diagnosis, treatment and prevention of cancer.
Collapse
Affiliation(s)
- Lawrence S Young
- Warwick Medical School, The University of Warwick, Coventry CV4 7AL, UK
| | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences and Oral Cancer Research Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul G Murray
- Institute of Cancer and Genomic Medicine, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|