1
|
Jung M, Kim H, Choi E, Shin MK, Shin SJ. Enhancing vaccine effectiveness in the elderly to counter antibiotic resistance: The potential of adjuvants via pattern recognition receptors. Hum Vaccin Immunother 2024; 20:2317439. [PMID: 39693178 DOI: 10.1080/21645515.2024.2317439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 12/20/2024] Open
Abstract
Vaccines are an effective way to prevent the emergence and spread of antibiotic resistance by preventing diseases and establishing herd immunity. However, the reduced effectiveness of vaccines in the elderly due to immunosenescence is one of the significant contributors to the increasing antibiotic resistance. To counteract this decline and enhance vaccine effectiveness in the elderly, adjuvants play a pivotal role. Adjuvants are designed to augment the effectiveness of vaccines by activating the innate immune system, particularly through pattern recognition receptors on antigen-presenting cells. To improve vaccine effectiveness in the elderly using adjuvants, it is imperative to select the appropriate adjuvants based on an understanding of immunosenescence and the mechanisms of adjuvant functions. This review demonstrates the phenomenon of immunosenescence and explores various types of adjuvants, including their mechanisms and their potential in improving vaccine effectiveness for the elderly, thereby contributing to developing more effective vaccines for this vulnerable demographic.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Silva RCMC. The dichotomic role of cytokines in aging. Biogerontology 2024; 26:17. [PMID: 39621124 DOI: 10.1007/s10522-024-10152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024]
Abstract
The chronic inflammation present in aged individuals is generally depicted as a detrimental player for longevity. Here, it is discussed several beneficial effects associated with the cytokines that are chronically elevated in inflammaging. These cytokines, such as IL-1β, type I interferons, IL-6 and TNF positively regulate macroautophagy, mitochondrial function, anti-tumor immune responses and skeletal muscle biogenesis, possibly contributing to longevity. On the other side, the detrimental and antagonistic role of these cytokines including the induction of sarcopenia, tissue damage and promotion of tumorigenesis are also discussed, underscoring the dichotomy associated with inflammaging and its players. In addition, it is discussed the role of the anti-inflammatory cytokine IL-10 and other cytokines that affect aging in a more linear way, such as IL-11, which promotes senescence, and IL-4 and IL-15, which promotes longevity. It is also discussed more specific regulators of aging that are downstream cytokines-mediated signaling.
Collapse
|
3
|
Brook B, Checkervarty AK, Barman S, Sweitzer C, Bosco AN, Sherman AC, Baden LR, Morrocchi E, Sanchez-Schmitz G, Palma P, Nanishi E, O'Meara TR, McGrath ME, Frieman MB, Soni D, van Haren SD, Ozonoff A, Diray-Arce J, Steen H, Dowling DJ, Levy O. The BNT162b2 mRNA vaccine demonstrates reduced age-associated T H1 support in vitro and in vivo. iScience 2024; 27:111055. [PMID: 39569372 PMCID: PMC11576392 DOI: 10.1016/j.isci.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/05/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024] Open
Abstract
mRNA vaccines demonstrate impaired immunogenicity and durability in vulnerable older populations. We hypothesized that human in vitro modeling and proteomics could elucidate age-specific mRNA vaccine actions. BNT162b2-stimulation changed the plasma proteome of blood samples from young (18-50Y) and older adult (≥60Y) participants, assessed by mass spectrometry, proximity extension assay, and multiplex. Young adult up-regulation (e.g., PSMC6, CPN1) contrasted reduced induction in older adults (e.g., TPM4, APOF, APOC2, CPN1, PI16). 30-85% lower TH1-polarizing cytokines and chemokines were induced in elderly blood (e.g., IFNγ, CXCL10). Analytes lower in older adult samples included human in vivo mRNA immunogenicity biomarkers (e.g., IFNγ, CXCL10, CCL4, IL-1RA). BNT162b2 also demonstrated reduced CD4+ TH1 responses in aged vs. young adult mice. Our study demonstrates the utility of human in vitro platforms modeling age-specific mRNA vaccine immunogenicity, highlights impaired support of TH1 polarization in older adults, and provides a rationale for precision mRNA vaccine adjuvantation to induce greater immunogenicity.
Collapse
Affiliation(s)
- Byron Brook
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Abhinav Kumar Checkervarty
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Prevention of Organ Failure (PROOF) Centre of Excellence, St Paul's Hospital, University of British Columbia, Vancouver, BC V6Z 2K5, Canada
- UBC Centre for Heart Lung Innovation, Providence Research, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Soumik Barman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Cali Sweitzer
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anna-Nicole Bosco
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amy C Sherman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lindsey R Baden
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elena Morrocchi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine- Chair of Pediatrics, University of Rome, 00133 Tor Vergata, Italy
| | - Etsuro Nanishi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy R O'Meara
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Marisa E McGrath
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Matthew B Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dheeraj Soni
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA 02142, USA
| | - Simon D van Haren
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Al Ozonoff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hanno Steen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J Dowling
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
4
|
Ajoolabady A, Pratico D, Tang D, Zhou S, Franceschi C, Ren J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res Rev 2024; 101:102540. [PMID: 39395575 DOI: 10.1016/j.arr.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Age-related changes initiate a cascade of cellular and molecular alterations that lead to immune system dysfunction or abnormal activation, predisposing individuals to age-related diseases. This phenomenon, commonly referred to as immunosenescence, highlighting aging-associated progressive decline of the immune system. Moreover, mounting evidence suggests that immunosenescence contributes to a related pathological phenomenon known as inflammaging. Inflammaging refers to chronic, low-grade, and systemic inflammation associated with aging, occurring despite the absence of overt stimuli. In the body, inflammation is typically activated in response to overt stimuli such as bacterial/microbial invasion or a pathological state, however, inflammaging occurrence and its underpinning mechanisms seem to be independent and in the absence of such stimuli. Despite recent advancements in molecular characterization and the scrutiny of disease relevance, these two interconnected concepts have remained largely unexplored and unrecognized. In this comprehensive review, we aim to shed light on the mechanistic and cellular aspects of immunosenescence and inflammaging, as well as their pivotal roles in the pathogenesis of aging-related diseases, including cancer, infections, dementia, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuqin Zhou
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
5
|
Urban BC, Gonçalves ANA, Loukov D, Passos FM, Reiné J, Gonzalez-Dias P, Solórzano C, Mitsi E, Nikolaou E, O'Connor D, Collins AM, Adler H, Pollard A, Rylance J, Gordon SB, Jochems SP, Nakaya HI, Ferreira DM. Inflammation of the nasal mucosa is associated with susceptibility to experimental pneumococcal challenge in older adults. Mucosal Immunol 2024; 17:973-989. [PMID: 38950826 PMCID: PMC11464406 DOI: 10.1016/j.mucimm.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Streptococcus pneumoniae colonization in the upper respiratory tract is linked to pneumococcal disease development, predominantly affecting young children and older adults. As the global population ages and comorbidities increase, there is a heightened concern about this infection. We investigated the immunological responses of older adults to pneumococcal-controlled human infection by analyzing the cellular composition and gene expression in the nasal mucosa. Our comparative analysis with data from a concurrent study in younger adults revealed distinct gene expression patterns in older individuals susceptible to colonization, highlighted by neutrophil activation and elevated levels of CXCL9 and CXCL10. Unlike younger adults challenged with pneumococcus, older adults did not show recruitment of monocytes into the nasal mucosa following nasal colonization. However, older adults who were protected from colonization showed increased degranulation of cluster of differentiation 8+ T cells, both before and after pneumococcal challenge. These findings suggest age-associated cellular changes, in particular enhanced mucosal inflammation, that may predispose older adults to pneumococcal colonization.
Collapse
Affiliation(s)
- Britta C Urban
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - André N A Gonçalves
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Dessi Loukov
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Fernando M Passos
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jesús Reiné
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Patrícia Gonzalez-Dias
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Carla Solórzano
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Elena Mitsi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Elissavet Nikolaou
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Infection, Immunity and Global Health, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrea M Collins
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; University Hospital Aintree, Liverpool University Hospitals Trust, Liverpool, UK
| | - Hugh Adler
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Andrew Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jamie Rylance
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stephen B Gordon
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi-Liverpool-Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Simon P Jochems
- Leiden University Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Helder I Nakaya
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela M Ferreira
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
6
|
Quin C, Breznik JA, Kennedy AE, DeJong EN, Andary CM, Ermolina S, Davidson DJ, Ma J, Surette MG, Bowdish DME. Monocyte-driven inflamm-aging reduces intestinal barrier function in females. Immun Ageing 2024; 21:65. [PMID: 39350153 PMCID: PMC11440997 DOI: 10.1186/s12979-024-00469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The intestinal barrier encompasses physical and immunological components that act to compartmentalize luminal contents, such as bacteria and endotoxins, from the host. It has been proposed that an age-related decline of intestinal barrier function may allow for the passage of luminal contents into the bloodstream, triggering a low-grade systemic inflammation termed inflamm-aging. Although there is mounting evidence to support this hypothesis in model species, it is unclear if this phenomenon occurs in humans. In addition, despite being well-established that biological sex impacts aging physiology, its influence on intestinal barrier function and inflamm-aging has not been explored. RESULTS In this study, we observed sex differences in markers of intestinal barrier integrity, where females had increased epithelial permeability throughout life as compared to males. With age, females had an age-associated increase in circulating bacterial products and metabolites such as LPS and kynurenine, suggesting reduced barrier function. Females also had age-associated increases in established markers of inflamm-aging, including peripheral blood monocytes as well as TNF and CRP. To determine if impaired barrier function was driving inflamm-aging, we performed a mediation analysis. The results show that the loss of intestinal barrier integrity was not the mediator of inflamm-aging in humans. Instead, persistent, low-grade inflammation with age preceded the increase in circulating bacterial products, which we confirmed using animal models. We found, as in humans, that sex modified age-associated increases in circulating monocytes in mice, and that inflammation mediates the loss of intestinal barrier function. CONCLUSION Taken together, our results suggest that higher basal intestinal permeability in combination with age-associated inflammation, increases circulating LPS in females. Thus, targeting barrier permeability in females may slow the progression of inflamm-aging, but is unlikely to prevent it.
Collapse
Affiliation(s)
- Candice Quin
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland.
| | - Jessica A Breznik
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- McMaster Institute for Research on Aging, Hamilton, ON, Canada
- McMaster Immunology Research Centre, Hamilton, ON, Canada
| | - Allison E Kennedy
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- McMaster Institute for Research on Aging, Hamilton, ON, Canada
- McMaster Immunology Research Centre, Hamilton, ON, Canada
| | - Erica N DeJong
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- McMaster Institute for Research on Aging, Hamilton, ON, Canada
- McMaster Immunology Research Centre, Hamilton, ON, Canada
| | - Catherine M Andary
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- McMaster Institute for Research on Aging, Hamilton, ON, Canada
- McMaster Immunology Research Centre, Hamilton, ON, Canada
| | - Sofya Ermolina
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- McMaster Institute for Research on Aging, Hamilton, ON, Canada
- McMaster Immunology Research Centre, Hamilton, ON, Canada
| | - Donald J Davidson
- Institute for Regeneration and Repair, Centre for Inflammatory Research, University of Edinburgh, Edinburgh, Scotland
| | - Jinhui Ma
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Michael G Surette
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Dawn M E Bowdish
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
- McMaster Institute for Research on Aging, Hamilton, ON, Canada.
- McMaster Immunology Research Centre, Hamilton, ON, Canada.
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.
| |
Collapse
|
7
|
Quin C, DeJong EN, McNaughton AJM, Buttigieg MM, Basrai S, Abelson S, Larché MJ, Rauh MJ, Bowdish DME. Chronic TNF in the aging microenvironment exacerbates Tet2 loss-of-function myeloid expansion. Blood Adv 2024; 8:4169-4180. [PMID: 38924753 PMCID: PMC11334836 DOI: 10.1182/bloodadvances.2023011833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
ABSTRACT Somatic mutations in the TET2 gene occur more frequently with age, imparting an intrinsic hematopoietic stem cells (HSCs) advantage and contributing to a phenomenon termed clonal hematopoiesis of indeterminate potential (CHIP). Individuals with TET2-mutant CHIP have a higher risk of developing myeloid neoplasms and other aging-related conditions. Despite its role in unhealthy aging, the extrinsic mechanisms driving TET2-mutant CHIP clonal expansion remain unclear. We previously showed an environment containing tumor necrosis factor (TNF) favors TET2-mutant HSC expansion in vitro. We therefore postulated that age-related increases in TNF also provide an advantage to HSCs with TET2 mutations in vivo. To test this hypothesis, we generated mixed bone marrow chimeric mice of old wild-type (WT) and TNF-/- genotypes reconstituted with WT CD45.1+ and Tet2-/- CD45.2+ HSCs. We show that age-associated increases in TNF dramatically increased the expansion of Tet2-/- cells in old WT recipient mice, with strong skewing toward the myeloid lineage. This aberrant myelomonocytic advantage was mitigated in old TNF-/- recipient mice, suggesting that TNF signaling is essential for the expansion Tet2-mutant myeloid clones. Examination of human patients with rheumatoid arthritis with clonal hematopoiesis revealed that hematopoietic cells carrying certain mutations, including in TET2, may be sensitive to reduced TNF bioactivity following blockade with adalimumab. This suggests that targeting TNF may reduce the burden of some forms of CHIP. To our knowledge, this is the first evidence to demonstrate that TNF has a causal role in driving TET2-mutant CHIP in vivo. These findings highlight TNF as a candidate therapeutic target to control TET2-mutant CHIP.
Collapse
Affiliation(s)
- Candice Quin
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Erica N. DeJong
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Amy J. M. McNaughton
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Marco M. Buttigieg
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Salman Basrai
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sagi Abelson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maggie J. Larché
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Michael J. Rauh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Dawn M. E. Bowdish
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
8
|
Thorp EB, Filipp M, Dima M, Tan C, Feinstein M, Popko B, DeBerge M. CCR2 + monocytes promote white matter injury and cognitive dysfunction after myocardial infarction. Brain Behav Immun 2024; 119:818-835. [PMID: 38735403 PMCID: PMC11574971 DOI: 10.1016/j.bbi.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
Survivors of myocardial infarction are at increased risk for vascular dementia. Neuroinflammation has been implicated in the pathogenesis of vascular dementia, yet little is known about the cellular and molecular mediators of neuroinflammation after myocardial infarction. Using a mouse model of myocardial infarction coupled with flow cytometric analyses and immunohistochemistry, we discovered increased monocyte abundance in the brain after myocardial infarction, which was associated with increases in brain-resident perivascular macrophages and microglia. Myeloid cell recruitment and activation was also observed in post-mortem brains of humans that died after myocardial infarction. Spatial and single cell transcriptomic profiling of brain-resident myeloid cells after experimental myocardial infarction revealed increased expression of monocyte chemoattractant proteins. In parallel, myocardial infarction increased crosstalk between brain-resident myeloid cells and oligodendrocytes, leading to neuroinflammation, white matter injury, and cognitive dysfunction. Inhibition of monocyte recruitment preserved white matter integrity and cognitive function, linking monocytes to neurodegeneration after myocardial infarction. Together, these preclinical and clinical results demonstrate that monocyte infiltration into the brain after myocardial infarction initiate neuropathological events that lead to vascular dementia.
Collapse
Affiliation(s)
- Edward B Thorp
- Department of Pathology, Northwestern University, Chicago, IL, United States.
| | - Mallory Filipp
- Department of Pathology, Northwestern University, Chicago, IL, United States
| | - Maria Dima
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Northwestern University, Chicago, IL, United States
| | - Chunfeng Tan
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Matthew Feinstein
- Department of Pathology, Northwestern University, Chicago, IL, United States; Department of Medicine, Division of Cardiology, Northwestern University, Chicago, IL, United States
| | - Brian Popko
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Northwestern University, Chicago, IL, United States
| | - Matthew DeBerge
- Department of Pathology, Northwestern University, Chicago, IL, United States; Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| |
Collapse
|
9
|
Bou Ghanem EN. CHIPing away at immunity: the role of clonal hematopoiesis of indeterminate potential in bacterial pneumonia. J Clin Invest 2024; 134:e181064. [PMID: 38828722 PMCID: PMC11142730 DOI: 10.1172/jci181064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
The occurrence of clonal hematopoiesis of indeterminate potential (CHIP), in which advantageous somatic mutations result in the clonal expansion of blood cells, increases with age, as do an increased risk of mortality and detrimental outcomes associated with CHIP. However, the role of CHIP in susceptibility to pulmonary infections, which also increase with age, is unclear. In this issue of the JCI, Quin and colleagues explored the role of CHIP in bacterial pneumonia. Using characterization of immune cells from human donors and mice lacking tet methylcytosine dioxygenase 2 (Tet2), the authors mechanistically link myeloid immune cell dysfunction to CHIP-mediated risk of bacterial pneumonia. The findings suggest that CHIP drives inflammaging and immune senescence, and provide Tet2 status in older adults as a potential prognostic tool for informing treatment options related to immune modulation.
Collapse
|
10
|
Singh A, Schurman SH, Bektas A, Kaileh M, Roy R, Wilson DM, Sen R, Ferrucci L. Aging and Inflammation. Cold Spring Harb Perspect Med 2024; 14:a041197. [PMID: 38052484 PMCID: PMC11146314 DOI: 10.1101/cshperspect.a041197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Aging can be conceptualized as the progressive disequilibrium between stochastic damage accumulation and resilience mechanisms that continuously repair that damage, which eventually cause the development of chronic disease, frailty, and death. The immune system is at the forefront of these resilience mechanisms. Indeed, aging is associated with persistent activation of the immune system, witnessed by a high circulating level of inflammatory markers and activation of immune cells in the circulation and in tissue, a condition called "inflammaging." Like aging, inflammaging is associated with increased risk of many age-related pathologies and disabilities, as well as frailty and death. Herein we discuss recent advances in the understanding of the mechanisms leading to inflammaging and the intrinsic dysregulation of the immune function that occurs with aging. We focus on the underlying mechanisms of chronic inflammation, in particular the role of NF-κB and recent studies targeting proinflammatory mediators. We further explore the dysregulation of the immune response with age and immunosenescence as an important mechanistic immune response to acute stressors. We examine the role of the gastrointestinal microbiome, age-related dysbiosis, and the integrated stress response in modulating the inflammatory "response" to damage accumulation and stress. We conclude by focusing on the seminal question of whether reducing inflammation is useful and the results of related clinical trials. In summary, we propose that inflammation may be viewed both as a clinical biomarker of the failure of resilience mechanisms and as a causal factor in the rising burden of disease and disabilities with aging. The fact that inflammation can be reduced through nonpharmacological interventions such as diet and exercise suggests that a life course approach based on education may be a successful strategy to increase the health span with few adverse consequences.
Collapse
Affiliation(s)
- Amit Singh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Shepherd H Schurman
- Clinical Research Unit, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Arsun Bektas
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - David M Wilson
- Biomedical Research Institute, Hasselt University, Diepenbeek 3500, Belgium
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21224, USA
| |
Collapse
|
11
|
Kruckow KL, Murray E, Shayhidin E, Rosenberg AF, Bowdish DME, Orihuela CJ. Chronic TNF exposure induces glucocorticoid-like immunosuppression in the alveolar macrophages of aged mice that enhances their susceptibility to pneumonia. Aging Cell 2024; 23:e14133. [PMID: 38459711 PMCID: PMC11296116 DOI: 10.1111/acel.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 03/10/2024] Open
Abstract
Chronic low-grade inflammation, particularly elevated tumor necrosis factor (TNF) levels, occurs due to advanced age and is associated with greater susceptibility to infection. One reason for this is age-dependent macrophage dysfunction (ADMD). Herein, we use the adoptive transfer of alveolar macrophages (AM) from aged mice into the airway of young mice to show that inherent age-related defects in AM were sufficient to increase the susceptibility to Streptococcus pneumoniae, a Gram-positive bacterium and the leading cause of community-acquired pneumonia. MAPK phosphorylation arrays using AM lysates from young and aged wild-type (WT) and TNF knockout (KO) mice revealed multilevel TNF-mediated suppression of kinase activity in aged mice. RNAseq analyses of AM validated the suppression of MAPK signaling as a consequence of TNF during aging. Two regulatory phosphatases that suppress MAPK signaling, Dusp1 and Ptprs, were confirmed to be upregulated with age and as a result of TNF exposure both ex vivo and in vitro. Dusp1 is known to be responsible for glucocorticoid-mediated immune suppression, and dexamethasone treatment increased Dusp1 and Ptprs expression in cells and recapitulated the ADMD phenotype. In young mice, treatment with dexamethasone increased the levels of Dusp1 and Ptprs and their susceptibility to infection. TNF-neutralizing antibody reduced Dusp1 and Ptprs levels in AM from aged mice and reduced pneumonia severity following bacterial challenge. We conclude that chronic exposure to TNF increases the expression of the glucocorticoid-associated MAPK signaling suppressors, Dusp1 and Ptprs, which inhibits AM activation and increases susceptibility to bacterial pneumonia in older adults.
Collapse
Affiliation(s)
- Katherine L. Kruckow
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elizabeth Murray
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elnur Shayhidin
- Firestone Institute for Respiratory HealthSt. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- The M.G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| | - Alexander F. Rosenberg
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Dawn M. E. Bowdish
- Firestone Institute for Respiratory HealthSt. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- The M.G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| | - Carlos J. Orihuela
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
12
|
Wang Y, Huang X, Luo G, Xu Y, Deng X, Lin Y, Wang Z, Zhou S, Wang S, Chen H, Tao T, He L, Yang L, Yang L, Chen Y, Jin Z, He C, Han Z, Zhang X. The aging lung: microenvironment, mechanisms, and diseases. Front Immunol 2024; 15:1383503. [PMID: 38756780 PMCID: PMC11096524 DOI: 10.3389/fimmu.2024.1383503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
With the development of global social economy and the deepening of the aging population, diseases related to aging have received increasing attention. The pathogenesis of many respiratory diseases remains unclear, and lung aging is an independent risk factor for respiratory diseases. The aging mechanism of the lung may be involved in the occurrence and development of respiratory diseases. Aging-induced immune, oxidative stress, inflammation, and telomere changes can directly induce and promote the occurrence and development of lung aging. Meanwhile, the occurrence of lung aging also further aggravates the immune stress and inflammatory response of respiratory diseases; the two mutually affect each other and promote the development of respiratory diseases. Explaining the mechanism and treatment direction of these respiratory diseases from the perspective of lung aging will be a new idea and research field. This review summarizes the changes in pulmonary microenvironment, metabolic mechanisms, and the progression of respiratory diseases associated with aging.
Collapse
Affiliation(s)
- Yanmei Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Xuewen Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunying Xu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiqian Deng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Haoran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Tao
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Lei He
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Luchuan Yang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Li Yang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi Jin
- Department of Anesthesiology and Pain Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Chengshi He
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Zhang
- Department of Emergency Medicine Center, Sichuan Province People’s Hospital University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Ortiz Moyano R, Raya Tonetti F, Elean M, Imamura Y, Fukuyama K, Suda Y, Melnikov V, Suvorov A, Vizoso-Pinto MG, Kitazawa H, Villena J. Bacterium-like Particles from Corynebacterium pseudodiphtheriticum as Mucosal Adjuvant for the Development of Pneumococcal Vaccines. Vaccines (Basel) 2024; 12:412. [PMID: 38675794 PMCID: PMC11053776 DOI: 10.3390/vaccines12040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Previously, it was shown that intranasally (i.n.) administered Corynebacterium pseudodiphtheriticum 090104 (Cp) or CP-derived bacterium-like particles (BLPs) improve the immunogenicity of the pneumococcal conjugate vaccine (PCV). This work aimed to deepen the characterization of the adjuvant properties of Cp and CP-derived BLPs for their use in the development of pneumococcal vaccines. The ability of Cp and CP-derived BLPs to improve both the humoral and cellular specific immune responses induced by i.n. administered polysaccharide-based commercial pneumococcal vaccine (Pneumovax 23®) and the chimeric recombinant PSPF (PsaA-Spr1875-PspA-FliC) protein was evaluated, as well as the protection against Streptococcus pneumoniae infection in infant mice. Additionally, whether the immunization protocols, including Cp and CP-derived BLPs, together with the pneumococcal vaccines can enhance the resistance to secondary pneumococcal pneumonia induced after inflammatory lung damage mediated by the activation of Toll-like receptor 3 (TLR3) was assessed. The results showed that both Cp and CP-derived BLPs increased the immunogenicity and protection induced by two pneumococcal vaccines administered through the nasal route. Of note, the nasal priming with the PSPF T-dependent antigen co-administered with Cp or CP-derived BLPs efficiently stimulated humoral and cellular immunity and increased the resistance to primary and secondary pneumococcal infections. The CP-derived BLPs presented a stronger effect than live bacteria. Given safety concerns associated with live bacterium administration, especially in high-risk populations, such as infants, the elderly, and immunocompromised patients, BLPs emerge as an attractive mucosal adjuvant to improve the host response to pneumococcal infections and to enhance the vaccines already in the market or in development.
Collapse
Affiliation(s)
- Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (F.R.T.); (M.E.)
| | - Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (F.R.T.); (M.E.)
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (F.R.T.); (M.E.)
| | - Yoshiya Imamura
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (Y.I.); (K.F.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (Y.I.); (K.F.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Vyacheslav Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Alexander Suvorov
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197022 Saint Petersburg, Russia;
| | - María Guadalupe Vizoso-Pinto
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán 4000, Argentina;
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (Y.I.); (K.F.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (F.R.T.); (M.E.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (Y.I.); (K.F.)
| |
Collapse
|
14
|
Quin C, DeJong EN, Cook EK, Luo YZ, Vlasschaert C, Sadh S, McNaughton AJ, Buttigieg MM, Breznik JA, Kennedy AE, Zhao K, Mewburn J, Dunham-Snary KJ, Hindmarch CC, Bick AG, Archer SL, Rauh MJ, Bowdish DM. Neutrophil-mediated innate immune resistance to bacterial pneumonia is dependent on Tet2 function. J Clin Invest 2024; 134:e171002. [PMID: 38573824 PMCID: PMC11142737 DOI: 10.1172/jci171002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Individuals with clonal hematopoiesis of indeterminate potential (CHIP) are at increased risk of aging related health conditions and all-cause mortality, but whether CHIP affects risk of infection is much less clear. Using UK Biobank data, we revealed a positive association between CHIP and incident pneumonia in 438,421 individuals. We show that inflammation enhanced pneumonia risk, as CHIP carriers with a hypomorphic IL6 receptor polymorphism were protected. To better characterize the pathways of susceptibility, we challenged hematopoietic Tet Methylcytosine Dioxygenase 2-knockout (Tet2-/-) and floxed control mice (Tet2fl/fl) with Streptococcus pneumoniae. As with human CHIP carriers, Tet2-/- mice had hematopoietic abnormalities resulting in the expansion of inflammatory monocytes and neutrophils in peripheral blood. Yet, these cells were insufficient in defending against S. pneumoniae and resulted in increased pathology, impaired bacterial clearance, and higher mortality in Tet2-/- mice. We delineated the transcriptional landscape of Tet2-/- neutrophils and found that, while inflammation-related pathways were upregulated in Tet2-/- neutrophils, migration and motility pathways were compromised. Using live-imaging techniques, we demonstrated impairments in motility, pathogen uptake, and neutrophil extracellular trap (NET) formation by Tet2-/- neutrophils. Collectively, we show that CHIP is a risk factor for bacterial pneumonia related to innate immune impairments.
Collapse
Affiliation(s)
- Candice Quin
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Erica N. DeJong
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Elina K. Cook
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences
| | - Yi Zhen Luo
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences
| | | | - Sanathan Sadh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences
| | | | - Marco M. Buttigieg
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences
| | - Jessica A. Breznik
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Allison E. Kennedy
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Kevin Zhao
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| | | | | | - Charles C.T. Hindmarch
- Department of Medicine
- Queen’s CardioPulmonary Unit, Queen’s University, Kingston, Ontario, Canada
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephen L. Archer
- Department of Medicine
- Queen’s CardioPulmonary Unit, Queen’s University, Kingston, Ontario, Canada
| | - Michael J. Rauh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences
| | - Dawn M.E. Bowdish
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Laskow T, Langdon J, Sepehri S, Davalos-Bichara M, Varadhan R, Walston J. Soluble TNFR1 has greater reproducibility than IL-6 for the assessment of chronic inflammation in older adults: the case for a new inflammatory marker in aging. GeroScience 2024; 46:2521-2530. [PMID: 37993568 PMCID: PMC10828298 DOI: 10.1007/s11357-023-01006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023] Open
Abstract
Chronic inflammatory pathway activation, commonly referred to as "Inflammaging" or chronic inflammation (CI), is associated with frailty, cognitive and functional decline, and other causes of health span decline in older adults. We investigated the variability of candidate serum measures of CI among community-dwelling older adults selected for mild low-grade inflammation. We focused on serum cytokines known to be highly predictive of adverse health outcomes in older adults (sTNFR1, IL-6) during a short-term (weeks) and medium-term (months) follow-up, as well as immune markers that are less studied in aging but reflect other potentially relevant domains such as adaptive immune activation (sCD25), innate immune activation (sCD14 and sCD163), and the inflammation-metabolism interface (adiponectin/Acrp30) during short-term (weeks) follow up. We found that sTNFR1 was more reproducible than IL-6 over a period of weeks and months short-term and medium-term. The intra-class correlation coefficient (ICC) for sTNFR1 was 0.95 on repeated measures over 6 weeks, and 0.79 on repeated measures with mean interval of 14 weeks, while the ICC for IL-6 was 0.52 over corresponding short-term and 0.67 over corresponding medium-term follow-up. This suggests that sTNFR1 is a more reliable marker of CI than IL-6. This study provides new insights into the reproducibility of serum markers of CI in older adults. The findings suggest that sTNFR1 may be a better marker of CI than IL-6 in this population. Further studies are needed to confirm these findings and to investigate the clinical utility of sTNFR1 in older adults.
Collapse
Affiliation(s)
- Thomas Laskow
- Johns Hopkins University School of Medicine, 5505 Hopkins Bayview Circle, Baltimore, MD, 21224-6821, USA
| | - Jacqueline Langdon
- Johns Hopkins University School of Medicine, 5505 Hopkins Bayview Circle, Baltimore, MD, 21224-6821, USA
| | - Sam Sepehri
- Johns Hopkins University School of Medicine, 5505 Hopkins Bayview Circle, Baltimore, MD, 21224-6821, USA
| | - Marcela Davalos-Bichara
- Johns Hopkins University School of Medicine, 5505 Hopkins Bayview Circle, Baltimore, MD, 21224-6821, USA
| | - Ravi Varadhan
- Johns Hopkins University School of Medicine, 5505 Hopkins Bayview Circle, Baltimore, MD, 21224-6821, USA
| | - Jeremy Walston
- Johns Hopkins University School of Medicine, 5505 Hopkins Bayview Circle, Baltimore, MD, 21224-6821, USA.
| |
Collapse
|
16
|
Compte R, Freidin MB, Granville Smith I, Le Maitre CL, Vaitkute D, Nessa A, Lachance G, Williams FMK. No evidence of association between either Modic change or disc degeneration and five circulating inflammatory proteins. JOR Spine 2024; 7:e1323. [PMID: 38529326 PMCID: PMC10961713 DOI: 10.1002/jsp2.1323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/31/2024] [Accepted: 03/02/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Intervertebral disc degeneration and Modic change are the main spinal structural changes associated with chronic low back pain (LBP). Both conditions are thought to manifest local inflammation and if inflammatory proteins translocate to the blood circulation could be detected systemically. The work here assesses whether the presence of disc degeneration is associated with detectable blood level changes of five inflammatory markers and whether chronic LBP is associated with these changes. Materials and Methods Two hundred and forty TwinsUK cohort participants with both MRI disc degeneration grade and Modic change extent, and IL-6, IL-8, IL-8 TNF, and CX3CL1 protein blood concentration measurements were included in this work. Linear mixed effects models were used to test the association of blood cytokine concentration with disc degeneration score and Modic change volumetric score. Association of chronic LBP status from questionnaires with disc degeneration, Modic change, and cytokine blood concentration was also tested. Results No statistically significant association between disc degeneration or Modic change with cytokine blood concentration was found. Instead, regression analysis pointed strong association between cytokine blood concentration with body mass index for IL-6 and with age for IL-6 and TNF. Mild association was found between IL-8 blood concentration and body mass index. Additionally, LBP status was associated with Modic change volumetric score but not associated with any cytokine concentration. Conclusions We found no evidence that Modic change and disc degeneration are able to produce changes in tested blood cytokine concentration. However, age and body mass index have strong influence on cytokine concentration and both are associated with the conditions studied which may confound associations found in the literature. It is then unlikely that cytokines produced in the disc or vertebral bone marrow induce chronic LBP.
Collapse
Affiliation(s)
- Roger Compte
- Department of Twin Research and Genetic EpidemiologyKing's College LondonLondonUK
| | - Maxim B. Freidin
- Department of Biology, School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | | | - Christine L. Le Maitre
- Division of Clinical Medicine, School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Dovile Vaitkute
- Department of Twin Research and Genetic EpidemiologyKing's College LondonLondonUK
| | - Ayrun Nessa
- Department of Twin Research and Genetic EpidemiologyKing's College LondonLondonUK
| | - Genevieve Lachance
- Department of Twin Research and Genetic EpidemiologyKing's College LondonLondonUK
| | | |
Collapse
|
17
|
Silvin A, Qian J, Ginhoux F. Brain macrophage development, diversity and dysregulation in health and disease. Cell Mol Immunol 2023; 20:1277-1289. [PMID: 37365324 PMCID: PMC10616292 DOI: 10.1038/s41423-023-01053-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Brain macrophages include microglia in the parenchyma, border-associated macrophages in the meningeal-choroid plexus-perivascular space, and monocyte-derived macrophages that infiltrate the brain under various disease conditions. The vast heterogeneity of these cells has been elucidated over the last decade using revolutionary multiomics technologies. As such, we can now start to define these various macrophage populations according to their ontogeny and their diverse functional programs during brain development, homeostasis and disease pathogenesis. In this review, we first outline the critical roles played by brain macrophages during development and healthy aging. We then discuss how brain macrophages might undergo reprogramming and contribute to neurodegenerative disorders, autoimmune diseases, and glioma. Finally, we speculate about the most recent and ongoing discoveries that are prompting translational attempts to leverage brain macrophages as prognostic markers or therapeutic targets for diseases that affect the brain.
Collapse
Affiliation(s)
- Aymeric Silvin
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, 94800, France
| | - Jiawen Qian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Florent Ginhoux
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, 94800, France.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, 138648, Republic of Singapore.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, 169856, Singapore.
| |
Collapse
|
18
|
Han S, Budinger GS, Gottardi CJ. Alveolar epithelial regeneration in the aging lung. J Clin Invest 2023; 133:e170504. [PMID: 37843280 PMCID: PMC10575730 DOI: 10.1172/jci170504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Advancing age is the most important risk factor for the development of and mortality from acute and chronic lung diseases, including pneumonia, chronic obstructive pulmonary disease, and pulmonary fibrosis. This risk was manifest during the COVID-19 pandemic, when elderly people were disproportionately affected and died from SARS-CoV-2 pneumonia. However, the recent pandemic also provided lessons on lung resilience. An overwhelming majority of patients with SARS-CoV-2 pneumonia, even those with severe disease, recovered with near-complete restoration of lung architecture and function. These observations are inconsistent with historic views of the lung as a terminally differentiated organ incapable of regeneration. Here, we review emerging hypotheses that explain how the lung repairs itself after injury and why these mechanisms of lung repair fail in some individuals, particularly the elderly.
Collapse
Affiliation(s)
- SeungHye Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA
| | - Cara J. Gottardi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
19
|
Kelagere Y, Scholand KK, DeJong EN, Boyd AI, Yu Z, Astley RA, Callegan MC, Bowdish DM, Makarenkova HP, de Paiva CS. TNF is a critical cytokine in age-related dry eye disease. Ocul Surf 2023; 30:119-128. [PMID: 37634571 PMCID: PMC10812879 DOI: 10.1016/j.jtos.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex biological process that is characterized by low-grade inflammation, called inflammaging. Aging affects multiple organs including eye and lacrimal gland. Tumor necrosis factor (TNF) is a pleiotropic cytokine that participates in inflammation, activation of proteases such as cathepsin S, and formation of ectopic lymphoid organs. Using genetic and pharmacological approaches, we investigated the role of TNF in age-related dry eye disease, emphasizing the ocular surface and lacrimal gland inflammation. Our results show the increased protein and mRNA levels of TNF in aged lacrimal glands, accompanied by increased TNF, IL1β, IL-18, CCL5, CXCL1, IL-2, IL-2 receptor alpha (CD25), IFN-γ, IL-12p40, IL-17, and IL-10 proteins in tears of aged mice. Moreover, genetic loss of the Tnf-/- in mice decreased goblet cell loss and the development of ectopic lymphoid structures in the lacrimal gland compared to wild-type mice. This was accompanied by a decrease in cytokine production. Treatment of mice at an early stage of aging (12-14-month-old) with TNF inhibitor tanfanercept eye drops for eight consecutive weeks decreased cytokine levels in tears, improved goblet cell density, and decreased the marginal zone B cell frequency in the lacrimal gland compared to vehicle-treated animals. Our studies indicate that modulation of TNF during aging could be a novel strategy for age-related dry eye disease.
Collapse
Affiliation(s)
- Yashaswini Kelagere
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| | - Erica N DeJong
- McMaster Immunology Research Centre, McMaster University, Ontario, Canada.
| | - Andrea I Boyd
- Graduate Program in Immunology & Microbiology, Baylor College of Medicine, USA.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Roger A Astley
- Departments of Ophthalmology and Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Michelle C Callegan
- Departments of Ophthalmology and Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Dawn Me Bowdish
- McMaster Immunology Research Centre, McMaster University, Ontario, Canada.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
20
|
Jermakow N, Skarżyńska W, Lewandowska K, Kiernozek E, Goździk K, Mietelska-Porowska A, Drela N, Wojda U, Doligalska M. Modulation of LPS-Induced Neurodegeneration by Intestinal Helminth Infection in Ageing Mice. Int J Mol Sci 2023; 24:13994. [PMID: 37762297 PMCID: PMC10530578 DOI: 10.3390/ijms241813994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Parasitic helminths induce a transient, short-term inflammation at the beginning of infection, but in persistent infection may suppress the systemic immune response by enhancing the activity of regulatory M2 macrophages. The aim of the study was to determine how nematode infection affects age-related neuroinflammation, especially macrophages in the nervous tissue. Here, intraperitoneal LPS-induced systemic inflammation resulting in brain neurodegeneration was enhanced by prolonged Heligmosomoides polygyrus infection in C57BL/6 mice. The changes in the brain coincided with the increase in M1 macrophages, reduced survivin level, enhanced APP and GFAP expression, chitin-like chains deposition in the brain and deterioration behaviour manifestations. These changes were also observed in transgenic C57BL/6 mice predisposed to develop neurodegeneration typical for Alzheimer's disease in response to pathogenic stimuli. Interestingly, in mice infected with the nematode only, the greater M2 macrophage population resulted in better results in the forced swim test. Given the growing burden of neurodegenerative diseases, understanding such interactive associations can have significant implications for ageing health strategies and disease monitoring.
Collapse
Affiliation(s)
- Natalia Jermakow
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland; (N.J.); (W.S.); (E.K.); (K.G.); (N.D.)
| | - Weronika Skarżyńska
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland; (N.J.); (W.S.); (E.K.); (K.G.); (N.D.)
| | - Katarzyna Lewandowska
- Faculty of Chemistry, Nicolaus Copernicus in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Ewelina Kiernozek
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland; (N.J.); (W.S.); (E.K.); (K.G.); (N.D.)
| | - Katarzyna Goździk
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland; (N.J.); (W.S.); (E.K.); (K.G.); (N.D.)
| | - Anna Mietelska-Porowska
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Ludwika Pasteura 3, 02-093 Warszawa, Poland; (A.M.-P.); (U.W.)
| | - Nadzieja Drela
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland; (N.J.); (W.S.); (E.K.); (K.G.); (N.D.)
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Ludwika Pasteura 3, 02-093 Warszawa, Poland; (A.M.-P.); (U.W.)
| | - Maria Doligalska
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland; (N.J.); (W.S.); (E.K.); (K.G.); (N.D.)
| |
Collapse
|
21
|
Ribeiro TA, Breznik JA, Kennedy KM, Yeo E, Kennelly BKE, Jazwiec PA, Patterson VS, Bellissimo CJ, Anhê FF, Schertzer JD, Bowdish DME, Sloboda DM. Intestinal permeability and peripheral immune cell composition are altered by pregnancy and adiposity at mid- and late-gestation in the mouse. PLoS One 2023; 18:e0284972. [PMID: 37549142 PMCID: PMC10406227 DOI: 10.1371/journal.pone.0284972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/13/2023] [Indexed: 08/09/2023] Open
Abstract
It is clear that the gastrointestinal tract influences metabolism and immune function. Most studies to date have used male test subjects, with a focus on effects of obesity and dietary challenges. Despite significant physiological maternal adaptations that occur across gestation, relatively few studies have examined pregnancy-related gut function. Moreover, it remains unknown how pregnancy and diet can interact to alter intestinal barrier function. In this study, we investigated the impacts of pregnancy and adiposity on maternal intestinal epithelium morphology, in vivo intestinal permeability, and peripheral blood immunophenotype, using control (CTL) and high-fat (HF) fed non-pregnant female mice and pregnant mice at mid- (embryonic day (E)14.5) and late (E18.5) gestation. We found that small intestine length increased between non-pregnant mice and dams at late-gestation, but ileum villus length, and ileum and colon crypt depths and goblet cell numbers remained similar. Compared to CTL-fed mice, HF-fed mice had reduced small intestine length, ileum crypt depth and villus length. Goblet cell numbers were only consistently reduced in HF-fed non-pregnant mice. Pregnancy increased in vivo gut permeability, with a greater effect at mid- versus late-gestation. Non-pregnant HF-fed mice had greater gut permeability, and permeability was also increased in HF-fed pregnant dams at mid but not late-gestation. The impaired maternal gut barrier in HF-fed dams at mid-gestation coincided with changes in maternal blood and bone marrow immune cell composition, including an expansion of circulating inflammatory Ly6Chigh monocytes. In summary, pregnancy has temporal effects on maternal intestinal structure and barrier function, and on peripheral immunophenotype, which are further modified by HF diet-induced maternal adiposity. Maternal adaptations in pregnancy are thus vulnerable to excess maternal adiposity, which may both affect maternal and child health.
Collapse
Affiliation(s)
- Tatiane A. Ribeiro
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
| | - Jessica A. Breznik
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M. Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Erica Yeo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Brianna K. E. Kennelly
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Patrycja A. Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Violet S. Patterson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Christian J. Bellissimo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Fernando F. Anhê
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Dawn M. E. Bowdish
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Deborah M. Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
22
|
Galloway-Peña JR, Jobin C. Microbiota Influences on Hematopoiesis and Blood Cancers: New Horizons? Blood Cancer Discov 2023; 4:267-275. [PMID: 37052501 PMCID: PMC10320642 DOI: 10.1158/2643-3230.bcd-22-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Hematopoiesis governs the generation of immune cells through the differentiation of hematopoietic stem cells (HSC) into various progenitor cells, a process controlled by intrinsic and extrinsic factors. Among extrinsic factors influencing hematopoiesis is the microbiota, or the collection of microorganisms present in various body sites. The microbiota has a profound impact on host homeostasis by virtue of its ability to release various molecules and structural components, which promote normal organ function. In this review, we will discuss the role of microbiota in influencing hematopoiesis and how disrupting the microbiota/host network could lead to hematologic malignancies, as well as highlight important knowledge gaps to move this field of research forward. SIGNIFICANCE Microbiota dysfunction is associated with many pathologic conditions, including hematologic malignancies. In this review, we discuss the role of microbiota in influencing hematopoiesis and how disrupting the microbiota/host network could lead to hematologic malignancies. Understanding how the microbiota influences hematologic malignancies could have an important therapeutic impact for patients.
Collapse
Affiliation(s)
- Jessica R. Galloway-Peña
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida
| |
Collapse
|
23
|
Chittimalli K, Jahan J, Sakamuri A, McAdams ZL, Ericsson AC, Jarajapu YP. Restoration of the gut barrier integrity and restructuring of the gut microbiome in aging by angiotensin-(1-7). Clin Sci (Lond) 2023; 137:913-930. [PMID: 37254732 PMCID: PMC10881191 DOI: 10.1042/cs20220904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
Compromised barrier function of colon epithelium with aging is largely due to gut microbial dysbiosis. Recent studies implicate an important role for angiotensin converting enzymes, ACE and ACE2, angiotensins, and the receptors, AT1 receptor (AT1R) and Mas receptor (MasR), in the regulation of colon functions. The present study tested the hypothesis that leaky gut in aging is associated with an imbalance in ACE2/ACE and that the treatment with angiotenisn-(1-7) (Ang-(1-7)) will restore gut barrier integrity and microbiome. Studies were carried out in Young (3-4 months) and old (20-24 months) male mice. Ang-(1-7) was administered by using osmotic pumps. Outcome measures included expressions of ACE, ACE2, AT1R, and MasR, intestinal permeability by using FITC-dextran, and immunohistochemistry of claudin 1 and occludin, and intestinal stem cells (ISCs). ACE2 protein and activity were decreased in Old group while that of ACE were unchanged. Increased intestinal permeability and plasma levels of zonulin-1 in the Old group were normalized by Ang-(1-7). Epithelial disintegrity, reduced number of goblet cells and ISCs in the old group were restored by Ang-(1-7). Expression of claudin 1 and occludin in the aging colon was increased by Ang-(1-7). Infiltration of CD11b+ or F4/80+ inflammatory cells in the old colons were decreased by Ang-(1-7). Gut microbial dysbiosis in aging was evident by decreased richness and altered beta diversity that were reversed by Ang-(1-7) with increased abundance of Lactobacillus or Lachnospiraceae. The present study shows that Ang-(1-7) restores gut barrier integrity and reduces inflammation in the aging colon by restoring the layer of ISCs and by restructuring the gut microbiome.
Collapse
Affiliation(s)
- Kishore Chittimalli
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, U.S.A
| | - Jesmin Jahan
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, U.S.A
| | - Anil Sakamuri
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, U.S.A
| | - Zachary L. McAdams
- Missouri Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, U.S.A
| | - Aaron C. Ericsson
- Missouri Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, U.S.A
| | - Yagna P.R. Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, U.S.A
| |
Collapse
|
24
|
Yang F, Nourse C, Helgason GV, Kirschner K. Unraveling Heterogeneity in the Aging Hematopoietic Stem Cell Compartment: An Insight From Single-cell Approaches. Hemasphere 2023; 7:e895. [PMID: 37304939 PMCID: PMC10256339 DOI: 10.1097/hs9.0000000000000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Specific cell types and, therefore, organs respond differently during aging. This is also true for the hematopoietic system, where it has been demonstrated that hematopoietic stem cells alter a variety of features, such as their metabolism, and accumulate DNA damage, which can lead to clonal outgrowth over time. In addition, profound changes in the bone marrow microenvironment upon aging lead to senescence in certain cell types such as mesenchymal stem cells and result in increased inflammation. This heterogeneity makes it difficult to pinpoint the molecular drivers of organismal aging gained from bulk approaches, such as RNA sequencing. A better understanding of the heterogeneity underlying the aging process in the hematopoietic compartment is, therefore, needed. With the advances of single-cell technologies in recent years, it is now possible to address fundamental questions of aging. In this review, we discuss how single-cell approaches can and indeed are already being used to understand changes observed during aging in the hematopoietic compartment. We will touch on established and novel methods for flow cytometric detection, single-cell culture approaches, and single-cell omics.
Collapse
Affiliation(s)
- Fei Yang
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Craig Nourse
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - G. Vignir Helgason
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Kristina Kirschner
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| |
Collapse
|
25
|
Verschoor CP, Vlasschaert C, Rauh MJ, Paré G. A DNA methylation based measure outperforms circulating CRP as a marker of chronic inflammation and partly reflects the monocytic response to long-term inflammatory exposure: A Canadian longitudinal study of aging analysis. Aging Cell 2023:e13863. [PMID: 37139638 PMCID: PMC10352553 DOI: 10.1111/acel.13863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
A key hallmark in the age-related dysfunction of physiological systems is disruption related to the regulation of inflammation, often resulting in a chronic, low-grade inflammatory state (i.e., inflammaging). In order to understand the causes of overall system decline, methods to quantify the life-long exposure or damage related to chronic inflammation are critical. Here, we characterize a comprehensive epigenetic inflammation score (EIS) based on DNA methylation loci (CpGs) that are associated with circulating levels of C-reactive protein (CRP). In a cohort of 1446 older adults, we show that associations to age and health-related traits such as smoking history, chronic conditions, and established measures of accelerated aging were stronger for EIS than CRP, while the risk of longitudinal outcomes such as outpatient or inpatient visits and increased frailty were relatively similar. To determine whether variation in EIS actually reflects the cellular response to chronic inflammation we exposed THP1 myelo-monocytic cells to low levels of inflammatory mediators for 14 days, finding that EIS increased in response to both CRP (p = 0.011) and TNF (p = 0.068). Interestingly, a refined version of EIS based only on those CpGs that changed in vitro was more strongly associated with many of the aforementioned traits as compared to EIS. In conclusion, our study demonstrates that EIS outperforms circulating CRP with regard to its association to health-traits that are synonymous with chronic inflammation and accelerated aging, and substantiates its potential role as a clinically relevant tool for stratifying patient risk of adverse outcomes prior to treatment or following illness.
Collapse
Affiliation(s)
- Chris P Verschoor
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | | | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Guillaume Paré
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Bazaz R, Marriott HM, Wright C, Chamberlain J, West LE, Gelsthorpe C, Heath PR, Maleki-Dizaji A, Francis SE, Dockrell DH. Transient increase in atherosclerotic plaque macrophage content following Streptococcus pneumoniae pneumonia in ApoE-deficient mice. Front Cell Infect Microbiol 2023; 13:1090550. [PMID: 37033482 PMCID: PMC10076735 DOI: 10.3389/fcimb.2023.1090550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Despite epidemiological associations between community acquired pneumonia (CAP) and myocardial infarction, mechanisms that modify cardiovascular disease during CAP are not well defined. In particular, largely due to a lack of relevant experimental models, the effect of pneumonia on atherosclerotic plaques is unclear. We describe the development of a murine model of the commonest cause of CAP, Streptococcus pneumoniae pneumonia, on a background of established atherosclerosis. We go on to use our model to investigate the effects of pneumococcal pneumonia on atherosclerosis. Methods C57BL/6J and ApoE-/- mice were fed a high fat diet to promote atherosclerotic plaque formation. Mice were then infected with a range of S. pneumoniae serotypes (1, 4 or 14) with the aim of establishing a model to study atherosclerotic plaque evolution after pneumonia and bacteremia. Laser capture microdissection of plaque macrophages enabled transcriptomic analysis. Results Intratracheal instillation of S. pneumoniae in mice fed a cholate containing diet resulted in low survival rates following infection, suggestive of increased susceptibility to severe infection. Optimization steps resulted in a final model of male ApoE-/- mice fed a Western diet then infected by intranasal instillation of serotype 4 (TIGR4) S. pneumoniae followed by antibiotic administration. This protocol resulted in high rates of bacteremia (88.9%) and survival (88.5%). Pneumonia resulted in increased aortic sinus plaque macrophage content 2 weeks post pneumonia but not at 8 weeks, and no difference in plaque burden or other plaque vulnerability markers were found at either time point. Microarray and qPCR analysis of plaque macrophages identified downregulation of two E3 ubiquitin ligases, Huwe1 and Itch, following pneumonia. Treatment with atorvastatin failed to alter plaque macrophage content or other plaque features. Discussion Without antibiotics, ApoE-/- mice fed a high fat diet were highly susceptible to mortality following S. pneumoniae infection. The major infection associated change in plaque morphology was an early increase in plaque macrophages. Our results also hint at a role for the ubiquitin proteasome system in the response to pneumococcal infection in the plaque microenvironment.
Collapse
Affiliation(s)
- Rohit Bazaz
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Infectious Diseases, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Helen M. Marriott
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Carl Wright
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Janet Chamberlain
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Laura E. West
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Catherine Gelsthorpe
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Paul R. Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | | | - Sheila E. Francis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - David H. Dockrell
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Korkmaz FT, Traber KE. Innate immune responses in pneumonia. Pneumonia (Nathan) 2023; 15:4. [PMID: 36829255 PMCID: PMC9957695 DOI: 10.1186/s41479-023-00106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/05/2023] [Indexed: 02/26/2023] Open
Abstract
The lungs are an immunologically unique environment; they are exposed to innumerable pathogens and particulate matter daily. Appropriate clearance of pathogens and response to pollutants is required to prevent overwhelming infection, while preventing tissue damage and maintaining efficient gas exchange. Broadly, the innate immune system is the collection of immediate, intrinsic immune responses to pathogen or tissue injury. In this review, we will examine the innate immune responses of the lung, with a particular focus on their role in pneumonia. We will discuss the anatomic barriers and antimicrobial proteins of the lung, pathogen and injury recognition, and the role of leukocytes (macrophages, neutrophils, and innate lymphocytes) and lung stromal cells in innate immunity. Throughout the review, we will focus on new findings in innate immunity as well as features that are unique to the lung.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology & Infectious Disease, University of Massachusetts, Worcester, MA, USA
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
28
|
Role of cellular senescence in inflammatory lung diseases. Cytokine Growth Factor Rev 2023; 70:26-40. [PMID: 36797117 DOI: 10.1016/j.cytogfr.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Cellular senescence, a characteristic sign of aging, classically refers to permanent cell proliferation arrest and is a vital contributor to the pathogenesis of cancer and age-related illnesses. A lot of imperative scientific research has shown that senescent cell aggregation and the release of senescence-associated secretory phenotype (SASP) components can cause lung inflammatory diseases as well. In this study, the most recent scientific progress on cellular senescence and phenotypes was reviewed, including their impact on lung inflammation and the contributions of these findings to understanding the underlying mechanisms and clinical relevance of cell and developmental biology. Within a dozen pro-senescent stimuli, the irreparable DNA damage, oxidative stress, and telomere erosion are all crucial in the long-term accumulation of senescent cells, resulting in sustained inflammatory stress activation in the respiratory system. An emerging role for cellular senescence in inflammatory lung diseases was proposed in this review, followed by the identification of the main ambiguities, thus further understanding this event and the potential to control cellular senescence and pro-inflammatory response activation. In addition, novel therapeutic strategies for the modulation of cellular senescence that might help to attenuate inflammatory lung conditions and improve disease outcomes were also presented in this research.
Collapse
|
29
|
Li K, Bian J, Xiao Y, Wang D, Han L, He C, Gong L, Wang M. Changes in Pancreatic Senescence Mediate Pancreatic Diseases. Int J Mol Sci 2023; 24:ijms24043513. [PMID: 36834922 PMCID: PMC9962587 DOI: 10.3390/ijms24043513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
In recent years, there has been a significant increase in age-related diseases due to the improvement in life expectancy worldwide. The pancreas undergoes various morphological and pathological changes with aging, such as pancreatic atrophy, fatty degeneration, fibrosis, inflammatory cell infiltration, and exocrine pancreatic metaplasia. Meanwhile, these may predispose the individuals to aging-related diseases, such as diabetes, dyspepsia, pancreatic ductal adenocarcinoma, and pancreatitis, as the endocrine and exocrine functions of the pancreas are significantly affected by aging. Pancreatic senescence is associated with various underlying factors including genetic damage, DNA methylation, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and inflammation. This paper reviews the alternations of morphologies and functions in the aging pancreas, especially β-cells, closely related to insulin secretion. Finally, we summarize the mechanisms of pancreatic senescence to provide potential targets for treating pancreatic aging-related diseases.
Collapse
Affiliation(s)
- Kailin Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Ji Bian
- Kolling Institute, Sydney Medical School, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia
| | - Yao Xiao
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Da Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Lin Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Caian He
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
- Correspondence: (L.G.); (M.W.)
| | - Min Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
- Correspondence: (L.G.); (M.W.)
| |
Collapse
|
30
|
Goodridge HS. Aging of classical monocyte subsets. Aging (Albany NY) 2023; 15:290-292. [PMID: 36645917 PMCID: PMC9925684 DOI: 10.18632/aging.204493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Helen S. Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
31
|
Vivian GK, da Silva RO, Santos ACA, Hastreiter AA, Dias CC, Makiyama EN, Borelli P, de Oliveira Rodrigues C, Fock RA. The interaction between aging and protein malnutrition modulates peritoneal macrophage function: An experimental study in male mice. Exp Gerontol 2023; 171:112025. [PMID: 36372284 DOI: 10.1016/j.exger.2022.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Malnutrition is considered one of the most common problems in the elderly population worldwide and can significantly interfere in health evolution in these individuals, predisposing them to increased infection susceptibility. The immune response triggered by infections comprises several mechanisms, and macrophages play important roles in this response. This study aimed to evaluate mechanisms related to macrophage function in a model of protein malnutrition in the elderly. Two age groups (young: 3-5 months and elderly: 18-19 months) male C57BL/6NTac mice were subjected to protein malnutrition with a low-protein diet (2 %). The nutritional status, hemogram and number of peritoneal cells were affected by both age and nutritional status. Additionally, the spreading capacity as well as the phagocytic and fungicidal activity of peritoneal macrophages were affected by the nutritional status and age of the animal. Interestingly, the percentages of F4/80+/CD11b+ and CD86+ cells were reduced mostly in elderly animals, while the TLR-4+ population was more affected by nutritional status than by age. The production of pro-inflammatory cytokines such as TNF-α, IL-1α, and IL-6 was also influenced by nutritional status and/or by age, and malnourished animals of advanced age produced higher amounts of the anti-inflammatory cytokine IL-10. Furthermore, the phosphorylation ratio of the transcription factor NFκB (pNFκB/NFκB) was directly affected by the nutritional status, independently of age. Thus, these results allow us to conclude that aging and protein malnutrition compromise macrophage function, likely affecting their immune function, and in aged protein-malnourished animals, this impairment tends to be more pronounced.
Collapse
Affiliation(s)
- Gabriela Kodja Vivian
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renaira Oliveira da Silva
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andressa Cristina Antunes Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Araceli Aparecida Hastreiter
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carolina Carvalho Dias
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edson Naoto Makiyama
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Primavera Borelli
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
32
|
Novakowski KE, Loukov D, Bowdish DME. Bacterial Binding, Phagocytosis, and Killing Capacity: Measurements Using Colony Forming Units. Methods Mol Biol 2023; 2692:1-13. [PMID: 37365457 DOI: 10.1007/978-1-0716-3338-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Herein, we provide a colony forming unit (CFU)-based counting method for quantitating the bacterial binding, phagocytosis, and killing capacity of phagocytes. Although these functions can be measured by immunofluorescence- and dye-based assays, quantitating CFUs are comparatively inexpensive and easy to perform. The protocol described below is easily modified for use with different phagocytes (e.g., macrophages, neutrophils, cell lines), types of bacteria, or opsonic conditions.
Collapse
Affiliation(s)
| | - Dessi Loukov
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Dawn M E Bowdish
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
33
|
Brook B, Fatou B, Kumar Checkervarty A, Barman S, Sweitzer C, Bosco AN, Sherman AC, Baden LR, Morrocchi E, Sanchez-Schmitz G, Palma P, Nanishi E, O'Meara TR, McGrath ME, Frieman MB, Soni D, van Haren SD, Ozonoff A, Diray-Arce J, Steen H, Dowling DJ, Levy O. The mRNA vaccine BNT162b2 demonstrates impaired T H1 immunogenicity in human elders in vitro and aged mice in vivo. RESEARCH SQUARE 2022:rs.3.rs-2395118. [PMID: 36597547 PMCID: PMC9810224 DOI: 10.21203/rs.3.rs-2395118/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mRNA vaccines have been key to addressing the SARS-CoV-2 pandemic but have impaired immunogenicity and durability in vulnerable older populations. We evaluated the mRNA vaccine BNT162b2 in human in vitro whole blood assays with supernatants from adult (18-50 years) and elder (≥60 years) participants measured by mass spectrometry and proximity extension assay proteomics. BNT162b2 induced increased expression of soluble proteins in adult blood (e.g., C1S, PSMC6, CPN1), but demonstrated reduced proteins in elder blood (e.g., TPM4, APOF, APOC2, CPN1, and PI16), including 30-85% lower induction of TH1-polarizing cytokines and chemokines (e.g., IFNγ, and CXCL10). Elder TH1 impairment was validated in mice in vivo and associated with impaired humoral and cellular immunogenicity. Our study demonstrates the utility of a human in vitro platform to model age-specific mRNA vaccine activity, highlights impaired TH1 immunogenicity in older adults, and provides rationale for developing enhanced mRNA vaccines with greater immunogenicity in vulnerable populations.
Collapse
Affiliation(s)
- Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abhinav Kumar Checkervarty
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Prevention of Organ Failure (PROOF) Centre of Excellence, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, Providence Research, St Paul's Hospital, Vancouver, BC, Canada
| | - Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Cali Sweitzer
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Anna-Nicole Bosco
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Amy C Sherman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Lindsey R Baden
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Elena Morrocchi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Paolo Palma
- Bambino Gesù Children's Hospital, Rome, Italy
- Chair of Pediatrics, University of Rome, Tor Vergata, Italy
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Timothy R O'Meara
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Marisa E McGrath
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew B Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hanno Steen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| |
Collapse
|
34
|
Picard E, Armstrong S, Andrew MK, Haynes L, Loeb M, Pawelec G, Kuchel GA, McElhaney JE, Verschoor CP. Markers of systemic inflammation are positively associated with influenza vaccine antibody responses with a possible role for ILT2(+)CD57(+) NK-cells. Immun Ageing 2022; 19:26. [PMID: 35619117 PMCID: PMC9134679 DOI: 10.1186/s12979-022-00284-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/15/2022] [Indexed: 02/06/2023]
Abstract
Background With increasing age, overall health declines while systemic levels of inflammatory mediators tend to increase. Although the underlying mechanisms are poorly understood, there is a wealth of data suggesting that this so-called “inflammaging” contributes to the risk of adverse outcomes in older adults. We sought to determine whether markers of systemic inflammation were associated with antibody responses to the seasonal influenza vaccine. Results Over four seasons, hemagglutination inhibition antibody titres and ex vivo bulk peripheral blood mononuclear cell (PBMC) responses to live influenza viruses assessed via interferon (IFN)-γ/interleukin (IL)-10 production, were measured pre- and 4-weeks post-vaccination in young adults (n = 79) and older adults randomized to standard- or high-dose inactivated vaccine (n = 612). Circulating tumour necrosis factor (TNF), interleukin (IL)-6 and C-reactive protein (CRP) were also measured pre-vaccination. Post-vaccination antibody titres were significantly associated with systemic inflammatory levels; specifically, IL-6 was positively associated with A/H3N2 titres in young adults (Cohen’s d = 0.36), and in older high-dose, but not standard-dose recipients, all systemic inflammatory mediators were positively associated with A/H1N1, A/H3N2 and B titres (d = 0.10–0.45). We further show that the frequency of ILT2(+)CD57(+) CD56-Dim natural killer (NK)-cells was positively associated with both plasma IL-6 and post-vaccination A/H3N2 titres in a follow-up cohort of older high-dose recipients (n = 63). Pathway analysis suggested that ILT2(+)CD57(+) Dim NK-cells mediated 40% of the association between IL-6 and A/H3N2 titres, which may be related to underlying participant frailty. Conclusions In summary, our data suggest a complex relationship amongst influenza vaccine responses, systemic inflammation and NK-cell phenotype in older adults, which depends heavily on age, vaccine dose and possibly overall health status. While our results suggest that “inflammaging” may increase vaccine immunogenicity in older adults, it is yet to be determined whether this enhancement contributes to improved protection against influenza disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-022-00284-x.
Collapse
|
35
|
Dysregulated haemostasis in thrombo-inflammatory disease. Clin Sci (Lond) 2022; 136:1809-1829. [PMID: 36524413 PMCID: PMC9760580 DOI: 10.1042/cs20220208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Inflammatory disease is often associated with an increased incidence of venous thromboembolism in affected patients, although in most instances, the mechanistic basis for this increased thrombogenicity remains poorly understood. Acute infection, as exemplified by sepsis, malaria and most recently, COVID-19, drives 'immunothrombosis', where the immune defence response to capture and neutralise invading pathogens causes concurrent activation of deleterious prothrombotic cellular and biological responses. Moreover, dysregulated innate and adaptive immune responses in patients with chronic inflammatory conditions, such as inflammatory bowel disease, allergies, and neurodegenerative disorders, are now recognised to occur in parallel with activation of coagulation. In this review, we describe the detailed cellular and biochemical mechanisms that cause inflammation-driven haemostatic dysregulation, including aberrant contact pathway activation, increased tissue factor activity and release, innate immune cell activation and programmed cell death, and T cell-mediated changes in thrombus resolution. In addition, we consider how lifestyle changes increasingly associated with modern life, such as circadian rhythm disruption, chronic stress and old age, are increasingly implicated in unbalancing haemostasis. Finally, we describe the emergence of potential therapies with broad-ranging immunothrombotic functions, and how drug development in this area is challenged by our nascent understanding of the key molecular and cellular parameters that control the shared nodes of proinflammatory and procoagulant pathways. Despite the increasing recognition and understanding of the prothrombotic nature of inflammatory disease, significant challenges remain in effectively managing affected patients, and new therapeutic approaches to curtail the key pathogenic steps in immune response-driven thrombosis are urgently required.
Collapse
|
36
|
Alveolar macrophage metabolic programming via a C-type lectin receptor protects against lipo-toxicity and cell death. Nat Commun 2022; 13:7272. [PMID: 36433992 PMCID: PMC9700784 DOI: 10.1038/s41467-022-34935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/12/2022] [Indexed: 11/27/2022] Open
Abstract
Alveolar macrophages (AM) hold lung homeostasis intact. In addition to the defense against inhaled pathogens and deleterious inflammation, AM also maintain pulmonary surfactant homeostasis, a vital lung function that prevents pulmonary alveolar proteinosis. Signals transmitted between AM and pneumocytes of the pulmonary niche coordinate these specialized functions. However, the mechanisms that guide the metabolic homeostasis of AM remain largely elusive. We show that the NK cell-associated receptor, NKR-P1B, is expressed by AM and is essential for metabolic programming. Nkrp1b-/- mice are vulnerable to pneumococcal infection due to an age-dependent collapse in the number of AM and the formation of lipid-laden AM. The AM of Nkrp1b-/- mice show increased uptake but defective metabolism of surfactant lipids. We identify a physical relay between AM and alveolar type-II pneumocytes that is dependent on pneumocyte Clr-g expression. These findings implicate the NKR-P1B:Clr-g signaling axis in AM-pneumocyte communication as being important for maintaining metabolism in AM.
Collapse
|
37
|
Kwack KH, Zhang L, Kramer ED, Thiyagarajan R, Lamb NA, Arao Y, Bard JE, Seldeen KL, Troen BR, Blackshear PJ, Abrams SI, Kirkwood KL. Tristetraprolin limits age-related expansion of myeloid-derived suppressor cells. Front Immunol 2022; 13:1002163. [PMID: 36263047 PMCID: PMC9573970 DOI: 10.3389/fimmu.2022.1002163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Aging results in enhanced myelopoiesis, which is associated with an increased prevalence of myeloid leukemias and the production of myeloid-derived suppressor cells (MDSCs). Tristetraprolin (TTP) is an RNA binding protein that regulates immune-related cytokines and chemokines by destabilizing target mRNAs. As TTP expression is known to decrease with age in myeloid cells, we used TTP-deficient (TTPKO) mice to model aged mice to study TTP regulation in age-related myelopoiesis. Both TTPKO and myeloid-specific TTPKO (cTTPKO) mice had significant increases in both MDSC subpopulations M-MDSCs (CD11b+Ly6ChiLy6G-) and PMN-MDSCs (CD11b+Ly6CloLy6G+), as well as macrophages (CD11b+F4/80+) in the spleen and mesenteric lymph nodes; however, no quantitative changes in MDSCs were observed in the bone marrow. In contrast, gain-of-function TTP knock-in (TTPKI) mice had no change in MDSCs compared with control mice. Within the bone marrow, total granulocyte-monocyte progenitors (GMPs) and monocyte progenitors (MPs), direct antecedents of M-MDSCs, were significantly increased in both cTTPKO and TTPKO mice, but granulocyte progenitors (GPs) were significantly increased only in TTPKO mice. Transcriptomic analysis of the bone marrow myeloid cell populations revealed that the expression of CC chemokine receptor 2 (CCR2), which plays a key role in monocyte mobilization to inflammatory sites, was dramatically increased in both cTTPKO and TTPKO mice. Concurrently, the concentration of CC chemokine ligand 2 (CCL2), a major ligand of CCR2, was high in the serum of cTTPKO and TTPKO mice, suggesting that TTP impacts the mobilization of M-MDSCs from the bone marrow to inflammatory sites during aging via regulation of the CCR2-CCL2 axis. Collectively, these studies demonstrate a previously unrecognized role for TTP in regulating age-associated myelopoiesis through the expansion of specific myeloid progenitors and M-MDSCs and their recruitment to sites of injury, inflammation, or other pathologic perturbations.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Lixia Zhang
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Elliot D. Kramer
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Departments of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ramkumar Thiyagarajan
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, NY, United States
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, United States
| | - Natalie A. Lamb
- Department of Biochemistry, University at Buffalo, Buffalo, NY, United States
- Genomics and Bioinformatics Core, New York State Center of Excellence for Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Yukitomo Arao
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Jonathan E. Bard
- Department of Biochemistry, University at Buffalo, Buffalo, NY, United States
- Genomics and Bioinformatics Core, New York State Center of Excellence for Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Kenneth L. Seldeen
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, NY, United States
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, United States
| | - Bruce R. Troen
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, NY, United States
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, United States
| | - Perry J. Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
- Departments of Biochemistry & Medicine, Duke University Medical Center, Durham, NC, United States
| | - Scott I. Abrams
- Departments of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Keith L. Kirkwood
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
- Head & Neck/Plastic & Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
38
|
Zhi Y, Chen X, Cao G, Chen F, Seo HS, Li F. The effects of air pollutants exposure on the transmission and severity of invasive infection caused by an opportunistic pathogen Streptococcus pyogenes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119826. [PMID: 35932897 DOI: 10.1016/j.envpol.2022.119826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Currently, urbanization is associated with an increase in air pollutants that contribute to invasive pathogen infections by altering the host's innate immunity and antimicrobial resistance capability. Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is a gram-positive opportunistic pathogen that causes a wide range of diseases, especially in children and immunosuppressed individuals. Diesel exhaust particle (DEP), a significant constituent of particulate matter (PM), are considered a prominent risk factor for respiratory illness and circulatory diseases worldwide. Several clinical and epidemiological studies have identified a close association between PM and the prevalence of viral and bacterial infections. This study investigated the role of DEP exposure in increasing pulmonary and blood bacterial counts and mortality during GAS M1 strain infection in mice. Thus, we characterized the upregulation of reactive oxygen species production and disruption of tight junctions in the A549 lung epithelial cell line due to DEP exposure, leading to the upregulation of GAS adhesion and invasion. Furthermore, DEP exposure altered the leukocyte components of infiltrated cells in bronchoalveolar lavage fluid, as determined by Diff-Quik staining. The results highlighted the DEP-related macrophage dysfunction, neutrophil impairment, and imbalance in pro-inflammatory cytokine production via the toll-like receptor 4/mitogen-activated protein kinase signaling axis. Notably, the tolerance of the GAS biofilms toward potent antibiotics and bacterial resistance against environmental stresses was also significantly enhanced by DEP. This study aimed to provide a better understanding of the physiological and molecular interactions between exposure to invasive air pollutants and susceptibility to invasive GAS infections.
Collapse
Affiliation(s)
- Yong Zhi
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xinyu Chen
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Guangxu Cao
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fengjia Chen
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, 56212, Jeollabuk-do, Republic of Korea
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, 56212, Jeollabuk-do, Republic of Korea; Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Fang Li
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
39
|
Barman PK, Shin JE, Lewis SA, Kang S, Wu D, Wang Y, Yang X, Nagarkatti PS, Nagarkatti M, Messaoudi I, Benayoun BA, Goodridge HS. Production of MHCII-expressing classical monocytes increases during aging in mice and humans. Aging Cell 2022; 21:e13701. [PMID: 36040389 PMCID: PMC9577948 DOI: 10.1111/acel.13701] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/05/2022] [Indexed: 01/25/2023] Open
Abstract
Aging is associated with increased monocyte production and altered monocyte function. Classical monocytes are heterogenous and a shift in their subset composition may underlie some of their apparent functional changes during aging. We have previously shown that mouse granulocyte-monocyte progenitors (GMPs) produce "neutrophil-like" monocytes (NeuMo), whereas monocyte-dendritic cell progenitors (MDPs) produce monocyte-derived dendritic cell (moDC)-producing monocytes (DCMo). Here, we demonstrate that classical monocytes from the bone marrow of old male and female mice have higher expression of DCMo signature genes (H2-Aa, H2-Ab1, H2-Eb1, Cd74), and that more classical monocytes express MHCII and CD74 protein. Moreover, we show that bone marrow MDPs and classical monocytes from old mice yield more moDC. We also demonstrate higher expression of Aw112010 in old monocytes and that Aw112010 lncRNA activity regulates MHCII induction in macrophages, which suggests that elevated Aw112010 levels may underlie increased MHCII expression during monocyte aging. Finally, we show that classical monocyte expression of MHCII is also elevated during healthy aging in humans. Thus, aging-associated changes in monocyte production may underlie altered monocyte function and have implications for aging-associated disorders.
Collapse
Affiliation(s)
- Pijus K. Barman
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Research Division of Immunology in the Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Juliana E. Shin
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Research Division of Immunology in the Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Sloan A. Lewis
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for ImmunologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Seokjo Kang
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Research Division of Immunology in the Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Di Wu
- Applied Genomics, Computation and Translational Core, Cedars‐Sinai CancerCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Yizhou Wang
- Applied Genomics, Computation and Translational Core, Cedars‐Sinai CancerCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, School of MedicineUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of MedicineUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of MedicineUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Ilhem Messaoudi
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for ImmunologyUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Microbiology, Immunology and Molecular Genetics in the College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Bérénice A. Benayoun
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Biochemistry and Molecular Medicine Department, USC Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Helen S. Goodridge
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Research Division of Immunology in the Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| |
Collapse
|
40
|
Afran L, Jambo KC, Nedi W, Miles DJC, Kiran A, Banda DH, Kamg’ona R, Tembo D, Pachnio A, Nastouli E, Ferne B, Mwandumba HC, Moss P, Goldblatt D, Rowland-Jones S, Finn A, Heyderman RS. Defective Monocyte Enzymatic Function and an Inhibitory Immune Phenotype in Human Immunodeficiency Virus-Exposed Uninfected African Infants in the Era of Antiretroviral Therapy. J Infect Dis 2022; 226:1243-1255. [PMID: 35403683 PMCID: PMC9518837 DOI: 10.1093/infdis/jiac133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus-exposed uninfected (HEU) infants are a rapidly expanding population in sub-Saharan Africa and are highly susceptible to encapsulated bacterial disease in the first year of life. The mechanism of this increased risk is still poorly understood. We investigated whether human immunodeficiency virus (HIV)-exposure dysregulates HEU immunity, vaccine-antibody production, and human herpes virus amplify this effect. METHODS Thirty-four HIV-infected and 44 HIV-uninfected pregnant women were recruited into the birth cohort and observed up to 6 weeks of age; and then a subsequent 43 HIV-infected and 61 HIV-uninfected mother-infant pairs were recruited into a longitudinal infant cohort at either: 5-7 to 14-15; or 14-15 to 18-23 weeks of age. We compared monocyte function, innate and adaptive immune cell phenotype, and vaccine-induced antibody responses between HEU and HIV-unexposed uninfected (HU) infants. RESULTS We demonstrate (1) altered monocyte phagosomal function and B-cell subset homeostasis and (2) lower vaccine-induced anti-Haemophilus influenzae type b (Hib) and anti-tetanus toxoid immunoglobulin G titers in HEU compared with HU infants. Human herpes virus infection was similar between HEU and HU infants. CONCLUSIONS In the era of antiretroviral therapy-mediated viral suppression, HIV exposure may dysregulate monocyte and B-cell function, during the vulnerable period of immune maturation. This may contribute to the high rates of invasive bacterial disease and pneumonia in HEU infants.
Collapse
Affiliation(s)
- Louise Afran
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Bristol Children’s Vaccine Centre, Schools of Cellular & Molecular Medicine and of Population Health Sciences, University of Bristol, Bristol, United Kingdom
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kondwani C Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Wilfred Nedi
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - David J C Miles
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Institute of Immunology and Immunotherapy, University of Birmingham, Cancer Sciences Building, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Anmol Kiran
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Center for Inflammation Research, Queens Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Dominic H Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Ralph Kamg’ona
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Dumizulu Tembo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Annette Pachnio
- Institute of Immunology and Immunotherapy, University of Birmingham, Cancer Sciences Building, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Eleni Nastouli
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Brigit Ferne
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Henry C Mwandumba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Cancer Sciences Building, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - David Goldblatt
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Sarah Rowland-Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Adam Finn
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Robert S Heyderman
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
41
|
Abstract
Ageing leads to profound alterations in the immune system and increases susceptibility to some chronic, infectious and autoimmune diseases. In recent years, widespread application of single-cell techniques has enabled substantial progress in our understanding of the ageing immune system. These comprehensive approaches have expanded and detailed the current views of ageing and immunity. Here we review a body of recent studies that explored how the immune system ages using unbiased profiling techniques at single-cell resolution. Specifically, we discuss an emergent understanding of age-related alterations in innate and adaptive immune cell populations, antigen receptor repertoires and immune cell-supporting microenvironments of the peripheral tissues. Focusing on the results obtained in mice and humans, we describe the multidimensional data that align with established concepts of immune ageing as well as novel insights emerging from these studies. We further discuss outstanding questions in the field and highlight techniques that will advance our understanding of immune ageing in the future.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
42
|
Rectal microbiota are coupled with altered cytokine production capacity following community-acquired pneumonia hospitalization. iScience 2022; 25:104740. [PMID: 35938048 PMCID: PMC9352523 DOI: 10.1016/j.isci.2022.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/17/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Human studies describing the immunomodulatory role of the intestinal microbiota in systemic infections are lacking. Here, we sought to relate microbiota profiles from 115 patients with community-acquired pneumonia (CAP), both on hospital admission and following discharge, to concurrent circulating monocyte and neutrophil function. Rectal microbiota composition did not explain variation in cytokine responses in acute CAP (median 0%, IQR 0.0%–1.9%), but did one month following hospitalization (median 4.1%, IQR 0.0%–6.6%, p = 0.0035). Gene expression analysis of monocytes showed that undisrupted microbiota profiles following hospitalization were associated with upregulated interferon, interleukin-10, and G-protein-coupled-receptor-ligand-binding pathways. While CAP is characterized by profoundly distorted gut microbiota, the effects of these disruptions on cytokine responses and transcriptional profiles during acute infection were absent or modest. However, rectal microbiota were related to altered cytokine responses one month following CAP hospitalization, which may provide insights into potential mechanisms contributing to the high risk of recurrent infections following hospitalization. Rectal microbiota are disrupted at hospitalization for CAP and one month thereafter No variation in cytokines is explained by gut microbiota in the acute phase of CAP Following recovery, gut microbiota are linked with variation in cytokine responses
Collapse
|
43
|
Khan SR, Vanoverschelde A, Lahousse L, Peeters RP, van Hagen PM, Brusselle G, Chaker L, Dalm VASH. Serum Immunoglobulins, Pneumonia Risk, and Lung Function in Middle-Aged and Older Individuals: A Population-Based Cohort Study. Front Immunol 2022; 13:868973. [PMID: 35757724 PMCID: PMC9215210 DOI: 10.3389/fimmu.2022.868973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Immunoglobulins (Igs) play a pivotal role in host defense and prevention of pneumonia. Aging influences serum Ig levels, but the association between Igs and pneumonia in community-dwelling older individuals remains unknown. We evaluated the association of serum IgA, IgG, and IgM with pneumonia and lung function in middle-aged and older individuals. Methods We performed Cox and negative binomial regression analyses for the association of Igs with incident pneumonia and pneumonia-related mortality, and recurrent pneumonia respectively. We performed logistic regression analyses for the association between Igs and lung function values. Associations were adjusted for age, sex, smoking, comorbidities, and serum C-reactive protein. Results We included 8,766 participants (median age 62.2 years, 57% women, median follow-up 9.8 years). Higher IgA (hazard ratio [HR]: 1.15; 95% confidence interval [95% CI]: 1.00-1.32) and IgG (HR: 1.13; 95% CI: 1.06-1.19) were associated with an increased pneumonia risk. Higher IgG was associated with an increased risk of pneumonia-related mortality (HR: 1.08; 95% CI: 1.01-1.16) and recurrent pneumonia (incidence rate ratio: 1.04; 95% CI: 1.00-1.09). Higher IgA and IgG were also associated with lower forced expiratory volume in one second (FEV1), lower forced vital capacity (FVC), and an increased odds of preserved ratio impaired spirometry (PRISm, i.e. FEV1 <80% and FEV1/FVC ratio ≥70%). No association was seen with an obstructive spirometry pattern. Discussion Higher serum IgA and IgG levels were associated with pneumonia, pneumonia-related mortality, and PRISm in middle-aged and older individuals from the general population. Future studies should validate our findings and elucidate underlying pathophysiology.
Collapse
Affiliation(s)
- Samer R Khan
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Anna Vanoverschelde
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Bioanalysis, Pharmaceutical Care Unit, Ghent University, Ghent, Belgium
| | - Lies Lahousse
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Bioanalysis, Pharmaceutical Care Unit, Ghent University, Ghent, Belgium
| | - Robin P Peeters
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Guy Brusselle
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Layal Chaker
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
44
|
Lee GC, Moreira AG, Hinojosa C, Benavides R, Winter C, Anderson AC, Chen CJ, Borsa N, Hastings G, Black CA, Bandy SM, Shaffer A, Restrepo MI, Ahuja SK. Metformin Attenuates Inflammatory Responses and Enhances Antibody Production in an Acute Pneumonia Model of Streptococcus pneumoniae. FRONTIERS IN AGING 2022; 3:736835. [PMID: 35821804 PMCID: PMC9261336 DOI: 10.3389/fragi.2022.736835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 04/06/2022] [Indexed: 01/09/2023]
Abstract
Metformin may potentially reverse various age-related conditions; however, it is unclear whether metformin can also mitigate or delay the deterioration of immunological resilience that occurs in the context of infections that are commonly observed in older persons. We examined whether metformin promotes the preservation of immunological resilience in an acute S. pneumoniae (SPN) infection challenge in young adult mice. Mice were fed metformin (MET-alone) or standard chow (controls-alone) for 10 weeks prior to receiving intratracheal inoculation of SPN. A subset of each diet group received pneumococcal conjugate vaccine at week 6 (MET + PCV and control + PCV). Compared to controls-alone, MET-alone had significantly less infection-associated morbidity and attenuated inflammatory responses during acute SPN infection. Metformin lowered the expression of genes in the lungs related to inflammation as well as shorter lifespan in humans. This was accompanied by significantly lower levels of pro-inflammatory cytokines (e.g., IL6). MET + PCV vs. control + PCV manifested enhanced SPN anticapsular IgM and IgG levels. The levels of SPN IgM production negatively correlated with expression levels of genes linked to intestinal epithelial structure among MET + PCV vs. control + PCV groups. Correspondingly, the gut microbial composition of metformin-fed mice had a significantly higher abundance in the Verrucomicrobia, Akkermansia muciniphila, a species previously associated with beneficial effects on intestinal integrity and longevity. Together, these findings indicate metformin's immunoprotective potential to protect against infection-associated declines in immunologic resilience.
Collapse
Affiliation(s)
- Grace C. Lee
- College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
- Pharmacotherapy Education and Research Center, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- The Foundation for Advancing Veterans’ Health Research, San Antonio, TX, United States
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Alvaro G. Moreira
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Cecilia Hinojosa
- Department Pulmonary Diseases and Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Raymond Benavides
- College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
- Pharmacotherapy Education and Research Center, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Caitlyn Winter
- The Foundation for Advancing Veterans’ Health Research, San Antonio, TX, United States
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Audrey C. Anderson
- College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Chang-Jui Chen
- College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Noemi Borsa
- Department Pulmonary Diseases and Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- South Texas Veterans Health Care System, San Antonio, TX, United States
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gabrielyd Hastings
- Department Pulmonary Diseases and Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Cody A. Black
- College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
- Pharmacotherapy Education and Research Center, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Sarah M. Bandy
- College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
- Pharmacotherapy Education and Research Center, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alexander Shaffer
- Department Pulmonary Diseases and Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Marcos I. Restrepo
- Department Pulmonary Diseases and Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Sunil K. Ahuja
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States
- South Texas Veterans Health Care System, San Antonio, TX, United States
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
45
|
Duong L, Pixley FJ, Nelson DJ, Jackaman C. Aging Leads to Increased Monocytes and Macrophages With Altered CSF-1 Receptor Expression and Earlier Tumor-Associated Macrophage Expansion in Murine Mesothelioma. FRONTIERS IN AGING 2022; 3:848925. [PMID: 35821822 PMCID: PMC9261395 DOI: 10.3389/fragi.2022.848925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/12/2022] [Indexed: 11/15/2022]
Abstract
Increased cancer incidence occurs with the emergence of immunosenescence, highlighting the indispensability of the immune system in preventing cancer and its dysregulation with aging. Tumor-associated macrophages (TAMs) are often present in high numbers and are associated with poor clinical outcomes in solid cancers, including mesothelioma. Monocytes and macrophages from the bone marrow and spleen can respond to tumor-derived factors, such as CSF-1, and initiation of the CSF-1R signaling cascade results in their proliferation, differentiation, and migration to the tumor. Age-related changes occur in monocytes and macrophages in terms of numbers and function, which in turn can impact tumor initiation and progression. Whether this is due to changes in CSF-1R expression with aging is currently unknown and was investigated in this study. We examined monocytes and macrophages in the bone marrow and spleen during healthy aging in young (3–4 months) and elderly (20–24 months) female C57BL/6J mice. Additionally, changes to these tissues and in TAMs were examined during AE17 mesothelioma tumor growth. Healthy aging resulted in an expansion of Ly6Chigh monocytes and macrophages in the bone marrow and spleen. CSF-1R expression levels were reduced in elderly splenic macrophages only, suggesting differences in CSF-1R signaling between both cell type and tissue site. In tumor-bearing mice, Ly6Chigh monocytes increased with tumor growth in the spleen in the elderly and increased intracellular CSF-1R expression occurred in bone marrow Ly6Chigh monocytes in elderly mice bearing large tumors. Age-related changes to bone marrow and splenic Ly6Chigh monocytes were reflected in the tumor, where we observed increased Ly6Chigh TAMs earlier and expansion of Ly6Clow TAMs later during AE17 tumor growth in the elderly compared to young mice. F4/80high TAMs increased with tumor growth in both young and elderly mice and were the largest subset of TAMs in the tumor. Together, this suggests there may be a faster transition of Ly6Chigh towards F4/80high TAMs with aging. Amongst TAM subsets, expression of CSF-1R was lowest in F4/80high TAMs, however Ly6Clow TAMs had higher intracellular CSF-1R expression. This suggests downstream CSF-1R signaling may vary between macrophage subsets, which can have implications towards CSF-1R blockade therapies targeting macrophages in cancer.
Collapse
Affiliation(s)
- Lelinh Duong
- Curtin Medical School, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Fiona J. Pixley
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Delia J. Nelson
- Curtin Medical School, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Connie Jackaman
- Curtin Medical School, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- *Correspondence: Connie Jackaman,
| |
Collapse
|
46
|
Wallis ZK, Williams KC. Monocytes in HIV and SIV Infection and Aging: Implications for Inflamm-Aging and Accelerated Aging. Viruses 2022; 14:409. [PMID: 35216002 PMCID: PMC8880456 DOI: 10.3390/v14020409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Before the antiretroviral therapy (ART) era, people living with HIV (PLWH) experienced complications due to AIDS more so than aging. With ART and the extended lifespan of PLWH, HIV comorbidities also include aging-most likely due to accelerated aging-as well as a cardiovascular, neurocognitive disorders, lung and kidney disease, and malignancies. The broad evidence suggests that HIV with ART is associated with accentuated aging, and that the age-related comorbidities occur earlier, due in part to chronic immune activation, co-infections, and possibly the effects of ART alone. Normally the immune system undergoes alterations of lymphocyte and monocyte populations with aging, that include diminished naïve T- and B-lymphocyte numbers, a reliance on memory lymphocytes, and a skewed production of myeloid cells leading to age-related inflammation, termed "inflamm-aging". Specifically, absolute numbers and relative proportions of monocytes and monocyte subpopulations are skewed with age along with myeloid mitochondrial dysfunction, resulting in increased accumulation of reactive oxygen species (ROS). Additionally, an increase in biomarkers of myeloid activation (IL-6, sCD14, and sCD163) occurs with chronic HIV infection and with age, and may contribute to immunosenescence. Chronic HIV infection accelerates aging; meanwhile, ART treatment may slow age-related acceleration, but is not sufficient to stop aging or age-related comorbidities. Overall, a better understanding of the mechanisms behind accentuated aging with HIV and the effects of myeloid activation and turnover is needed for future therapies.
Collapse
|
47
|
Kurago Z, Loveless J. Microbial Colonization and Inflammation as Potential Contributors to the Lack of Therapeutic Success in Oral Squamous Cell Carcinoma. FRONTIERS IN ORAL HEALTH 2022; 2:739499. [PMID: 35048056 PMCID: PMC8757816 DOI: 10.3389/froh.2021.739499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
This review discusses the microenvironment of evolving and established conventional oral squamous cell carcinoma, by far the most common oral cancer. The focus of this paper is mainly on the more recent data that describe the role of microorganisms, host-microbial interactions, and in particular, the contributions of cell-surface toll-like receptors on immune system cells and on normal and malignant epithelial cells to their functions that support carcinogenesis. Because carcinomas arising at various host surfaces share much in common, additional information available from studies of other carcinomas is included in the discussion. Accumulating evidence reveals the complex toll-like receptor-mediated tumor-supporting input into many aspects of carcinogenesis via malignant cells, stromal immune cells and non-immune cells, complicating the search for effective treatments.
Collapse
Affiliation(s)
- Zoya Kurago
- Augusta University Dental College of Georgia, Augusta, GA, United States.,Medical College of Georgia, Augusta, GA, United States.,Georgia Cancer Center, Augusta, GA, United States
| | - Jenni Loveless
- Augusta University Dental College of Georgia, Augusta, GA, United States
| |
Collapse
|
48
|
Barman PK, Goodridge HS. Microbial Sensing by Hematopoietic Stem and Progenitor Cells. Stem Cells 2022; 40:14-21. [PMID: 35511863 PMCID: PMC9072977 DOI: 10.1093/stmcls/sxab007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023]
Abstract
Balanced production of immune cells is critical for the maintenance of steady-state immune surveillance, and increased production of myeloid cells is sometimes necessary to eliminate pathogens. Hematopoietic stem and progenitor cell (HSPC) sensing of commensal microbes and invading pathogens has a notable impact on hematopoiesis. In this review, we examine how commensal microbes regulate bone marrow HSPC activity to maintain balanced hematopoiesis in the steady state, and how HSPCs proliferate and differentiate during emergency myelopoiesis in response to infection. HSPCs express a variety of pattern recognition receptors and cytokine receptors that they use to sense the presence of microbes, either directly via detection of microbial components and metabolites, or indirectly by responding to cytokines produced by other host cells. We describe direct and indirect mechanisms of microbial sensing by HSPCs and highlight evidence demonstrating long-term effects of acute and chronic microbial stimuli on HSPCs. We also discuss a possible connection between myeloid-biased hematopoiesis and elevated levels of circulating microbiome-derived components in the context of aging and metabolic stress. Finally, we highlight the prospect of trained immunity-based vaccines that could exploit microbial stimulation of HSPCs.
Collapse
Affiliation(s)
- Pijus K Barman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Helen S Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Corresponding author: Helen S. Goodridge, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
49
|
Serre-Miranda C, Roque S, Barreira-Silva P, Nobrega C, Vieira N, Costa P, Palha JA, Correia-Neves M. Age-related sexual dimorphism on the longitudinal progression of blood immune cells in BALB/cByJ mice. J Gerontol A Biol Sci Med Sci 2021; 77:883-891. [PMID: 34741509 PMCID: PMC9071472 DOI: 10.1093/gerona/glab330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 11/29/2022] Open
Abstract
The study of immune system aging is of relevance, considering its myriad of interactions and role in protecting and maintaining body homeostasis. While mouse models have been extensively used to study immune system aging, little is known on how the main immune populations progress over time and what is the impact of sex. To contribute to filling this gap, male and female BALB/cByJ mice were longitudinally evaluated, from 3 to 18 months old, for the main blood populations, assessed by flow cytometry. Using linear mixed-effect models, we observed that the percentages of neutrophils, monocytes, eosinophils, and total natural killer (NK) cells increase with aging, while those of B cells, T cells (including CD4+ and CD8+ subsets), and Ly6C+ NK cells decrease. Males present higher percentages of neutrophils and classical monocytes Ly6Chigh over time, while females present higher percentages of total T cells, both CD4+ and CD8+, eosinophils, and NK cells. Males and females display similar percentages of B cells, even though with opposite accelerated progressions over time. This study revealed that mouse models recapitulate what is observed in humans during aging: an overall proportional decrease in the adaptive and an increase in the innate immune cells. Additionally, it uncovers an age-related sexual dimorphism in the proportion of immune cells in circulation, further strengthening the need to explore the impact of sex when addressing immune system aging using mouse models.
Collapse
Affiliation(s)
- Cláudia Serre-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Palmira Barreira-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Claudia Nobrega
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrício Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Almeida Palha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
50
|
Santoro A, Bientinesi E, Monti D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? Ageing Res Rev 2021; 71:101422. [PMID: 34391943 DOI: 10.1016/j.arr.2021.101422] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
During aging the immune system (IS) undergoes remarkable changes that collectively are known as immunosenescence. It is a multifactorial and dynamic phenomenon that affects both natural and acquired immunity and plays a critical role in most chronic diseases in older people. For a long time, immunosenescence has been considered detrimental because it may lead to a low-grade, sterile chronic inflammation we proposed to call "inflammaging" and a progressive reduction in the ability to trigger effective antibody and cellular responses against infections and vaccinations. Recently, many scientists revised this negative meaning because it can be considered an essential adaptation/remodeling resulting from the lifelong immunological biography of single individuals from an evolutionary perspective. Inflammaging can be considered an adaptive process because it can trigger an anti-inflammatory response to counteract the age-related pro-inflammatory environment. Centenarians represent a valuable model to study the beneficial changes occurring in the IS with age. These extraordinary individuals reached the extreme limits of human life by slowing down the aging process and, in most cases, delaying, avoiding or surviving the major age-associated diseases. They indeed show a complex and heterogeneous phenotype determined by an improved ability to adapt and remodel in response to harmful stimuli. This review aims to point out the intimate relationship between immunosenescence and inflammaging and how these processes impact unsuccessful aging rather than longevity. We also describe the gut microbiota age-related changes as one of the significant triggers of inflammaging and the sex/gender differences in the immune system of the elderly, contributing to the sex/gender disparity in terms of epidemiology, pathophysiology, symptoms and severity of age-related diseases. Finally, we discuss how these phenomena could influence the susceptibility to COVID-19 infection.
Collapse
|