1
|
Broering Ferreira A, Fonteque JH, Withoeft JA, Assis Casagrande R, da Costa UM, Imkamp F, Göller P, Baggio F, Hepojoki J, Hetzel U, Kipar A. Multifocal cutaneous neoplastic vascular proliferations in a rainbow boa (Epicrates cenchria) collection with boid inclusion body disease. PLoS One 2024; 19:e0311015. [PMID: 39504334 PMCID: PMC11540211 DOI: 10.1371/journal.pone.0311015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Reports on neoplastic processes in snakes are sparse regardless of their location, origin or behavior. Here, we describe the occurrence of multifocal cutaneous neoplastic processes consistent with hemangioma and hemangioendothelioma, with a differential diagnosis of angiomatosis, in a colony of native Brazilian rainbow boas (Epicrates cenchria) which also included animals affected by boid inclusion body disease (BIBD). Thirteen snakes were affected; seven of these had been introduced from other Brazilian sites years earlier, the others had been bred in house but were not offspring of knowingly affected animals. The breeding regime allowed contact between all female and male animals over the years. The cutaneous lesions were first observed over eight years ago, with additional cases detected during the three following years, but no new cases in the last five years. Two affected animals were subjected to a post mortem examination and were found to suffer from peliosis hepatis as one of the additional pathological changes. BIBD was confirmed in five of the eight examined animals, by histology, immunohistology for reptarenavirus nucleoprotein, and multiplex RT-PCR targeting the reptarenavirus S segment. Reptarenavirus infection was also detected in cells in the cutaneous neoplastic processes. PCRs for Bartonella henselae and B. quintana as well as bacterial DNA in general, performed on a pool of six skin lesions, yielded negative results, ruling out ongoing bacterial infection, like bacillary angiomatosis in humans, of the lesions. The results hint towards an association of reptarenavirus infection and BIBD with neoplastic processes which is worth further investigations.
Collapse
Affiliation(s)
- Anthony Broering Ferreira
- Center for Agroveterinary Sciences, University of the State of Santa Catarina (UDESC), Lages, Santa Catarina, Brazil
| | - Joandes Henrique Fonteque
- Center for Agroveterinary Sciences, University of the State of Santa Catarina (UDESC), Lages, Santa Catarina, Brazil
| | - Jéssica Aline Withoeft
- Center for Agroveterinary Sciences, University of the State of Santa Catarina (UDESC), Lages, Santa Catarina, Brazil
| | - Renata Assis Casagrande
- Center for Agroveterinary Sciences, University of the State of Santa Catarina (UDESC), Lages, Santa Catarina, Brazil
| | - Ubirajara Maciel da Costa
- Center for Agroveterinary Sciences, University of the State of Santa Catarina (UDESC), Lages, Santa Catarina, Brazil
| | - Frank Imkamp
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Pauline Göller
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Francesca Baggio
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jussi Hepojoki
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Hackbart M, López CB. Characterization of non-standard viral genomes during arenavirus infections identifies prominent S RNA intergenic region deletions. mBio 2024; 15:e0161224. [PMID: 39258905 PMCID: PMC11481572 DOI: 10.1128/mbio.01612-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Arenaviruses, a family of negative-sense RNA viruses spread by rodents, are a leading cause of severe hemorrhagic fever in humans. Due to a paucity of antivirals and vaccines for arenaviruses, there is a need to identify new mechanisms for interfering with arenavirus replication. In several negative-sense RNA viruses, natural viral interference results from the production of non-standard viral genomes (nsVGs) that activate the innate immune system and/or compete for essential viral products. Although it is well established that arenaviruses produce strong interfering activities, it is unknown if they produce interfering nsVGs. Here, we show that arenaviruses produce deletions within the intergenic region of their small (S) RNA genome, and these deletions inhibit viral glycoprotein production during minigenome replication. S RNA deletions are more abundant when arenaviruses are grown in high-interfering conditions and are associated with reduced viral replication. Overall, we found that arenaviruses produce internal deletions within the S RNA intergenic region that are capable of decreasing glycoprotein production. These natural arenavirus interfering molecules provide a new target for the generation of therapeutics against arenaviruses.IMPORTANCEArenaviruses are hemorrhagic fever-causing pathogens that infect millions of people a year. There are currently no approved antivirals that target arenaviruses, and understanding natural mechanisms that inhibit arenavirus replication is crucial for the development of effective therapeutics. Here, we identified multiple deletions within arenavirus genomes that remove major replicative elements of the viral genomes. We show that deletions that remove the intergenic region of the viral genome can prevent viral protein production. These deletions were found in all arenaviruses tested in this study representing a mechanism that could be harnessed for the development of antivirals that broadly target the arenavirus family.
Collapse
Affiliation(s)
- Matthew Hackbart
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carolina B. López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Tian Z, Hu T, Holmes EC, Ji J, Shi W. Analysis of the genetic diversity in RNA-directed RNA polymerase sequences: implications for an automated RNA virus classification system. Virus Evol 2024; 10:veae059. [PMID: 39119135 PMCID: PMC11306317 DOI: 10.1093/ve/veae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
RNA viruses are characterized by a broad host range and high levels of genetic diversity. Despite a recent expansion in the known virosphere following metagenomic sequencing, our knowledge of the species rank genetic diversity of RNA viruses, and how often they are misassigned and misclassified, is limited. We performed a clustering analysis of 7801 RNA-directed RNA polymerase (RdRp) sequences representing 1897 established RNA virus species. From this, we identified substantial genetic divergence within some virus species and inconsistency in RNA virus assignment between the GenBank database and The International Committee on Taxonomy of Viruses (ICTV). In particular, 27.57% virus species comprised multiple virus operational taxonomic units (vOTUs), including Alphainfluenzavirus influenzae, Mammarenavirus lassaense, Apple stem pitting virus, and Rotavirus A, with each having over 100 vOTUs. In addition, the distribution of average amino acid identity between vOTUs within single assigned species showed a relatively low threshold: <90% and sometimes <50%. However, when only exemplar sequences from virus species were analyzed, 1889 of the ICTV-designated RNA virus species (99.58%) were clustered into a single vOTU. Clustering of the RdRp sequences from different virus species also revealed that 17 vOTUs contained two distinct virus species. These potential misassignments were confirmed by phylogenetic analysis. A further analysis of average nucleotide identity (ANI) values ranging from 70% to 97.5% revealed that at an ANI of 82.5%, 1559 (82.18%) of the 1897 virus species could be correctly clustered into one single vOTU. However, at ANI values >82.5%, an increasing number of species were clustered into two or more vOTUs. In sum, we have identified some inconsistency and misassignment of the RNA virus species based on the analysis of RdRp sequences alone, which has important implications for the development of an automated RNA virus classification system.
Collapse
Affiliation(s)
- Zhongshuai Tian
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699 Qingdao Road, Ji’nan 250117, China
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqingnanlu, Shanghai 200025, China
| | - Tao Hu
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699 Qingdao Road, Ji’nan 250117, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- Laboratory of Data Discovery for Health Limited, 19 Science Park West Avenue, Hong Kong 999077, China
| | - Jingkai Ji
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619 Changcheng Road, Taian 271000, China
| | - Weifeng Shi
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqingnanlu, Shanghai 200025, China
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijinerlu, Shanghai 200025, China
| |
Collapse
|
4
|
Shedroff E, Martin ML, Whitmer SLM, Brignone J, Garcia JB, Sen C, Nazar Y, Fabbri C, Morales-Betoulle M, Mendez J, Montgomery J, Morales MA, Klena JD. Novel Oliveros-like Clade C Mammarenaviruses from Rodents in Argentina, 1990-2020. Viruses 2024; 16:340. [PMID: 38543706 PMCID: PMC10976098 DOI: 10.3390/v16030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 05/23/2024] Open
Abstract
Following an Argentine Hemorrhagic Fever (AHF) outbreak in the early 1990s, a rodent survey for Junín virus, a New World Clade B arenavirus, in endemic areas of Argentina was conducted. Since 1990, INEVH has been developing eco-epidemiological surveillance of rodents, inside and outside the Argentine Hemorrhagic Fever endemic area. Samples from rodents captured between 1993 and 2019 that were positive for Arenavirus infection underwent Sanger and unbiased, Illumina-based high-throughput sequencing, which yielded 5 complete and 88 partial Mammarenaviruses genomes. Previously, 11 genomes representing four species of New World arenavirus Clade C existed in public records. This work has generated 13 novel genomes, expanding the New World arenavirus Clade C to 24 total genomes. Additionally, two genomes exhibit sufficient genetic diversity to be considered a new species, as per ICTV guidelines (proposed name Mammarenavirus vellosense). The 13 novel genomes exhibited reassortment between the small and large segments in New World Mammarenaviruses. This work demonstrates that Clade C Mammarenavirus infections circulate broadly among Necromys species in the Argentine Hemorrhagic Fever endemic area; however, the risk for Clade C Mammarenavirus human infection is currently unknown.
Collapse
Affiliation(s)
- Elizabeth Shedroff
- Viral Special Pathogens Branch, The Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30329, USA; (E.S.); (S.L.M.W.); (M.M.-B.); (J.M.)
| | - Maria Laura Martin
- Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui, Monteagudo 2510, Pergamino 2700, Argentina; (M.L.M.); (J.B.); (J.B.G.); (C.S.); (Y.N.); (C.F.); (M.A.M.)
| | - Shannon L. M. Whitmer
- Viral Special Pathogens Branch, The Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30329, USA; (E.S.); (S.L.M.W.); (M.M.-B.); (J.M.)
| | - Julia Brignone
- Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui, Monteagudo 2510, Pergamino 2700, Argentina; (M.L.M.); (J.B.); (J.B.G.); (C.S.); (Y.N.); (C.F.); (M.A.M.)
| | - Jorge B. Garcia
- Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui, Monteagudo 2510, Pergamino 2700, Argentina; (M.L.M.); (J.B.); (J.B.G.); (C.S.); (Y.N.); (C.F.); (M.A.M.)
| | - Carina Sen
- Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui, Monteagudo 2510, Pergamino 2700, Argentina; (M.L.M.); (J.B.); (J.B.G.); (C.S.); (Y.N.); (C.F.); (M.A.M.)
| | - Yael Nazar
- Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui, Monteagudo 2510, Pergamino 2700, Argentina; (M.L.M.); (J.B.); (J.B.G.); (C.S.); (Y.N.); (C.F.); (M.A.M.)
| | - Cintia Fabbri
- Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui, Monteagudo 2510, Pergamino 2700, Argentina; (M.L.M.); (J.B.); (J.B.G.); (C.S.); (Y.N.); (C.F.); (M.A.M.)
| | - Maria Morales-Betoulle
- Viral Special Pathogens Branch, The Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30329, USA; (E.S.); (S.L.M.W.); (M.M.-B.); (J.M.)
| | - Jairo Mendez
- Pan American Health Organization, 525 23rd St. New World, Washington, DC 20037, USA;
| | - Joel Montgomery
- Viral Special Pathogens Branch, The Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30329, USA; (E.S.); (S.L.M.W.); (M.M.-B.); (J.M.)
| | - Maria Alejandra Morales
- Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui, Monteagudo 2510, Pergamino 2700, Argentina; (M.L.M.); (J.B.); (J.B.G.); (C.S.); (Y.N.); (C.F.); (M.A.M.)
| | - John D. Klena
- Viral Special Pathogens Branch, The Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30329, USA; (E.S.); (S.L.M.W.); (M.M.-B.); (J.M.)
| |
Collapse
|
5
|
Baggio F, Hetzel U, Prähauser B, Dervas E, Michalopoulou E, Thiele T, Kipar A, Hepojoki J. A Multiplex RT-PCR Method for the Detection of Reptarenavirus Infection. Viruses 2023; 15:2313. [PMID: 38140554 PMCID: PMC10747477 DOI: 10.3390/v15122313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Reptarenaviruses cause Boid Inclusion Body Disease (BIBD), a fatal disease of boid snakes with an economic and ecological impact, as it affects both captive and wild constrictor snakes. The clinical picture of BIBD is highly variable but often only limited. Intracytoplasmic inclusion bodies (IB), which develop in most cell types including blood cells, are the pathognomonic hallmark of BIBD; their detection represents the diagnostic gold standard of the disease. However, IBs are not consistently present in clinically healthy reptarenavirus carriers, which can, if undetected, lead to and maintain the spread of the disease within and between snake populations. Sensitive viral detection tools are required for screening and control purposes; however, the genetic diversity of reptarenaviruses hampers the reverse transcription (RT) PCR-based diagnostics. Here, we describe a multiplex RT-PCR approach for the molecular diagnosis of reptarenavirus infection in blood samples. The method allows the detection of a wide range of reptarenaviruses with the detection limit reaching 40 copies per microliter of blood. Using 245 blood samples with a reference RT-PCR result, we show that the technique performs as well as the segment-specific RT-PCRs in our earlier studies. It can identify virus carriers and serve to limit reptarenavirus spreading in captive snake collections.
Collapse
Affiliation(s)
- Francesca Baggio
- The BIBD Group and Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (U.H.); (B.P.); (E.D.); (E.M.); (T.T.); (A.K.); (J.H.)
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Udo Hetzel
- The BIBD Group and Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (U.H.); (B.P.); (E.D.); (E.M.); (T.T.); (A.K.); (J.H.)
| | - Barbara Prähauser
- The BIBD Group and Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (U.H.); (B.P.); (E.D.); (E.M.); (T.T.); (A.K.); (J.H.)
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Eva Dervas
- The BIBD Group and Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (U.H.); (B.P.); (E.D.); (E.M.); (T.T.); (A.K.); (J.H.)
| | - Eleni Michalopoulou
- The BIBD Group and Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (U.H.); (B.P.); (E.D.); (E.M.); (T.T.); (A.K.); (J.H.)
| | - Tanja Thiele
- The BIBD Group and Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (U.H.); (B.P.); (E.D.); (E.M.); (T.T.); (A.K.); (J.H.)
| | - Anja Kipar
- The BIBD Group and Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (U.H.); (B.P.); (E.D.); (E.M.); (T.T.); (A.K.); (J.H.)
| | - Jussi Hepojoki
- The BIBD Group and Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (U.H.); (B.P.); (E.D.); (E.M.); (T.T.); (A.K.); (J.H.)
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
6
|
Abouelkhair MA, Roozitalab A, Elsakhawy OK. Molecular characterization of a reptarenavirus detected in a Colombian Red-Tailed Boa (Boa constrictor imperator). Virol J 2023; 20:265. [PMID: 37968659 PMCID: PMC10652540 DOI: 10.1186/s12985-023-02237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023] Open
Abstract
The global decline in biodiversity is a matter of great concern for members of the class Reptilia. Reptarenaviruses infect snakes, and have been linked to various clinical conditions, such as Boid Inclusion Body Disease (BIBD) in snakes belonging to the families Boidae and Pythonidae. However, there is a scarcity of information regarding reptarenaviruses found in snakes in both the United States and globally. This study aimed to contribute to the understanding of reptarenavirus diversity by molecularly characterizing a reptarenavirus detected in a Colombian Red-Tailed Boa (Boa constrictor imperator). Using a metagenomics approach, we successfully identified, and de novo assembled the whole genomic sequences of a reptarenavirus in a Colombian Red-Tailed Boa manifesting clinically relevant symptoms consistent with BIBD. The analysis showed that the Colombian Red-Tailed Boa in this study carried the University of Giessen virus (UGV-1) S or S6 (UGV/S6) segment and L genotype 7. The prevalence of the UGV/S6 genotype, in line with prior research findings, implies that this genotype may possess specific advantageous characteristics or adaptations that give it a competitive edge over other genotypes in the host population. This research underscores the importance of monitoring and characterizing viral pathogens in captive and wild snake populations. Knowledge of such viruses is crucial for the development of effective diagnostic methods, potential intervention strategies, and the conservation of vulnerable reptilian species. Additionally, our study provides valuable insights for future studies focusing on the evolutionary history, molecular epidemiology, and biological properties of reptarenaviruses in boas and other snake species.
Collapse
Affiliation(s)
- Mohamed A Abouelkhair
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN, USA.
| | - Ashkan Roozitalab
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN, USA
| | - Ola K Elsakhawy
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
7
|
Hackbart M, López CB. S RNA Intergenic Deletions Drive Viral Interference during Arenavirus Infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564889. [PMID: 37961573 PMCID: PMC10635013 DOI: 10.1101/2023.10.31.564889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Arenaviruses, a family of negative-sense RNA viruses spread by rodents, are a leading cause of severe hemorrhagic fever in humans. Due to a paucity of antivirals and vaccines for arenaviruses, there is a need to identify new mechanisms for interfering with arenavirus replication. In several negative-sense RNA viruses, natural viral interference results from the production of non-standard viral genomes (nsVGs) that activate the innate immune system and/or compete for essential viral products. Although it is well established that arenaviruses produce strong interfering activities, it is unknown if they produce interfering nsVGs. Here we show that arenaviruses produce deletions within the intergenic region of their Small (S) RNA genome, which prevents the production of viral mRNA and protein. These deletions are more abundant when arenaviruses are grown in high-interfering conditions and are associated with inhibited viral replication. Overall, we found that arenaviruses produce internal deletions within the S RNA intergenic region that are produced by arenaviruses and can block viral replication. These natural arenavirus interfering molecules provide a new target for the generation of antivirals as well as an alternative strategy for producing attenuated arenaviruses for vaccines.
Collapse
Affiliation(s)
- Matthew Hackbart
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. MO
| | - Carolina B. López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. MO
| |
Collapse
|
8
|
Thiele T, Baggio F, Prähauser B, Ruiz Subira A, Michalopoulou E, Kipar A, Hetzel U, Hepojoki J. Reptarenavirus S Segment RNA Levels Correlate with the Presence of Inclusion Bodies and the Number of L Segments in Snakes with Reptarenavirus Infection-Lessons Learned from a Large Breeding Colony. Microbiol Spectr 2023; 11:e0506522. [PMID: 37212675 PMCID: PMC10269766 DOI: 10.1128/spectrum.05065-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/29/2023] [Indexed: 05/23/2023] Open
Abstract
Reptarenaviruses cause boid inclusion body disease (BIBD), a fatal disease particularly impacting captive boa constrictor collections. The development of cytoplasmic inclusion bodies (IBs) comprising reptarenavirus nucleoprotein (NP) in many cell types of affected snakes is characteristic of BIBD. However, snakes can harbor reptarenaviruses without showing IBs, hence representing carriers and a potential source of transmission. The RNA genome of reptarenaviruses comprises a small (S) and a large (L) segment, and the snakes with BIBD commonly carry a swarm of reptarenavirus segments. To design sensitive and reliable tools for the diagnosis of reptarenavirus infection in snake colonies, we used metatranscriptomics to determine the reptarenavirus segments present in a large boa constrictor breeding colony. The analysis identified one reptarenavirus S segment and three L segments in the colony. The sequence data served to design real-time reverse transcription-PCR (RT-PCR) targeting the found S segment. This allowed us to identify all infected animals and to quantify the S segment RNA levels, which we found to correlate with the presence of IBs. We further found a positive correlation between the number of L segments and the S segment RNA level, which could suggest that L segment excess also contributes to the IB formation. Information on cohousing of the snakes showed a clear association of reptarenavirus infection with cohousing in general and cohousing with infected animals. Information on breeding and offspring confirmed that vertical transmission occurred. Furthermore, our data suggest that some animals might be able to clear the infection or at least exhibit transient or intermittent viremia. IMPORTANCE Boid inclusion body disease (BIBD) is caused by reptarenavirus infection, and while reptarenavirus nucleoprotein is the main component of the inclusion bodies (IBs) characteristic of BIBD, not all reptarenavirus-infected snakes demonstrate IBs in their cells. Identification of infected individuals is critical for controlling the spread of the disease; however, the genetic divergence of reptarenaviruses complicates reverse transcription-PCR (RT-PCR)-based diagnostics. Here, we tested a next-generation-sequencing-based approach to establish a tailored "colony-specific" set of diagnostic tools for the detection of reptarenavirus small (S) and large (L) genome segments. With this approach, we could demonstrate that an S-segment-specific RT-PCR is highly effective in identifying the infected individuals. We further found the S segment RNA level to positively correlate with the presence of IBs and the number of L segments, which could direct future studies to identify the BIBD pathogenetic mechanisms.
Collapse
Affiliation(s)
- Tanja Thiele
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Francesca Baggio
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Barbara Prähauser
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Andres Ruiz Subira
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Eleni Michalopoulou
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Molecular Engineering of a Mammarenavirus with Unbreachable Attenuation. J Virol 2023; 97:e0138522. [PMID: 36533953 PMCID: PMC9888291 DOI: 10.1128/jvi.01385-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several mammarenaviruses cause severe hemorrhagic fever (HF) disease in humans and pose important public health problems in their regions of endemicity. There are no United States (US) Food and Drug Administration (FDA)-approved mammarenavirus vaccines, and current anti-mammarenavirus therapy is limited to an off-label use of ribavirin that has limited efficacy. Mammarenaviruses are enveloped viruses with a bi-segmented negative-strand RNA genome. Each genome segment contains two open reading frames (ORF) separated by a noncoding intergenic region (IGR). The large (L) segment encodes the RNA dependent RNA polymerase, L protein, and the Z matrix protein, whereas the small (S) segment encodes the surface glycoprotein precursor (GPC) and nucleoprotein (NP). In the present study, we document the generation of a recombinant form of the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) expressing a codon deoptimized (CD) GPC and containing the IGR of the S segment in both the S and L segments (rLCMV/IGR-CD). We show that rLCMV/IGR-CD is fully attenuated in C57BL/6 (B6) mice but able to provide complete protection upon a single administration against a lethal challenge with LCMV. Importantly, rLCMV/IGR-CD exhibited an unbreachable attenuation for its safe implementation as a live-attenuated vaccine (LAV). IMPORTANCE Several mammarenaviruses cause severe disease in humans and pose important public health problems in their regions of endemicity. Currently, no FDA-licensed mammarenavirus vaccines are available, and anti-mammarenaviral therapy is limited to an off-label use of ribavirin whose efficacy is controversial. Here, we describe the generation of recombinant version of the prototypic mammarenavirus lymphocytic choriomeningitis virus (rLCMV) combining the features of a codon deoptimized (CD) GPC and the noncoding intergenic region (IGR) of the S segment in both S and L genome segments, called rLCMV/IGR-CD. We present evidence that rLCMV/IGR-CD has excellent safety and protective efficacy features as live-attenuated vaccine (LAV). Importantly, rLCMV/IGR-CD prevents, in coinfected mice, the generation of LCMV reassortants with increased virulence. Our findings document a well-defined molecular strategy for the generation of mammarenavirus LAV candidates able to trigger long-term protective immunity, upon a single immunization, while exhibiting unique enhanced safety features, including unbreachable attenuation.
Collapse
|
10
|
Mammarenavirus Genetic Diversity and Its Biological Implications. Curr Top Microbiol Immunol 2023; 439:265-303. [PMID: 36592249 DOI: 10.1007/978-3-031-15640-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.
Collapse
|
11
|
Alfaro-Alarcón A, Hetzel U, Smura T, Baggio F, Morales JA, Kipar A, Hepojoki J. Boid Inclusion Body Disease Is Also a Disease of Wild Boa Constrictors. Microbiol Spectr 2022; 10:e0170522. [PMID: 36094085 PMCID: PMC9602588 DOI: 10.1128/spectrum.01705-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 12/31/2022] Open
Abstract
Reptarenaviruses cause boid inclusion body disease (BIBD), a potentially fatal disease, occurring in captive constrictor snakes boas and pythons worldwide. Classical BIBD, characterized by the formation of pathognomonic cytoplasmic inclusion bodies (IBs), occurs mainly in boas, whereas in pythons, for example, reptarenavirus infection most often manifests as central nervous system signs with limited IB formation. The natural hosts of reptarenaviruses are unknown, although free-ranging/wild constrictor snakes are among the suspects. Here, we report BIBD with reptarenavirus infection in indigenous captive and wild boid snakes in Costa Rica using histology, immunohistology, transmission electron microscopy, and next-generation sequencing (NGS). The snakes studied represented diagnostic postmortem cases of captive and wild-caught snakes since 1989. The results from NGS on archival paraffin blocks confirm that reptarenaviruses were already present in wild boa constrictors in Costa Rica in the 1980s. Continuous sequences that were de novo assembled from the low-quality RNA obtained from paraffin-embedded tissue allowed the identification of a distinct pair of reptarenavirus S and L segments in all studied animals; in most cases, reference assembly could recover almost complete segments. Sampling of three prospective cases in 2018 allowed an examination of fresh blood or tissues and resulted in the identification of additional reptarenavirus segments and hartmanivirus coinfection. Our results show that BIBD is not only a disease of captive snakes but also occurs in indigenous wild constrictor snakes in Costa Rica, suggesting boa constrictors to play a role in natural reptarenavirus circulation. IMPORTANCE The literature describes cases of boid inclusion body disease (BIBD) in captive snakes since the 1970s, and in the 2010s, others and ourselves identified reptarenaviruses as the causative agent. BIBD affects captive snakes globally, but the origin and the natural host of reptarenaviruses remain unknown. In this report, we show BIBD and reptarenavirus infections in two native Costa Rican constrictor snake species, and by studying archival samples, we show that both the viruses and the disease have been present in free-ranging/wild snakes in Costa Rica at least since the 1980s. The diagnosis of BIBD in wild boa constrictors suggests that this species plays a role in the circulation of reptarenaviruses. Additional sample collection and analysis would help to clarify this role further and the possibility of, e.g., vector transmission from an arthropod host.
Collapse
Affiliation(s)
- Alejandro Alfaro-Alarcón
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- University of Helsinki, Faculty of Veterinary Medicine, Department of Veterinary Biosciences, Helsinki, Finland
| | - Teemu Smura
- University of Helsinki, Faculty of Medicine, Medicum, Department of Virology, Helsinki, Finland
| | - Francesca Baggio
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Juan Alberto Morales
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- University of Helsinki, Faculty of Veterinary Medicine, Department of Veterinary Biosciences, Helsinki, Finland
| | - Jussi Hepojoki
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- University of Helsinki, Faculty of Medicine, Medicum, Department of Virology, Helsinki, Finland
| |
Collapse
|
12
|
Thoner TW, Meloy MM, Long JM, Diller JR, Slaughter JC, Ogden KM. Reovirus Efficiently Reassorts Genome Segments during Coinfection and Superinfection. J Virol 2022; 96:e0091022. [PMID: 36094315 PMCID: PMC9517712 DOI: 10.1128/jvi.00910-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
Reassortment, or genome segment exchange, increases diversity among viruses with segmented genomes. Previous studies on the limitations of reassortment have largely focused on parental incompatibilities that restrict generation of viable progeny. However, less is known about whether factors intrinsic to virus replication influence reassortment. Mammalian orthoreovirus (reovirus) encapsidates a segmented, double-stranded RNA (dsRNA) genome, replicates within cytoplasmic factories, and is susceptible to host antiviral responses. We sought to elucidate the influence of infection multiplicity, timing, and compartmentalized replication on reovirus reassortment in the absence of parental incompatibilities. We used an established post-PCR genotyping method to quantify reassortment frequency between wild-type and genetically barcoded type 3 reoviruses. Consistent with published findings, we found that reassortment increased with infection multiplicity until reaching a peak of efficient genome segment exchange during simultaneous coinfection. However, reassortment frequency exhibited a substantial decease with increasing time to superinfection, which strongly correlated with viral transcript abundance. We hypothesized that physical sequestration of viral transcripts within distinct virus factories or superinfection exclusion also could influence reassortment frequency during superinfection. Imaging revealed that transcripts from both wild-type and barcoded viruses frequently co-occupied factories, with superinfection time delays up to 16 h. Additionally, primary infection progressively dampened superinfecting virus transcript levels with greater time delay to superinfection. Thus, in the absence of parental incompatibilities and with short times to superinfection, reovirus reassortment proceeds efficiently and is largely unaffected by compartmentalization of replication and superinfection exclusion. However, reassortment may be limited by superinfection exclusion with greater time delays to superinfection. IMPORTANCE Reassortment, or genome segment exchange between viruses, can generate novel virus genotypes and pandemic virus strains. For viruses to reassort their genome segments, they must replicate within the same physical space by coinfecting the same host cell. Even after entry into the host cell, many viruses with segmented genomes synthesize new virus transcripts and assemble and package their genomes within cytoplasmic replication compartments. Additionally, some viruses can interfere with subsequent infection of the same host or cell. However, spatial and temporal influences on reassortment are only beginning to be explored. We found that infection multiplicity and transcript abundance are important drivers of reassortment during coinfection and superinfection, respectively, for reovirus, which has a segmented, double-stranded RNA genome. We also provide evidence that compartmentalization of transcription and packaging is unlikely to influence reassortment, but the length of time between primary and subsequent reovirus infection can alter reassortment frequency.
Collapse
Affiliation(s)
- Timothy W. Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Madeline M. Meloy
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacob M. Long
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julia R. Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James C. Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristen M. Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Cuypers LN, Čížková D, Goüy de Bellocq J. Co-Infection of Mammarenaviruses in a Wild Mouse, Tanzania. Virus Evol 2022; 8:veac065. [DOI: 10.1093/ve/veac065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/03/2022] [Accepted: 07/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Mammarenaviruses are bi-segmented RNA viruses. They encompass viruses responsible for several severe diseases in humans. While performing a de novo assembly of a new virus found in a wild single-striped grass mouse in Tanzania, we found a single S but two divergent L segments. Natural co-infections, common within reptarenaviruses in captivity, were never reported for mammarenaviruses and never in a wild sample. This finding can have implications for virus evolution as co-infection could trigger viral recombination/reassortment in natural reservoirs.
Collapse
Affiliation(s)
- Laura N Cuypers
- University of Antwerp , Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Dagmar Čížková
- Institute of Vertebrate Biology of the Czech Academy of Sciences , Kvetna 8, 603 65 Brno, Czech Republic
| | - Joëlle Goüy de Bellocq
- Institute of Vertebrate Biology of the Czech Academy of Sciences , Kvetna 8, 603 65 Brno, Czech Republic
| |
Collapse
|
14
|
Abstract
Mammarenaviruses establish a persistent infection in their rodent and bat hosts, and the evidence suggests that reptarenaviruses and hartmaniviruses found in captive snakes act similarly. In snakes, reptarenaviruses cause boid inclusion body disease (BIBD), which is often associated with secondary infections. Snakes with BIBD usually carry more than a single pair of reptarenavirus S and L segments and occasionally demonstrate hartmanivirus coinfection. Here, we reported the generation of cell lines persistently infected with a single or two reptarenavirus(es) and a cell line with persistent reptarenavirus-hartmanivirus coinfection. By RT-PCR we demonstrated that the amount of viral RNA within the persistently infected cells remains at levels similar to those observed following initial infection. Using antibodies against the glycoproteins (GPs) and nucleoprotein (NP) of reptarenaviruses, we studied the levels of viral protein in cells passaged 10 times after the original inoculation and observed that the expression of GPs declines dramatically during persistent infection, unlike the expression of NP. Immunofluorescence (IF) staining served to demonstrate differences in the distribution of NP within the persistently infected compared to freshly infected cells. IF staining of cells inoculated with the viruses secreted from the persistently infected cell lines produced similar NP staining compared to cells infected with a traditionally passaged virus, suggesting that the altered NP expression pattern of persistently infected cells does not relate to changes in the virus. The cell cultures described herein can serve as tools for studying the coinfection and superinfection interplay between reptarenaviruses and studying the BIBD pathogenesis mechanisms. IMPORTANCE Mammarenaviruses cause a persistent infection in their natural rodent and bat hosts. Reptarenaviruses cause boid inclusion body disease (BIBD) in constrictor snakes, but it is unclear whether snakes are the natural host of these viruses. In this study, we showed that reptarenaviruses established a persistent infection in cultured Boa constrictor cells and that the persistently infected cells continued to produce infectious virus. Our results showed that persistent infection results from subsequent passaging of cells inoculated with a single reptarenavirus, two reptarenaviruses, or even when inoculating the cells with reptarenavirus and hartmanivirus (another arenavirus genus). The results further suggested that coinfection would not result in overt competition between the different reptarenaviruses, thus helping to explain the frequent reptarenavirus coinfections in snakes with BIBD. The established cell culture models of persistent infection could help to elucidate the role of coinfection and superinfection and potential immunosuppression as the pathogenic mechanisms behind BIBD.
Collapse
|
15
|
DETECTION OF MYCOPLASMA AND CHLAMYDIA IN PYTHONS WITH AND WITHOUT SERPENTOVIRUS INFECTION. J Zoo Wildl Med 2022; 52:1167-1174. [PMID: 34998286 DOI: 10.1638/2021-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 11/21/2022] Open
Abstract
Serpentoviruses (order Nidovirales) are an important cause of respiratory disease in snakes. Although transmission studies have shown that serpentoviruses can cause respiratory disease in pythons, the possible role of additional potential pathogens is not yet understood. Very little information is available on the role of mycoplasma and chlamydia infections in disease in pythons. Diagnostic samples from 271 pythons of different genera submitted to a laboratory for detection of serpentoviruses were also screened for mycoplasma and chlamydia infections by PCR. Most of the samples were oral swabs. Almost 30% of the samples were positive for serpentoviruses, and mycoplasmas were detected in more than 60% of the pythons. The occurrence of these two pathogens correlated significantly (P < 0.001). Additionally, about 3% of the snakes tested positive for Chlamydia. This study found a high prevalence of mycoplasmas in the tested pythons and a correlation between infections with these bacteria and serpentoviruses in python samples submitted for diagnostic testing. Because the role mycoplasmas play in respiratory diseases of snakes is still largely unknown, further investigations are necessary to evaluate the role of mixed infections in disease.
Collapse
|
16
|
Baggio F, Hetzel U, Nufer L, Kipar A, Hepojoki J. A subpopulation of arenavirus nucleoprotein localizes to mitochondria. Sci Rep 2021; 11:21048. [PMID: 34702948 PMCID: PMC8548533 DOI: 10.1038/s41598-021-99887-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/30/2021] [Indexed: 12/02/2022] Open
Abstract
Viruses need cells for their replication and, therefore, ways to hijack cellular functions. Mitochondria play fundamental roles within the cell in metabolism, immunity and regulation of homeostasis due to which some viruses aim to alter mitochondrial functions. Herein we show that the nucleoprotein (NP) of arenaviruses enters the mitochondria of infected cells, affecting the mitochondrial morphology. Reptarenaviruses cause boid inclusion body disease (BIBD) that is characterized, especially in boas, by the formation of cytoplasmic inclusion bodies (IBs) comprising reptarenavirus NP within the infected cells. We initiated this study after observing electron-dense material reminiscent of IBs within the mitochondria of reptarenavirus infected boid cell cultures in an ultrastructural study. We employed immuno-electron microscopy to confirm that the mitochondrial inclusions indeed contain reptarenavirus NP. Mutations to a putative N-terminal mitochondrial targeting signal (MTS), identified via software predictions in both mamm- and reptarenavirus NPs, did not affect the mitochondrial localization of NP, suggesting that it occurs independently of MTS. In support of MTS-independent translocation, we did not detect cleavage of the putative MTSs of arenavirus NPs in reptilian or mammalian cells. Furthermore, in vitro translated NPs could not enter isolated mitochondria, suggesting that the translocation requires cellular factors or conditions. Our findings suggest that MTS-independent mitochondrial translocation of NP is a shared feature among arenaviruses. We speculate that by targeting the mitochondria arenaviruses aim to alter mitochondrial metabolism and homeostasis or affect the cellular defense.
Collapse
Affiliation(s)
- Francesca Baggio
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland. .,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland.
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland.,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Lisbeth Nufer
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland.,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Jussi Hepojoki
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland.,Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| |
Collapse
|
17
|
Ehmsen KT, Knuesel MT, Martinez D, Asahina M, Aridomi H, Yamamoto KR. Computational resources to define alleles and altered regulatory motifs at genomically edited candidate response elements. Nucleic Acids Res 2021; 49:9117-9131. [PMID: 34417596 PMCID: PMC8450113 DOI: 10.1093/nar/gkab700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Unequivocal functional assessment of candidate genomic regulatory regions, such as transcriptional response elements, requires genetic alteration at their native chromosomal loci. Targeted DNA cleavage by Cas9 or other programmable nucleases enables analysis at virtually any genomic region, and diverse alleles generated by editing can be defined by deep sequencing for functional analysis. Interpretation of disrupted response elements, however, presents a special challenge, as these regions typically comprise clustered DNA binding motifs for multiple transcriptional regulatory factors (TFs); DNA sequence differences, natural or engineered, that affect binding by one TF can confer loss or gain of binding sites for other TFs. To address these and other analytical complexities, we created three computational tools that together integrate, in a single experiment, allele definition and TF binding motif evaluation for up to 9216 clones isolated, sequenced and propagated from Cas9-treated cell populations. We demonstrate 1) the capacity to functionally assess edited TF binding sites to query response element function, and 2) the efficacy and utility of these tools, by analyzing cell populations targeted by Cas9 for disruption of example glucocorticoid receptor (GR) binding motifs near FKBP5, a GR-regulated gene in the human adenocarcinoma cell line A549.
Collapse
Affiliation(s)
- Kirk T Ehmsen
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, 600 16th Street, GH S572D, Box 2280, San Francisco, CA 94143-2280, USA
| | - Matthew T Knuesel
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, 600 16th Street, GH S572D, Box 2280, San Francisco, CA 94143-2280, USA
| | - Delsy Martinez
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, 600 16th Street, GH S572D, Box 2280, San Francisco, CA 94143-2280, USA
| | - Masako Asahina
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, 600 16th Street, GH S572D, Box 2280, San Francisco, CA 94143-2280, USA
| | - Haruna Aridomi
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, 600 16th Street, GH S572D, Box 2280, San Francisco, CA 94143-2280, USA
| | - Keith R Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, 600 16th Street, GH S572D, Box 2280, San Francisco, CA 94143-2280, USA
| |
Collapse
|
18
|
Marschang RE, Salzmann E, Pees M. Diagnostics of Infectious Respiratory Pathogens in Reptiles. Vet Clin North Am Exot Anim Pract 2021; 24:369-395. [PMID: 33892892 DOI: 10.1016/j.cvex.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Methods for the detection of pathogens associated with respiratory disease in reptiles, including viruses, bacteria, fungi, and parasites, are constantly evolving as is the understanding of the specific roles played by various pathogens in disease processes. Some are known to be primary pathogens with high prevalence in captive reptiles, for example, serpentoviruses in pythons or mycoplasma in tortoises. Others are very commonly found in reptiles with respiratory disease but are most often considered secondary, for example, gram-negative bacteria. Detection methods as well as specific pathogens associated with upper- and lower-respiratory disease are discussed.
Collapse
Affiliation(s)
| | | | - Michael Pees
- Department for Birds and Reptiles, University Veterinary Teaching Hospital, University of Leipzig, Clinic for Birds and Reptiles, An den Tierkliniken 17, Leipzig 04103, Germany
| |
Collapse
|
19
|
Hetzel U, Korzyukov Y, Keller S, Szirovicza L, Pesch T, Vapalahti O, Kipar A, Hepojoki J. Experimental Reptarenavirus Infection of Boa constrictor and Python regius. J Virol 2021; 95:JVI.01968-20. [PMID: 33441344 PMCID: PMC8092697 DOI: 10.1128/jvi.01968-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
Boid inclusion body disease (BIBD) causes losses in captive snake populations globally. BIBD is associated with the formation of cytoplasmic inclusion bodies (IBs), which mainly comprise reptarenavirus nucleoprotein (NP). In 2017, BIBD was reproduced by cardiac injection of boas and pythons with reptarenaviruses, thus demonstrating a causative link between reptarenavirus infection and the disease. Here, we report experimental infections of Python regius (n = 16) and Boa constrictor (n = 16) with three reptarenavirus isolates. First, we used pythons (n = 8) to test two virus delivery routes: intraperitoneal injection and tracheal instillation. Viral RNAs but no IBs were detected in brains and lungs at 2 weeks postinoculation. Next, we inoculated pythons (n = 8) via the trachea. During the 4 months following infection, snakes showed transient central nervous system (CNS) signs but lacked detectable IBs at the time of euthanasia. One of the snakes developed severe CNS signs; we succeeded in reisolating the virus from the brain of this individual and could demonstrate viral antigen in neurons. In a third attempt, we tested cohousing, vaccination, and sequential infection with multiple reptarenavirus isolates on boas (n = 16). At 10 months postinoculation, all but one snake tested positive for viral RNA in lung, brain, and/or blood, but none exhibited the characteristic IBs. Three of the four vaccinated snakes seemed to sustain challenge with the same reptarenavirus; however, neither of the two snakes rechallenged with different reptarenaviruses remained uninfected. Comparison of the antibody responses in experimentally versus naturally reptarenavirus-infected animals indicated differences in the responses.IMPORTANCE In the present study, we experimentally infected pythons and boas with reptarenavirus via either intraperitoneal injection or tracheal instillation. The aims were to experimentally induce boid inclusion body disease (BIBD) and to develop an animal model for studying disease transmission and pathogenesis. Both virus delivery routes resulted in infection, and infection via the trachea could reflect the natural route of infection. In the experimentally infected snakes, we did not find evidence of inclusion body (IB) formation, characteristic of BIBD, in pythons or boas. Most of the boas (11/12) remained reptarenavirus infected after 10 months, which suggests that they developed a persistent infection that could eventually have led to BIBD. We demonstrated that vaccination using recombinant protein or an inactivated virus preparation prevented infection by a homologous virus in three of four snakes. Comparison of the antibody responses of experimentally and naturally reptarenavirus-infected snakes revealed differences that merit further studies.
Collapse
Affiliation(s)
- U Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- University of Helsinki, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, Helsinki, Finland
| | - Y Korzyukov
- University of Helsinki, Medicum, Department of Virology, Helsinki, Finland
| | - S Keller
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - L Szirovicza
- University of Helsinki, Medicum, Department of Virology, Helsinki, Finland
| | - T Pesch
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - O Vapalahti
- University of Helsinki, Medicum, Department of Virology, Helsinki, Finland
- University of Helsinki, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, Helsinki, Finland
- University of Helsinki and Helsinki University Hospital, Department of Virology, Helsinki, Finland
| | - A Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- University of Helsinki, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, Helsinki, Finland
| | - J Hepojoki
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- University of Helsinki, Medicum, Department of Virology, Helsinki, Finland
| |
Collapse
|
20
|
Latney LV, Wellehan JFX. Selected Emerging Infectious Diseases of Squamata: An Update. Vet Clin North Am Exot Anim Pract 2020; 23:353-371. [PMID: 32327041 DOI: 10.1016/j.cvex.2020.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article details emerging infectious diseases that have devastating impacts on captive and wild squamates. Treatment advances have been attempted for Cryptosporidium infections in squamates. Gram-positive bacteria, Devriesea agamarum and Austwickia chelonae, are contributing to severe disease in captive and now in wild reptiles, some critically endangered. Nannizziposis, Paranannizziopsis, and Ophidiomyces continue to cause fatal disease as primary pathogens in wild and captive populations of squamates and sphenodontids. Nidovirus, bornavirus, paramyxovirus, sunshine virus, and arenavirus have emerged to be significant causes of neurorespiratory disease in snakes. Controlled studies evaluating environmental stability, disinfection, transmission control, and treatment are lacking.
Collapse
Affiliation(s)
- La'Toya V Latney
- Avian and Exotic Medicine & Surgery, The Animal Medical Center, 610 East 62nd Street, New York, NY 10065, USA.
| | - James F X Wellehan
- Zoological Medicine Service, University of Florida College of Veterinary Medicine, PO Box 100126, 2015 Southwest 16th Avenue, Gainesville, FL 32608-0125, USA
| |
Collapse
|
21
|
PROTEIN ELECTROPHORESIS OF PLASMA SAMPLES FROM BOA CONSTRICTORS WITH AND WITHOUT REPTARENAVIRUS INFECTION. J Zoo Wildl Med 2020; 51:350-356. [PMID: 32549564 DOI: 10.1638/2019-0189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 11/21/2022] Open
Abstract
Reptarenaviruses infect a variety of boid and pythonid snake species worldwide and have been shown to be the cause of inclusion body disease (IBD). Little is known about the correlations between virus infection and clinical disease, as well as the effects of viral infection on the immune system and the blood protein fractions. The goal of this study was to examine the differences in the plasma protein fractions in reptarenavirus reverse transcription polymerase chain reaction (RT-PCR)-negative and -positive tested snakes with and without clinical signs of disease. Blood from a total of 111 boa constrictors (Boa constrictor) was evaluated. Reverse transcription PCRs and H&E staining for inclusion bodies were carried out on each sample for the detection of reptarenavirus, and the plasma protein fractions were evaluated by capillary zone electrophoresis (CZE). Thirty four of the 111 evaluated snakes were positive by RT-PCR and 19 of the 34 showed clinical signs of disease. In comparison with IBD-negative healthy boa constrictors, the positive snakes with clinical signs had significantly lower albumin levels (P = 0.0052), lower A: G ratios (P = 0.0037), and lower α-globulin levels (P = 0.0073), while their γ-globulin levels were significantly higher (P = 0.0004). In the same comparison, clinically healthy arenavirus-positive boas showed only significantly lower α-globulin (P = 0.0124) and higher γ-globulin levels (P = 0.0394). The results of the present study indicate that reptarenavirus infection may influence plasma protein fractions in boa constrictors.
Collapse
|
22
|
DETECTION OF AN ARENAVIRUS IN A GROUP OF CAPTIVE WAGLER'S PIT VIPERS ( TROPIDOLAEMUS WAGLERI). J Zoo Wildl Med 2020; 51:236-240. [PMID: 32212570 DOI: 10.1638/2018-0179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2019] [Indexed: 11/21/2022] Open
Abstract
A group of eight Wagler's pit vipers (Tropidolaemus wagleri) from a private collection died with respiratory signs within 6 mo of one another. The group consisted of an adult breeding pair that was wild caught and six offspring from this pair. Four of the dead snakes were submitted for gross and histopathology. Signs of bacterial pneumonia were detected in all four examined snakes. No inclusion bodies suggestive of viral infection were found in any of the examined tissues. Polymerase chain reactions for the detection of ferla-, adeno-, reo-, and nidoviruses were all negative, but reptarenaviruses closely related to viruses previously described in boa constrictors (Boa constrictor) with inclusion body disease were detected in two of the four snakes. This is the first description of reptarenaviruses in viperid snakes. The pathogenic role of the virus in illness is unknown.
Collapse
|
23
|
Identification of Reptarenaviruses, Hartmaniviruses, and a Novel Chuvirus in Captive Native Brazilian Boa Constrictors with Boid Inclusion Body Disease. J Virol 2020; 94:JVI.00001-20. [PMID: 32238580 DOI: 10.1128/jvi.00001-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/20/2020] [Indexed: 01/03/2023] Open
Abstract
Boid inclusion body disease (BIBD) is a transmissible viral disease of captive snakes that causes severe losses in snake collections worldwide. It is caused by reptarenavirus infection, which can persist over several years without overt signs but is generally associated with the eventual death of the affected snakes. Thus far, reports have confirmed the existence of reptarenaviruses in captive snakes in North America, Europe, Asia, and Australia, but there is no evidence that it also occurs in wild snakes. BIBD affects boa species within the subfamily Boinae and pythons in the family Pythonidae, the habitats of which do not naturally overlap. Here, we studied Brazilian captive snakes with BIBD using a metatranscriptomic approach, and we report the identification of novel reptarenaviruses, hartmaniviruses, and a new species in the family Chuviridae The reptarenavirus L segments identified are divergent enough to represent six novel species, while we found only a single novel reptarenavirus S segment. Until now, hartmaniviruses had been identified only in European captive boas with BIBD, and the present results increase the number of known hartmaniviruses from four to six. The newly identified chuvirus showed 38.4%, 40.9%, and 48.1% amino acid identity to the nucleoprotein, glycoprotein, and RNA-dependent RNA polymerase, respectively, of its closest relative, Guangdong red-banded snake chuvirus-like virus. Although we cannot rule out the possibility that the found viruses originated from imported snakes, the results suggest that the viruses could circulate in indigenous snake populations.IMPORTANCE Boid inclusion body disease (BIBD), caused by reptarenavirus infection, affects captive snake populations worldwide, but the reservoir hosts of reptarenaviruses remain unknown. Here, we report the identification of novel reptarenaviruses, hartmaniviruses, and a chuvirus in captive Brazilian boas with BIBD. Three of the four snakes studied showed coinfection with all three viruses, and one of the snakes harbored three novel reptarenavirus L segments and one novel S segment. The samples originated from collections with Brazilian indigenous snakes only, which could indicate that these viruses circulate in wild snakes. The findings could further indicate that boid snakes are the natural reservoir of reptarena- and hartmaniviruses commonly found in captive snakes. The snakes infected with the novel chuvirus all suffered from BIBD; it is therefore not possible to comment on its potential pathogenicity and contribution to the observed changes in the present case material.
Collapse
|
24
|
Klitting R, Mehta SB, Oguzie JU, Oluniyi PE, Pauthner MG, Siddle KJ, Andersen KG, Happi CT, Sabeti PC. Lassa Virus Genetics. Curr Top Microbiol Immunol 2020. [PMID: 32418034 DOI: 10.1007/82_2020_212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In a pattern repeated across a range of ecological niches, arenaviruses have evolved a compact four-gene genome to orchestrate a complex life cycle in a narrow range of susceptible hosts. A number of mammalian arenaviruses cross-infect humans, often causing a life-threatening viral hemorrhagic fever. Among this group of geographically bound zoonoses, Lassa virus has evolved a unique niche that leads to significant and sustained human morbidity and mortality. As a biosafety level 4 pathogen, direct study of the pathogenesis of Lassa virus is limited by the sparse availability, high operating costs, and technical restrictions of the high-level biocontainment laboratories required for safe experimentation. In this chapter, we introduce the relationship between genome structure and the life cycle of Lassa virus and outline reverse genetic approaches used to probe and describe functional elements of the Lassa virus genome. We then review the tools used to obtain viral genomic sequences used for phylogeny and molecular diagnostics, before shifting to a population perspective to assess the contributions of phylogenetic analysis in understanding the evolution and ecology of Lassa virus in West Africa. We finally consider the future outlook and clinical applications for genetic study of Lassa virus.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA
| | - Samar B Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Judith U Oguzie
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Paul E Oluniyi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Matthias G Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA
| | | | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA.
| | - Christian T Happi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
25
|
Differences in Tissue and Species Tropism of Reptarenavirus Species Studied by Vesicular Stomatitis Virus Pseudotypes. Viruses 2020; 12:v12040395. [PMID: 32252443 PMCID: PMC7232232 DOI: 10.3390/v12040395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/31/2022] Open
Abstract
Reptarenaviruses cause Boid Inclusion Body Disease (BIBD), and co-infections by several reptarenaviruses are common in affected snakes. Reptarenaviruses have only been found in captive snakes, and their reservoir hosts remain unknown. In affected animals, reptarenaviruses appear to replicate in most cell types, but their complete host range, as well as tissue and cell tropism are unknown. As with other enveloped viruses, the glycoproteins (GPs) present on the virion's surface mediate reptarenavirus cell entry, and therefore, the GPs play a critical role in the virus cell and tissue tropism. Herein, we employed single cycle replication, GP deficient, recombinant vesicular stomatitis virus (VSV) expressing the enhanced green fluorescent protein (scrVSV∆G-eGFP) pseudotyped with different reptarenavirus GPs to study the virus cell tropism. We found that scrVSV∆G-eGFPs pseudotyped with reptarenavirus GPs readily entered mammalian cell lines, and some mammalian cell lines exhibited higher, compared to snake cell lines, susceptibility to reptarenavirus GP-mediated infection. Mammarenavirus GPs used as controls also mediated efficient entry into several snake cell lines. Our results confirm an important role of the virus surface GP in reptarenavirus cell tropism and that mamma-and reptarenaviruses exhibit high cross-species transmission potential.
Collapse
|
26
|
Simard J, Marschang RE, Leineweber C, Hellebuyck T. Prevalence of inclusion body disease and associated comorbidity in captive collections of boid and pythonid snakes in Belgium. PLoS One 2020; 15:e0229667. [PMID: 32119716 PMCID: PMC7051093 DOI: 10.1371/journal.pone.0229667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/11/2020] [Indexed: 12/30/2022] Open
Abstract
Inclusion body disease (IBD) is caused by reptarenaviruses and constitutes one of the most notorious viral diseases in snakes. Although central nervous system disease and various other clinical signs have been attributed to IBD in boid and pythonid snakes, studies that unambiguously reveal the clinical course of natural IBD and reptarenavirus infection are scarce. In the present study, the prevalence of IBD and reptarenaviruses in captive snake collections and the correlation of IBD and reptarenavirus infection with the clinical status of the sampled snakes were investigated. In three IBD positive collections, long-term follow-up during a three- to seven-year period was performed. A total of 292 snakes (178 boas and 114 pythons) from 40 collections in Belgium were sampled. In each snake, blood and buffy coat smears were evaluated for the presence of IBD inclusion bodies (IB) and whole blood was tested for reptarenavirus RNA by RT-PCR. Of all tested snakes, 16.5% (48/292) were positive for IBD of which all were boa constrictors (34.0%; 48/141) and 17.1% (50/292) were reptarenavirus RT-PCR positive. The presence of IB could not be demonstrated in any of the tested pythons, while 5.3% (6/114) were reptarenavirus positive. In contrast to pythons, the presence of IB in peripheral blood cells in boa constrictors is strongly correlated with reptarenavirus detection by RT-PCR (P<0.0001). Although boa constrictors often show persistent subclinical infection, long-term follow-up indicated that a considerable number (22.2%; 6/27) of IBD/reptarenavirus positive boas eventually develop IBD associated comorbidities.
Collapse
Affiliation(s)
- Jules Simard
- Division of Poultry, Department of Pathology, Bacteriology and Avian Diseases, Exotic Companion Animals, Wildlife and Experimental Animals, Ghent University, Merelbeke, Belgium
| | | | | | - Tom Hellebuyck
- Division of Poultry, Department of Pathology, Bacteriology and Avian Diseases, Exotic Companion Animals, Wildlife and Experimental Animals, Ghent University, Merelbeke, Belgium
| |
Collapse
|
27
|
dsRNA-Seq: Identification of Viral Infection by Purifying and Sequencing dsRNA. Viruses 2019; 11:v11100943. [PMID: 31615058 PMCID: PMC6832592 DOI: 10.3390/v11100943] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
RNA viruses are a major source of emerging and re-emerging infectious diseases around the world. We developed a method to identify RNA viruses that is based on the fact that RNA viruses produce double-stranded RNA (dsRNA) while replicating. Purifying and sequencing dsRNA from the total RNA isolated from infected tissue allowed us to recover dsRNA virus sequences and replicated sequences from single-stranded RNA (ssRNA) viruses. We refer to this approach as dsRNA-Seq. By assembling dsRNA sequences into contigs we identified full length or partial RNA viral genomes of varying genome types infecting mammalian culture samples, identified a known viral disease agent in laboratory infected mice, and successfully detected naturally occurring RNA viral infections in reptiles. Here, we show that dsRNA-Seq is a preferable method for identifying viruses in organisms that don’t have sequenced genomes and/or commercially available rRNA depletion reagents. In addition, a significant advantage of this method is the ability to identify replicated viral sequences of ssRNA viruses, which is useful for distinguishing infectious viral agents from potential noninfectious viral particles or contaminants.
Collapse
|
28
|
Windbichler K, Michalopoulou E, Palamides P, Pesch T, Jelinek C, Vapalahti O, Kipar A, Hetzel U, Hepojoki J. Antibody response in snakes with boid inclusion body disease. PLoS One 2019; 14:e0221863. [PMID: 31498825 PMCID: PMC6733472 DOI: 10.1371/journal.pone.0221863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/17/2019] [Indexed: 12/30/2022] Open
Abstract
Boid Inclusion Body Disease (BIBD) is a potentially fatal disease reported in captive boid snakes worldwide that is caused by reptarenavirus infection. Although the detection of intracytoplasmic inclusion bodies (IB) in blood cells serves as the gold standard for the ante mortem diagnosis of BIBD, the mechanisms underlying IB formation and the pathogenesis of BIBD are unknown. Knowledge on the reptile immune system is sparse compared to the mammalian counterpart, and in particular the response towards reptarenavirus infection is practically unknown. Herein, we investigated a breeding collection of 70 Boa constrictor snakes for BIBD, reptarenavirus viraemia, anti-reptarenavirus IgM and IgY antibodies, and population parameters. Using NGS and RT-PCR on pooled blood samples of snakes with and without BIBD, we could identify three different reptarenavirus S segments in the collection. The examination of individual samples by RT-PCR indicated that the presence of University of Giessen virus (UGV)-like S segment strongly correlates with IB formation. We could also demonstrate a negative correlation between BIBD and the presence of anti-UGV NP IgY antibodies. Further evidence of an association between antibody response and BIBD is the finding that the level of anti-reptarenavirus antibodies measured by ELISA was lower in snakes with BIBD. Furthermore, female snakes had a significantly lower body weight when they had BIBD. Taken together our findings suggest that the detection of the UGV-/S6-like S segment and the presence of anti-reptarenavirus IgY antibodies might serve as a prognostic tool for predicting the development of BIBD.
Collapse
Affiliation(s)
- Katharina Windbichler
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Eleni Michalopoulou
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Pia Palamides
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Theresa Pesch
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christine Jelinek
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Olli Vapalahti
- University of Helsinki, Faculty of Veterinary Medicine, Department of Veterinary Biosciences, Helsinki, Finland
- University of Helsinki, Faculty of Medicine, Medicum, Department of Virology, Helsinki, Finland
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- University of Helsinki, Faculty of Veterinary Medicine, Department of Veterinary Biosciences, Helsinki, Finland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- University of Helsinki, Faculty of Veterinary Medicine, Department of Veterinary Biosciences, Helsinki, Finland
| | - Jussi Hepojoki
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- University of Helsinki, Faculty of Medicine, Medicum, Department of Virology, Helsinki, Finland
- * E-mail:
| |
Collapse
|
29
|
Proteomics Computational Analyses Suggest that the Antennavirus Glycoprotein Complex Includes a Class I Viral Fusion Protein (α-Penetrene) with an Internal Zinc-Binding Domain and a Stable Signal Peptide. Viruses 2019; 11:v11080750. [PMID: 31416162 PMCID: PMC6722660 DOI: 10.3390/v11080750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
A metatranscriptomic study of RNA viruses in cold-blooded vertebrates identified two related viruses from frogfish (Antennarius striatus) that represent a new genus Antennavirus in the family Arenaviridae (Order: Bunyavirales). Computational analyses were used to identify features common to class I viral fusion proteins (VFPs) in antennavirus glycoproteins, including an N-terminal fusion peptide, two extended alpha-helices, an intrahelical loop, and a carboxyl terminal transmembrane domain. Like mammarenavirus and hartmanivirus glycoproteins, the antennavirus glycoproteins have an intracellular zinc-binding domain and a long virion-associated stable signal peptide (SSP). The glycoproteins of reptarenaviruses are also class I VFPs, but do not contain zinc-binding domains nor do they encode SSPs. Divergent evolution from a common progenitor potentially explains similarities of antennavirus, mammarenavirus, and hartmanivirus glycoproteins, with an ancient recombination event resulting in a divergent reptarenavirus glycoprotein.
Collapse
|
30
|
Hyndman TH, Marschang RE, Bruce M, Clark P, Vitali SD. Reptarenaviruses in apparently healthy snakes in an Australian zoological collection. Aust Vet J 2019; 97:93-102. [PMID: 30919443 DOI: 10.1111/avj.12792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 12/02/2018] [Accepted: 01/22/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Inclusion body disease (IBD) is a disease of snakes with a global distribution and has recently been shown to be caused by reptarenaviruses. Testing for this group of viruses in asymptomatic snakes allows the association between infection and disease to be further elucidated. METHODS A reptarenavirus was detected by RT-PCR in a reticulated python (Malayopython reticulatus) from an Australian zoological collection that was open-mouth breathing and had erythematous oral mucosa. Another 27 pythons, 4 elapids, 2 colubrids and 2 boas from this collection were then screened. From these animals, swabs, whole blood and/or tissue were tested for reptarenaviruses by RT-PCR. Additionally, blood films from 10 snakes were examined by light microscopy for the presence of inclusion bodies. The majority of samples were collected over a 484-day period. RESULTS A total of 8 animals were RT-PCR-positive (8/36 = 22.2%): 6 were pythons, 1 was a corn snake (Pantherophis guttatus) and 1 was a Madagascar tree boa (Sanzinia madagascariensis). From them, 57 samples were collected, but only one from each animal was RT-PCR-positive (8/57 = 14.0%). From all 36 animals in this study, 8/182 samples were RT-PCR-positive (4.4%). Inclusion bodies were not recognised in any of the blood films. Only the reticulated python showed signs of illness, which improved without any further intervention. All other RT-PCR-positive snakes were apparently healthy throughout the duration of the study. CONCLUSION This study showed a weak association between the presence of reptarenaviruses and disease. Testing serially collected swab and whole-blood samples increased the number of animals in which reptarenaviruses were detected.
Collapse
Affiliation(s)
- T H Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, Australia
| | | | - M Bruce
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, Australia
| | - P Clark
- School of Biomedical Sciences, Curtin University, Bentley, WA, Australia
| | - S D Vitali
- Perth Zoo, Department of Biodiversity, Conservation and Attractions, South Perth, WA, Australia
| |
Collapse
|
31
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
32
|
Pontremoli C, Forni D, Sironi M. Arenavirus genomics: novel insights into viral diversity, origin, and evolution. Curr Opin Virol 2019; 34:18-28. [DOI: 10.1016/j.coviro.2018.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
|
33
|
Virome profiling of rodents in Xinjiang Uygur Autonomous Region, China: Isolation and characterization of a new strain of Wenzhou virus. Virology 2019; 529:122-134. [PMID: 30685659 DOI: 10.1016/j.virol.2019.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 11/21/2022]
Abstract
Rodents, as the most diverse and widest distributed mammals, are a natural reservoir of many zoonotic viruses. However, little is known about the viral diversity harbored by rodents in China. Here we performed viral metagenomic analyses of 314 wild rodents covering 7 species, sampled in North-western China. We also conducted a systematic virological characterization of a new Wenzhou virus (WENV) isolate, QARn1, from a brown rat (Rattus norvegicus). Full genomic and phylogenetic analyses showed that QARn1 is a previously unidentified strain of Wenzhou mammarenavirus and forms a new branch within the Asian clade. Experimental infection of Sprague-Dawley rats with QARn1 did not present overt pathology, but specific humoral immune responses developed and mild hemorrhage and immunocyte infiltration of the lungs and thymus were observed. These observations have expanded the geographic distribution of WENV to Central Asia, and further confirm that brown rats are natural hosts of Wenzhou virus.
Collapse
|
34
|
Marschang RE. Virology. MADER'S REPTILE AND AMPHIBIAN MEDICINE AND SURGERY 2019. [PMCID: PMC7173601 DOI: 10.1016/b978-0-323-48253-0.00030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Hepojoki J, Hepojoki S, Smura T, Szirovicza L, Dervas E, Prähauser B, Nufer L, Schraner EM, Vapalahti O, Kipar A, Hetzel U. Characterization of Haartman Institute snake virus-1 (HISV-1) and HISV-like viruses-The representatives of genus Hartmanivirus, family Arenaviridae. PLoS Pathog 2018; 14:e1007415. [PMID: 30427944 PMCID: PMC6261641 DOI: 10.1371/journal.ppat.1007415] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/28/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022] Open
Abstract
The family Arenaviridae comprises three genera, Mammarenavirus, Reptarenavirus and the most recently added Hartmanivirus. Arenaviruses have a bisegmented genome with ambisense coding strategy. For mammarenaviruses and reptarenaviruses the L segment encodes the Z protein (ZP) and the RNA-dependent RNA polymerase, and the S segment encodes the glycoprotein precursor and the nucleoprotein. Herein we report the full length genome and characterization of Haartman Institute snake virus-1 (HISV-1), the putative type species of hartmaniviruses. The L segment of HISV-1 lacks an open-reading frame for ZP, and our analysis of purified HISV-1 particles by SDS-PAGE and electron microscopy further support the lack of ZP. Since we originally identified HISV-1 in co-infection with a reptarenavirus, one could hypothesize that co-infecting reptarenavirus provides the ZP to complement HISV-1. However, we observed that co-infection does not markedly affect the amount of hartmanivirus or reptarenavirus RNA released from infected cells in vitro, indicating that HISV-1 does not benefit from reptarenavirus ZP. Furthermore, we succeeded in generating a pure HISV-1 isolate showing the virus to replicate without ZP. Immunofluorescence and ultrastructural studies demonstrate that, unlike reptarenaviruses, HISV-1 does not produce the intracellular inclusion bodies typical for the reptarenavirus-induced boid inclusion body disease (BIBD). While we observed HISV-1 to be slightly cytopathic for cultured boid cells, the histological and immunohistological investigation of HISV-positive snakes showed no evidence of a pathological effect. The histological analyses also revealed that hartmaniviruses, unlike reptarenaviruses, have a limited tissue tropism. By nucleic acid sequencing, de novo genome assembly, and phylogenetic analyses we identified additional four hartmanivirus species. Finally, we screened 71 individuals from a collection of snakes with BIBD by RT-PCR and found 44 to carry hartmaniviruses. These findings suggest that harmaniviruses are common in captive snake populations, but their relevance and pathogenic potential needs yet to be revealed.
Collapse
Affiliation(s)
- Jussi Hepojoki
- University of Helsinki, Faculty of Medicine, Medicum, Department of Virology, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Boid Inclusion Body Disease Group, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Satu Hepojoki
- University of Helsinki, Faculty of Medicine, Medicum, Department of Virology, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Teemu Smura
- University of Helsinki, Faculty of Medicine, Medicum, Department of Virology, Helsinki, Finland
- Boid Inclusion Body Disease Group, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Leonóra Szirovicza
- University of Helsinki, Faculty of Medicine, Medicum, Department of Virology, Helsinki, Finland
- Boid Inclusion Body Disease Group, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Eva Dervas
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Boid Inclusion Body Disease Group, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Barbara Prähauser
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Lisbeth Nufer
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Elisabeth M. Schraner
- Institutes of Veterinary Anatomy and Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Olli Vapalahti
- University of Helsinki, Faculty of Medicine, Medicum, Department of Virology, Helsinki, Finland
- Boid Inclusion Body Disease Group, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
- University of Helsinki, Faculty of Veterinary Medicine, Department of Veterinary Biosciences, Helsinki, Finland
- Department of Virology and Immunology, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Boid Inclusion Body Disease Group, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
- University of Helsinki, Faculty of Veterinary Medicine, Department of Veterinary Biosciences, Helsinki, Finland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Boid Inclusion Body Disease Group, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
- University of Helsinki, Faculty of Veterinary Medicine, Department of Veterinary Biosciences, Helsinki, Finland
| |
Collapse
|
36
|
Forni D, Pontremoli C, Pozzoli U, Clerici M, Cagliani R, Sironi M. Ancient Evolution of Mammarenaviruses: Adaptation via Changes in the L Protein and No Evidence for Host-Virus Codivergence. Genome Biol Evol 2018; 10:863-874. [PMID: 29608723 PMCID: PMC5863214 DOI: 10.1093/gbe/evy050] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 01/03/2023] Open
Abstract
The Mammarenavirus genus includes several pathogenic species of rodent-borne viruses. Old World (OW) mammarenaviruses infect rodents in the Murinae subfamily and are mainly transmitted in Africa and Asia; New World (NW) mammarenaviruses are found in rodents of the Cricetidae subfamily in the Americas. We applied a selection-informed method to estimate that OW and NW mammarenaviruses diverged less than ∼45,000 years ago (ya). By incorporating phylogeographic inference, we show that NW mammarenaviruses emerged in the Latin America-Caribbean region ∼41,400–3,300 ya, whereas OW mammarenaviruses originated ∼23,100–1,880 ya, most likely in Southern Africa. Cophylogenetic analysis indicated that cospeciation did not contribute significantly to mammarenavirus–host associations. Finally, we show that extremely strong selective pressure on the viral polymerase accompanied the speciation of NW viruses. These data suggest that the evolutionary history of mammarenaviruses was not driven by codivergence with their hosts. The viral polymerase should be regarded as a major determinant of mammarenavirus adaptation.
Collapse
Affiliation(s)
- Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| |
Collapse
|
37
|
Pontremoli C, Forni D, Cagliani R, Sironi M. Analysis of Reptarenavirus genomes indicates different selective forces acting on the S and L segments and recent expansion of common genotypes. INFECTION GENETICS AND EVOLUTION 2018; 64:212-218. [DOI: 10.1016/j.meegid.2018.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/20/2023]
|
38
|
|
39
|
Klempa B. Reassortment events in the evolution of hantaviruses. Virus Genes 2018; 54:638-646. [PMID: 30047031 PMCID: PMC6153690 DOI: 10.1007/s11262-018-1590-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Hantaviruses (order Bunyavirales, family Hantaviridae), known as important zoonotic human pathogens, possess the capacity to exchange genome segments via genetic reassortment due to their tri-segmented genome. Although not as frequent as in the arthropod-borne bunyaviruses, reports indicating reassortment events in the evolution of hantaviruses have been recently accumulating. The intra- and inter-lineage reassortment between closely related variants has been repeatedly reported for several hantaviruses including the rodent-borne human pathogens such as Sin Nombre virus, Puumala virus, Dobrava-Belgrade virus, or Hantaan virus as well as for the more recently recognized shrew-borne hantaviruses, Imjin and Seewis. Reassortment between more distantly related viruses was rarely found but seems to play a beneficial role in the process of crossing the host species barriers. Besides the findings based on phylogenetic studies of naturally occurring strains, hantavirus reassortants were generated also in in vitro studies. Interestingly, only reassortants with exchanged M segments could be generated suggesting that a high degree of genetic compatibility is required for the S and L segments while the exchange of M segment is better tolerated or is particularly beneficial. Altogether, the numerous reports on hantavirus reassortment, summarized in this review, clearly demonstrate that reassortment events play a significant role in hantavirus evolution and contributed to the currently recognized hantavirus diversity.
Collapse
Affiliation(s)
- Boris Klempa
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia. .,Institute of Virology, Charité University Hospital, Helmut-Ruska-Haus, Berlin, Germany.
| |
Collapse
|
40
|
Cross ST, Kapuscinski ML, Perino J, Maertens BL, Weger-Lucarelli J, Ebel GD, Stenglein MD. Co-Infection Patterns in Individual Ixodes scapularis Ticks Reveal Associations between Viral, Eukaryotic and Bacterial Microorganisms. Viruses 2018; 10:E388. [PMID: 30037148 PMCID: PMC6071216 DOI: 10.3390/v10070388] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 11/18/2022] Open
Abstract
Ixodes scapularis ticks harbor a variety of microorganisms, including eukaryotes, bacteria and viruses. Some of these can be transmitted to and cause disease in humans and other vertebrates. Others are not pathogenic, but may impact the ability of the tick to harbor and transmit pathogens. A growing number of studies have examined the influence of bacteria on tick vector competence but the influence of the tick virome remains less clear, despite a surge in the discovery of tick-associated viruses. In this study, we performed shotgun RNA sequencing on 112 individual adult I. scapularis collected in Wisconsin, USA. We characterized the abundance, prevalence and co-infection rates of viruses, bacteria and eukaryotic microorganisms. We identified pairs of tick-infecting microorganisms whose observed co-infection rates were higher or lower than would be expected, or whose RNA levels were positively correlated in co-infected ticks. Many of these co-occurrence and correlation relationships involved two bunyaviruses, South Bay virus and blacklegged tick phlebovirus-1. These viruses were also the most prevalent microorganisms in the ticks we sampled, and had the highest average RNA levels. Evidence of associations between microbes included a positive correlation between RNA levels of South Bay virus and Borrelia burgdorferi, the Lyme disease agent. These findings contribute to the rationale for experimental studies on the impact of viruses on tick biology and vector competence.
Collapse
Affiliation(s)
- Shaun T Cross
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Marylee L Kapuscinski
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Jacquelyn Perino
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Bernadette L Maertens
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
41
|
Fedewa G, Radoshitzky SR, Chī X, Dǒng L, Zeng X, Spear M, Strauli N, Ng M, Chandran K, Stenglein MD, Hernandez RD, Jahrling PB, Kuhn JH, DeRisi JL. Ebola virus, but not Marburg virus, replicates efficiently and without required adaptation in snake cells. Virus Evol 2018; 4:vey034. [PMID: 30524754 PMCID: PMC6277580 DOI: 10.1093/ve/vey034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ebola virus (EBOV) disease is a viral hemorrhagic fever with a high case-fatality rate in humans. This disease is caused by four members of the filoviral genus Ebolavirus, including EBOV. The natural hosts reservoirs of ebolaviruses remain to be identified. Glycoprotein 2 of reptarenaviruses, known to infect only boa constrictors and pythons, is similar in sequence and structure to ebolaviral glycoprotein 2, suggesting that EBOV may be able to infect reptilian cells. Therefore, we serially passaged EBOV and a distantly related filovirus, Marburg virus (MARV), in boa constrictor JK cells and characterized viral infection/replication and mutational frequency by confocal imaging and sequencing. We observed that EBOV efficiently infected and replicated in JK cells, but MARV did not. In contrast to most cell lines, EBOV-infected JK cells did not result in an obvious cytopathic effect. Surprisingly, genomic characterization of serial-passaged EBOV in JK cells revealed that genomic adaptation was not required for infection. Deep sequencing coverage (>10,000×) demonstrated the existence of only a single nonsynonymous variant (EBOV glycoprotein precursor pre-GP T544I) of unknown significance within the viral population that exhibited a shift in frequency of at least 10 per cent over six serial passages. In summary, we present the first reptilian cell line that replicates a filovirus at high titers, and for the first time demonstrate a filovirus genus-specific restriction to MARV in a cell line. Our data suggest the possibility that there may be differences between the natural host spectra of ebolaviruses and marburgviruses.
Collapse
Affiliation(s)
- Greg Fedewa
- Integrative Program in Quantitative Biology, Bioinformatics, University of California San Francisco, San Francisco, CA, USA
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Xiǎolì Chī
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Lián Dǒng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Melissa Spear
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Nicolas Strauli
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Melinda Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ryan D Hernandez
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
42
|
Fernandes J, Guterres A, de Oliveira RC, Chamberlain J, Lewandowski K, Teixeira BR, Coelho TA, Crisóstomo CF, Bonvicino CR, D'Andrea PS, Hewson R, de Lemos ERS. Xapuri virus, a novel mammarenavirus: natural reassortment and increased diversity between New World viruses. Emerg Microbes Infect 2018; 7:120. [PMID: 29959319 PMCID: PMC6026159 DOI: 10.1038/s41426-018-0119-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 12/28/2022]
Abstract
Mammarenavirus RNA was detected in Musser’s bristly mouse (Neacomys musseri) from the Amazon region, and this detection indicated that rodents were infected with a novel mammarenavirus, with the proposed name Xapuri virus (XAPV), which is phylogenetically related to New World Clade B and Clade C viruses. XAPV may represent the first natural reassortment of the Arenaviridae family and a new unrecognized clade within the Tacaribe serocomplex group.
Collapse
Affiliation(s)
- Jorlan Fernandes
- Laboratory of Hantaviruses and Rickettsiosis, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro - RJ, 21040-360, Brazil.
| | - Alexandro Guterres
- Laboratory of Hantaviruses and Rickettsiosis, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro - RJ, 21040-360, Brazil
| | - Renata Carvalho de Oliveira
- Laboratory of Hantaviruses and Rickettsiosis, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro - RJ, 21040-360, Brazil
| | - John Chamberlain
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Kuiama Lewandowski
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Bernardo Rodrigues Teixeira
- Laboratory of Biology and Parasitology of Wild Mammals Reservoirs, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro - RJ, 21040-360, Brazil
| | - Thayssa Alves Coelho
- Laboratory of Hantaviruses and Rickettsiosis, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro - RJ, 21040-360, Brazil
| | - Charle Ferreira Crisóstomo
- Laboratory of Biology and Parasitology of Wild Mammals Reservoirs, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro - RJ, 21040-360, Brazil.,Federal Institute of Acre, Rio Branco - AC, 69900-640, Brazil.,Postgraduate Program in Biodiversity and Health, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro - RJ, 21040-360, Brazil
| | - Cibele Rodrigues Bonvicino
- Laboratory of Biology and Parasitology of Wild Mammals Reservoirs, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro - RJ, 21040-360, Brazil.,Nacional Cancer Institute, Rio de Janeio - RJ, 20230-130, Brazil
| | - Paulo Sérgio D'Andrea
- Laboratory of Biology and Parasitology of Wild Mammals Reservoirs, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro - RJ, 21040-360, Brazil.,Postgraduate Program in Biodiversity and Health, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro - RJ, 21040-360, Brazil
| | - Roger Hewson
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Elba Regina Sampaio de Lemos
- Laboratory of Hantaviruses and Rickettsiosis, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro - RJ, 21040-360, Brazil.
| |
Collapse
|
43
|
Respiratory disease in ball pythons (Python regius) experimentally infected with ball python nidovirus. Virology 2018; 517:77-87. [DOI: 10.1016/j.virol.2017.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 01/22/2023]
|
44
|
Hoon-Hanks LL, McGrath S, Tyler KL, Owen C, Stenglein MD. Metagenomic Investigation of Idiopathic Meningoencephalomyelitis in Dogs. J Vet Intern Med 2017; 32:324-330. [PMID: 29197179 PMCID: PMC5787199 DOI: 10.1111/jvim.14877] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/11/2017] [Accepted: 10/17/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Meningoencephalomyelitis of unknown origin (MUO) is a common and life-threatening neuroinflammatory disease in dogs. Features of the disease are suggestive of an underlying immune-mediated process, but the association of this disease with a pathogen is still unknown. HYPOTHESIS/OBJECTIVES To search for candidate etiologic agent associated with cases if MUO using next generation metagenomic sequencing. ANIMALS Twenty-two dogs diagnosed with either MUO (11/22; 10 CSF and 3 brain), or noninflammatory CNS diseases inconsistent with MUO (11/22; 11 CSF and 2 brain) that served as negative controls. METHODS A case control study was performed by identifying MUO and non-MUO cases. Samples were blindly processed and then unblinded for comparative analyses. Inclusion criteria for MUO cases included consistent MRI lesions and inflammatory CSF with a negative PCR panel for infectious agents or histopathologic diagnosis. Dogs with glucocorticoid therapy within 2 weeks of sample collection were excluded. Fresh-frozen cerebrospinal fluid (CSF; 21) and brain (5) samples were collected and RNA and DNA were extracted separately for shotgun metagenomic sequencing. Known positive samples were used as controls to validate our sequencing and analysis pipelines and to establish limits of detection. Sequencing results were analyzed at a nucleotide and protein level for broad comparison to known infectious organisms. RESULTS No candidate etiologic agents were identified in dogs with MUO. CONCLUSIONS AND CLINICAL IMPORTANCE These results support but do not prove the hypothesis that MUO is not associated with infectious agents and might be an autoimmune disease.
Collapse
Affiliation(s)
- L L Hoon-Hanks
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - S McGrath
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - K L Tyler
- Department of Neurology, Medicine, and Immunology-Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - C Owen
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - M D Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| |
Collapse
|
45
|
Differential Disease Susceptibilities in Experimentally Reptarenavirus-Infected Boa Constrictors and Ball Pythons. J Virol 2017; 91:JVI.00451-17. [PMID: 28515291 PMCID: PMC5651717 DOI: 10.1128/jvi.00451-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/03/2017] [Indexed: 01/15/2023] Open
Abstract
Inclusion body disease (IBD) is an infectious disease originally described in captive snakes. It has traditionally been diagnosed by the presence of large eosinophilic cytoplasmic inclusions and is associated with neurological, gastrointestinal, and lymphoproliferative disorders. Previously, we identified and established a culture system for a novel lineage of arenaviruses isolated from boa constrictors diagnosed with IBD. Although ample circumstantial evidence suggested that these viruses, now known as reptarenaviruses, cause IBD, there has been no formal demonstration of disease causality since their discovery. We therefore conducted a long-term challenge experiment to test the hypothesis that reptarenaviruses cause IBD. We infected boa constrictors and ball pythons by cardiac injection of purified virus. We monitored the progression of viral growth in tissues, blood, and environmental samples. Infection produced dramatically different disease outcomes in snakes of the two species. Ball pythons infected with Golden Gate virus (GoGV) and with another reptarenavirus displayed severe neurological signs within 2 months, and viral replication was detected only in central nervous system tissues. In contrast, GoGV-infected boa constrictors remained free of clinical signs for 2 years, despite high viral loads and the accumulation of large intracellular inclusions in multiple tissues, including the brain. Inflammation was associated with infection in ball pythons but not in boa constrictors. Thus, reptarenavirus infection produces inclusions and inclusion body disease, although inclusions per se are neither necessarily associated with nor required for disease. Although the natural distribution of reptarenaviruses has yet to be described, the different outcomes of infection may reflect differences in geographical origin. IMPORTANCE New DNA sequencing technologies have made it easier than ever to identify the sequences of microorganisms in diseased tissues, i.e., to identify organisms that appear to cause disease, but to be certain that a candidate pathogen actually causes disease, it is necessary to provide additional evidence of causality. We have done this to demonstrate that reptarenaviruses cause inclusion body disease (IBD), a serious transmissible disease of snakes. We infected boa constrictors and ball pythons with purified reptarenavirus. Ball pythons fell ill within 2 months of infection and displayed signs of neurological disease typical of IBD. In contrast, boa constrictors remained healthy over 2 years, despite high levels of virus throughout their bodies. This difference matches previous reports that pythons are more susceptible to IBD than boas and could reflect the possibility that boas are natural hosts of these viruses in the wild.
Collapse
|
46
|
Abstract
Hemorrhagic fevers caused by viruses were identified in the late 1950s in South America. These viruses have existed in their hosts, the New World rodents, for millions of years. Their emergence as infectious agents in humans coincided with changes in the environment and farming practices that caused explosions in their host rodent populations. Zoonosis into humans likely occurs because the pathogenic New World arenaviruses use human transferrin receptor 1 to enter cells. The mortality rate after infection with these viruses is high, but the mechanism by which disease is induced is still not clear. Possibilities include direct effects of cellular infection or the induction of high levels of cytokines by infected sentinel cells of the immune system, leading to endothelia and thrombocyte dysfunction and neurological disease. Here we provide a review of the ecology and molecular and cellular biology of New World arenaviruses, as well as a discussion of the current animal models of infection. The development of animal models, coupled with an improved understanding of the infection pathway and host response, should lead to the discovery of new drugs for treating infections.
Collapse
Affiliation(s)
- Nicolás Sarute
- Department of Microbiology and Immunology, University of Illinois College of Medicine at Chicago, Chicago, Illinois 60612; ,
| | - Susan R Ross
- Department of Microbiology and Immunology, University of Illinois College of Medicine at Chicago, Chicago, Illinois 60612; ,
| |
Collapse
|
47
|
Kallert SM, Darbre S, Bonilla WV, Kreutzfeldt M, Page N, Müller P, Kreuzaler M, Lu M, Favre S, Kreppel F, Löhning M, Luther SA, Zippelius A, Merkler D, Pinschewer DD. Replicating viral vector platform exploits alarmin signals for potent CD8 + T cell-mediated tumour immunotherapy. Nat Commun 2017; 8:15327. [PMID: 28548102 PMCID: PMC5458557 DOI: 10.1038/ncomms15327] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/22/2017] [Indexed: 12/27/2022] Open
Abstract
Viral infections lead to alarmin release and elicit potent cytotoxic effector T lymphocyte (CTLeff) responses. Conversely, the induction of protective tumour-specific CTLeff and their recruitment into the tumour remain challenging tasks. Here we show that lymphocytic choriomeningitis virus (LCMV) can be engineered to serve as a replication competent, stably-attenuated immunotherapy vector (artLCMV). artLCMV delivers tumour-associated antigens to dendritic cells for efficient CTL priming. Unlike replication-deficient vectors, artLCMV targets also lymphoid tissue stroma cells expressing the alarmin interleukin-33. By triggering interleukin-33 signals, artLCMV elicits CTLeff responses of higher magnitude and functionality than those induced by replication-deficient vectors. Superior anti-tumour efficacy of artLCMV immunotherapy depends on interleukin-33 signalling, and a massive CTLeff influx triggers an
inflammatory conversion of the tumour microenvironment. Our observations suggest that replicating viral delivery systems can release alarmins for improved anti-tumour efficacy. These mechanistic insights may outweigh safety concerns around replicating viral vectors in cancer immunotherapy. Viruses trigger potent cytotoxic T cell responses, whereas anti-tumour immunity has been difficult to establish. Here the authors engineer a replicating viral delivery system for tumour-associated antigens, which induces alarmin release, innate activation and protective anti-tumour immunity in mice.
Collapse
Affiliation(s)
- Sandra M Kallert
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Stephanie Darbre
- Departement de Pathologie et Immunologie, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Weldy V Bonilla
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Mario Kreutzfeldt
- Departement de Pathologie et Immunologie, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Nicolas Page
- Departement de Pathologie et Immunologie, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Philipp Müller
- Department of Biomedicine, University Hospital and University of Basel, Hebelstr. 20, 4031 Basel, Switzerland
| | - Matthias Kreuzaler
- Department of Biomedicine, University Hospital and University of Basel, Hebelstr. 20, 4031 Basel, Switzerland
| | - Min Lu
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Stéphanie Favre
- Department of Biochemistry, Center for Immunity and Infection Lausanne, University of Lausanne, Chemin des Boveresses 144, 1066 Epalinges, Switzerland
| | - Florian Kreppel
- Witten/Herdecke University (UW/H), Faculty of Health/School of Medicine, Stockumer Str. 10, 58453 Witten, Germany
| | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Sanjiv A Luther
- Department of Biochemistry, Center for Immunity and Infection Lausanne, University of Lausanne, Chemin des Boveresses 144, 1066 Epalinges, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, University Hospital and University of Basel, Hebelstr. 20, 4031 Basel, Switzerland.,Department of Medical Oncology, University Hospital Basel, Hebelstr. 20, 4031 Basel, Switzerland
| | - Doron Merkler
- Departement de Pathologie et Immunologie, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Daniel D Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| |
Collapse
|
48
|
Pathological vicissitudes and oxidative stress enzyme responses in mice experimentally infected with reptarenavirus (isolate UPM/MY01). Microb Pathog 2017; 104:17-27. [DOI: 10.1016/j.micpath.2017.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/25/2016] [Accepted: 01/02/2017] [Indexed: 12/29/2022]
|
49
|
Co-infecting Reptarenaviruses Can Be Vertically Transmitted in Boa Constrictor. PLoS Pathog 2017; 13:e1006179. [PMID: 28114434 PMCID: PMC5289648 DOI: 10.1371/journal.ppat.1006179] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 02/02/2017] [Accepted: 01/11/2017] [Indexed: 11/19/2022] Open
Abstract
Boid inclusion body disease (BIBD) is an often fatal disease affecting mainly constrictor snakes. BIBD has been associated with infection, and more recently with coinfection, by various reptarenavirus species (family Arenaviridae). Thus far BIBD has only been reported in captive snakes, and neither the incubation period nor the route of transmission are known. Herein we provide strong evidence that co-infecting reptarenavirus species can be vertically transmitted in Boa constrictor. In total we examined five B. constrictor clutches with offspring ranging in age from embryos over perinatal abortions to juveniles. The mother and/or father of each clutch were initially diagnosed with BIBD and/or reptarenavirus infection by detection of the pathognomonic inclusion bodies (IB) and/or reptarenaviral RNA. By applying next-generation sequencing and de novo sequence assembly we determined the "reptarenavirome" of each clutch, yielding several nearly complete L and S segments of multiple reptarenaviruses. We further confirmed vertical transmission of the co-infecting reptarenaviruses by species-specific RT-PCR from samples of parental animals and offspring. Curiously, not all offspring obtained the full parental "reptarenavirome". We extended our findings by an in vitro approach; cell cultures derived from embryonal samples rapidly developed IB and promoted replication of some or all parental viruses. In the tissues of embryos and perinatal abortions, viral antigen was sometimes detected, but IB were consistently seen only in the juvenile snakes from the age of 2 mo onwards. In addition to demonstrating vertical transmission of multiple species, our results also indicate that reptarenavirus infection induces BIBD over time in the offspring.
Collapse
|
50
|
Detection and prevalence of boid inclusion body disease in collections of boas and pythons using immunological assays. Vet J 2016; 218:13-18. [PMID: 27938703 DOI: 10.1016/j.tvjl.2016.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 10/15/2016] [Accepted: 10/22/2016] [Indexed: 01/16/2023]
Abstract
Inclusion body disease (IBD) of boas and pythons is characterized by the intracytoplasmic accumulation of an antigenic 68 kDa viral protein IBDP, more recently known as the nucleoprotein (NP) of the reptarenaviruses. Blood samples of 131 captive boas and pythons (53 boa constrictors, Boa constrictor; 35 rainbow boas, Epicrates cenchria; 22 ball pythons, Python regius; 5 carpet pythons, Morelia spilota; 6 Burmese pythons, Python bivittatus; 4 Jamaican boas, Epicrates subflavus; 5 anacondas, Eunectes spp.; and 1 green tree python, Morelia viridis) were obtained from 28 collections in the USA. Diagnosis of IBD was initially made by the identification of eosinophilic intracytoplasmic inclusion bodies in hematoxylin and eosin (HE) stained blood films and isolated peripheral white blood cells (PWBC). The overall prevalence of IBD in study snakes was 25/131 or 19% (95% CI = 12.4%, 25.8%) with boa constrictors being more commonly infected (22/53 or 41.5%; 95% CI = 28.2%, 54.8%) than other species in this study. Of the 22 IBD positive boa constrictors, 87% were clinically healthy, 13% had various signs of chronic illness, and none showed signs of central nervous system disease. Using a validated monoclonal anti-NP antibody, NP was confirmed within the isolated PWBC by immunohistochemical staining and Western blots. The presence of reptarenaviruses within blood samples of 27 boa constrictors and three rainbow boas was also assessed by PCR. Among boa constrictors, very good agreements were shown between the observation of inclusion bodies (by HE stain) and the presence of NP (by immunohistochemistry, kappa = 0.92; and Western blots, kappa = 0.89), or the presence of reptarenaviruses (by PCR; kappa = 0.92).
Collapse
|