1
|
Augustin M, Horn C, Ercanoglu MS, Bondet V, de Silva US, Suarez I, Chon SH, Nierhoff D, Zoufaly A, Wenisch C, Knops E, Heger E, Klein F, Duffy D, Müller-Trutwin M, Lehmann C. From Gut to Blood: Redistribution of Zonulin in People Living with HIV. Biomedicines 2024; 12:2316. [PMID: 39457626 PMCID: PMC11505231 DOI: 10.3390/biomedicines12102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Gastrointestinal mucosal damage due to human immunodeficiency virus (HIV) infection leads to microbial translocation and immune activation, contributing to the development of non-infectious comorbidities (NICM) in people living with HIV (PLWH). Additionally, persistent proviral HIV-1 in the gut-associated lymphatic tissue (GALT) can trigger immunological changes in the epithelial environment, impacting the mucosal barrier. However, the role of zonulin, a modulator of epithelial tight junctions in GALT during HIV infection, remains poorly understood. METHODS We measured zonulin in serum and intestinal tissue sections from five treatment-naive (HIV+NAIVE) and 10 cART-treated (HIV+cART) HIV+ individuals, along with 11 controls (CTRL). We compared zonulin levels with clinical characteristics, inflammatory markers (IFN-α, CXCR3, and PD-1), and the viral reservoir in peripheral blood (PB) and terminal ileum (TI). RESULTS Upon HIV infection, TI was found to harbor more HIV DNA than PB. Circulating zonulin levels were highest in HIV+NAIVE compared to HIV+cART or CTRL. Surprisingly, in the gut tissue sections, zonulin levels were higher in CTRL than in HIV+ individuals. Elevated circulating zonulin levels were found to be correlated with CD4+T-cell depletion in PB and TI, and with intestinal IFN-α. CONCLUSIONS The findings of this study indicate a shift in zonulin levels from the gut to the bloodstream in response to HIV infection. Furthermore, elevated systemic zonulin levels are associated with the depletion of intestinal CD4+ T cells and increased gut inflammation, suggesting a potential link between systemic zonulin and intestinal damage. Gaining insight into the regulation of gut tight junctions during HIV infection could offer valuable understanding for preventing NICM in PLWH.
Collapse
Affiliation(s)
- Max Augustin
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.H.); (U.S.d.S.); (I.S.)
- Center for Molecular Medicine Cologne (CMMC), 50937 Cologne, Germany
- German Center for Infection Research (DZIF), 50937 Cologne, Germany
- Department IV of Internal Medicine, Klinik Favoriten, Vienna Healthcare Group, 1100 Vienna, Austria; (A.Z.); (C.W.)
- Faculty of Medicine, Sigmund Freud University, 1020 Vienna, Austria
| | - Carola Horn
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.H.); (U.S.d.S.); (I.S.)
- Center for Molecular Medicine Cologne (CMMC), 50937 Cologne, Germany
- German Center for Infection Research (DZIF), 50937 Cologne, Germany
| | - Meryem Seda Ercanoglu
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; (M.S.E.); (E.K.); (E.H.); (F.K.)
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, 75015 Paris, France; (V.B.); (D.D.)
| | - Ute Sandaradura de Silva
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.H.); (U.S.d.S.); (I.S.)
- Center for Molecular Medicine Cologne (CMMC), 50937 Cologne, Germany
- German Center for Infection Research (DZIF), 50937 Cologne, Germany
| | - Isabelle Suarez
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.H.); (U.S.d.S.); (I.S.)
- German Center for Infection Research (DZIF), 50937 Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral Surgery and Surgical Oncology, University Hospital Cologne, 50937 Cologne, Germany;
| | - Dirk Nierhoff
- Department of Gastroenterology and Hepatology, University Hospital of Cologne, 50937 Cologne, Germany;
| | - Alexander Zoufaly
- Department IV of Internal Medicine, Klinik Favoriten, Vienna Healthcare Group, 1100 Vienna, Austria; (A.Z.); (C.W.)
- Faculty of Medicine, Sigmund Freud University, 1020 Vienna, Austria
| | - Christoph Wenisch
- Department IV of Internal Medicine, Klinik Favoriten, Vienna Healthcare Group, 1100 Vienna, Austria; (A.Z.); (C.W.)
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; (M.S.E.); (E.K.); (E.H.); (F.K.)
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; (M.S.E.); (E.K.); (E.H.); (F.K.)
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; (M.S.E.); (E.K.); (E.H.); (F.K.)
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, 75015 Paris, France; (V.B.); (D.D.)
| | - Michaela Müller-Trutwin
- HIV, Inflammation and Persistence Unit, Institut Pasteur, Université Paris-Cité, 75015 Paris, France;
| | - Clara Lehmann
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.H.); (U.S.d.S.); (I.S.)
- Center for Molecular Medicine Cologne (CMMC), 50937 Cologne, Germany
- German Center for Infection Research (DZIF), 50937 Cologne, Germany
| |
Collapse
|
2
|
Harper J, Betts MR, Lichterfeld M, Müller-Trutwin M, Margolis D, Bar KJ, Li JZ, McCune JM, Lewin SR, Kulpa D, Ávila-Ríos S, Diallo DD, Lederman MM, Paiardini M. Erratum to: Progress Note 2024: Curing HIV; Not in My Lifetime or Just Around the Corner? Pathog Immun 2024; 8:179-222. [PMID: 38505662 PMCID: PMC10949969 DOI: 10.20411/pai.v8i2.696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
[This corrects the article DOI: 10.20411/pai.v8i2.665.].
Collapse
Affiliation(s)
- Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
- Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - David Margolis
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina
| | - Katharine J. Bar
- Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan Z. Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joseph M. McCune
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Deanna Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Michael M. Lederman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
3
|
Harper J, Betts MR, Lichterfeld M, Müller-Trutwin M, Margolis D, Bar KJ, Li JZ, McCune JM, Lewin SR, Kulpa D, Ávila-Ríos S, Diallo DD, Lederman MM, Paiardini M. Progress Note 2024: Curing HIV; Not in My Lifetime or Just Around the Corner? Pathog Immun 2024; 8:115-157. [PMID: 38455668 PMCID: PMC10919397 DOI: 10.20411/pai.v8i2.665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
Once a death sentence, HIV is now considered a manageable chronic disease due to the development of antiretroviral therapy (ART) regimens with minimal toxicity and a high barrier for genetic resistance. While highly effective in arresting AIDS progression and rendering the virus untransmissible in people living with HIV (PLWH) with undetectable viremia (U=U) [1, 2]), ART alone is incapable of eradicating the "reservoir" of resting, latently infected CD4+ T cells from which virus recrudesces upon treatment cessation. As of 2022 estimates, there are 39 million PLWH, of whom 86% are aware of their status and 76% are receiving ART [3]. As of 2017, ART-treated PLWH exhibit near normalized life expectancies without adjustment for socioeconomic differences [4]. Furthermore, there is a global deceleration in the rate of new infections [3] driven by expanded access to pre-exposure prophylaxis (PrEP), HIV testing in vulnerable populations, and by ART treatment [5]. Therefore, despite outstanding issues pertaining to cost and access in developing countries, there is strong enthusiasm that aggressive testing, treatment, and effective viral suppression may be able to halt the ongoing HIV epidemic (ie, UNAIDS' 95-95-95 targets) [6-8]; especially as evidenced by recent encouraging observations in Sydney [9]. Despite these promising efforts to limit further viral transmission, for PLWH, a "cure" remains elusive; whether it be to completely eradicate the viral reservoir (ie, cure) or to induce long-term viral remission in the absence of ART (ie, control; Figure 1). In a previous salon hosted by Pathogens and Immunity in 2016 [10], some researchers were optimistic that a cure was a feasible, scalable goal, albeit with no clear consensus on the best route. So, how are these cure strategies panning out? In this commentary, 8 years later, we will provide a brief overview on recent advances and failures towards identifying determinants of viral persistence and developing a scalable cure for HIV. Based on these observations, and as in the earlier salon, we have asked several prominent HIV cure researchers for their perspectives.
Collapse
Affiliation(s)
- Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
- Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - David Margolis
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina
| | - Katharine J. Bar
- Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan Z. Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joseph M. McCune
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Deanna Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Michael M. Lederman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
4
|
Ortiz AM, Castello Casta F, Rahmberg A, Markowitz TE, Brooks K, Simpson J, Brenchley JM. 2-Hydroxypropyl-β-Cyclodextrin Treatment Induces Modest Immune Activation in Healthy Rhesus Macaques. J Virol 2023; 97:e0060023. [PMID: 37338342 PMCID: PMC10373544 DOI: 10.1128/jvi.00600-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Experimental simian immunodeficiency virus (SIV) infection of Asian macaques is an excellent model for HIV disease progression and therapeutic development. Recent coformulations of nucleoside analogs and an integrase inhibitor have been used for parenteral antiretroviral (ARV) administration in SIV-infected macaques, successfully resulting in undetectable plasma SIV RNA. In a cohort of SIVmac239-infected macaques, we recently observed that administration of coformulated ARVs resulted in an unexpected increase in plasma levels of soluble CD14 (sCD14), associated with stimulation of myeloid cells. We hypothesized that the coformulation solubilizing agent Kleptose (2-hydroxypropyl-β-cyclodextrin [HPβCD]) may induce inflammation with myeloid cell activation and the release of sCD14. Herein, we stimulated peripheral blood mononuclear cells (PBMCs) from healthy macaques with HPβCD from different commercial sources and evaluated inflammatory cytokine production in vitro. Treatment of PBMCs resulted in increased sCD14 release and myeloid cell interleukin-1β (IL-1β) production-with stimulation varying significantly by HPβCD source-and destabilized lymphocyte CCR5 surface expression. We further treated healthy macaques with Kleptose alone. In vivo, we observed modestly increased myeloid cell activation in response to Kleptose treatment without significant perturbation of the immunological transcriptome or epigenome. Our results demonstrate a need for vehicle-only controls and highlight immunological perturbations that can occur when using HPβCD in pharmaceutical coformulations. IMPORTANCE SIV infection of nonhuman primates is the principal model system for assessing HIV disease progression and therapeutic development. HPβCD has recently been incorporated as a solubilizing agent in coformulations of ARVs in SIV-infected nonhuman primates. Although HPβCD has historically been considered inert, recent findings suggest that HPβCD may contribute to inflammation. Herein, we investigate the contribution of HPβCD to healthy macaque inflammation in vitro and in vivo. We observe that HPβCD causes an induction of sCD14 and IL-1β from myeloid cells in vitro and demonstrate that HPβCD stimulatory capacity varies by commercial source. In vivo, we observe modest myeloid cell activation in blood and bronchoalveolar lavage specimens absent systemic immune activation. From our findings, it is unclear whether HPβCD stimulation may improve or diminish immune reconstitution in ARV-treated lentiviral infections. Our results demonstrate a need for vehicle-only controls and highlight immunological perturbations that can occur when using HPβCD in pharmaceutical coformulations.
Collapse
Affiliation(s)
- Alexandra M. Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Fabiola Castello Casta
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Wu HL, Busman-Sahay K, Weber WC, Waytashek CM, Boyle CD, Bateman KB, Reed JS, Hwang JM, Shriver-Munsch C, Swanson T, Northrup M, Armantrout K, Price H, Robertson-LeVay M, Uttke S, Kumar MR, Fray EJ, Taylor-Brill S, Bondoc S, Agnor R, Junell SL, Legasse AW, Moats C, Bochart RM, Sciurba J, Bimber BN, Sullivan MN, Dozier B, MacAllister RP, Hobbs TR, Martin LD, Panoskaltsis-Mortari A, Colgin LMA, Siliciano RF, Siliciano JD, Estes JD, Smedley JV, Axthelm MK, Meyers G, Maziarz RT, Burwitz BJ, Stanton JJ, Sacha JB. Allogeneic immunity clears latent virus following allogeneic stem cell transplantation in SIV-infected ART-suppressed macaques. Immunity 2023; 56:1649-1663.e5. [PMID: 37236188 PMCID: PMC10524637 DOI: 10.1016/j.immuni.2023.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/30/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5Δ32/Δ32) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV+, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.5 years after stopping ART, in other cases, it was insufficient without protection of engrafting cells afforded by CCR5-deficiency, as CCR5-tropic virus spread to donor CD4+ T cells despite full ART suppression. These data demonstrate the individual contributions of allogeneic immunity and CCR5 deficiency to HIV cure and support defining targets of alloimmunity for curative strategies independent of HSCT.
Collapse
Affiliation(s)
- Helen L Wu
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Kathleen Busman-Sahay
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Whitney C Weber
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Courtney M Waytashek
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Carla D Boyle
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Katherine B Bateman
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Jason S Reed
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Joseph M Hwang
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Christine Shriver-Munsch
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Tonya Swanson
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Mina Northrup
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Kimberly Armantrout
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Heidi Price
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Mitch Robertson-LeVay
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Samantha Uttke
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Mithra R Kumar
- Department of Medicine and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Emily J Fray
- Department of Medicine and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Sol Taylor-Brill
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Stephen Bondoc
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Rebecca Agnor
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stephanie L Junell
- Division of Medical Physics, Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alfred W Legasse
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Cassandra Moats
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Rachele M Bochart
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Joseph Sciurba
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Benjamin N Bimber
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Michelle N Sullivan
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Brandy Dozier
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Rhonda P MacAllister
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Theodore R Hobbs
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Lauren D Martin
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Lois M A Colgin
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Robert F Siliciano
- Department of Medicine and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Janet D Siliciano
- Department of Medicine and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Jacob D Estes
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Jeremy V Smedley
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Michael K Axthelm
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Gabrielle Meyers
- Division of Blood and Marrow Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Richard T Maziarz
- Division of Blood and Marrow Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin J Burwitz
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Jeffrey J Stanton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Jonah B Sacha
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA.
| |
Collapse
|
6
|
Dross S, Venkataraman R, Patel S, Huang ML, Bollard CM, Rosati M, Pavlakis GN, Felber BK, Bar KJ, Shaw GM, Jerome KR, Mullins JI, Kiem HP, Fuller DH, Peterson CW. Efficient ex vivo expansion of conserved element vaccine-specific CD8+ T-cells from SHIV-infected, ART-suppressed nonhuman primates. Front Immunol 2023; 14:1188018. [PMID: 37207227 PMCID: PMC10189133 DOI: 10.3389/fimmu.2023.1188018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
HIV-specific T cells are necessary for control of HIV-1 replication but are largely insufficient for viral clearance. This is due in part to these cells' recognition of immunodominant but variable regions of the virus, which facilitates viral escape via mutations that do not incur viral fitness costs. HIV-specific T cells targeting conserved viral elements are associated with viral control but are relatively infrequent in people living with HIV (PLWH). The goal of this study was to increase the number of these cells via an ex vivo cell manufacturing approach derived from our clinically-validated HIV-specific expanded T-cell (HXTC) process. Using a nonhuman primate (NHP) model of HIV infection, we sought to determine i) the feasibility of manufacturing ex vivo-expanded virus-specific T cells targeting viral conserved elements (CE, CE-XTCs), ii) the in vivo safety of these products, and iii) the impact of simian/human immunodeficiency virus (SHIV) challenge on their expansion, activity, and function. NHP CE-XTCs expanded up to 10-fold following co-culture with the combination of primary dendritic cells (DCs), PHA blasts pulsed with CE peptides, irradiated GM-K562 feeder cells, and autologous T cells from CE-vaccinated NHP. The resulting CE-XTC products contained high frequencies of CE-specific, polyfunctional T cells. However, consistent with prior studies with human HXTC and these cells' predominant CD8+ effector phenotype, we did not observe significant differences in CE-XTC persistence or SHIV acquisition in two CE-XTC-infused NHP compared to two control NHP. These data support the safety and feasibility of our approach and underscore the need for continued development of CE-XTC and similar cell-based strategies to redirect and increase the potency of cellular virus-specific adaptive immune responses.
Collapse
Affiliation(s)
- Sandra Dross
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Rasika Venkataraman
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Shabnum Patel
- Center for Cancer and Immunology Research, Children’s National Hospital and Department of Pediatrics, The George Washington University, Washington, DC, United States
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Hospital and Department of Pediatrics, The George Washington University, Washington, DC, United States
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Katharine J. Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Division of Vaccine and Infectious Diseases, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Hans-Peter Kiem
- Washington National Primate Research Center, Seattle, WA, United States
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Deborah Heydenburg Fuller
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Christopher W. Peterson
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Allogeneic MHC-matched T-cell receptor α/β-depleted bone marrow transplants in SHIV-infected, ART-suppressed Mauritian cynomolgus macaques. Sci Rep 2022; 12:12345. [PMID: 35853970 PMCID: PMC9296477 DOI: 10.1038/s41598-022-16306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplants (allo-HSCTs) dramatically reduce HIV reservoirs in antiretroviral therapy (ART) suppressed individuals. However, the mechanism(s) responsible for these post-transplant viral reservoir declines are not fully understood. Therefore, we modeled allo-HSCT in ART-suppressed simian-human immunodeficiency virus (SHIV)-infected Mauritian cynomolgus macaques (MCMs) to illuminate factors contributing to transplant-induced viral reservoir decay. Thus, we infected four MCMs with CCR5-tropic SHIV162P3 and started them on ART 6-16 weeks post-infection (p.i.), maintaining continuous ART during myeloablative conditioning. To prevent graft-versus-host disease (GvHD), we transplanted allogeneic MHC-matched α/β T cell-depleted bone marrow cells and prophylactically treated the MCMs with cyclophosphamide and tacrolimus. The transplants produced ~ 85% whole blood donor chimerism without causing high-grade GvHD. Consequently, three MCMs had undetectable SHIV DNA in their blood post-transplant. However, SHIV-harboring cells persisted in various tissues, with detectable viral DNA in lymph nodes and tissues between 38 and 62 days post-transplant. Further, removing one MCM from ART at 63 days post-transplant resulted in SHIV rapidly rebounding within 7 days of treatment withdrawal. In conclusion, transplanting SHIV-infected MCMs with allogeneic MHC-matched α/β T cell-depleted bone marrow cells prevented high-grade GvHD and decreased SHIV-harboring cells in the blood post-transplant but did not eliminate viral reservoirs in tissues.
Collapse
|
8
|
Genome editing in large animal models. Mol Ther 2021; 29:3140-3152. [PMID: 34601132 DOI: 10.1016/j.ymthe.2021.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/21/2022] Open
Abstract
Although genome editing technologies have the potential to revolutionize the way we treat human diseases, barriers to successful clinical implementation remain. Increasingly, preclinical large animal models are being used to overcome these barriers. In particular, the immunogenicity and long-term safety of novel gene editing therapeutics must be evaluated rigorously. However, short-lived small animal models, such as mice and rats, cannot address secondary pathologies that may arise years after a gene editing treatment. Likewise, immunodeficient mouse models by definition lack the ability to quantify the host immune response to a novel transgene or gene-edited locus. Large animal models, including dogs, pigs, and non-human primates (NHPs), bear greater resemblance to human anatomy, immunology, and lifespan and can be studied over longer timescales with clinical dosing regimens that are more relevant to humans. These models allow for larger scale and repeated blood and tissue sampling, enabling greater depth of study and focus on rare cellular subsets. Here, we review current progress in the development and evaluation of novel genome editing therapies in large animal models, focusing on applications in human immunodeficiency virus 1 (HIV-1) infection, cancer, and genetic diseases including hemoglobinopathies, Duchenne muscular dystrophy (DMD), hypercholesterolemia, and inherited retinal diseases.
Collapse
|
9
|
Dias J, Fabozzi G, March K, Asokan M, Almasri CG, Fintzi J, Promsote W, Nishimura Y, Todd JP, Lifson JD, Martin MA, Gama L, Petrovas C, Pegu A, Mascola JR, Koup RA. Concordance of immunological events between intrarectal and intravenous SHIVAD8-EO infection when assessed by Fiebig-equivalent staging. J Clin Invest 2021; 131:e151632. [PMID: 34623326 PMCID: PMC8409578 DOI: 10.1172/jci151632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Primary HIV-1 infection can be classified into six Fiebig stages based on virological and serological laboratory testing, whereas simian-HIV (SHIV) infection in nonhuman primates (NHPs) is defined in time post-infection, making it difficult to extrapolate NHP experiments to the clinics. We identified and extensively characterized the Fiebig-equivalent stages in NHPs challenged intrarectally or intravenously with SHIVAD8-EO. During the first month post-challenge, intrarectally challenged monkeys were up to 1 week delayed in progression through stages. However, regardless of the challenge route, stages I-II predominated before, and stages V-VI predominated after, peak viremia. Decrease in lymph node (LN) CD4+ T cell frequency and rise in CD8+ T cells occurred at stage V. LN virus-specific CD8+ T cell responses, dominated by degranulation and TNF, were first detected at stage V and increased at stage VI. A similar late elevation in follicular CXCR5+ CD8+ T cells occurred, consistent with higher plasma CXCL13 levels at these stages. LN SHIVAD8-EO RNA+ cells were present at stage II, but appeared to decline at stage VI when virions accumulated in follicles. Fiebig-equivalent staging of SHIVAD8-EO infection revealed concordance of immunological events between intrarectal and intravenous infection despite different infection progressions, and can inform comparisons of NHP studies with clinical data.
Collapse
Affiliation(s)
- Joana Dias
- Immunology Laboratory, Vaccine Research Center
| | | | - Kylie March
- Tissue Analysis Core, Vaccine Research Center
| | | | | | | | | | | | - John-Paul Todd
- Translational Research Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Lucio Gama
- Immunology Laboratory, Vaccine Research Center
| | | | | | | | | |
Collapse
|
10
|
Immune Responses and Viral Persistence in Simian/Human Immunodeficiency Virus SHIV.C.CH848-Infected Rhesus Macaques. J Virol 2021; 95:JVI.02198-20. [PMID: 33568508 PMCID: PMC8104099 DOI: 10.1128/jvi.02198-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
SHIVs have been extensively used in a nonhuman primate (NHP) model for HIV research. In this study, we investigated viral reservoirs in tissues and immune responses in an NHP model inoculated with newly generated transmitted/founder HIV-1 clade C-based SHIV.C.CH848. Chimeric simian/human immunodeficiency viruses (SHIVs) are widely used in nonhuman primate models to recapitulate human immunodeficiency virus (HIV) infection in humans, yet most SHIVs fail to establish persistent viral infection. We investigated immunological and virological events in rhesus macaques infected with the newly developed SHIV.C.CH848 (SHIVC) and treated with combined antiretroviral therapy (cART). Similar to HIV/simian immunodeficiency virus (SIV) infection, SHIV.C.CH848 infection established viral reservoirs in CD4+ T cells and myeloid cells, accompanied by productive infection and depletion of CD4+ T cells in systemic and lymphoid tissues throughout SHIV infection. Despite 6 months of cART-suppressed viral replication, integrated proviral DNA levels remained stable, especially in CD4+ T cells, and the viral rebound was also observed after ART interruption. Autologous neutralizing antibodies to the parental HIV-1 strain CH848 were detected, with limited viral evolution at 5 months postinfection. In comparison, heterogenous neutralizing antibodies in SHIV.C.CH848-infected macaques were not detected except for 1 (1 of 10) animal at 2 years postinfection. These findings suggest that SHIV.C.CH848, a novel class of transmitted/founder SHIVs, can establish sustained viremia and viral reservoirs in rhesus macaques with clinical immunodeficiency consequences, providing a valuable SHIV model for HIV research. IMPORTANCE SHIVs have been extensively used in a nonhuman primate (NHP) model for HIV research. In this study, we investigated viral reservoirs in tissues and immune responses in an NHP model inoculated with newly generated transmitted/founder HIV-1 clade C-based SHIV.C.CH848. The data show that transmitted founder (T/F) SHIVC infection of macaques more closely recapitulates the virological and clinical features of HIV infection, including persistent viremia and viral rebound once antiretroviral therapy is discontinued. These results suggest this CCR5-tropic, SHIVC strain is valuable for testing responses to HIV vaccines and therapeutics.
Collapse
|
11
|
Persistence of viral RNA in lymph nodes in ART-suppressed SIV/SHIV-infected Rhesus Macaques. Nat Commun 2021; 12:1474. [PMID: 33674572 PMCID: PMC7935896 DOI: 10.1038/s41467-021-21724-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/04/2021] [Indexed: 01/01/2023] Open
Abstract
The establishment of a long-lived viral reservoir is the key obstacle for achieving an HIV-1 cure. However, the anatomic, virologic, and immunologic features of the viral reservoir in tissues during antiretroviral therapy (ART) remain poorly understood. Here we present a comprehensive necroscopic analysis of the SIV/SHIV viral reservoir in multiple lymphoid and non-lymphoid tissues from SIV/SHIV-infected rhesus macaques suppressed with ART for one year. Viral DNA is observed broadly in multiple tissues and is comparable in animals that had initiated ART at week 1 or week 52 of infection. In contrast, viral RNA is restricted primarily to lymph nodes. Ongoing viral RNA transcription is not the result of unsuppressed viral replication, as single-genome amplification and subsequent phylogenetic analysis do not show evidence of viral evolution. Gag-specific CD8+ T cell responses are predominantly observed in secondary lymphoid organs in animals chronically infected prior to ART and these responses are dominated by CD69+ populations. Overall, we observe that the viral reservoir in rhesus macaques is widely distributed across multiple tissue sites and that lymphoid tissues act as a site of persistent viral RNA transcription under conditions of long-term ART suppression. The existence of HIV reservoir and ongoing replication despite antiretroviral therapy (ART) represents a barrier for cure efforts. Here, using SIV/SHIV-infected rhesus macaque suppressed with ART for one year, the authors characterize multiple lymphoid and non-lymphoid tissues and show that while the viral reservoir exhibits a wide anatomic heterogeneity, persistent viral transcription is mainly restricted to secondary lymphoid organs.
Collapse
|
12
|
Prator CA, Donatelli J, Henrich TJ. From Berlin to London: HIV-1 Reservoir Reduction Following Stem Cell Transplantation. Curr HIV/AIDS Rep 2020; 17:385-393. [PMID: 32519184 DOI: 10.1007/s11904-020-00505-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Few interventional strategies lead to significant reductions in HIV-1 reservoir size or prolonged antiretroviral (ART)-free remission. Allogeneic stem cell transplantations (SCT) with or without donor cells harboring genetic mutations preventing functional expression of CCR5, an HIV coreceptor, lead to dramatic reductions in residual HIV burden. However, the mechanisms by which SCT reduces viral reservoirs and leads to a potential functional HIV cure are not well understood. RECENT FINDINGS A growing number of studies involving allogeneic SCT in people with HIV are emerging, including those with and without transplants involving CCR5Δ32/Δ32 mutations. Donor cells resistant to HIV entry are likely required in order to achieve permanent ART-free viral remission. However, dramatic reductions in the HIV reservoir secondary to beneficial graft-versus-host effects may lead to loss of HIV detection in blood and various tissues and lead to prolonged time to HIV rebound in individuals with wild-type CCR5 donors. Studies of SCT recipients and those who started very early ART during hyperacute infection suggest that dramatic reductions in reservoir size or restriction of initial reservoir seeding may lead to 8-10 months of time prior to eventual, and rapid, HIV recrudescence. Studies of allogeneic SCT in people with HIV have provided important insights into the size and nature of the HIV reservoir, and have invigorated other gene therapies to achieve HIV cure.
Collapse
Affiliation(s)
- Cecilia A Prator
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA
| | - Joanna Donatelli
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA.,California Institute of Regenerative Medicine, Bridges to Stem Cell Research Program, San Francisco State University, San Francisco, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA.
| |
Collapse
|
13
|
Olwenyi OA, Acharya A, Routhu NK, Pierzchalski K, Jones JW, Kane MA, Sidell N, Mohan M, Byrareddy SN. Retinoic Acid Improves the Recovery of Replication-Competent Virus from Latent SIV Infected Cells. Cells 2020; 9:E2076. [PMID: 32932813 PMCID: PMC7565696 DOI: 10.3390/cells9092076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022] Open
Abstract
The accurate estimation and eradication of Human Immunodeficiency Virus (HIV) viral reservoirs is limited by the incomplete reactivation of cells harboring the latent replication-competent virus. We investigated whether the in vitro and in vivo addition of retinoic acid (RA) enhances virus replication and improves the detection of latent virus. Peripheral blood mononuclear cells (PBMCs) from naive and anti-retroviral therapy (ART)-treated SIV-infected rhesus macaques (RMs) were cultured in vitro with anti-CD3/CD28 + IL-2 in the presence/absence of RA. Viral RNA and p27 levels were quantified using RT-qPCR and ELISA, respectively. Viral reservoirs were estimated using the Tat/Rev-Induced Limited Dilution Assay (TILDA) and Quantitative Viral Outgrowth Assay (QVOA). In vitro and in vivo measures revealed that there was also an increase in viral replication in RA-treated versus without RA conditions. In parallel, the addition of RA to either CD3/CD28 or phorbol myristate acetate (PMA)/ionomycin during QVOA and TILDA, respectively, was shown to augment reactivation of the replication-competent viral reservoir in anti-retroviral therapy (ART)-suppressed RMs as shown by a greater than 2.3-fold increase for QVOA and 1 to 2-fold increments for multi-spliced RNA per million CD4+ T cells. The use of RA can be a useful approach to enhance the efficiency of current protocols used for in vitro and potentially in vivo estimates of CD4+ T cell latent reservoirs. In addition, flow cytometry analysis revealed that RA improved estimates of various viral reservoir assays by eliciting broad CD4 T-cell activation as demonstrated by elevated CD25 and CD38 but reduced CD69 and PD-1 expressing cells.
Collapse
Affiliation(s)
- Omalla A. Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
| | - Nanda Kishore Routhu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
| | - Keely Pierzchalski
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.P.); (J.W.J.); (M.A.K.)
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.P.); (J.W.J.); (M.A.K.)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.P.); (J.W.J.); (M.A.K.)
| | - Neil Sidell
- Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Mahesh Mohan
- Texas Biomedical Research Institute, Southwest National Primate Research Institute, San Antonio, TX 78227, USA;
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| |
Collapse
|
14
|
Pinto DO, DeMarino C, Vo TT, Cowen M, Kim Y, Pleet ML, Barclay RA, Noren Hooten N, Evans MK, Heredia A, Batrakova EV, Iordanskiy S, Kashanchi F. Low-Level Ionizing Radiation Induces Selective Killing of HIV-1-Infected Cells with Reversal of Cytokine Induction Using mTOR Inhibitors. Viruses 2020; 12:E885. [PMID: 32823598 PMCID: PMC7472203 DOI: 10.3390/v12080885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infects 39.5 million people worldwide, and cART is effective in preventing viral spread by reducing HIV-1 plasma viral loads to undetectable levels. However, viral reservoirs persist by mechanisms, including the inhibition of autophagy by HIV-1 proteins (i.e., Nef and Tat). HIV-1 reservoirs can be targeted by the "shock and kill" strategy, which utilizes latency-reversing agents (LRAs) to activate latent proviruses and immunotarget the virus-producing cells. Yet, limitations include reduced LRA permeability across anatomical barriers and immune hyper-activation. Ionizing radiation (IR) induces effective viral activation across anatomical barriers. Like other LRAs, IR may cause inflammation and modulate the secretion of extracellular vesicles (EVs). We and others have shown that cells may secrete cytokines and viral proteins in EVs and, therefore, LRAs may contribute to inflammatory EVs. In the present study, we mitigated the effects of IR-induced inflammatory EVs (i.e., TNF-α), through the use of mTOR inhibitors (mTORi; Rapamycin and INK128). Further, mTORi were found to enhance the selective killing of HIV-1-infected myeloid and T-cell reservoirs at the exclusion of uninfected cells, potentially via inhibition of viral transcription/translation and induction of autophagy. Collectively, the proposed regimen using cART, IR, and mTORi presents a novel approach allowing for the targeting of viral reservoirs, prevention of immune hyper-activation, and selectively killing latently infected HIV-1 cells.
Collapse
Affiliation(s)
- Daniel O. Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Thy T. Vo
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Michelle L. Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Robert A. Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (N.N.H.); (M.K.E.)
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (N.N.H.); (M.K.E.)
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Elena V. Batrakova
- Department of Medicine, University of North Carolina HIV Cure Center; University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Sergey Iordanskiy
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| |
Collapse
|
15
|
Innate and secondary humoral responses are improved by increasing the time between MVA vaccine immunizations. NPJ Vaccines 2020; 5:24. [PMID: 32218996 PMCID: PMC7081268 DOI: 10.1038/s41541-020-0175-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Comprehending the mechanisms behind the impact of vaccine regimens on immunity is critical for improving vaccines. Indeed, the time-interval between immunizations may influence B and T cells, as well as innate responses. We compared two vaccine schedules using cynomolgus macaques immunized with an attenuated vaccinia virus. Two subcutaneous injections 2 weeks apart led to an impaired secondary antibody response and similar innate myeloid responses to both immunizations. In contrast, a delayed boost (2 months) improved the quality of the antibody response and involved more activated/mature innate cells, induced late after the prime and responding to the recall. The magnitude and quality of the secondary antibody response correlated with the abundance of these neutrophils, monocytes, and dendritic cells that were modified phenotypically and enriched prior to revaccination at 2 months, but not 2 weeks. These late phenotypic modifications were associated with an enhanced ex vivo cytokine production (including IL-12/23 and IL-1β) by PBMCs short after the second immunization, linking phenotype and functions. This integrated analysis reveals a deep impact of the timing between immunizations, and highlights the importance of early but also late innate responses involving phenotypical changes, in shaping humoral immunity.
Collapse
|
16
|
Experimental Treatment of SIV-Infected Macaques via Autograft of CCR5-Disrupted Hematopoietic Stem and Progenitor Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:520-531. [PMID: 32258215 PMCID: PMC7114624 DOI: 10.1016/j.omtm.2020.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 11/20/2022]
Abstract
Hematopoietic stem cell (HSC)-based gene therapy targeting CCR5 represents a promising way to cure human immunodeficiency virus type 1 (HIV-1) infection. Yet the preclinical animal model with transplantation of autologous CCR5-ablated HSCs remains to be optimized. In this study, four Chinese rhesus macaques of simian immunodeficiency virus (SIV) chronic infection were given long-term antiretroviral therapy (ART), during which peripheral CD34+ hematopoietic stem and progenitor cells (HSPCs) were purified and infected with CCR5-specific CRISPR/Cas9 lentivirus (three monkeys) or GFP lentivirus (one monkey). After non-myeloablative conditioning, the CCR5-modified or GFP-labeled HSPCs were autotransplanted to four recipients, and ART was withdrawn following engraftment. All of the recipients survived the process of transplantation. The purified CD34+ HSPCs harbored an undetectable level of integrated SIV DNA. The efficiency of CCR5 disruption in HSPCs ranges from 6.5% to 15.6%. Animals experienced a comparable level of hematopoietic reconstuction and displayed a similar physiological homeostasis Despite the low-level editing of CCR5 in vivo (0.3%-1%), the CCR5-disrupted cells in peripheral CD4+ Effector Memory T cell (TEM) subsets were enriched 2- to 3-fold after cessation of ART. Moreover, two of the three treated monkeys displayed a delayed viral rebound and a moderately recovered immune function 6 months after ART withdrawal. This study highlights the importance of improving the CCR5-editing efficacy and augmenting the virus-specific immunity for effective treatment of HIV-1 infection.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Gallant efforts are ongoing to achieve sustained antiretroviral therapy (ART)-free HIV remission in the HIV-infected person; however, most, if not all, current human clinical studies have primarily focused these efforts on targeting viral persistence in CD4 T cells in blood and tissue sanctuaries. The lack of myeloid centered HIV clinical trials, either as primary or secondary end points, has hindered our understanding of the contribution of myeloid cells in unsuccessful trials but may also guide successes in future HIV eradication clinical strategies. RECENT FINDINGS Recent advances have highlighted the importance of myeloid reservoirs as sanctuaries of HIV persistence and therefore may partially be responsible for viral recrudescence following ART treatment interruption in several clinical trials where HIV was not detectable or recovered from CD4 T cells. Given these findings, novel innovative therapeutic approaches specifically focused on HIV clearance in myeloid cell populations need to be vigorously pursued if we are to achieve additional cases of sustained ART-free remission. This review will highlight new research efforts defining myeloid persistence and recent advances in HIV remission and cure trials that would be relevant in targeting this compartment and make an argument as to their clinical relevancy as we progress towards sustained ART-free HIV remission in all HIV-infected persons.
Collapse
Affiliation(s)
- Brooks I Mitchell
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, USA
| | - Elizabeth I Laws
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, USA
| | - Lishomwa C Ndhlovu
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, USA.
| |
Collapse
|
18
|
Impact of analytical treatment interruption on the central nervous system in a simian-HIV model. AIDS 2019; 33 Suppl 2:S189-S196. [PMID: 31789818 DOI: 10.1097/qad.0000000000002270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE(S) Analytical treatment interruption (ATI) studies are often used to evaluate potential HIV cure strategies. This study was conducted to determine the impact of ATI on simian-HIV (SHIV) infection in the central nervous system. DESIGN Animal study. METHODS Nine rhesus macaques were inoculated with SHIV-1157ipd3N4. Antiretroviral therapy (ART) was administered from week 2 to 18. At week 18, four animals were euthanized (no-ATI-group) and five underwent ATI (ATI-group) and were euthanized at 12 weeks post viral rebound. Plasma and cerebrospinal fluid (CSF) SHIV-RNA, markers of inflammation and brain CD3+, CD68+/CD163+ and RNA+ cells were measured. RESULTS All nine animals were SHIV-infected, with median pre-ART plasma and CSF SHIV-RNA of 6.2 and 3.6 log10copies/ml. Plasma and CSF IL-15, monocyte chemoattractant protein-1, IFN-γ-induced protein-10 and neopterin increased postinfection. ART initiation was associated with rapid and complete suppression of plasma viremia and reductions in plasma and CSF IL-15, IFN-γ-induced protein-10, neopterin and CSF monocyte chemoattractant protein-1. Median time to plasma viral rebound was 21 days post-ATI. At 12 weeks postrebound, CSF SHIV-RNA was undetectable and no increases in plasma and CSF markers of inflammation were found. Higher numbers of CD3+ and CD68+/CD163+ cells were seen in the brains of 3/5 and 1/5 animals, respectively, in the ATI-group when compared with no-ATI-group. SHIV-RNA+ cells were not identified in the brain in either group post-ATI. CONCLUSION ATI in macaques that initiated ART during early SHIV-1157ipd3N4 infection was associated with mild, localized T-cell infiltrate in the brain without detectable SHIV-RNA in the brain or CSF, or elevation in CSF soluble markers of inflammation.
Collapse
|
19
|
Bender AM, Simonetti FR, Kumar MR, Fray EJ, Bruner KM, Timmons AE, Tai KY, Jenike KM, Antar AAR, Liu PT, Ho YC, Raugi DN, Seydi M, Gottlieb GS, Okoye AA, Del Prete GQ, Picker LJ, Mankowski JL, Lifson JD, Siliciano JD, Laird GM, Barouch DH, Clements JE, Siliciano RF. The Landscape of Persistent Viral Genomes in ART-Treated SIV, SHIV, and HIV-2 Infections. Cell Host Microbe 2019; 26:73-85.e4. [PMID: 31295427 DOI: 10.1016/j.chom.2019.06.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/21/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
Abstract
Evaluation of HIV cure strategies is complicated by defective proviruses that persist in ART-treated patients but are irrelevant to cure. Non-human primates (NHP) are essential for testing cure strategies. However, the persisting proviral landscape in ART-treated NHPs is uncharacterized. Here, we describe viral genomes persisting in ART-treated, simian immunodeficiency virus (SIV)-infected NHPs, simian-human immunodeficiency virus (SHIV)-infected NHPs, and humans infected with HIV-2, an SIV-related virus. The landscapes of persisting SIV, SHIV, and HIV-2 genomes are also dominated by defective sequences. However, there was a significantly higher fraction of intact SIV proviral genomes compared to ART-treated HIV-1 or HIV-2 infected humans. Compared to humans with HIV-1, SIV-infected NHPs had more hypermutated genomes, a relative paucity of clonal SIV sequences, and a lower frequency of deleted genomes. Finally, we report an assay for measuring intact SIV genomes which may have value in cure research.
Collapse
Affiliation(s)
- Alexandra M Bender
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mithra R Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katherine M Bruner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew E Timmons
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katherine Y Tai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katharine M Jenike
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Annukka A R Antar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Po-Ting Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ya-Chi Ho
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dana N Raugi
- Department of Medicine & Center of Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Moussa Seydi
- Service de Maladies Infectieuses et Tropicales, CHNU-Fann, Dakar, Senegal
| | - Geoffrey S Gottlieb
- Department of Medicine & Center of Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Greg M Laird
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Accelevir Diagnostics, Baltimore, MD, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Abstract
As the HIV pandemic rapidly spread worldwide in the 1980s and 1990s, a new approach to treat cancer, genetic diseases, and infectious diseases was also emerging. Cell and gene therapy strategies are connected with human pathologies at a fundamental level, by delivering DNA and RNA molecules that could correct and/or ameliorate the underlying genetic factors of any illness. The history of HIV gene therapy is especially intriguing, in that the virus that was targeted was soon co-opted to become part of the targeting strategy. Today, HIV-based lentiviral vectors, along with many other gene delivery strategies, have been used to evaluate HIV cure approaches in cell culture, small and large animal models, and in patients. Here, we trace HIV cell and gene therapy from the earliest clinical trials, using genetically unmodified cell products from the patient or from matched donors, through current state-of-the-art strategies. These include engineering HIV-specific immunity in T-cells, gene editing approaches to render all blood cells in the body HIV-resistant, and most importantly, combination therapies that draw from both of these respective "offensive" and "defensive" approaches. It is widely agreed upon that combinatorial approaches are the most promising route to functional cure/remission of HIV infection. This chapter outlines cell and gene therapy strategies that are poised to play an essential role in eradicating HIV-infected cells in vivo.
Collapse
|
21
|
Reconstitution of HIV-1 reservoir following high-dose chemotherapy/autologous stem cell transplantation for lymphoma. AIDS 2019; 33:247-257. [PMID: 30325771 DOI: 10.1097/qad.0000000000002051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Autologous stem cell transplantation following high-dose chemotherapy (HDC/ASCT) is the prime model to study the impact of HDC in HIV-1-infected participants. We analyzed the impact of HDC/ASCT on the resurgent reservoir composition and origin. DESIGN We included retrospectively a homogenous group of HIV-1-infected patients treated for high-risk lymphoma in a reference center with similar chemotherapy regimens. METHODS Thirteen participants treated with HDC/ASCT from 2012 to 2015 were included. A median seven longitudinal blood samples per participant were available. Total HIV-1 DNA levels in peripheral blood mononuclear cells (PBMCs) were quantified by quantitative PCR. In six participants with sustained viral suppression, the highly variable C2V3 viral region was subjected to next-generation sequencing. Maximum-likelihood phylogeny trees were generated from the reconstructed viral haplotypes. Lymphocyte subsets were studied by flow cytometry. RESULTS PBMC-associated HIV-1 DNA levels were stable over time. Viral diversity decreased along lymphoma treatment, but increased promptly back to prechemotherapy numbers after HDC/ASCT. Blood viral populations from all time-points were intermingled in phylogeny trees: the resurgent reservoir was similar to pre-HDC circulating proviruses. Memory subsets were the main contributor to the early restoration of the CD4+ T-cell pool, with a delayed increase in naïve cell counts. CONCLUSIONS The characterization of HIV-1 reservoir in blood revealed a fast and consistent replenishment from memory CD4+ T cells after HDC/ASCT. As HDC/ASCT is increasingly involved in HIV cure trials with gene-modified hematopoietic stem cells, the management of infected T cells in HIV-positive autologous transplants will be critical.
Collapse
|
22
|
Falkenhagen A, Joshi S. Genetic Strategies for HIV Treatment and Prevention. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:514-533. [PMID: 30388625 PMCID: PMC6205348 DOI: 10.1016/j.omtn.2018.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/28/2018] [Accepted: 09/02/2018] [Indexed: 01/02/2023]
Abstract
Conventional HIV gene therapy approaches are based on engineering HIV target cells that are non-permissive to viral replication. However, expansion of gene-modified HIV target cells has been limited in patients. Alternative genetic strategies focus on generating gene-modified producer cells that secrete antiviral proteins (AVPs). The secreted AVPs interfere with HIV entry, and, therefore, they extend the protection against infection to unmodified HIV target cells. Since any cell type can potentially secrete AVPs, hematopoietic and non-hematopoietic cell lineages can function as producer cells. Secretion of AVPs from non-hematopoietic cells opens the possibility of using a genetic approach for HIV prevention. Another strategy aims at modifying cytotoxic T cells to selectively target and eliminate infected cells. This review provides an overview of the different genetic approaches for HIV treatment and prevention.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sadhna Joshi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Antibody-Mediated CD4 Depletion Induces Homeostatic CD4 + T Cell Proliferation without Detectable Virus Reactivation in Antiretroviral Therapy-Treated Simian Immunodeficiency Virus-Infected Macaques. J Virol 2018; 92:JVI.01235-18. [PMID: 30185596 DOI: 10.1128/jvi.01235-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
A major barrier to human immunodeficiency virus (HIV) eradication is the long-term persistence of latently infected CD4+ T cells harboring integrated replication-competent virus. It has been proposed that the homeostatic proliferation of these cells drives long-term reservoir persistence in the absence of virus reactivation, thus avoiding cell death due to either virus-mediated cytopathicity or immune effector mechanisms. Here, we conducted an experimental depletion of CD4+ T cells in eight antiretroviral therapy (ART)-treated, simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) to determine whether the homeostatically driven CD4+ T-cell proliferation that follows CD4+ T-cell depletion results in reactivation of latent virus and/or expansion of the virus reservoir. After administration of the CD4R1 antibody, we observed a CD4+ T cell depletion of 65 to 89% in peripheral blood and 20 to 50% in lymph nodes, followed by a significant increase in CD4+ T cell proliferation during CD4+ T cell reconstitution. However, this CD4+ T cell proliferation was not associated with detectable increases in viremia, indicating that the homeostatic activation of CD4+ T cells is not sufficient to induce virus reactivation from latently infected cells. Interestingly, the homeostatic reconstitution of the CD4+ T cell pool was not associated with significant changes in the number of circulating cells harboring SIV DNA compared to results for the first postdepletion time point. This study indicates that, in ART-treated SIV-infected RMs, the homeostasis-driven CD4+ T-cell proliferation that follows experimental CD4+ T-cell depletion occurs in the absence of detectable reactivation of latent virus and does not increase the size of the virus reservoir as measured in circulating cells.IMPORTANCE Despite successful suppression of HIV replication with antiretroviral therapy, current treatments are unable to eradicate the latent virus reservoir, and treatment interruption almost invariably results in the reactivation of HIV even after decades of virus suppression. Homeostatic proliferation of latently infected cells is one mechanism that could maintain the latent reservoir. To understand the impact of homeostatic mechanisms on virus reactivation and reservoir size, we experimentally depleted CD4+ T cells in ART-treated SIV-infected rhesus macaques and monitored their homeostatic rebound. We find that depletion-induced proliferation of CD4+ T cells is insufficient to reactivate the viral reservoir in vivo Furthermore, the proportion of SIV DNA+ CD4+ T cells remains unchanged during reconstitution, suggesting that the reservoir is resistant to this mechanism of expansion at least in this experimental system. Understanding how T cell homeostasis impacts latent reservoir longevity could lead to the development of new treatment paradigms aimed at curing HIV infection.
Collapse
|
24
|
Evidence for persistence of the SHIV reservoir early after MHC haploidentical hematopoietic stem cell transplantation. Nat Commun 2018; 9:4438. [PMID: 30361514 PMCID: PMC6202377 DOI: 10.1038/s41467-018-06736-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/19/2018] [Indexed: 01/08/2023] Open
Abstract
Allogeneic transplantation (allo-HCT) has led to the cure of HIV in one individual, raising the question of whether transplantation can eradicate the HIV reservoir. To test this, we here present a model of allo-HCT in SHIV-infected, cART-suppressed nonhuman primates. We infect rhesus macaques with SHIV-1157ipd3N4, suppress them with cART, then transplant them using MHC-haploidentical allogeneic donors during continuous cART. Transplant results in ~100% myeloid donor chimerism, and up to 100% T-cell chimerism. Between 9 and 47 days post-transplant, terminal analysis shows that while cell-associated SHIV DNA levels are reduced in the blood and in lymphoid organs post-transplant, the SHIV reservoir persists in multiple organs, including the brain. Sorting of donor-vs.-recipient cells reveals that this reservoir resides in recipient cells. Moreover, tetramer analysis indicates a lack of virus-specific donor immunity post-transplant during continuous cART. These results suggest that early post-transplant, allo-HCT is insufficient for recipient reservoir eradication despite high-level donor chimerism and GVHD. Allogeneic hematopoietic cell transplantation (allo-HCT) has led to the cure of HIV in one individual, but the underlying mechanisms are unclear. Here, the authors present a model of allo-HCT in SHIV-infected nonhuman primates and show that the SHIV reservoir persists in multiple tissues early after transplantation.
Collapse
|
25
|
Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV Cure: The Latent Reservoir. AIDS Res Hum Retroviruses 2018; 34:739-759. [PMID: 30056745 PMCID: PMC6152859 DOI: 10.1089/aid.2018.0118] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thirty-five years after the identification of HIV-1 as the causative agent of AIDS, we are still in search of vaccines and treatments to eradicate this devastating infectious disease. Progress has been made in understanding the molecular pathogenesis of this infection, which has been crucial for the development of the current therapy regimens. However, despite their efficacy at limiting active viral replication, these drugs are unable to purge the latent reservoir: a pool of cells that harbor transcriptionally inactive, but replication-competent HIV-1 proviruses, and that represent the main barrier to eradicate HIV-1 from affected individuals. In this review, we discuss advances in the field that have allowed a better understanding of HIV-1 latency, including the diverse cell types that constitute the latent reservoir, factors influencing latency, tools to study HIV-1 latency, as well as current and prospective therapeutic approaches to target these latently infected cells, so a functional cure for HIV/AIDS can become a reality.
Collapse
Affiliation(s)
- Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| | - Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| |
Collapse
|
26
|
Semler MR, Wiseman RW, Karl JA, Graham ME, Gieger SM, O'Connor DH. Novel full-length major histocompatibility complex class I allele discovery and haplotype definition in pig-tailed macaques. Immunogenetics 2018; 70:381-399. [PMID: 29134258 PMCID: PMC7153738 DOI: 10.1007/s00251-017-1042-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/30/2017] [Indexed: 01/22/2023]
Abstract
Pig-tailed macaques (Macaca nemestrina, Mane) are important models for human immunodeficiency virus (HIV) studies. Their infectability with minimally modified HIV makes them a uniquely valuable animal model to mimic human infection with HIV and progression to acquired immunodeficiency syndrome (AIDS). However, variation in the pig-tailed macaque major histocompatibility complex (MHC) and the impact of individual transcripts on the pathogenesis of HIV and other infectious diseases is understudied compared to that of rhesus and cynomolgus macaques. In this study, we used Pacific Biosciences single-molecule real-time circular consensus sequencing to describe full-length MHC class I (MHC-I) transcripts for 194 pig-tailed macaques from three breeding centers. We then used the full-length sequences to infer Mane-A and Mane-B haplotypes containing groups of MHC-I transcripts that co-segregate due to physical linkage. In total, we characterized full-length open reading frames (ORFs) for 313 Mane-A, Mane-B, and Mane-I sequences that defined 86 Mane-A and 106 Mane-B MHC-I haplotypes. Pacific Biosciences technology allows us to resolve these Mane-A and Mane-B haplotypes to the level of synonymous allelic variants. The newly defined haplotypes and transcript sequences containing full-length ORFs provide an important resource for infectious disease researchers as certain MHC haplotypes have been shown to provide exceptional control of simian immunodeficiency virus (SIV) replication and prevention of AIDS-like disease in nonhuman primates. The increased allelic resolution provided by Pacific Biosciences sequencing also benefits transplant research by allowing researchers to more specifically match haplotypes between donors and recipients to the level of nonsynonymous allelic variation, thus reducing the risk of graft-versus-host disease.
Collapse
Affiliation(s)
- Matthew R Semler
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53705, USA
| | - Roger W Wiseman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53705, USA
| | - Julie A Karl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53705, USA
| | - Michael E Graham
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53705, USA
| | - Samantha M Gieger
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53705, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53705, USA.
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| |
Collapse
|
27
|
Bhattacharyya M, Penaloza-MacMaster P. Dynamics of Lymphocyte Reconstitution After Hematopoietic Transplantation During Chronic Lymphocytic Choriomeningitis Virus Infection. AIDS Res Hum Retroviruses 2018; 34:430-438. [PMID: 29620933 DOI: 10.1089/aid.2017.0251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bone marrow transplantation is a treatment for various cancers and genetic diseases, and the only case of a cured HIV infection involved the use of this clinical procedure, highlighting the potential use of this therapy for curing many chronic diseases. However, little is known about how chronic viral infection influences lymphocyte reconstitution after bone marrow transplantation. To address this, we infected mice with chronic lymphocytic choriomeningitis virus, and performed bone marrow transplantation to assess lymphocyte reconstitution. Interestingly, we observed that adoptively transferred marrow cells exhibited preferential B cell differentiation in chronically infected mice. Moreover, donor marrow cells that were adoptively transferred into chronically infected mice differentiated into virus-specific CD8 T cells that were able to expand after PD-L1 blockade. Taken together, our data show that chronic viral infection induces a biased differentiation of bone marrow stem cells into B cells, and that exhausted virus-specific CD8 T cells generated de novo in this setting are rescuable by PD-1 blockade. These data contribute to the understanding of how chronic viral infection impacts lymphocyte reconstitution, and may provide valuable information to improve current hematopoietic transplantation regimens in chronically infected hosts.
Collapse
Affiliation(s)
- Mitra Bhattacharyya
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
28
|
Fisher BS, Green RR, Brown RR, Wood MP, Hensley-McBain T, Fisher C, Chang J, Miller AD, Bosche WJ, Lifson JD, Mavigner M, Miller CJ, Gale M, Silvestri G, Chahroudi A, Klatt NR, Sodora DL. Liver macrophage-associated inflammation correlates with SIV burden and is substantially reduced following cART. PLoS Pathog 2018; 14:e1006871. [PMID: 29466439 PMCID: PMC5837102 DOI: 10.1371/journal.ppat.1006871] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 03/05/2018] [Accepted: 01/09/2018] [Indexed: 12/19/2022] Open
Abstract
Liver disease is a leading contributor to morbidity and mortality during HIV infection, despite the use of combination antiretroviral therapy (cART). The precise mechanisms of liver disease during HIV infection are poorly understood partially due to the difficulty in obtaining human liver samples as well as the presence of confounding factors (e.g. hepatitis co-infection, alcohol use). Utilizing the simian immunodeficiency virus (SIV) macaque model, a controlled study was conducted to evaluate the factors associated with liver inflammation and the impact of cART. We observed an increase in hepatic macrophages during untreated SIV infection that was associated with a number of inflammatory and fibrosis mediators (TNFα, CCL3, TGFβ). Moreover, an upregulation in the macrophage chemoattractant factor CCL2 was detected in the livers of SIV-infected macaques that coincided with an increase in the number of activated CD16+ monocyte/macrophages and T cells expressing the cognate receptor CCR2. Expression of Mac387 on monocyte/macrophages further indicated that these cells recently migrated to the liver. The hepatic macrophage and T cell levels strongly correlated with liver SIV DNA levels, and were not associated with the levels of 16S bacterial DNA. Utilizing in situ hybridization, SIV-infected cells were found primarily within portal triads, and were identified as T cells. Microarray analysis identified a strong antiviral transcriptomic signature in the liver during SIV infection. In contrast, macaques treated with cART exhibited lower levels of liver macrophages and had a substantial, but not complete, reduction in their inflammatory profile. In addition, residual SIV DNA and bacteria 16S DNA were detected in the livers during cART, implicating the liver as a site on-going immune activation during antiretroviral therapy. These findings provide mechanistic insights regarding how SIV infection promotes liver inflammation through macrophage recruitment, with implications for in HIV-infected individuals.
Collapse
Affiliation(s)
- Bridget S. Fisher
- Center for Infectious Disease Research, formally Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Richard R. Green
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Rachel R. Brown
- Center for Infectious Disease Research, formally Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Matthew P. Wood
- Center for Infectious Disease Research, formally Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Tiffany Hensley-McBain
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Cole Fisher
- Center for Infectious Disease Research, formally Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Jean Chang
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Andrew D. Miller
- Cornell University College of Veterinary Medicine, Department of Biomedical Sciences, Section of Anatomic Pathology, Ithaca, New York, United States of America
| | - William J. Bosche
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Maud Mavigner
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Charlene J. Miller
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Guido Silvestri
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory Vaccine Research Center and, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Ann Chahroudi
- Emory Vaccine Research Center and, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States of America
| | - Nichole R. Klatt
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Donald L. Sodora
- Center for Infectious Disease Research, formally Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
29
|
Cummins NW, Rizza S, Litzow MR, Hua S, Lee GQ, Einkauf K, Chun TW, Rhame F, Baker JV, Busch MP, Chomont N, Dean PG, Fromentin R, Haase AT, Hampton D, Keating SM, Lada SM, Lee TH, Natesampillai S, Richman DD, Schacker TW, Wietgrefe S, Yu XG, Yao JD, Zeuli J, Lichterfeld M, Badley AD. Extensive virologic and immunologic characterization in an HIV-infected individual following allogeneic stem cell transplant and analytic cessation of antiretroviral therapy: A case study. PLoS Med 2017; 14:e1002461. [PMID: 29182633 PMCID: PMC5705162 DOI: 10.1371/journal.pmed.1002461] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Notwithstanding 1 documented case of HIV-1 cure following allogeneic stem cell transplantation (allo-SCT), several subsequent cases of allo-SCT in HIV-1 positive individuals have failed to cure HIV-1 infection. The aim of our study was to describe changes in the HIV reservoir in a single chronically HIV-infected patient on suppressive antiretroviral therapy who underwent allo-SCT for treatment of acute lymphoblastic leukemia. METHODS AND FINDINGS We prospectively collected peripheral blood mononuclear cells (PBMCs) by leukapheresis from a 55-year-old man with chronic HIV infection before and after allo-SCT to measure the size of the HIV-1 reservoir and characterize viral phylogeny and phenotypic changes in immune cells. At day 784 post-transplant, when HIV-1 was undetectable by multiple measures-including PCR measurements of both total and integrated HIV-1 DNA, replication-competent virus measurement by large cell input quantitative viral outgrowth assay, and in situ hybridization of colon tissue-the patient consented to an analytic treatment interruption (ATI) with frequent clinical monitoring. He remained aviremic off antiretroviral therapy until ATI day 288, when a low-level virus rebound of 60 HIV-1 copies/ml occurred, which increased to 1,640 HIV-1 copies/ml 5 days later, prompting reinitiation of ART. Rebounding plasma HIV-1 sequences were phylogenetically distinct from proviral HIV-1 DNA detected in circulating PBMCs before transplantation. The main limitations of this study are the insensitivity of reservoir measurements, and the fact that it describes a single case. CONCLUSIONS allo-SCT led to a significant reduction in the size of the HIV-1 reservoir and a >9-month-long ART-free remission from HIV-1 replication. Phylogenetic analyses suggest that the origin of rebound virus was distinct from the viruses identified pre-transplant in the PBMCs.
Collapse
Affiliation(s)
- Nathan W. Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stacey Rizza
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mark R. Litzow
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephane Hua
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Guinevere Q. Lee
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kevin Einkauf
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Tae-Wook Chun
- HIV Immunovirology Unit, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Frank Rhame
- Abbott Northwestern Hospital, Allina Health, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jason V. Baker
- Division of Infectious Diseases, Hennepin County Medical Center, Minneapolis, Minnesota, United States of America
| | - Michael P. Busch
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Nicolas Chomont
- Centre de Recherche du CHUM, University of Montreal Hospital Centre, Montreal, Canada
- Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, Montreal, Canada
| | - Patrick G. Dean
- Division of Transplantation Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rémi Fromentin
- Centre de Recherche du CHUM, University of Montreal Hospital Centre, Montreal, Canada
- Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, Montreal, Canada
| | - Ashley T. Haase
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dylan Hampton
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Sheila M. Keating
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Steven M. Lada
- University of California, San Diego, San Diego, California, United States of America
- VA San Diego Healthcare System, San Diego, California, United States of America
| | - Tzong-Hae Lee
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Sekar Natesampillai
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Douglas D. Richman
- University of California, San Diego, San Diego, California, United States of America
- VA San Diego Healthcare System, San Diego, California, United States of America
| | - Timothy W. Schacker
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stephen Wietgrefe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Joseph D. Yao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - John Zeuli
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW A central question for the HIV cure field is to determine new ways to target clinically relevant, latently and actively replicating HIV-infected cells beyond resting memory CD4 T cells, particularly in anatomical areas of low drug penetrability. RECENT FINDINGS HIV eradication strategies being positioned for targeting HIV for extinction in the CD4 T-cell compartment may also show promise in non-CD4 T-cells reservoirs. Furthermore, several exciting novel therapeutic approaches specifically focused on HIV clearance from non-CD4 T-cell populations are being developed. SUMMARY Although reservoir validity in these non-CD4 T cells continues to remain debated, this review will highlight recent advances and make an argument as to their clinical relevancy as we progress towards an HIV cure.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Highly active antiretroviral treatment has dramatically improved the prognosis for people living with HIV by preventing AIDS-related morbidity and mortality through profound suppression of viral replication. However, a long-lived viral reservoir persists in latently infected cells that harbor replication-competent HIV genomes. If therapy is discontinued, latently infected memory cells inevitably reactivate and produce infectious virus, resulting in viral rebound. The reservoir is the biggest obstacle to a cure of HIV. RECENT FINDINGS This review summarizes significant advances of the past year in the development of cellular and gene therapies for HIV cure. In particular, we highlight work done on suppression or disruption of HIV coreceptors, vectored delivery of antibodies and antibody-like molecules, T-cell therapies and HIV genome disruption. SUMMARY Several recent advancements in cellular and gene therapies have emerged at the forefront of HIV cure research, potentially having broad implications for the future of HIV treatment.
Collapse
|
32
|
Haworth KG, Peterson CW, Kiem HP. CCR5-edited gene therapies for HIV cure: Closing the door to viral entry. Cytotherapy 2017; 19:1325-1338. [PMID: 28751153 DOI: 10.1016/j.jcyt.2017.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus (HIV) was first reported and characterized more than three decades ago. Once thought of as a death sentence, HIV infection has become a chronically manageable disease. However, it is estimated that a staggering 0.8% of the world's population is infected with HIV, with more than 1 million deaths reported in 2015 alone. Despite the development of effective anti-retroviral drugs, a permanent cure has only been documented in one patient to date. In 2007, an HIV-positive patient received a bone marrow transplant to treat his leukemia from an individual who was homozygous for a mutation in the CCR5 gene. This mutation, known as CCR5Δ32, prevents HIV replication by inhibiting the early stage of viral entry into cells, resulting in resistance to infection from the majority of HIV isolates. More than 10 years after his last dose of anti-retroviral therapy, the transplant recipient remains free of replication-competent virus. Multiple groups are now attempting to replicate this success through the use of other CCR5-negative donor cell sources. Additionally, developments in the use of lentiviral vectors and targeted nucleases have opened the doors of precision medicine and enabled new treatment methodologies to combat HIV infection through targeted ablation or down-regulation of CCR5 expression. Here, we review historical cases of CCR5-edited cell-based therapies, current clinical trials and future benefits and challenges associated with this technology.
Collapse
Affiliation(s)
- Kevin G Haworth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Christopher W Peterson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Pathology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
33
|
Reeves DB, Peterson CW, Kiem HP, Schiffer JT. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia. J Virol 2017; 91:e00095-17. [PMID: 28404854 PMCID: PMC5469274 DOI: 10.1128/jvi.00095-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient.IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the "Berlin patient" remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact of stem cell transplantation in a macaque simian/HIV (SHIV) system. Using a mechanistic mathematical model, we found that while primary infection generates an adaptive immune memory response, stem cell transplantation disrupts this learned immunity. The results have implications for HIV cure regimens based on stem cell transplantation.
Collapse
Affiliation(s)
- Daniel B Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Christopher W Peterson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
34
|
Maintenance of the HIV Reservoir Is Antagonized by Selective BCL2 Inhibition. J Virol 2017; 91:JVI.00012-17. [PMID: 28331083 DOI: 10.1128/jvi.00012-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/17/2017] [Indexed: 11/20/2022] Open
Abstract
Decay of the HIV reservoir is slowed over time in part by expansion of the pool of HIV-infected cells. This expansion reflects homeostatic proliferation of infected cells by interleukin-7 (IL-7) or antigenic stimulation, as well as new rounds of infection of susceptible target cells. As novel therapies are being developed to accelerate the decay of the latent HIV reservoir, it will be important to identify interventions that prevent expansion and/or repopulation of the latent HIV reservoir. Our previous studies showed that HIV protease cleaves the host protein procaspase 8 to generate Casp8p41, which can bind and activate Bak to induce apoptosis of infected cells. In circumstances where expression of the anti-apoptotic protein BCL2 is high, Casp8p41 instead binds BCL2, and cell death does not occur. This effect can be overcome by treating cells with the clinically approved BCL2 antagonist venetoclax, which prevents Casp8p41 from binding BCL2, thereby allowing Casp8p41 to bind Bak and kill the infected cell. Here we assess whether the events that maintain the HIV reservoir are also antagonized by venetoclax. Using the J-Lat 10.6 model of persistent infection, we demonstrate that proliferation and HIV expression are countered by the use of venetoclax, which causes preferential killing of the HIV-expressing cells. Similarly, during new rounds of infection of primary CD4 T cells, venetoclax causes selective killing of HIV-infected cells, resulting in decreased numbers of HIV DNA-containing cells.IMPORTANCE Cure of HIV infection requires an intervention that reduces the HIV reservoir size. A variety of approaches are being tested for their ability to impact HIV reservoir size. Even if successful, however, these approaches will need to be combined with additional complementary approaches that prevent replenishment or repopulation of the HIV reservoir. Our previous studies have shown that the FDA-approved BCL2 antagonist venetoclax has a beneficial effect on the HIV reservoir size following HIV reactivation. Here we demonstrate that venetoclax also has a beneficial effect on HIV reservoir size in a model of homeostatic proliferation of HIV as well as in acute spreading infection of HIV in primary CD4 T cells. These results suggest that venetoclax, either alone or in combination with other approaches to reducing HIV reservoir size, is a compound worthy of further study for its effects on HIV reservoir size.
Collapse
|
35
|
Nixon CC, Mavigner M, Silvestri G, Garcia JV. In Vivo Models of Human Immunodeficiency Virus Persistence and Cure Strategies. J Infect Dis 2017; 215:S142-S151. [PMID: 28520967 PMCID: PMC5410984 DOI: 10.1093/infdis/jiw637] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Current HIV therapy is not curative regardless of how soon after infection it is initiated or how long it is administered, and therapy interruption almost invariably results in robust viral rebound. Human immunodeficiency virus persistence is therefore the major obstacle to a cure for AIDS. The testing and implementation of novel yet unproven approaches to HIV eradication that could compromise the health status of HIV-infected individuals might not be ethically warranted. Therefore, adequate in vitro and in vivo evidence of efficacy is needed to facilitate the clinical implementation of promising strategies for an HIV cure. Animal models of HIV infection have a strong and well-documented history of bridging the gap between laboratory discoveries and eventual clinical implementation. More recently, animal models have been developed and implemented for the in vivo evaluation of novel HIV cure strategies. In this article, we review the recent progress in this rapidly moving area of research, focusing on the two most promising model systems: humanized mice and nonhuman primates.
Collapse
Affiliation(s)
- Christopher C Nixon
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, and
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - J Victor Garcia
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine
| |
Collapse
|
36
|
Araínga M, Edagwa B, Mosley RL, Poluektova LY, Gorantla S, Gendelman HE. A mature macrophage is a principal HIV-1 cellular reservoir in humanized mice after treatment with long acting antiretroviral therapy. Retrovirology 2017; 14:17. [PMID: 28279181 PMCID: PMC5345240 DOI: 10.1186/s12977-017-0344-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/06/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite improved clinical outcomes seen following antiretroviral therapy (ART), resting CD4+ T cells continue to harbor latent human immunodeficiency virus type one (HIV-1). However, such cells are not likely the solitary viral reservoir and as such defining where and how others harbor virus is imperative for eradication measures. To such ends, we used HIV-1ADA-infected NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ mice reconstituted with a human immune system to explore two long-acting ART regimens investigating their abilities to affect viral cell infection and latency. At 6 weeks of infection animals were divided into four groups. One received long-acting (LA) cabotegravir (CAB) and rilpivirine (RVP) (2ART), a second received LA CAB, lamivudine, abacavir and RVP (4ART), a third were left untreated and a fourth served as an uninfected control. After 4 weeks of LA ART treatment, blood, spleen and bone marrow (BM) cells were collected then phenotypically characterized. CD4+ T cell subsets, macrophages and hematopoietic progenitor cells were analyzed for HIV-1 nucleic acids by droplet digital PCR. RESULTS Plasma viral loads were reduced by two log10 or to undetectable levels in the 2 and 4ART regimens, respectively. Numbers and distributions of CD4+ memory and regulatory T cells, macrophages and hematopoietic progenitor cells were significantly altered by HIV-1 infection and by both ART regimens. ART reduced viral DNA and RNA in all cell and tissue compartments. While memory cells were the dominant T cell reservoir, integrated HIV-1 DNA was also detected in the BM and spleen macrophages in both regimen-treated mice. CONCLUSION Despite vigorous ART regimens, HIV-1 DNA and RNA were easily detected in mature macrophages supporting their potential role as an infectious viral reservoir.
Collapse
Affiliation(s)
- Mariluz Araínga
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
37
|
Peterson CW, Benne C, Polacino P, Kaur J, McAllister CE, Filali-Mouhim A, Obenza W, Pecor TA, Huang ML, Baldessari A, Murnane RD, Woolfrey AE, Jerome KR, Hu SL, Klatt NR, DeRosa S, Sékaly RP, Kiem HP. Loss of immune homeostasis dictates SHIV rebound after stem-cell transplantation. JCI Insight 2017; 2:e91230. [PMID: 28239658 DOI: 10.1172/jci.insight.91230] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The conditioning regimen used as part of the Berlin patient's hematopoietic cell transplant likely contributed to his eradication of HIV infection. We studied the impact of conditioning in simian-human immunodeficiency virus-infected (SHIV-infected) macaques suppressed by combination antiretroviral therapy (cART). The conditioning regimen resulted in a dramatic, but incomplete depletion of CD4+ and CD8+ T cells and CD20+ B cells, increased T cell activation and exhaustion, and a significant loss of SHIV-specific Abs. The disrupted T cell homeostasis and markers of microbial translocation positively correlated with an increased viral rebound after cART interruption. Quantitative viral outgrowth and Tat/rev-induced limiting dilution assays showed that the size of the latent SHIV reservoir did not correlate with viral rebound. These findings identify perturbations of the immune system as a mechanism for the failure of autologous transplantation to eradicate HIV. Thus, transplantation strategies may be improved by incorporating immune modulators to prevent disrupted homeostasis, and gene therapy to protect transplanted cells.
Collapse
Affiliation(s)
- Christopher W Peterson
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Clarisse Benne
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Patricia Polacino
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Jasbir Kaur
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Cristina E McAllister
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Willi Obenza
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Tiffany A Pecor
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Meei-Li Huang
- Division of Vaccine and Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Audrey Baldessari
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Robert D Murnane
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Ann E Woolfrey
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Keith R Jerome
- Division of Vaccine and Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Laboratory Medicine
| | - Shiu-Lok Hu
- Washington National Primate Research Center, Seattle, Washington, USA.,Department of Pharmaceutics and
| | - Nichole R Klatt
- Washington National Primate Research Center, Seattle, Washington, USA.,Department of Pharmaceutics and
| | - Stephen DeRosa
- Division of Vaccine and Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Rafick P Sékaly
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hans-Peter Kiem
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA.,Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
38
|
Gianella S, Taylor J, Brown TR, Kaytes A, Achim CL, Moore DJ, Little SJ, Ellis RJ, Smith DM. Can research at the end of life be a useful tool to advance HIV cure? AIDS 2017; 31:1-4. [PMID: 27755112 PMCID: PMC5137789 DOI: 10.1097/qad.0000000000001300] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite extensive investigations, we still do not fully understand the dynamics of the total body HIV reservoir and how sub-reservoirs in various compartments relate to one another. Studies using macaque models are enlightening but eradication strategies will still need to be tested in humans. To take the next steps in understanding and eradicating HIV reservoirs throughout the body, we propose to develop a “peri-mortem translational research model” of HIV-infected individuals (called ‘The Last Gift’), which is similar to existing models in cancer research. In this model, altruistic, motivated HIV-infected individuals with advanced non-AIDS related diseases and with six months or less to live will participate in HIV cure research and donate their full body after they die. Engaging this population provides a unique opportunity to compare the HIV reservoir before and after death across multiple anatomic compartments in relation to antiretroviral therapy use and other relevant clinical factors. Furthermore, people living with HIV/AIDS at the end of their lives may be willing to participate to cure interventions and accept greater risks for research participation. A broad, frank, and pragmatic discussion about performing HIV cure research near the end of life is necessary.
Collapse
Affiliation(s)
- Sara Gianella
- University of California, San Diego, La Jolla, CA, USA
| | - Jeff Taylor
- Community Advisory Board (CAB) AntiViral Research Center (AVRC) San Diego, CA, USA
| | | | - Andy Kaytes
- Community Advisory Board (CAB) AntiViral Research Center (AVRC) San Diego, CA, USA
| | | | | | | | - Ron J. Ellis
- University of California, San Diego, La Jolla, CA, USA
| | - Davey M. Smith
- University of California, San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
39
|
Mavigner M, Lee ST, Habib J, Robinson C, Silvestri G, O’Doherty U, Chahroudi A. Quantifying integrated SIV-DNA by repetitive-sampling Alu-gag PCR. J Virus Erad 2016; 2:219-226. [PMID: 27781104 PMCID: PMC5075349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Although antiretroviral therapy (ART) effectively suppresses HIV-1 replication, it does not eradicate the virus and ART interruption consistently results in rebound of viraemia, demonstrating the persistence of a long-lived viral reservoir. Several approaches aimed at reducing virus persistence are being developed, and accurate measurements of the latent reservoir (LR) are necessary to assess the effectiveness of anti-latency interventions. We sought to measure the LR in SIV/SHIV-infected rhesus macaques (RMs) by quantifying integrated SIV-DNA. METHODS We optimised a repetitive sampling Alu-gag PCR to quantify integrated SIV-DNA ex vivo in ART-naïve and ART-experienced SIV/SHIV-infected RMs. RESULTS In ART-naïve RMs, we found the median level of integrated SIV-DNA to be 1660 copies and 866 copies per million PBMC during untreated acute and chronic SHIV infection, respectively. Integrated and total SIV-DNA levels were positively correlated with one another. In ART-treated RMs, integrated SIV-DNA was readily detected in lymph nodes and spleen and levels of total (3319 copies/million cells) and integrated (3160 copies/million cells) SIV-DNA were similar after a median of 404 days of ART. In peripheral blood CD4+ T cells from ART-treated RMs, levels of total (3319 copies/million cells) and integrated (2742 copies/million cells) SIV-DNA were not significantly different and were positively correlated. CONCLUSIONS The assay described here is validated and can be used in interventional studies testing HIV/SIV cure strategies in RMs. Measurement of integrated SIV-DNA in ART-treated RMs, along with other reservoir analyses, gives an estimate of the size of the LR.
Collapse
Affiliation(s)
- Maud Mavigner
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA,Department of Pediatrics,
Emory University School of Medicine,
Atlanta,
GA,
USA
| | - S Thera Lee
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA,Department of Pediatrics,
Emory University School of Medicine,
Atlanta,
GA,
USA
| | - Jakob Habib
- Department of Pediatrics,
Emory University School of Medicine,
Atlanta,
GA,
USA
| | - Cameron Robinson
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA
| | - Guido Silvestri
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA
| | - Una O’Doherty
- Department of Pathology and Laboratory Medicine,
University of Pennsylvania,
Philadelphia,
PA,
USA
| | - Ann Chahroudi
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA,Department of Pediatrics,
Emory University School of Medicine,
Atlanta,
GA,
USA,Corresponding author: Ann Chahroudi,
E472, HSRB, 1760 Haygood Drive,
Atlanta,
GA30322,
USA
| |
Collapse
|
40
|
Mavigner M, Lee ST, Habib J, Robinson C, Silvestri G, O’Doherty U, Chahroudi A. Quantifying integrated SIV-DNA by repetitive-sampling Alu-gag PCR. J Virus Erad 2016. [DOI: 10.1016/s2055-6640(20)30870-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
41
|
Antiretroviral Therapy in Simian Immunodeficiency Virus-Infected Sooty Mangabeys: Implications for AIDS Pathogenesis. J Virol 2016; 90:7541-7551. [PMID: 27279614 DOI: 10.1128/jvi.00598-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/02/2016] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Simian immunodeficiency virus (SIV)-infected sooty mangabeys (SMs) do not develop AIDS despite high levels of viremia. Key factors involved in the benign course of SIV infection in SMs are the absence of chronic immune activation and low levels of infection of CD4(+) central memory (TCM) and stem cell memory (TSCM) T cells. To better understand the role of virus replication in determining the main features of SIV infection in SMs, we treated 12 SMs with a potent antiretroviral therapy (ART) regimen for 2 to 12 months. We observed that ART suppressed viremia to <60 copies/ml of plasma in 10 of 12 animals and induced a variable decrease in the level of cell-associated SIV DNA in peripheral blood (average changes of 0.9-, 1.1-, 1.5-, and 3.7-fold for CD4(+) transitional memory [TTM], TCM, effector memory [TEM], and TSCM cells, respectively). ART-treated SIV-infected SMs showed (i) increased percentages of circulating CD4(+) TCM cells, (ii) increased levels of CD4(+) T cells in the rectal mucosa, and (iii) significant declines in the frequencies of HLA-DR(+) CD8(+) T cells in the blood and rectal mucosa. In addition, we observed that ART interruption resulted in rapid viral rebound in all SIV-infected SMs, indicating that the virus reservoir persists for at least a year under ART despite lower infection levels of CD4(+) TCM and TSCM cells than those seen in pathogenic SIV infections of macaques. Overall, these data indicate that ART induces specific immunological changes in SIV-infected SMs, thus suggesting that virus replication affects immune function even in the context of this clinically benign infection. IMPORTANCE Studies of natural, nonpathogenic simian immunodeficiency virus (SIV) infection of African monkeys have provided important insights into the mechanisms responsible for the progression to AIDS during pathogenic human immunodeficiency virus (HIV) infection of humans and SIV infection of Asian macaques. In this study, for the first time, we treated SIV-infected sooty mangabeys, a natural host for the infection, with a potent antiretroviral therapy (ART) regimen for periods ranging from 2 to 12 months and monitored in detail how suppression of virus replication affected the main virological and immunological features of this nonpathogenic infection. The observed findings provide novel information on both the pathogenesis of residual immunological disease under ART during pathogenic infection and the mechanisms involved in virus persistence during primate lentiviral infections.
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW The introduction of effective antiretroviral therapy (ART) has transformed HIV infection from a deadly to a chronic infection. Despite its successes in reducing mortality, ART fails to cure HIV allowing HIV to persist in vivo. HIV persistence under ART is thought to be mediated by a combination of latent infection of long-lived cells, homeostatic proliferation of latently infected cells, anatomic sanctuaries, and low-level virus replication. To understand the contribution of specific cell types and anatomic sites to virus persistence in vivo animal models are necessary. RECENT FINDINGS The advancements in ART and our understanding of animal models have facilitated the development of models of HIV persistence in nonhuman primates and mice. Simian immunodeficiency virus (SIV) or simian/HIV infection (SHIV) of rhesus and pigtail macaques followed by effective ART represents the most faithful animal model of HIV persistence. HIV infection of humanized mice also provides a useful model for answering specific questions regarding virus persistence in a uniquely mutable system. SUMMARY In this review, we describe the most recent findings using animal models of HIV persistence. We will first describe the important aspects of HIV infection that SIV/SHIV infection of nonhuman primates are able to recapitulate, then we will discuss some recent studies that have used these models to understand viral persistence.
Collapse
|
43
|
HIV-1 cellular and tissue replication patterns in infected humanized mice. Sci Rep 2016; 6:23513. [PMID: 26996968 PMCID: PMC4800734 DOI: 10.1038/srep23513] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/09/2016] [Indexed: 12/20/2022] Open
Abstract
Humanized mice have emerged as a testing platform for HIV-1 pathobiology by reflecting natural human disease processes. Their use to study HIV-1 biology, virology, immunology, pathogenesis and therapeutic development has served as a robust alternative to more-well developed animal models for HIV/AIDS. A critical component in reflecting such human pathobiology rests in defining the tissue and cellular sites for HIV-1 infection. To this end, we examined the tissue sites for viral infection in bone marrow, blood, spleens, liver, gut, brain, kidney and lungs of human CD34+ hematopoietic stem cell engrafted virus-infected NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice. Cells were analyzed by flow cytometry and sorted from species mixtures defined as CD34+ lineage negative progenitor cells, CD14+CD16+ monocyte-macrophages and central, stem cell and effector memory T cells. The cell distribution and viral life cycle were found dependent on the tissue compartment and time of infection. Cell subsets contained HIV-1 total and integrated DNA as well as multi-spliced and unspliced RNA in divergent proportions. The data support the idea that humanized mice can provide a means to examine the multifaceted sites of HIV-1 replication including, but not limited to progenitor cells and monocyte-macrophages previously possible only in macaques and human.
Collapse
|
44
|
Miles B, Connick E. TFH in HIV Latency and as Sources of Replication-Competent Virus. Trends Microbiol 2016; 24:338-344. [PMID: 26947191 DOI: 10.1016/j.tim.2016.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 11/16/2022]
Abstract
During untreated disease, HIV replication is concentrated within T follicular helper cells (TFH). Heightened permissiveness, the presence of highly infectious virions on follicular dendritic cells (FDCs), low frequencies of virus-specific cytotoxic T lymphocytes (CTLs) in B cell follicles, expansions in TFH, and TFH dysfunction, all likely promote replication in TFH. Limited data suggest that memory TFH play a role in the latent or subclinical reservoir of HIV during antiretroviral therapy (ART), potentially for many of the same reasons. A better understanding of the role of memory TFH and FDC-bound virions in promoting recrudescent viremia in the setting of ART cessation is essential. Studies that target follicular virus reservoirs are needed to determine their role in HIV latency and to suggest successful cure strategies.
Collapse
Affiliation(s)
- Brodie Miles
- Division of Infectious Diseases, University of Colorado Denver, Aurora CO 80045, USA
| | - Elizabeth Connick
- Division of Infectious Diseases, University of Colorado Denver, Aurora CO 80045, USA.
| |
Collapse
|
45
|
Hosseini I, Gabhann FM. Mechanistic Models Predict Efficacy of CCR5-Deficient Stem Cell Transplants in HIV Patient Populations. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2016; 5:82-90. [PMID: 26933519 PMCID: PMC4761230 DOI: 10.1002/psp4.12059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/06/2016] [Indexed: 01/21/2023]
Abstract
Combination antiretroviral therapy (cART) effectively suppresses viral load in HIV‐infected individuals, but it is not a cure. Bone marrow transplants using HIV‐resistant stem cells have renewed hope that cure is achievable but key questions remain e.g., what percentage of stem cells must be HIV‐resistant to achieve cure?. As few patients have undergone transplants, we built a mechanistic model of HIV/AIDS to approach this problem. The model includes major players of infection, reproduces the complete course of the disease, and simulates crucial components of clinical treatments, such as cART, irradiation, host recovery, gene augmentation, and donor chimerism. Using clinical data from 172 cART‐naïve HIV‐infected individuals, we created virtual populations to predict performance of CCR5‐deficient stem‐cell therapies and explore interpatient variability. We validated our model against a published clinical study of CCR5‐modified T‐cell therapy. Our model predicted that donor chimerism must exceed 75% to achieve 90% probability of cure across patient populations.
Collapse
Affiliation(s)
- I Hosseini
- Institute for Computational Medicine, Johns Hopkins University Baltimore Maryland USA; Department of Biomedical Engineering Johns Hopkins University Baltimore Maryland USA
| | - F Mac Gabhann
- Institute for Computational Medicine, Johns Hopkins University Baltimore Maryland USA; Department of Biomedical Engineering Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
46
|
Denton PW, Søgaard OS, Tolstrup M. Using animal models to overcome temporal, spatial and combinatorial challenges in HIV persistence research. J Transl Med 2016; 14:44. [PMID: 26861779 PMCID: PMC4746773 DOI: 10.1186/s12967-016-0807-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/29/2016] [Indexed: 12/03/2022] Open
Abstract
Research challenges associated with understanding HIV persistence during antiretroviral therapy can be categorized as temporal, spatial and combinatorial. Temporal research challenges relate to the timing of events during establishment and maintenance of HIV persistence. Spatial research challenges regard the anatomical locations and cell subsets that harbor persistent HIV. Combinatorial research challenges pertain to the order of administration, timing of administration and specific combinations of compounds to be administered during HIV eradication therapy. Overcoming these challenges will improve our understanding of HIV persistence and move the field closer to achieving eradication of persistent HIV. Given that humanized mice and non-human primate HIV models permit rigorous control of experimental conditions, these models have been used extensively as in vivo research platforms for directly addressing these research challenges. The aim of this manuscript is to provide a comprehensive review of these recent translational advances made in animal models of HIV persistence.
Collapse
Affiliation(s)
- Paul W Denton
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark. .,Aarhus Institute for Advanced Studies, Aarhus University, Aarhus, Denmark.
| | - Ole S Søgaard
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark.
| | - Martin Tolstrup
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark.
| |
Collapse
|
47
|
Chemokines, their receptors and human disease: the good, the bad and the itchy. Immunol Cell Biol 2016; 93:364-71. [PMID: 25895814 DOI: 10.1038/icb.2015.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/30/2015] [Indexed: 02/04/2023]
Abstract
Chemokines are a highly specialized group of cytokines that coordinate trafficking and homing of leucocytes between bone marrow, lymphoid organs and sites of infection or inflammation. They are also responsible for structural organization within lymphoid organs. Aberrant expression or function of these molecules, or their receptors, has been linked to protection or susceptibility to specific infectious diseases, as well as the risk of autoimmune disease and malignancy, revealing critical roles of chemokines and their receptors in human health, disease and therapeutics. In this review, we focus on human diseases that provide lessons regarding the critical role of these specialized and complex cytokines.
Collapse
|
48
|
Policicchio BB, Pandrea I, Apetrei C. Animal Models for HIV Cure Research. Front Immunol 2016; 7:12. [PMID: 26858716 PMCID: PMC4729870 DOI: 10.3389/fimmu.2016.00012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022] Open
Abstract
The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal.
Collapse
Affiliation(s)
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh , Pittsburgh, PA , USA
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
49
|
Abstract
The apparent cure of an HIV-infected person following hematopoietic stem cell transplantation (HSCT) from an allogeneic donor homozygous for the ccr5Δ32 mutation has stimulated the search for strategies to eradicate HIV or to induce long-term remission without requiring ongoing antiretroviral therapy. A variety of approaches, including allogeneic HSCT from CCR5-deficient donors and autologous transplantation of genetically modified hematopoietic stem cells, are currently under investigation. This Review covers the experience with HSCT in HIV infection to date and provides a survey of ongoing work in the field. The challenges of developing HSCT for HIV cure in the context of safe, effective, and convenient once-daily antiretroviral therapy are also discussed.
Collapse
|
50
|
Spivak AM, Planelles V. HIV-1 Eradication: Early Trials (and Tribulations). Trends Mol Med 2015; 22:10-27. [PMID: 26691297 DOI: 10.1016/j.molmed.2015.11.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/27/2015] [Accepted: 11/12/2015] [Indexed: 12/12/2022]
Abstract
Antiretroviral therapy (ART) has rendered HIV-1 infection a manageable illness for those with access to treatment. However, ART does not lead to viral eradication owing to the persistence of replication-competent, unexpressed proviruses in long-lived cellular reservoirs. The potential for long-term drug toxicities and the lack of access to ART for most people living with HIV-1 infection have fueled scientific interest in understanding the nature of this latent reservoir. Exploration of HIV-1 persistence at the cellular and molecular level in resting memory CD4(+) T cells, the predominant viral reservoir in patients on ART, has uncovered potential strategies to reverse latency. We review recent advances in pharmacologically based 'shock and kill' HIV-1 eradication strategies, including comparative analysis of early clinical trials.
Collapse
Affiliation(s)
- Adam M Spivak
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|