1
|
Yang D, Wu M, Zou N, Tang Y, Tao Q, Liu L, Jin M, Yu L, Du J, Luo Q, Shen J, Chu D, Qin K. Knockdown of DJ-1 Exacerbates Neuron Apoptosis Induced by TgCtwh3 through the NF-κB Pathway. Mol Neurobiol 2025; 62:123-136. [PMID: 38831169 PMCID: PMC11711788 DOI: 10.1007/s12035-024-04265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/25/2024] [Indexed: 06/05/2024]
Abstract
Mutations or loss of function of DJ-1 and Toxoplasma gondii (T. gondii) infection has been linked to neurodegenerative diseases, which are often caused by oxidative stress. However, the relationship between DJ-1 and T. gondii infection is not yet fully understood. Therefore, this study aimed to investigate the expression of DJ-1 in the hippocampus tissue of mice or in HT22 infected with T. gondii Chinese 1 genotype Wh3 strain (TgCtwh3) and the effect of DJ-1 knockdown on neuronal apoptosis induced by TgCtwh3 tachyzoite, as well as the underlying mechanism at the cellular and molecular level. Firstly, we detected DJ-1 protein expression and cell apoptosis in the hippocampal tissue of mice infected by TgCtwh3. Then, we examined DJ-1 expression and apoptosis in HT22 challenged with TgCtwh3. Finally, we evaluated the apoptosis in HT22 with DJ-1 knockdown which was infected with TgCtwh3 and assayed the expression of NF-κBp65 and p-NF-κBp65. Our results showed that DJ-1 expression was reduced and neurons underwent apoptosis in the hippocampus of mice infected with TgCtwh3 tachyzoites. Additionally, the knockdown of DJ-1 followed by infection with TgCtwh3 tachyzoites led to increased apoptosis in HT22 cells through the NF-κB signaling pathway. Therefore, this study suggests that DJ-1 is an important target for preventing apoptosis caused by T. gondii TgCtwh3.
Collapse
Affiliation(s)
- Di Yang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Minmin Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Nian Zou
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yiru Tang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Qing Tao
- Center for Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Lei Liu
- Department of Blood Transfusion, Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Mengmeng Jin
- Maternity and Child Health Hospital of Anhui Province, the Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qingli Luo
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Deyong Chu
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Kunpeng Qin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, Anhui, China.
| |
Collapse
|
2
|
Gulshan JE, Lira SS, Qusar MMAS, Hosen MI, Rahman A, Islam MR, Rahman T. Association Between Toxoplasma gondii Infection and Serum Neurotransmitter Levels in Major Depressive Disorder Patients: A Case-Control Study in Bangladesh. J Parasitol Res 2024; 2024:7054920. [PMID: 39735412 PMCID: PMC11671603 DOI: 10.1155/japr/7054920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 12/31/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate, intracellular, neurotropic protozoan parasite. After primary infection, T. gondii parasite undergoes stage conversion from fast-replicating tachyzoites to slow-replicating dormant bradyzoites, particularly in the brain, and persists for a lifetime of an individual. In this study, the impact of T. gondii infection in individuals with psychological disorder, that is, major depressive disorder (MDD) has been studied. Ninety-five MDD (n = 95) patients were enrolled with age and sex-matched healthy controls (HCs, n = 90). The seroprevalence of T. gondii infection among these individuals was determined using the TOXO IgM/IgG Rapid Test Cassette that determines the anti-T. gondii IgM and IgG antibodies in the serum samples. Furthermore, to understand the impact of T. gondii in developing major depression, the serum level of neurotransmitters (i.e., dopamine, adrenaline, and noradrenaline) was determined using an enzyme-linked immunosorbent assay (ELISA). Our data suggest that anti-T. gondii IgG was slightly higher in MDD patients than in HCs. The level of dopamine was significantly lower in T. gondii-infected MDD patients than in HCs. However, adrenaline and noradrenaline levels showed increasing levels in T. gondii-infected MDD patients. The level of neurotransmitters was correlated with the DSM-D scores of MDD patients. These data, nevertheless, confirm that T. gondii might affect the level of neurotransmitters in MDD patients. However, whether the reduced level of dopamine and increased level of adrenaline and noradrenaline act as contributing factors for the development of MDD is yet to be known.
Collapse
Affiliation(s)
- Jerin E. Gulshan
- Laboratory of Infection Biology, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Samia Sultana Lira
- Laboratory of Infection Biology, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Md. Ismail Hosen
- Laboratory of Clinical Biochemistry and Translational Medicine, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Atiqur Rahman
- Laboratory of Infection Biology, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Taibur Rahman
- Laboratory of Infection Biology, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
3
|
Yang Z, Chen J, Zhang C, Peng H. Pathological mechanisms of glial cell activation and neurodegenerative and neuropsychiatric disorders caused by Toxoplasma gondii infection. Front Microbiol 2024; 15:1512233. [PMID: 39723133 PMCID: PMC11668811 DOI: 10.3389/fmicb.2024.1512233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Toxoplasma gondii is an intracellular opportunistic parasite that exists in a latent form within the human central nervous system (CNS), even in immune-competent hosts. During acute infection, T. gondii traverses the blood-brain barrier (BBB). In the subsequent chronic infection phase, the infiltration of immune cells into the brain, driven by T. gondii infection and the formation of parasitic cysts, leads to persistent activation and proliferation of astrocytes and microglia. This process results in neuronal damages that are fatal in some cases. Through inducing systemic immune responses, T. gondii infection can dramatically alter the behavior of rodents and increase the risk of various neuropsychiatric disorders in humans. In this review, we explore some recent research progress on the major events involved in BBB disruption, glial cell activation and neuronal damage following T. gondii infection in hosts. It further discusses potential pathological mechanisms and the feasible treatment approaches for the neurodegenerative and neuropsychiatric disorders caused by T. gondii infection to extend our understanding for pathogenesis and preventive control of toxoplasmosis in humans.
Collapse
Affiliation(s)
| | | | | | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Sleda MA, Pitafi ZF, Song W, Oldfield E, Moreno SNJ. Lipophilic bisphosphonates reduced cyst burden and ameliorated hyperactivity of mice chronically infected with Toxoplasma gondii. mBio 2024; 15:e0175624. [PMID: 39387586 PMCID: PMC11558998 DOI: 10.1128/mbio.01756-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/23/2024] [Indexed: 10/15/2024] Open
Abstract
The current treatments for toxoplasmosis are only active against fast-growing tachyzoites, present in acute infections, with little effect on slow-growing bradyzoites within tissue cysts, present in latent chronic infections. The mitochondrion of Toxoplasma gondii is essential for its survival, and one of the major anti-parasitic drugs, atovaquone, inhibits the mitochondrial electron transport chain at the coenzyme Q:cytochrome c oxidoreductase site. Coenzyme Q (also known as ubiquinone [UQ]) consists of a quinone head and a lipophilic, isoprenoid tail that anchors UQ to membranes. The synthesis of the isoprenoid unit is essential for cell growth and is inhibited by lipophilic bisphosphonates, which inhibit the parasite growth. In this work, we investigated the effect of lipophilic bisphosphonates on the chronic stages of T. gondii. We discovered that three lipophilic bisphosphonates (BPH-1218, BPH-1236, and BPH-1238), effective for the acute infection, were also effective in controlling the development of chronic stages. We showed effectiveness by testing them against in vitro cysts and in vivo derived tissue cysts and, most importantly, these compounds reduced the cyst burden in the brains of chronically infected mice. We monitored the activity of infected mice non-invasively and continuously with a novel device termed the CageDot. A decrease in activity accompanied the acute phase, but mice recovered to normal activity and showed signs of hyperactivity when the chronic infection was established. Moreover, treatment with atovaquone or BPH-1218 ameliorated the hyperactivity observed during the chronic infection.IMPORTANCETreatment for toxoplasmosis is challenged by a lack of effective drugs to eradicate the chronic stages. Most of the drugs currently used are poorly distributed to the central nervous system, and they trigger allergic reactions in a large number of patients. There is a compelling need for safe and effective treatments for toxoplasmosis. Bisphosphonates (BPs) are analogs of inorganic pyrophosphate and are used for the treatment of bone disorders. BPs target the isoprenoid pathway and are effective against several experimental parasitic infections. Some lipophilic BPs can specifically inhibit the mitochondrial activity of Toxoplasma gondii by interfering with the mechanism by which ubiquinone is inserted into the inner mitochondrial membrane. In this work, we present the effect of three lipophilic BPs against T. gondii chronic stages. We also present a new strategy for the monitoring of animal activity during disease and treatment that is non-invasive and continuous.
Collapse
Affiliation(s)
- Melissa A. Sleda
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Zaid F. Pitafi
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia, USA
| | - WenZhan Song
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia, USA
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Mani R, Suzuki Y. The Absence of CXCL10 Activity Does Not Affect the Capability of CD8 + T Cells to Migrate and Eliminate the Tissue Cysts of Toxoplasma gondii from the Brains of Chronically Infected Mice. Microorganisms 2024; 12:2172. [PMID: 39597561 PMCID: PMC11596037 DOI: 10.3390/microorganisms12112172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Toxoplasma gondii forms tissue cysts in neurons and astrocytes in the brain to establish chronic infection, and astrocytes express the CXCL10 chemokine in chronically infected mice. Since chemokines mediate the migration of T cells to attack their targets, and since CXCL10 plays key roles in T cell-mediated control of the proliferation of tachyzoites (the acute stage form) of T. gondii during the acute stage of infection, we examined whether CXCL10 is involved in recruiting anti-cyst CD8+ cytotoxic T cells to eliminate the cysts in their brains. We employed adoptive transfer of CD8+ immune T cells to infected, T cell-deficient SCID and RAG1-/- mice in combination with blocking CXCL10 activity by neutralizing antibody or a deletion of this chemokine gene. The treatment of chronically infected (infected and treated with sulfadiazine) SCID mice with the anti-CXCL10 antibody did not inhibit the recruitment of the transferred CD8+ T cells into their brains and the removal of cerebral T. gondii cysts by the T cells. In addition, the neutralization of CXCL10 did not reduce the cerebral expression of mRNA for the mediators (perforin and granzyme B [GzmB]) of the cytotoxic activity of CD8+ T cells in the SCID mice. Consistently, the adoptive transfer of CD8+ immune T cells to chronically infected RAG1-/-CXCL10-/- mice did not show any defects in recruiting the CD8+ T cells into their brains and eliminating the cysts when compared to infected RAG1-/- mice. The former rather displayed enhanced cyst removal with increased cerebral expression of GzmB mRNA. These results indicate that the absence of CXCL10 activity does not ablate the capability of CD8+ cytotoxic T cells to migrate into the brain and eliminate T. gondii cysts from the brains of chronically infected mice. These results also suggest that the immune system utilizes distinct chemokines to control T. gondii depending on the two different life cycle stages, tachyzoite and cyst, of this protozoan parasite.
Collapse
Affiliation(s)
| | - Yasuhiro Suzuki
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
6
|
Carrillo GL, Su J, Cawley ML, Wei D, Gill SK, Blader IJ, Fox MA. Complement-dependent loss of inhibitory synapses on pyramidal neurons following Toxoplasma gondii infection. J Neurochem 2024; 168:3365-3385. [PMID: 36683435 PMCID: PMC10363253 DOI: 10.1111/jnc.15770] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023]
Abstract
The apicomplexan parasite Toxoplasma gondii has developed mechanisms to establish a central nervous system infection in virtually all warm-blooded animals. Acute T. gondii infection can cause neuroinflammation, encephalitis, and seizures. Meanwhile, studies in humans, nonhuman primates, and rodents have linked chronic T. gondii infection with altered behavior and increased risk for neuropsychiatric disorders, including schizophrenia. These observations and associations raise questions about how this parasitic infection may alter neural circuits. We previously demonstrated that T. gondii infection triggers the loss of inhibitory perisomatic synapses, a type of synapse whose dysfunction or loss has been linked to neurological and neuropsychiatric disorders. We showed that phagocytic cells (including microglia and infiltrating monocytes) contribute to the loss of these inhibitory synapses. Here, we show that these phagocytic cells specifically ensheath excitatory pyramidal neurons, leading to the preferential loss of perisomatic synapses on these neurons and not those on cortical interneurons. Moreover, we show that infection induces an increased expression of the complement C3 gene, including by populations of these excitatory neurons. Infecting C3-deficient mice with T. gondii revealed that C3 is required for the loss of perisomatic inhibitory synapses. Interestingly, loss of C1q did not prevent the loss of perisomatic synapses following infection. Together, these findings provide evidence that T. gondii induces changes in excitatory pyramidal neurons that trigger the selective removal of inhibitory perisomatic synapses and provide a role for a nonclassical complement pathway in the remodeling of inhibitory circuits in the infected brain.
Collapse
Affiliation(s)
- Gabriela L. Carrillo
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Jianmin Su
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Mikel L. Cawley
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Derek Wei
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Simran K. Gill
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- Department of Psychology, Roanoke College, Salem, Virginia, 24153, USA
- NeuroSURF Program, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, 14203, USA
| | - Michael A. Fox
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, 24016, USA
| |
Collapse
|
7
|
Bracha S, Johnson HJ, Pranckevicius NA, Catto F, Economides AE, Litvinov S, Hassi K, Rigoli MT, Cheroni C, Bonfanti M, Valenti A, Stucchi S, Attreya S, Ross PD, Walsh D, Malachi N, Livne H, Eshel R, Krupalnik V, Levin D, Cobb S, Koumoutsakos P, Caporale N, Testa G, Aguzzi A, Koshy AA, Sheiner L, Rechavi O. Engineering Toxoplasma gondii secretion systems for intracellular delivery of multiple large therapeutic proteins to neurons. Nat Microbiol 2024; 9:2051-2072. [PMID: 39075233 PMCID: PMC11306108 DOI: 10.1038/s41564-024-01750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/05/2024] [Indexed: 07/31/2024]
Abstract
Delivering macromolecules across biological barriers such as the blood-brain barrier limits their application in vivo. Previous work has demonstrated that Toxoplasma gondii, a parasite that naturally travels from the human gut to the central nervous system (CNS), can deliver proteins to host cells. Here we engineered T. gondii's endogenous secretion systems, the rhoptries and dense granules, to deliver multiple large (>100 kDa) therapeutic proteins into neurons via translational fusions to toxofilin and GRA16. We demonstrate delivery in cultured cells, brain organoids and in vivo, and probe protein activity using imaging, pull-down assays, scRNA-seq and fluorescent reporters. We demonstrate robust delivery after intraperitoneal administration in mice and characterize 3D distribution throughout the brain. As proof of concept, we demonstrate GRA16-mediated brain delivery of the MeCP2 protein, a putative therapeutic target for Rett syndrome. By characterizing the potential and current limitations of the system, we aim to guide future improvements that will be required for broader application.
Collapse
Affiliation(s)
- Shahar Bracha
- Department of Neurobiology, Biochemistry and Biophysics, Wise Faculty of Life Sciences and Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
| | - Hannah J Johnson
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
- Departments of Neurology and Immunobiology, College of Medicine, and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Nicole A Pranckevicius
- Centre for Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Francesca Catto
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Athena E Economides
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sergey Litvinov
- Computational Science and Engineering Laboratory, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Karoliina Hassi
- Centre for Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Marco Tullio Rigoli
- Human Technopole, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Cristina Cheroni
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | | - Alessia Valenti
- Human Technopole, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Sarah Stucchi
- Human Technopole, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Shruti Attreya
- Undergraduate Biology Research Program, University of Arizona, Tucson, AZ, USA
| | - Paul D Ross
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniel Walsh
- Centre for Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | - Stuart Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Petros Koumoutsakos
- Computational Science and Engineering Laboratory, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Nicolò Caporale
- Human Technopole, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Giuseppe Testa
- Human Technopole, Milan, Italy.
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Anita A Koshy
- Departments of Neurology and Immunobiology, College of Medicine, and BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| | - Lilach Sheiner
- Centre for Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Oded Rechavi
- Department of Neurobiology, Biochemistry and Biophysics, Wise Faculty of Life Sciences and Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Kang Y, Zhang X, Zhang L, Huang M, Tang C, Zhang L. Cerebral toxoplasmosis mimicking stroke in a woman living with undiagnosed HIV. J Infect Public Health 2024; 17:102477. [PMID: 38905925 DOI: 10.1016/j.jiph.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024] Open
Abstract
Toxoplasma gondii is an opportunistic pathogen that can intrude into the blood-brain barrier and reside in the brain only with low inflammatory reaction. When infected with HIV, the immune system becomes severely compromised and leads to the reactivation of latent toxoplasmosis infection, which can mimic the clinical manifestation of stroke. We report a case of a 65-year-old female patient who presented with sudden right limb weakness, walking difficulty, and numbness without other typical symptoms, raising suspicion of acute ischemic stroke. The HIV serology returned positive, which expedited the diagnostic workup for opportunistic infection. Combining imageological examination and metagenomics next-generation sequencing of cerebrospinal fluid, HIV-associated cerebral toxoplasmosis was confirmed. The patient underwent treatment for toxoplasmosis and HIV. Six months after onset, the patient can walk independently but still exhibits weakness in the right upper limb. In HIV-infected patients, cerebral toxoplasmosis, particularly presenting as isolated stroke-like episodes, poses a more significant challenge, emphasizing the need for more thorough investigations to reduce the potential for misdiagnosis.
Collapse
Affiliation(s)
- Yulai Kang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLA, Army Medical University, Chongqing, China; Department of Internal Medicine, No. 93285 Hospital of PLA, Jilin, China
| | - Xinqin Zhang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLA, Army Medical University, Chongqing, China
| | - Lei Zhang
- Department of Internal Medicine, No. 93285 Hospital of PLA, Jilin, China
| | - Mei Huang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLA, Army Medical University, Chongqing, China
| | - Chunhua Tang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLA, Army Medical University, Chongqing, China
| | - Lili Zhang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLA, Army Medical University, Chongqing, China.
| |
Collapse
|
9
|
Porte R, Belloy M, Audibert A, Bassot E, Aïda A, Alis M, Miranda-Capet R, Jourdes A, van Gisbergen KPJM, Masson F, Blanchard N. Protective function and differentiation cues of brain-resident CD8+ T cells during surveillance of latent Toxoplasma gondii infection. Proc Natl Acad Sci U S A 2024; 121:e2403054121. [PMID: 38838017 PMCID: PMC11181119 DOI: 10.1073/pnas.2403054121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Chronic Toxoplasma gondii infection induces brain-resident CD8+ T cells (bTr), but the protective functions and differentiation cues of these cells remain undefined. Here, we used a mouse model of latent infection by T. gondii leading to effective CD8+ T cell-mediated parasite control. Thanks to antibody depletion approaches, we found that peripheral circulating CD8+ T cells are dispensable for brain parasite control during chronic stage, indicating that CD8+ bTr are able to prevent brain parasite reactivation. We observed that the retention markers CD69, CD49a, and CD103 are sequentially acquired by brain parasite-specific CD8+ T cells throughout infection and that a majority of CD69/CD49a/CD103 triple-positive (TP) CD8+ T cells also express Hobit, a transcription factor associated with tissue residency. This TP subset develops in a CD4+ T cell-dependent manner and is associated with effective parasite control during chronic stage. Conditional invalidation of Transporter associated with Antigen Processing (TAP)-mediated major histocompatibility complex (MHC) class I presentation showed that presentation of parasite antigens by glutamatergic neurons and microglia regulates the differentiation of CD8+ bTr into TP cells. Single-cell transcriptomic analyses revealed that resistance to encephalitis is associated with the expansion of stem-like subsets of CD8+ bTr. In summary, parasite-specific brain-resident CD8+ T cells are a functionally heterogeneous compartment which autonomously ensure parasite control during T. gondii latent infection and which differentiation is shaped by neuronal and microglial MHC I presentation. A more detailed understanding of local T cell-mediated immune surveillance of this common parasite is needed for harnessing brain-resident CD8+ T cells in order to enhance control of chronic brain infections.
Collapse
Affiliation(s)
- Rémi Porte
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Marcy Belloy
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Alexis Audibert
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Emilie Bassot
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Amel Aïda
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Marine Alis
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Romain Miranda-Capet
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Aurélie Jourdes
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | | | - Frédérick Masson
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Nicolas Blanchard
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| |
Collapse
|
10
|
Uzelac A, Klun I, Djurković-Djaković O. Early immune response to Toxoplasma gondii lineage III isolates of different virulence phenotype. Front Cell Infect Microbiol 2024; 14:1414067. [PMID: 38912206 PMCID: PMC11190176 DOI: 10.3389/fcimb.2024.1414067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Toxoplasma gondii is an intracellular parasite of importance to human and veterinary health. The structure and diversity of the genotype population of T. gondii varies considerably with respect to geography, but three lineages, type I, II and III, are distributed globally. Lineage III genotypes are the least well characterized in terms of biology, host immunity and virulence. Once a host is infected with T.gondii, innate immune mechanisms are engaged to reduce the parasite burden in tissues and create a pro-inflammatory environment in which the TH1 response develops to ensure survival. This study investigated the early cellular immune response of Swiss-Webster mice post intraperitoneal infection with 10 tachyzoites of four distinct non-clonal genotypes of lineage III and a local isolate of ToxoDB#1. The virulence phenotype, cumulative mortality (CM) and allele profiles of ROP5, ROP16, ROP18 and GRA15 were published previously. Methods Parasite dissemination in different tissues was analyzed by real-time PCR and relative expression levels of IFNγ, IL12-p40, IL-10 and TBX21 in the cervical lymph nodes (CLN), brain and spleen were calculated using the ΔΔCt method. Stage conversion was determined by detection of the BAG1 transcript in the brain. Results Tissue dissemination depends on the virulence phenotype but not CM, while the TBX21 and cytokine levels and kinetics correlate better with CM than virulence phenotype. The earliest detection of BAG1 was seven days post infection. Only infection with the genotype of high CM (69.4%) was associated with high T-bet levels in the CLN 24 h and high systemic IFNγ expression which was sustained over the first week, while infection with genotypes of lower CM (38.8%, 10.7% and 6.8%) is characterized by down-regulation and/or low systemic levels of IFNγ. The response intensity, as assessed by cytokine levels, to the genotype of high CM wanes over time, while it increases gradually to genotypes of lower CM. Discussion The results point to the conclusion that the immune response is not correlated with the virulence phenotype and/or allele profile, but an early onset, intense pro-inflammatory response is characteristic of genotypes with high CM. Additionally, high IFNγ level in the brain may hamper stage conversion.
Collapse
Affiliation(s)
- Aleksandra Uzelac
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | | | | |
Collapse
|
11
|
Nayeri T, Sarvi S, Daryani A. Effective factors in the pathogenesis of Toxoplasmagondii. Heliyon 2024; 10:e31558. [PMID: 38818168 PMCID: PMC11137575 DOI: 10.1016/j.heliyon.2024.e31558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a cosmopolitan protozoan parasite in humans and animals. It infects about 30 % of the human population worldwide and causes potentially fatal diseases in immunocompromised hosts and neonates. For this study, five English-language databases (ScienceDirect, ProQuest, Web of Science, PubMed, and Scopus) and the internet search engine Google Scholar were searched. This review was accomplished to draw a global perspective of what is known about the pathogenesis of T. gondii and various factors affecting it. Virulence and immune responses can influence the mechanisms of parasite pathogenesis and these factors are in turn influenced by other factors. In addition to the host's genetic background, the type of Toxoplasma strain, the routes of transmission of infection, the number of passages, and different phases of parasite life affect virulence. The identification of virulence factors of the parasite could provide promising insights into the pathogenesis of this parasite. The results of this study can be an incentive to conduct more intensive research to design and develop new anti-Toxoplasma agents (drugs and vaccines) to treat or prevent this infection. In addition, further studies are needed to better understand the key agents in the pathogenesis of T. gondii.
Collapse
Affiliation(s)
- Tooran Nayeri
- Infectious and Tropical Diseases Research Center, Dezful University of Medical Sciences, Dezful, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
12
|
Lin GH, Yu TA, Chang CF, Hsu CH. Proline Isomerization and Molten Globular Property of TgPDCD5 Secreted from Toxoplasma gondii Confers Its Regulation of Heparin Sulfate Binding. JACS AU 2024; 4:1763-1774. [PMID: 38818051 PMCID: PMC11134355 DOI: 10.1021/jacsau.3c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 06/01/2024]
Abstract
Toxoplasmosis, caused by Toxoplasma gondii, poses risks to vulnerable populations. TgPDCD5, a secreted protein of T. gondii, induces apoptosis through heparan sulfate-mediated endocytosis. The entry mechanism of TgPDCD5 has remained elusive. Here, we present the solution structure of TgPDCD5 as a helical bundle with an extended N-terminal helix, exhibiting molten globule characteristics. NMR perturbation studies reveal heparin/heparan sulfate binding involving the heparan sulfate/heparin proteoglycans-binding motif and the core region, influenced by proline isomerization of P107 residue. The heterogeneous proline recruits a cyclophilin TgCyp18, accelerating interconversion between conformers and regulating heparan/heparin binding. These atomic-level insights elucidate the binary switch's functionality, expose novel heparan sulfate-binding surfaces, and illuminate the unconventional cellular entry of pathogenic TgPDCD5.
Collapse
Affiliation(s)
- Gloria
Meng-Hsuan Lin
- Department
of Agricultural Chemistry, National Taiwan
University, Taipei 10617, Taiwan
- Genome
and Systems Biology Degree Program, National
Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Tsun-Ai Yu
- Genomic
Research Center, Academia Sinica, Taipei 115201, Taiwan
| | - Chi-Fon Chang
- Genomic
Research Center, Academia Sinica, Taipei 115201, Taiwan
| | - Chun-Hua Hsu
- Department
of Agricultural Chemistry, National Taiwan
University, Taipei 10617, Taiwan
- Genome
and Systems Biology Degree Program, National
Taiwan University and Academia Sinica, Taipei 10617, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 115201, Taiwan
| |
Collapse
|
13
|
Silva ZM, Toledo DNM, Pio S, Machado BAA, dos Santos PV, Hó FG, Medina YN, Cordeiro PHDM, Perucci LO, Pinto KMDC, Talvani A. Neuroserpin, IL-33 and IL-17A as potential markers of mild symptoms of depressive syndrome in Toxoplasma gondii-infected pregnant women. Front Immunol 2024; 15:1394456. [PMID: 38835777 PMCID: PMC11148649 DOI: 10.3389/fimmu.2024.1394456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Depressive syndrome (DS) is a common complication during pregnancy and the postpartum period, and is triggered by multiple organic/genetic and environmental factors. Clinical and biochemical follow-up is essential for the early diagnosis and prognosis of DS. The protozoan Toxoplasma gondii causes infectious damage to the fetus during parasite primary-infection. However, in long-term infections, pregnant women develop immune protection to protect the fetus, although they remain susceptible to pathological or inflammatory effects induced by T. gondii. This study aimed to investigate plasma inflammatory biomarkers in pregnant women seropositive and seronegative for T. gondii, with diagnoses of minor and moderate/severe DS. Methods Pregnant women (n=45; age=18-39 years) were recruited during prenatal care at health centers in Ouro Preto, Minas Gerais, Brazil. Participants were asked to complete a socio-demographic questionnaire to be submitted to well-standardized DS scale calculators (Beck Depression Inventory Questionnaire, Edinburgh Postnatal Depression Scale, and Major Depressive Episode Module). Additionally, 4 mL of blood was collected for plasma neuroserpin, CCL2, IL-17A, and IL-33 analysis. Results Pregnant volunteers with chronic T. gondii contact were all IgG+ (44%; n=21) and exhibited increased plasma IL-33, IL-17A, and neuroserpin levels, but not CCL2, compared to uninfected pregnant women. Using Beck's depression inventory, we observed an increase in plasma IL-17A and IL-33 in women with T. gondii infeCction diagnosed with mild DS, whereas neuroserpin was associated with minor and moderate/severe DS. Discussion Our data suggest a close relationship between DS in pregnant women with chronic T. gondii infection and neurological conditions, which may be partially mediated by plasma neuroserpin, IL-33, and IL-17A levels.
Collapse
Affiliation(s)
- Zolder Marinho Silva
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Débora Nonato Miranda Toledo
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Sirlaine Pio
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Bianca Alves Almeida Machado
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Escola de Medicina, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Priscilla Vilela dos Santos
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Flávia Galvão Hó
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Escola de Medicina, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Yasmim Nogueira Medina
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Escola de Medicina, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Paulo Henrique de Miranda Cordeiro
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Escola de Medicina, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Luiza Oliveira Perucci
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Department of Obstetrics Gynecology and Reproductive Sciences, California University, San Diego, CA, United States
| | - Kelerson Mauro de Castro Pinto
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Escola de Educação Física, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
14
|
Zhang ZW, Wang M, Sun LX, Elsheikha HM, Lei CL, Wang JL, Fu BQ, Luo JX, Zhu XQ, Li TT. Trx4, a novel thioredoxin protein, is important for Toxoplasma gondii fitness. Parasit Vectors 2024; 17:178. [PMID: 38576040 PMCID: PMC10996207 DOI: 10.1186/s13071-024-06259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND To successfully replicate within the host cell, Toxoplasma gondii employs several mechanisms to overcome the host cell defenses and mitigate the harmful effects of the free radicals resulting from its own metabolic processes using effectors such as thioredoxin proteins. In this study, we characterize the location and functions of a newly identified thioredoxin in T. gondii, which was named Trx4. METHODS We characterized the functional role of Trx4 in T. gondii Type I RH and Type II Pru strains by gene knockout and studied its subcellular localization by endogenous protein HA tagging using CRISPR-Cas9 gene editing. The enzyme-catalyzed proximity labeling technique, the TurboID system, was employed to identify the proteins in proximity to Trx4. RESULTS Trx4 was identified as a dense granule protein of T. gondii predominantly expressed in the parasitophorous vacuole (PV) and was partially co-localized with GRA1 and GRA5. Functional analysis showed that deletion of trx4 markedly influenced the parasite lytic cycle, resulting in impaired host cell invasion capacity in both RH and Pru strains. Mutation of Trx domains in Trx4 in RH strain revealed that two Trx domains were important for the parasite invasion. By utilizing the TurboID system to biotinylate proteins in proximity to Trx4, we identified a substantial number of proteins, some of which are novel, and others are previously characterized, predominantly distributed in the dense granules. In addition, we uncovered three novel proteins co-localized with Trx4. Intriguingly, deletion of trx4 did not affect the localization of these three proteins. Finally, a virulence assay demonstrated that knockout of trx4 resulted in a significant attenuation of virulence and a significant reduction in brain cyst loads in mice. CONCLUSIONS Trx4 plays an important role in T. gondii invasion and virulence in Type I RH strain and Type II Pru strain. Combining the TurboID system with CRISPR-Cas9 technique revealed many PV-localized proximity proteins associated with Trx4. These findings suggest a versatile role of Trx4 in mediating the processes that occur in this distinctive intracellular membrane-bound vacuolar compartment.
Collapse
Affiliation(s)
- Zhi-Wei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Li-Xiu Sun
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Cheng-Lin Lei
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jin-Lei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province, 610213, People's Republic of China
| | - Bao-Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province, 610213, People's Republic of China
| | - Jian-Xun Luo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, People's Republic of China.
| | - Ting-Ting Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province, 610213, People's Republic of China.
| |
Collapse
|
15
|
Cai W, Chen X, Ding X. Bilateral Blurry Vision After a Liver Transplant. JAMA Ophthalmol 2024; 142:378-379. [PMID: 38358772 DOI: 10.1001/jamaophthalmol.2023.6710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A 31-year-old woman presented for evaluation of bilateral blurry vision over the past month. She experienced fulminant hepatic failure 3 months ago and underwent a liver transplant 2 weeks later. Postoperative pathological results showed hepatolenticular degeneration. What would you do next?
Collapse
Affiliation(s)
- Wenjia Cai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Xin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Xiaohu Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Hamouda MM, El-Saied AS, Zaher A, Khalil AF, ElBlihy AA, Nabih N, El-Beshbishi SN. Toxoplasma gondii: Seroprevalence and association with childhood brain tumors in Egypt. Acta Trop 2024; 251:107123. [PMID: 38242223 DOI: 10.1016/j.actatropica.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Childhood brain tumors are a significant global health challenge, yet the etiology of these tumors remains elusive. While research has identified potential risk factors, recent studies have explored the involvement of infectious agents, particularly Toxoplasma gondii (T. gondii), in brain tumor development. METHODS This study aimed to explore the prevalence of T. gondii infection in children diagnosed with brain tumors and to investigate the potential association between T. gondii infection and childhood brain tumors in Egypt. A total of 64 children with brain tumors and 92 healthy controls were enrolled in this study. Demographics and risk factors data were collected using structured questionnaires. Serological assay using ELISA technique was performed to detect anti-T. gondii antibodies in both cases and control groups. RESULTS This study revealed a significantly higher seroprevalence of T. gondii infection in brain tumor cases (62.5 %) compared to healthy controls (38 %). Furthermore, a strong association was observed between T. gondii seropositivity and childhood brain tumors (odds ratio: 2.7). Notably, the consumption of unwashed vegetables emerged as a significant risk factor for T. gondii infection in Egypt. Analysis of T. gondii seroprevalence across different subtypes of brain tumors revealed varying rates, with glioma cases displaying a striking 100 % seroprevalence. CONCLUSIONS These findings support the hypothesis that T. gondii infection may be a risk factor for childhood brain tumors and emphasize the need for further research in this area. The study also highlights the potential implications of control of T. gondii infection for prevention and treatment of childhood brain tumors.
Collapse
Affiliation(s)
- Marwa M Hamouda
- Medical Parasitology Department, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura 35516, Egypt.
| | - Amany S El-Saied
- Medical Parasitology Department, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura 35516, Egypt
| | - Ahmed Zaher
- Neurosurgery Department, Faculty of Medicine, Mansoura University, Egypt
| | - Amr Farid Khalil
- Neurosurgery Department, Faculty of Medicine, Mansoura University, Egypt
| | - Ayat A ElBlihy
- Medical Parasitology Department, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura 35516, Egypt
| | - Nairmen Nabih
- Medical Parasitology Department, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura 35516, Egypt
| | - Samar N El-Beshbishi
- Medical Parasitology Department, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura 35516, Egypt; Medical Parasitology Department, Faculty of Medicine, New Mansoura University, Egypt
| |
Collapse
|
17
|
Caceres A, Caceres-Alan A, Caceres-Alan T. Toxoplasma gondii infections in pediatric neurosurgery. Childs Nerv Syst 2024; 40:295-301. [PMID: 36943435 DOI: 10.1007/s00381-023-05915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/12/2023] [Indexed: 03/23/2023]
Abstract
Toxoplasma gondii is a parasite that is estimated to infect one-third of the world's population. It is acquired by ingesting contaminated water and food specially undercooked meat, contact with domestic or wild feline feces, and during pregnancy by transplacental transmission.Immunocompetent hosts are usually asymptomatic, and infection will be self-limited, while those patients whose immune system is debilitated by HIV infection, immunosuppressive therapy, long-term steroid treatment, and fetuses infected during gestation will show evidence of systemic activity which is more severe in the central nervous system and eyes due to insufficient immune response caused by their respective blood barriers. Congenital toxoplasmosis has an estimated incidence of 8% in mothers who were seronegative at the beginning of their pregnancy. Infection in the first trimester may result in spontaneous abortion or stillbirth; however, it is estimated that the highest risk for vertical transmission is during the second and third trimesters when blood flow and placenta thickness favor parasitic transmission.Congenital toxoplasmosis can be detected with periodic surveillance in endemic areas, and with appropriate treatment, the risk of vertical transmission can be reduced, and the severity of the disease can be reversed in infected fetuses.While most infected newborns will show no evidence of the disease, those who suffer active intrauterine complications will present with cerebral calcifications in 8-12% of cases, hydrocephalus in 4-30%, and chorioretinitis in 12-15%. Also, seizure disorders, spasticity, and varying degrees of neurocognitive deficits can be found in 12%.Four distinct patterns of hydrocephalus have been described: aqueductal stenosis with lateral and third ventricle dilatation, periforaminal calcifications leading to foramen of Monro stenosis with associated asymmetrical ventricle dilatation, a mix of aqueductal and foramen of Monro stenosis, and overt hydrocephalus without clear evidence of obstruction with predominant dilatation of occipital horns (colpocephaly).While all patients diagnosed with congenital toxoplasmosis should undergo pharmacological treatment, those presenting with hydrocephalus have traditionally been managed with CSF shunting; however, there are reports of at least 50% success when selected cases are treated with endoscopic third ventriculostomy. Successful hydrocephalus management with appropriate treatment leads to better intellectual outcomes.
Collapse
Affiliation(s)
- Adrian Caceres
- Pediatric Neurosurgery Department, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera", CCSS, San José, Costa Rica.
| | - Ariadnna Caceres-Alan
- Pediatric Neurosurgery Department, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera", CCSS, San José, Costa Rica
- Universidad de Ciencias Médicas, UCIMED, San José, Costa Rica
| | | |
Collapse
|
18
|
Baker TL, Wright DK, Uboldi AD, Tonkin CJ, Vo A, Wilson T, McDonald SJ, Mychasiuk R, Semple BD, Sun M, Shultz SR. A pre-existing Toxoplasma gondii infection exacerbates the pathophysiological response and extent of brain damage after traumatic brain injury in mice. J Neuroinflammation 2024; 21:14. [PMID: 38195485 PMCID: PMC10775436 DOI: 10.1186/s12974-024-03014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Traumatic brain injury (TBI) is a key contributor to global morbidity that lacks effective treatments. Microbial infections are common in TBI patients, and their presence could modify the physiological response to TBI. It is estimated that one-third of the human population is incurably infected with the feline-borne parasite, Toxoplasma gondii, which can invade the central nervous system and result in chronic low-grade neuroinflammation, oxidative stress, and excitotoxicity-all of which are also important pathophysiological processes in TBI. Considering the large number of TBI patients that have a pre-existing T. gondii infection prior to injury, and the potential mechanistic synergies between the conditions, this study investigated how a pre-existing T. gondii infection modified TBI outcomes across acute, sub-acute and chronic recovery in male and female mice. Gene expression analysis of brain tissue found that neuroinflammation and immune cell markers were amplified in the combined T. gondii + TBI setting in both males and females as early as 2-h post-injury. Glutamatergic, neurotoxic, and oxidative stress markers were altered in a sex-specific manner in T. gondii + TBI mice. Structural MRI found that male, but not female, T. gondii + TBI mice had a significantly larger lesion size compared to their uninfected counterparts at 18-weeks post-injury. Similarly, diffusion MRI revealed that T. gondii + TBI mice had exacerbated white matter tract abnormalities, particularly in male mice. These novel findings indicate that a pre-existing T. gondii infection affects the pathophysiological aftermath of TBI in a sex-dependent manner, and may be an important modifier to consider in the care and prognostication of TBI patients.
Collapse
Affiliation(s)
- Tamara L Baker
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Alessandro D Uboldi
- Division of Infectious Disease and Immune Defense, , The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Christopher J Tonkin
- Division of Infectious Disease and Immune Defense, , The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Anh Vo
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Trevor Wilson
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Health Sciences, Vancouver Island University, Nanaimo, BC, Canada.
| |
Collapse
|
19
|
Seizova S, Ferrel A, Boothroyd J, Tonkin CJ. Toxoplasma protein export and effector function. Nat Microbiol 2024; 9:17-28. [PMID: 38172621 DOI: 10.1038/s41564-023-01563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Toxoplasma gondii is a single-celled eukaryotic parasite with a considerable host range that must invade the cells of warm-blooded hosts to survive and replicate. The challenges and opportunities that such a strategy represent have been met by the evolution of effectors that are delivered into host cells, counter host defences and co-opt host cell functions for their own purposes. These effectors are delivered in two waves using distinct machinery for each. In this Review, we focus on understanding the architecture of these protein-export systems and how their protein cargo is recognized and selected. We discuss the recent findings on the role that host manipulation has in latent Toxoplasma infections. We also discuss how these recent findings compare to protein export in the related Plasmodium spp. (the causative agent of malaria) and how this can inform our understanding of host manipulation in the larger Apicomplexa phylum and its evolution.
Collapse
Affiliation(s)
- Simona Seizova
- School of Life Sciences, The University of Dundee, Dundee, UK
| | - Abel Ferrel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - John Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
20
|
Jamil Al-Obaidi MM, Desa MNM. Understanding the mechanisms underlying the disruption of the blood-brain barrier in parasitic infections. J Neurosci Res 2024; 102. [PMID: 38284852 DOI: 10.1002/jnr.25288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024]
Abstract
Parasites have a significant impact on the neurological, cognitive, and mental well-being of humans, with a global population of over 1 billion individuals affected. The pathogenesis of central nervous system (CNS) injury in parasitic diseases remains limited, and prevention and control of parasitic CNS infections remain significant areas of research. Parasites, encompassing both unicellular and multicellular organisms, have intricate life cycles and possess the ability to infect a diverse range of hosts, including the human population. Parasitic illnesses that impact the central and peripheral nervous systems are a significant contributor to morbidity and mortality in low- to middle-income nations. The precise pathways through which neurotropic parasites infiltrate the CNS by crossing the blood-brain barrier (BBB) and cause neurological harm remain incompletely understood. Investigating brain infections caused by parasites is closely linked to studying neuroinflammation and cerebral impairment. The exact molecular and cellular mechanisms involved in this process remain incomplete, but understanding the exact mechanisms could provide insight into their pathogenesis and potentially reveal novel therapeutic targets. This review paper explores the underlying mechanisms involved in the development of neurological disorders caused by parasites, including parasite-derived elements, host immune responses, and modifications in tight junctions (TJs) proteins.
Collapse
Affiliation(s)
- Mazen M Jamil Al-Obaidi
- University of Technology and Applied Sciences, Rustaq College of Education, Science Department (Biology Unit), Rrustaq, Sultante of Oman
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
21
|
Orchanian SB, Still K, Harris TH, Lodoen MB. Deficiency in astrocyte CCL2 production reduces neuroimmune control of Toxoplasma gondii infection. PLoS Pathog 2024; 20:e1011710. [PMID: 38206985 PMCID: PMC10807779 DOI: 10.1371/journal.ppat.1011710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 01/24/2024] [Accepted: 09/25/2023] [Indexed: 01/13/2024] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that infects one-third of the world's human population and establishes infection in the brain. Cerebral immune cell infiltration is critical for controlling the parasite, but little is known about the molecular cues guiding immune cells to the brain during infection. Activated astrocytes produce CCL2, a chemokine that mediates inflammatory monocyte recruitment to tissues by binding to the CCR2 receptor. We detected elevated CCL2 production in the brains of C57BL/6J mice by 15 days after T. gondii infection. Utilizing confocal microscopy and intracellular flow cytometry, we identified microglia and brain-infiltrating myeloid cells as the main producers of CCL2 during acute infection, and CCL2 was specifically produced in regions of parasite infection in the brain. In contrast, astrocytes became the dominant CCL2 producer during chronic T. gondii infection. To determine the role of astrocyte-derived CCL2 in mobilizing immune cells to the brain and controlling T. gondii infection, we generated GFAP-Cre x CCL2fl/fl mice, in which astrocytes are deficient in CCL2 production. We observed significantly decreased immune cell recruitment and increased parasite burden in the brain during chronic, but not acute, infection of mice deficient in astrocyte CCL2 production, without an effect on peripheral immune responses. To investigate potential mechanisms explaining the reduced control of T. gondii infection, we analyzed key antimicrobial and immune players in host defense against T. gondii and detected a reduction in iNOS+ myeloid cells, and T. gondii-specific CD4+ T cells in the knockout mice. These data uncover a critical role for astrocyte-derived CCL2 in immune cell recruitment and parasite control in the brain during chronic, but not acute, T. gondii infection.
Collapse
Affiliation(s)
- Stephanie B. Orchanian
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, United States of America
- Institute for Immunology, University of California, Irvine, Irvine, California, United States of America
| | - Katherine Still
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Tajie H. Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Melissa B. Lodoen
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, United States of America
- Institute for Immunology, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
22
|
Wakid MH, Alsulami MN, Farid M, El Kholy WA. Potential Anti-Toxoplasmosis Efficiency of Phoenix dactylifera Extracts Loaded on Selenium Nanoparticles. Infect Drug Resist 2023; 16:7743-7758. [PMID: 38144223 PMCID: PMC10749168 DOI: 10.2147/idr.s443047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023] Open
Abstract
Background Toxoplasmosis is a parasitic disease caused by Toxoplasma gondii that infects humans and many types of mammals and birds. Objective To investigate the effect of selenium nanoparticles (SeNPs) and Phoenix dactylifera (Pd) extracts loaded on SeNPs as a new agent to combat chronic T. gondii infections in murine model as an alternative method to standard Spiramycin drug therapy. Methods A total of 64 female mice were randomly divided into eight groups: GI: Normal control, GII: Positive control, GIII: infected and treated with Spiramycin, GIV: infected and treated with SeNPs, GV: infected and treated with aqueous extract of Pd, GVI: infected and treated with methanolic extract of Pd, GVII: infected and treated with aqueous extract of Pd loaded on SeNPs, GVIII: infected and treated with methanolic extract of Pd loaded on SeNPs. Date palm (P. dactylifera) fruits were identified and collected from the farms of Saudi Arabia. Preparation and characterization of SeNPs were done. The parasitological, histopathological examinations and biochemical changes were evaluated in all groups. Results Parasitological results showed significant differences in GVII in comparison to GII while GVIII showed significant differences in comparison to GII and GIII. The histopathological section of the cerebral cortex showed obvious alterations in the infected compared with untreated control groups. Aqueous and methanolic extracts of P. dactylifera loaded on SeNPs treatment showed improvement that indicated by few perivascular cuffing with few inflammatory cell infiltrations. Few granule cells with mild intracellular vacuolation and edema few deformed neurons with deep pyknotic nuclei. Microglia cells expression of Iba-1 and inflammatory cytokines (IL-4, IL-10 and INF-γ) in serum of all groups was higher in GII and lowest in GVIII followed by GVII. Conclusion SeNPs and P. dactylifera extracts loaded on SeNPs could be a potent agent to combat T. gondii infections.
Collapse
Affiliation(s)
- Majed H Wakid
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muslimah N Alsulami
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed Farid
- Sciences Academy of Experimental Researches, Special Scientific Foundation, Mansoura, Egypt
| | - Walaa A El Kholy
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
23
|
Wang X, Qu L, Chen J, Jin Y, Hu K, Zhou Z, Zhang J, An Y, Zheng J. Toxoplasma rhoptry proteins that affect encephalitis outcome. Cell Death Discov 2023; 9:439. [PMID: 38049394 PMCID: PMC10696021 DOI: 10.1038/s41420-023-01742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
Toxoplasma gondii, a widespread obligate intracellular parasite, can infect almost all warm-blooded animals, including humans. The cellular barrier of the central nervous system (CNS) is generally able to protect the brain parenchyma from infectious damage. However, T. gondii typically causes latent brain infections in humans and other vertebrates. Here, we discuss how T. gondii rhoptry proteins (ROPs) affect signaling pathways in host cells and speculate how this might affect the outcome of Toxoplasma encephalitis.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Lai Qu
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, 130021, China
| | - Jie Chen
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130021, China
| | - Yufen Jin
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Kaisong Hu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhengjie Zhou
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jiaqi Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yiming An
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
24
|
Bergersen KV, Ramirez AD, Kavvathas B, Mercer F, Wilson EH. Human neutrophil-like cells demonstrate antimicrobial responses to the chronic cyst form of Toxoplasma gondii. Parasite Immunol 2023; 45:e13011. [PMID: 37776091 PMCID: PMC11246559 DOI: 10.1111/pim.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
The protozoan parasite Toxoplasma gondii infects approximately 2.5 billion people worldwide. Infection induces a rapid dissemination of parasites throughout the body followed by the formation of lifelong cysts within neurons of the host brain. Both stages require a dynamic immune response comprised of both innate and adaptive cells. Neutrophils are a primary responding cell to acute infection and have been observed in the brain during murine chronic infection. Previous studies investigating human neutrophils found that invasion by Toxoplasma tachyzoites inhibits apoptosis of neutrophils, prolonging their survival under inflammatory conditions. Here, we demonstrate the differentiation of two distinct subsets following exposure of human neutrophil-like-cells (HNLC) to Toxoplasma cysts. In vitro stimulation and imaging studies show cyst-specific induction of cytokines and cyst clearance by HNLCs. Further testing demonstrates that aged HNLCs perform less phagocytosis of cysts compared to non-aged HNLCs. In conclusion, this study identifies a novel response of HNLCs to Toxoplasma cysts and may indicate a role for neutrophils in the clearance of cysts during human infection with Toxoplasma.
Collapse
Affiliation(s)
- Kristina V. Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States of America
| | - Ashley D. Ramirez
- Department of Biological Sciences, California State Polytechnic University, Pomona
| | - Bill Kavvathas
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States of America
| | - Frances Mercer
- Department of Biological Sciences, California State Polytechnic University, Pomona
| | - Emma H. Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States of America
| |
Collapse
|
25
|
May DA, Taha F, Child MA, Ewald SE. How colonization bottlenecks, tissue niches, and transmission strategies shape protozoan infections. Trends Parasitol 2023; 39:1074-1086. [PMID: 37839913 DOI: 10.1016/j.pt.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Protozoan pathogens such as Plasmodium spp., Leishmania spp., Toxoplasma gondii, and Trypanosoma spp. are often associated with high-mortality, acute and chronic diseases of global health concern. For transmission and immune evasion, protozoans have evolved diverse strategies to interact with a range of host tissue environments. These interactions are linked to disease pathology, yet our understanding of the association between parasite colonization and host homeostatic disruption is limited. Recently developed techniques for cellular barcoding have the potential to uncover the biology regulating parasite transmission, dissemination, and the stability of infection. Understanding bottlenecks to infection and the in vivo tissue niches that facilitate chronic infection and spread has the potential to reveal new aspects of parasite biology.
Collapse
Affiliation(s)
- Dana A May
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Fatima Taha
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Matthew A Child
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
26
|
Grochow T, Beck B, Rentería-Solís Z, Schares G, Maksimov P, Strube C, Raqué L, Kacza J, Daugschies A, Fietz SA. Reduced neural progenitor cell count and cortical neurogenesis in guinea pigs congenitally infected with Toxoplasma gondii. Commun Biol 2023; 6:1209. [PMID: 38012384 PMCID: PMC10682419 DOI: 10.1038/s42003-023-05576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Toxoplasma (T.) gondii is an obligate intracellular parasite with a worldwide distribution. Congenital infection can lead to severe pathological alterations in the brain. To examine the effects of toxoplasmosis in the fetal brain, pregnant guinea pigs are infected with T. gondii oocysts on gestation day 23 and dissected 10, 17 and 25 days afterwards. We show the neocortex to represent a target region of T. gondii and the parasite to infect neural progenitor cells (NPCs), neurons and astrocytes in the fetal brain. Importantly, we observe a significant reduction in neuron number at end-neurogenesis and find a marked reduction in NPC count, indicating that impaired neurogenesis underlies the neuronal decrease in infected fetuses. Moreover, we observe focal microglioses to be associated with T. gondii in the fetal brain. Our findings expand the understanding of the pathophysiology of congenital toxoplasmosis, especially contributing to the development of cortical malformations.
Collapse
Affiliation(s)
- Thomas Grochow
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Britta Beck
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Zaida Rentería-Solís
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gereon Schares
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Pavlo Maksimov
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lisa Raqué
- Veterinary practice Raqué, Leipzig, Germany
| | - Johannes Kacza
- BioImaging Core Facility, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany.
| |
Collapse
|
27
|
Dupont D, Robert M, Brenier-Pinchart M, Lefevre A, Wallon M, Pelloux H. Toxoplasma gondii, a plea for a thorough investigation of its oncogenic potential. Heliyon 2023; 9:e22147. [PMID: 38034818 PMCID: PMC10685377 DOI: 10.1016/j.heliyon.2023.e22147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
It is estimated that 30 % of the world's population harbours the parasite Toxoplasma gondii, particularly in the brain. Beyond its implication in potentially severe opportunistic or congenital infections, this persistence has long been considered as without consequence. However, certain data in animals and humans suggest that this carriage may be linked to various neuropsychiatric or neurodegenerative disorders. The hypothesis of a potential cerebral oncogenicity of the parasite is also emerging. In this personal view, we will present the epidemiological arguments in favour of an association between toxoplasmosis and cerebral malignancy, before considering the points that could underlie a potential causal link. More specifically, we will focus on the brain as the preferred location for T. gondii persistence and the propensity of this parasite to interfere with the apoptosis and cell cycle signalling pathways of their host cell.
Collapse
Affiliation(s)
- D. Dupont
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, 69004, France
- Physiologie intégrée du système d’éveil, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Faculté de Médecine, Université Claude Bernard Lyon 1, Bron, 69500, France
| | - M.G. Robert
- Service de Parasitologie-Mycologie, CHU Grenoble Alpes, Grenoble, 38000, France
- Université Grenoble Alpes, Institut pour l'Avancée des Biosciences (IAB), INSERM U1209-CNRS UMR 5309, Grenoble, 38000, France
| | - M.P. Brenier-Pinchart
- Service de Parasitologie-Mycologie, CHU Grenoble Alpes, Grenoble, 38000, France
- Université Grenoble Alpes, Institut pour l'Avancée des Biosciences (IAB), INSERM U1209-CNRS UMR 5309, Grenoble, 38000, France
| | - A. Lefevre
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, 69004, France
| | - M. Wallon
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, 69004, France
- Physiologie intégrée du système d’éveil, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Faculté de Médecine, Université Claude Bernard Lyon 1, Bron, 69500, France
| | - H. Pelloux
- Service de Parasitologie-Mycologie, CHU Grenoble Alpes, Grenoble, 38000, France
- Université Grenoble Alpes, Institut pour l'Avancée des Biosciences (IAB), INSERM U1209-CNRS UMR 5309, Grenoble, 38000, France
| |
Collapse
|
28
|
Vizcarra EA, Ulu A, Landrith TA, Qiu X, Godzik A, Wilson EH. Group 1 metabotropic glutamate receptor expression defines a T cell memory population during chronic Toxoplasma infection that enhances IFN-gamma and perforin production in the CNS. Brain Behav Immun 2023; 114:131-143. [PMID: 37604212 DOI: 10.1016/j.bbi.2023.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
Within the brain, a pro-inflammatory response is essential to prevent clinical disease due to Toxoplasma gondii reactivation. Infection in the immunocompromised leads to lethal Toxoplasmic encephalitis while in the immunocompetent, there is persistent low-grade inflammation which is devoid of clinical symptoms. This signifies that there is a well-balanced and regulated inflammatory response to T. gondii in the brain. T cells are the dominant immune cells that prevent clinical disease, and this is mediated through the secretion of effector molecules such as perforins and IFN-γ. The presence of cognate antigen, the expression of survival cytokines, and the alteration of the epigenetic landscape drive the development of memory T cells. However, specific extrinsic signals that promote the formation and maintenance of memory T cells within tissue are poorly understood. During chronic infection, there is an increase in extracellular glutamate that, due to its function as an excitatory neurotransmitter, is normally tightly controlled in the CNS. Here we demonstrate that CD8+ T cells from the T. gondii-infected brain parenchyma are enriched for metabotropic glutamate receptors (mGluR's). Characterization studies determined that mGluR+ expression by CD8+ T cells defines a distinct memory population at the transcriptional and protein level. Finally, using receptor antagonists and agonists we demonstrate mGluR signaling is required for optimal CD8+ T cell production of the effector cytokine IFNγ. This work suggests that glutamate is an important environmental signal of inflammation that promotes T cell function. Understanding glutamate's influence on T cells in the brain can provide insights into the mechanisms that govern protective immunity against CNS-infiltrating pathogens and neuroinflammation.
Collapse
Affiliation(s)
- Edward A Vizcarra
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Tyler A Landrith
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Xinru Qiu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Adam Godzik
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
29
|
Vizcarra EA, Goerner AL, Ulu A, Hong DD, Bergersen KV, Talavera MA, Le Roch K, Wilson EH, White MW. An ex vivo model of Toxoplasma recrudescence reveals developmental plasticity of the bradyzoite stage. mBio 2023; 14:e0183623. [PMID: 37675999 PMCID: PMC10653814 DOI: 10.1128/mbio.01836-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023] Open
Abstract
IMPORTANCE The classical depiction of the Toxoplasma lifecycle is bradyzoite excystation conversion to tachyzoites, cell lysis, and immune control, followed by the reestablishment of bradyzoites and cysts. In contrast, we show that tachyzoite growth slows independent of the host immune response at a predictable time point following excystation. Furthermore, we demonstrate a host cell-dependent pathway of continuous amplification of the cyst-forming bradyzoite population. The developmental plasticity of the excysted bradyzoites further underlines the critical role the cyst plays in the flexibility of the lifecycle of this ubiquitous parasite. This revised model of Toxoplasma recrudescence uncovers previously unknown complexity in the clinically important bradyzoite stage of the parasite, which opens the door to further study these novel developmental features of the Toxoplasma intermediate life cycle.
Collapse
Affiliation(s)
- Edward A. Vizcarra
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Amber L. Goerner
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - David D. Hong
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kristina V. Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Michael A. Talavera
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Karine Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California, USA
| | - Emma H. Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Michael W. White
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
30
|
Brito RMDM, da Silva MCM, Vieira-Santos F, de Almeida Lopes C, Souza JLN, Bastilho AL, de Barros Fernandes H, de Miranda AS, de Oliveira ACP, de Almeida Vitor RW, de Andrade-Neto VF, Bueno LL, Fujiwara RT, Magalhães LMD. Chronic infection by atypical Toxoplasma gondii strain induces disturbance in microglia population and altered behaviour in mice. Brain Behav Immun Health 2023; 30:100652. [PMID: 37396335 PMCID: PMC10308216 DOI: 10.1016/j.bbih.2023.100652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 07/04/2023] Open
Abstract
Toxoplasma gondii chronic infection is characterized by the establishment of tissue cysts in the brain and increased levels of IFN-γ, which can lead to brain circuitry interference and consequently abnormal behaviour in mice. In this sense, the study presented here sought to investigate the impact of chronic infection by two T. gondii strains in the brain of infection-resistant mice, as a model for studying the involvement of chronic neuroinflammation with the development of behavioural alterations. For that, male BALB/c mice were divided into three groups: non-infected (Ni), infected with T. gondii ME49 clonal strain (ME49), and infected with TgCkBrRN2 atypical strain (CK2). Mice were monitored for 60 days to establish the chronic infection and then submitted to behavioural assessment. The enzyme-linked immunosorbent assay was used for measurement of specific IgG in the blood and levels of inflammatory cytokines and neurotrophic factors in the brain, and the cell's immunophenotype was determined by multiparametric flow cytometry. Mice infected with ME49 clonal strain displayed hyperlocomotor activity and memory deficit, although no signs of depressive- and/or anxiety-like behaviour were detected; on the other hand, chronic infection with CK2 atypical strain induced anxiety- and depressive-like behaviour. During chronic infection by CK2 atypical strain, mice displayed a higher number of T. gondii brain tissue cysts and inflammatory infiltrate, composed mainly of CD3+ T lymphocytes and Ly6Chi inflammatory monocytes, compared to mice infected with the ME49 clonal strain. Infected mice presented a marked decrease of microglia population compared to non-infected group. Chronic infection with CK2 strain produced elevated levels of IFN-γ and TNF-ɑ in the brain, decreased NGF levels in the prefrontal cortex and striatum, and altered levels of fractalkine (CX3CL1) in the prefrontal cortex and hippocampus. The persistent inflammation and the disturbance in the cerebral homeostasis may contribute to altered behaviour in mice, as the levels of IFN-γ were shown to be correlated with the behavioural parameters assessed here. Considering the high incidence and life-long persistence of T. gondii infection, this approach can be considered a suitable model for studying the impact of chronic infections in the brain and how it impacts in behavioural responses.
Collapse
Affiliation(s)
- Ramayana Morais de Medeiros Brito
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maria Carolina Machado da Silva
- Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flaviane Vieira-Santos
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Camila de Almeida Lopes
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jorge Lucas Nascimento Souza
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Lazoski Bastilho
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Heliana de Barros Fernandes
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline Silva de Miranda
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Carlos Pinheiro de Oliveira
- Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Wagner de Almeida Vitor
- Laboratory of Toxoplasmosis, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valter Ferreira de Andrade-Neto
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luísa Mourão Dias Magalhães
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
31
|
Pires LB, Peixoto-Rodrigues MC, Eloi JF, Cascabulho CM, Barbosa HS, Santiago MF, Adesse D. Infection of Mouse Neural Progenitor Cells by Toxoplasma gondii Reduces Proliferation, Migration, and Neuronal Differentiation in Vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:977-994. [PMID: 37037285 DOI: 10.1016/j.ajpath.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 04/12/2023]
Abstract
Congenital toxoplasmosis constitutes a major cause of pre- and postnatal complications. Fetal infection with Toxoplasma gondii influences development and can lead to microcephaly, encephalitis, and neurologic abnormalities. Systematic studies concerning the effects of neural progenitor cell infection with T. gondii are unavailable. Cortical intermediate progenitor cells cultivated as neurospheres obtained from E16.5 Swiss Webster mice were infected with T. gondii (ME49 strain) tachyzoites to mimic the developing mouse cerebral cortex in vitro. Infection was associated with decreased cell proliferation, detected by Ki-67 staining at 48 and 72 hours after infection in floating neurospheres, and reduced cellularity at 96 hours. Transient decreases in the expression of the neurogenesis-related transcription factors T-box brain protein 1, mouse atonal homolog protein 1, and hairy and enhancer of split protein 1 were found in infected cultures, while the level of transcription factor SOX-2 remained unaltered. Neurogenic potential, assessed in plated neurospheres, was impaired in infected cultures, as indicated by decreased late neuronal marker neurofilament heavy chain immunoreactivity. Infected cultures exhibited decreased overall migration rates at 48 and 120 hours. These findings indicate that T. gondii infection of neural progenitor cells may lead to reduced neurogenesis due to an imbalance in cell proliferation alongside an altered migratory profile. If translated to the in vivo situation, these data could explain, in part, cortical malformations in congenitally infected individuals.
Collapse
Affiliation(s)
- Luiza B Pires
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria C Peixoto-Rodrigues
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jéssica F Eloi
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Cynthia M Cascabulho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Helene S Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcelo F Santiago
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida.
| |
Collapse
|
32
|
Asgari Q, Rajabi F, Sajadian F, Bahreini MS, Arefkhah N. Toxoplasma gondii infection in patients with brain tumors in Southern Iran: a case-control study. J Parasit Dis 2023; 47:291-296. [PMID: 37193506 PMCID: PMC10182190 DOI: 10.1007/s12639-022-01541-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/12/2022] [Indexed: 02/06/2023] Open
Abstract
Considerable evidence points to a dominant role of inflammation in tumor pathology. The biological response of the immune system can be triggered by Toxoplasma gondii as a common brain-tropic parasite. The aim of this study was to investigate an association between Toxoplasma infection and brain tumors. This case-control study was performed on sera of brain tumor patients (n = 124) and age- and sex-matched control subjects (n = 124) in Southern Iran. Data related to tumor site and type were collected during sample collection. Anti-Toxoplasma IgG was assessed by enzyme-linked immunosorbent assay (ELISA). Seroprevalence anti-Toxoplasma IgG was significantly higher in brain tumor patients 30.6% (38/124) compared with 12.1% (15/124) of the healthy controls (OR 3.211; 95% CI 1.658 to 6.219; p = 0.001). The highest seroprevalence was detected in patients with ependymoma (100%), followed by glioblastoma (83%), pituitary adenoma (47.3%), astrocytoma (27.2%), schwannoma (23%), and meningioma (22.6%). The parasite infection was correlated to brain tumor's location i.e., the patients with frontal lobe and sella region tumors had higher seropositivity compared with others (P < 0.05). The higher prevalence of Toxoplasma infection among patients with brain tumor compared with the control group indicates a probable association between the infection and brain tumors.
Collapse
Affiliation(s)
- Qasem Asgari
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farshad Rajabi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fataneh Sajadian
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Saleh Bahreini
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasir Arefkhah
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
33
|
Wang Q, Zhong Y, Chen N, Chen J. From the immune system to mood disorders especially induced by Toxoplasma gondii: CD4+ T cell as a bridge. Front Cell Infect Microbiol 2023; 13:1078984. [PMID: 37077528 PMCID: PMC10106765 DOI: 10.3389/fcimb.2023.1078984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Toxoplasma gondii (T. gondii), a ubiquitous and obligatory intracellular protozoa, not only alters peripheral immune status, but crosses the blood-brain barrier to trigger brain parenchymal injury and central neuroinflammation to establish latent cerebral infection in humans and other vertebrates. Recent findings underscore the strong correlation between alterations in the peripheral and central immune environment and mood disorders. Th17 and Th1 cells are important pro-inflammatory cells that can drive the pathology of mood disorders by promoting neuroinflammation. As opposed to Th17 and Th1, regulatory T cells have inhibitory inflammatory and neuroprotective functions that can ameliorate mood disorders. T. gondii induces neuroinflammation, which can be mediated by CD4+ T cells (such as Tregs, Th17, Th1, and Th2). Though the pathophysiology and treatment of mood disorder have been currently studied, emerging evidence points to unique role of CD4+ T cells in mood disorder, especially those caused by T. gondii infection. In this review, we explore some recent studies that extend our understanding of the relationship between mood disorders and T. gondii.
Collapse
|
34
|
Kochanowsky JA, Chandrasekaran S, Sanchez JR, Thomas KK, Koshy AA. ROP16-mediated activation of STAT6 enhances cyst development of type III Toxoplasma gondii in neurons. PLoS Pathog 2023; 19:e1011347. [PMID: 37068104 PMCID: PMC10138205 DOI: 10.1371/journal.ppat.1011347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/27/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Toxoplasma gondii establishes a long-lived latent infection in the central nervous system (CNS) of its hosts. Reactivation in immunocompromised individuals can lead to life threatening disease. Latent infection is driven by the ability of the parasite to convert from the acute-stage tachyzoite to the latent-stage bradyzoite which resides in long-lived intracellular cysts. While much work has focused on the parasitic factors that drive cyst development, the host factors that influence encystment are not well defined. Here we show that a polymorphic secreted parasite kinase (ROP16), that phosphorylates host cell proteins, mediates efficient encystment of T. gondii in a stress-induced model of encystment and primary neuronal cell cultures (PNCs) in a strain-specific manner. Using short-hairpin RNA (shRNA) knockdowns in human foreskin fibroblasts (HFFs) and PNCs from transgenic mice, we determined that ROP16's cyst enhancing abilities are mediated, in part, by phosphorylation-and therefore activation-of the host cell transcription factor STAT6. To test the role of STAT6 in vivo, we infected wild-type (WT) and STAT6KO mice, finding that, compared to WT mice, STAT6KO mice have a decrease in CNS cyst burden but not overall parasite burden or dissemination to the CNS. Finally, we found a similar ROP16-dependent encystment defect in human pluripotent stem cell-derived neurons. Together, these findings identify a host cell factor (STAT6) that T. gondii manipulates in a strain-specific manner to generate a favorable encystment environment.
Collapse
Affiliation(s)
- Joshua A. Kochanowsky
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | | | - Jacqueline R. Sanchez
- Postbaccalaureate Research Education Program, University of Arizona, Tucson, Arizona, United States of America
| | - Kaitlin K. Thomas
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Anita A. Koshy
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
35
|
Elmehy DA, Elmansory BM, Gamea GA, Abdelhai DI, Abd-Elsalam SM, Salamah AM, Ata DS, Mahmoud EF, Ibrahim HA, Salama AM. Parasitic infections as potential risk factors for attention deficit hyperactivity disorder (ADHD) in children. J Parasit Dis 2023; 47:82-92. [PMID: 36910322 PMCID: PMC9998788 DOI: 10.1007/s12639-022-01542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) represents a mysterious neuropsychiatric alarming concern due to indefinite etiopathogenesis among children. Notably, the studies which investigated the correlation between ADHD and parasitic infections are insufficient. Therefore, this research aimed to assess the correlation between ADHD and some tissue dwelling and intestinal parasitic infections in children. The study was conducted on 200 children, including 100 children suffering from ADHD (Group I) and 100 healthy children as a control group (Group II). All caregivers fulfilled predesigned sociodemographic form and Conners parent rating scale (CPRS-48) questionnaire. Blood samples were collected to determine hemoglobin level as well as relative eosinophilic count. The presence of anti-Toxoplasma IgG and anti-Toxocara IgG in serum by Enzyme-Linked Immunosorbent Assay (ELISA) was further investigated. Also, micronutrients as zinc, iron, and copper levels were measured. Schistosoma antigen was investigated in urine samples. Stool samples were subjected to direct wet smear, concentration technique and modified Ziehl-Neelsen (MZN) staining for coccidian parasites detection. Cryptosporidium parvum, Giardia lamblia and Entamoeba histolytica antigens were investigated in stool samples. Group I expressed more liability to sociodemographic risk factors, decreased levels of Hb, iron, zinc, and copper with statistically significant difference (P < 0.001). Comparison between Group I and Group II regarding the detected parasitic infections exhibited statistically significant difference except Schistosoma antigen positivity which expressed no statistical significance. The present study concluded that the parasitic infections with their consequences are potential risk factors in children with ADHD indicating that their early diagnosis and treatment may help in ADHD prevention.
Collapse
Affiliation(s)
- Dalia A. Elmehy
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Basma M. Elmansory
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ghada A. Gamea
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina I. Abdelhai
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Abeer M. Salamah
- Department of Pediatrics, Faculty of Medicine, Kafr El Shiekh University, Kafr El Shiekh, Egypt
| | - Dina S. Ata
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman F. Mahmoud
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hoda A. Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amina M. Salama
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
36
|
Invasion of Toxoplasma gondii bradyzoites: Molecular dissection of the moving junction proteins and effective vaccination targets. Proc Natl Acad Sci U S A 2023; 120:e2219533120. [PMID: 36693095 PMCID: PMC9945962 DOI: 10.1073/pnas.2219533120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Toxoplasmosis is a neglected parasitic disease necessitating public health control. Host cell invasion by Toxoplasma occurs at different stages of the parasite's life cycle and is crucial for survival and establishment of infection. In tachyzoites, which are responsible for acute toxoplasmosis, invasion involves the formation of a molecular bridge between the parasite and host cell membranes, referred to as the moving junction (MJ). The MJ is shaped by the assembly of AMA1 and RON2, as part of a complex involving additional RONs. While this essential process is well characterized in tachyzoites, the invasion process remains unexplored in bradyzoites, which form cysts and are responsible for chronic toxoplasmosis and contribute to the dissemination of the parasite between hosts. Here, we show that bradyzoites invade host cells in an MJ-dependent fashion but differ in protein composition from the tachyzoite MJ, relying instead on the paralogs AMA2 and AMA4. Functional characterization of AMA4 reveals its key role for cysts burden during the onset of chronic infection, while being dispensable for the acute phase. Immunizations with AMA1 and AMA4, alone or in complex with their rhoptry neck respective partners RON2 and RON2L1, showed that the AMA1-RON2 pair induces strong protection against acute and chronic infection, while the AMA4-RON2L1 complex targets more selectively the chronic form. Our study provides important insights into the molecular players of bradyzoite invasion and indicates that invasion of cyst-forming bradyzoites contributes to cyst burden. Furthermore, we validate AMA-RON complexes as potential vaccine candidates to protect against toxoplasmosis.
Collapse
|
37
|
Halonen SK. Use of in vitro derived human neuronal models to study host-parasite interactions of Toxoplasma gondii in neurons and neuropathogenesis of chronic toxoplasmosis. Front Cell Infect Microbiol 2023; 13:1129451. [PMID: 36968101 PMCID: PMC10031036 DOI: 10.3389/fcimb.2023.1129451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Toxoplasma gondii infects approximately one-third of the world's population resulting in a chronic infection with the parasite located in cysts in neurons in the brain. In most immunocompetent hosts the chronic infection is asymptomatic, but several studies have found correlations between Toxoplasma seropositivity and neuropsychiatric disorders, including Schizophrenia, and some other neurological disorders. Host-parasite interactions of bradyzoites in cysts in neurons is not well understood due in part to the lack of suitable in vitro human neuronal models. The advent of stem cell technologies in which human neurons can be derived in vitro from human induced pluripotent stem cells (hiPSCs) or direct conversion of somatic cells generating induced neurons (iNs), affords the opportunity to develop in vitro human neuronal culture systems to advance the understanding of T. gondii in human neurons. Human neurons derived from hiPSCs or iNs, generate pure human neuron monolayers that express differentiated neuronal characteristics. hiPSCs also generate 3D neuronal models that better recapitulate the cytoarchitecture of the human brain. In this review, an overview of iPSC-derived neurons and iN protocols leading to 2D human neuron cultures and hiPSC-derived 3D cerebral organoids will be given. The potential applications of these 2D and 3D human neuronal models to address questions about host-parasite interactions of T. gondii in neurons and the parasite in the CNS, will be discussed. These human neuronal in vitro models hold the promise to advance the understanding of T. gondii in human neurons and to improve the understanding of neuropathogenesis of chronic toxoplasmosis.
Collapse
|
38
|
Yang D, Liu X, Li J, Xie J, Jiang L. Animal venoms: a novel source of anti- Toxoplasma gondii drug candidates. Front Pharmacol 2023; 14:1178070. [PMID: 37205912 PMCID: PMC10188992 DOI: 10.3389/fphar.2023.1178070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is a nucleated intracellular parasitic protozoan with a broad host selectivity. It causes toxoplasmosis in immunocompromised or immunodeficient patients. The currently available treatments for toxoplasmosis have significant side effects as well as certain limitations, and the development of vaccines remains to be explored. Animal venoms are considered to be an important source of novel antimicrobial agents. Some peptides from animal venoms have amphipathic alpha-helix structures. They inhibit the growth of pathogens by targeting membranes to produce lethal pores and cause membrane rupture. Venom molecules generally possess immunomodulatory properties and play key roles in the suppression of pathogenic organisms. Here, we summarized literatures of the last 15 years on the interaction of animal venom peptides with T. gondii and attempt to explore the mechanisms of their interaction with parasites that involve membrane and organelle damage, immune response regulation and ion homeostasis. Finally, we analyzed some limitations of venom peptides for drug therapy and some insights into their development in future studies. It is hoped that more research will be stimulated to turn attention to the medical value of animal venoms in toxoplasmosis.
Collapse
Affiliation(s)
- Dongqian Yang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaohua Liu
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing Li
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing Xie
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- *Correspondence: Liping Jiang,
| |
Collapse
|
39
|
de Medeiros Brito RM, Meurer YDSR, Batista JAL, de Sá AL, de Medeiros Souza CR, de Souto JT, de Andrade-Neto VF. Chronic Toxoplasma gondii infection contributes to perineuronal nets impairment in the primary somatosensory cortex. Parasit Vectors 2022; 15:487. [PMID: 36566237 PMCID: PMC9790132 DOI: 10.1186/s13071-022-05596-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/18/2022] [Indexed: 12/25/2022] Open
Abstract
Toxoplasma gondii is able to manipulate the host immune system to establish a persistent and efficient infection, contributing to the development of brain abnormalities with behavioral repercussions. In this context, this work aimed to evaluate the effects of T. gondii infection on the systemic inflammatory response and structure of the primary somatosensory cortex (PSC). C57BL/6 and BALB/c mice were infected with T. gondii ME49 strain tissue cysts and accompanied for 30 days. After this period, levels of cytokines IFN-γ, IL-12, TNF-α and TGF-β were measured. After blood collection, mice were perfused and the brains were submitted to immunohistochemistry for perineuronal net (PNN) evaluation and cyst quantification. The results showed that C57BL/6 mice presented higher levels of TNF-α and IL-12, while the levels of TGF-β were similar between the two mouse lineages, associated with the elevated number of tissue cysts, with a higher occurrence of cysts in the posterior area of the PSC when compared to BALB/c mice, which presented a more homogeneous cyst distribution. Immunohistochemistry analysis revealed a greater loss of PNN labeling in C57BL/6 animals compared to BALB/c. These data raised a discussion about the ability of T. gondii to stimulate a systemic inflammatory response capable of indirectly interfering in the brain structure and function.
Collapse
Affiliation(s)
- Ramayana Morais de Medeiros Brito
- grid.411233.60000 0000 9687 399XPostgraduate Program in Parasitary Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil ,grid.411233.60000 0000 9687 399XLaboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| | - Ywlliane da Silva Rodrigues Meurer
- grid.411216.10000 0004 0397 5145Postgraduate Program in Cognitive Neuroscience and Behavior, Memory and Cognition Studies Laboratory, Federal University of Paraíba, João Pessoa, Paraíba Brazil
| | - Jully Anne Lemos Batista
- grid.411233.60000 0000 9687 399XLaboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| | - Andréa Lima de Sá
- grid.411233.60000 0000 9687 399XLaboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| | - Cássio Ricardo de Medeiros Souza
- grid.411233.60000 0000 9687 399XLaboratory of Immunopharmacology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| | - Janeusa Trindade de Souto
- grid.411233.60000 0000 9687 399XLaboratory of Immunopharmacology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| | - Valter Ferreira de Andrade-Neto
- grid.411233.60000 0000 9687 399XLaboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| |
Collapse
|
40
|
Toxoplasma gondii Dissemination in the Brain Is Facilitated by Infiltrating Peripheral Immune Cells. mBio 2022; 13:e0283822. [PMID: 36445695 PMCID: PMC9765297 DOI: 10.1128/mbio.02838-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite recent advances in our understanding of pathogenic access to the central nervous system (CNS), the mechanisms by which intracellular pathogens disseminate within the dense cellular network of neural tissue remain poorly understood. To address this issue, longitudinal analysis of Toxoplasma gondii dissemination in the brain was conducted using 2-photon imaging through a cranial window in living mice that transgenically express enhanced green fluorescent protein (eGFP)-claudin-5. Extracellular T. gondii parasites were observed migrating slowly (1.37 ± 1.28 μm/min) and with low displacement within the brain. In contrast, a population of highly motile infected cells transported vacuoles of T. gondii significantly faster (6.30 ± 3.09 μm/min) and with a higher displacement than free parasites. Detailed analysis of microglial dynamics using CX3CR1-GFP mice revealed that T. gondii-infected microglia remained stationary, and infection did not increase the extension/retraction of microglial processes. The role of infiltrating immune cells in shuttling T. gondii was examined by labeling of peripheral hematopoietic cells with anti-CD45 antibody. Infected CD45+ cells were found crawling along the CNS vessel walls and trafficked T. gondii within the brain parenchyma at significantly higher speeds (3.35 ± 1.70 μm/min) than extracellular tachyzoites. Collectively, these findings highlight a dual role for immune cells in neuroprotection and in facilitating parasite dissemination within the brain. IMPORTANCE T. gondii is a foodborne parasite that infects the brain and can cause fatal encephalitis in immunocompromised individuals. However, there is a limited understanding of how the parasites disseminate through the brain and evade immune clearance. We utilized intravital imaging to visualize extracellular T. gondii tachyzoites and infected cells migrating within the infected mouse brain during acute infection. The infection of motile immune cells infiltrating the brain from the periphery significantly increased the dissemination of T. gondii in the brain compared to that of free parasites migrating using their own motility: the speed and displacement of these infected cells would enable them to cover nearly 1 cm of distance per day! Among the infiltrating cells, T. gondii predominantly infected monocytes and CD8+ T cells, indicating that the parasite can hijack immune cells that are critical for controlling the infection in order to enhance their dissemination within the brain.
Collapse
|
41
|
Chandrasekaran S, Kochanowsky JA, Merritt EF, Lagas JS, Swannigan A, Koshy AA. IFN-γ stimulated murine and human neurons mount anti-parasitic defenses against the intracellular parasite Toxoplasma gondii. Nat Commun 2022; 13:4605. [PMID: 35941154 PMCID: PMC9360015 DOI: 10.1038/s41467-022-32225-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/19/2022] [Indexed: 01/13/2023] Open
Abstract
Dogma holds that Toxoplasma gondii persists in neurons because neurons cannot clear intracellular parasites, even with IFN-γ stimulation. As several recent studies questioned this idea, here we use primary murine neuronal cultures from wild type and transgenic mice in combination with IFN-γ stimulation and parental and transgenic parasites to reassess IFN-γ dependent neuronal clearance of intracellular parasites. We find that neurons respond to IFN-γ and that a subset of neurons clear intracellular parasites via immunity regulated GTPases. Whole neuron reconstructions from mice infected with parasites that trigger neuron GFP expression only after full invasion reveal that ~50% of these T. gondii-invaded neurons no longer harbor parasites. Finally, IFN-γ stimulated human pluripotent stem cell derived neurons show an ~50% decrease in parasite infection rate when compared to unstimulated cultures. This work highlights the capability of human and murine neurons to mount cytokine-dependent anti-T. gondii defense mechanisms in vitro and in vivo.
Collapse
Affiliation(s)
| | - Joshua A Kochanowsky
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- University of California, Los Angeles, CA, USA
| | - Emily F Merritt
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Joseph S Lagas
- Undergraduate Biology Research Program, University of Arizona, Tucson, AZ, USA
| | - Ayesha Swannigan
- Undergraduate Research Opportunities Consortium, University of Arizona, Tucson, AZ, USA
| | - Anita A Koshy
- BIO5 Institute, University of Arizona, Tucson, AZ, USA.
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA.
- Department of Neurology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
42
|
French T, Steffen J, Glas A, Osbelt L, Strowig T, Schott BH, Schüler T, Dunay IR. Persisting Microbiota and Neuronal Imbalance Following T. gondii Infection Reliant on the Infection Route. Front Immunol 2022; 13:920658. [PMID: 35898505 PMCID: PMC9311312 DOI: 10.3389/fimmu.2022.920658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/25/2022] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii is a highly successful parasite capable of infecting all warm-blooded animals. The natural way of infection in intermediate hosts is the oral ingestion of parasite-contaminated water or food. In murine experimental models, oral infection (p.o.) of mice with T. gondii is applied to investigate mucosal and peripheral immune cell dynamics, whereas intraperitoneal infection (i.p.) is frequently used to study peripheral inflammation as well as immune cell – neuronal interaction in the central nervous system (CNS). However, the two infection routes have not yet been systematically compared along the course of infection. Here, C57BL/6 mice were infected p.o. or i.p. with a low dose of T. gondii cysts, and the acute and chronic stages of infection were compared. A more severe course of infection was detected following i.p. challenge, characterized by an increased weight loss and marked expression of proinflammatory cytokines particularly in the CNS during the chronic stage. The elevated proinflammatory cytokine expression in the ileum was more prominent after p.o. challenge that continued following the acute phase in both i.p. or p.o. infected mice. This resulted in sustained microbial dysbiosis, especially after p.o. challenge, highlighted by increased abundance of pathobionts from the phyla proteobacteria and a reduction of beneficial commensal species. Further, we revealed that in the CNS of i.p. infected mice CD4 and CD8 T cells displayed higher IFNγ production in the chronic stage. This corresponded with an increased expression of C1q and CD68 in the CNS and reduced expression of genes involved in neuronal signal transmission. Neuroinflammation-associated synaptic alterations, especially PSD-95, VGLUT, and EAAT2 expression, were more pronounced in the cortex upon i.p. infection highlighting the profound interplay between peripheral inflammation and CNS homeostasis.
Collapse
Affiliation(s)
- Timothy French
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I), Otto-von-Guericke University, Magdeburg, Germany
| | - Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I), Otto-von-Guericke University, Magdeburg, Germany
| | - Albert Glas
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I), Otto-von-Guericke University, Magdeburg, Germany
| | - Lisa Osbelt
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Björn H. Schott
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I), Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I), Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- *Correspondence: Ildiko Rita Dunay,
| |
Collapse
|
43
|
Kim H, Hong SH, Jeong HE, Han S, Ahn J, Kim JA, Yang JH, Oh HJ, Chung S, Lee SE. Microfluidic model for in vitro acute Toxoplasma gondii infection and transendothelial migration. Sci Rep 2022; 12:11449. [PMID: 35794197 PMCID: PMC9259589 DOI: 10.1038/s41598-022-15305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
The protozoan parasite Toxoplasma gondii (T. gondii) causes one of the most common human zoonotic diseases and infects approximately one-third of the global population. T. gondii infects nearly every cell type and causes severe symptoms in susceptible populations. In previous laboratory animal studies, T. gondii movement and transmission were not analyzed in real time. In a three-dimensional (3D) microfluidic assay, we successfully supported the complex lytic cycle of T. gondii in situ by generating a stable microvasculature. The physiology of the T. gondii-infected microvasculature was monitored in order to investigate the growth, paracellular and transcellular migration, and transmission of T. gondii, as well as the efficacy of T. gondii drugs.
Collapse
Affiliation(s)
- Hyunho Kim
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea.,Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Sung-Hee Hong
- Division of Vectors and Parasitic Diseases, Korea Diseases Control and Prevention Agency, Cheongju, Republic of Korea
| | - Hyo Eun Jeong
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | | | - Jinchul Ahn
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Jin-A Kim
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | | | - Hyun Jeong Oh
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea.
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea. .,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
| | - Sang-Eun Lee
- Division of Vectors and Parasitic Diseases, Korea Diseases Control and Prevention Agency, Cheongju, Republic of Korea.
| |
Collapse
|
44
|
Naumov AV, Wang C, Chaput D, Ting LM, Alvarez CA, Keller T, Ramadan A, White MW, Kim K, Suvorova ES. Restriction Checkpoint Controls Bradyzoite Development in Toxoplasma gondii. Microbiol Spectr 2022; 10:e0070222. [PMID: 35652638 PMCID: PMC9241953 DOI: 10.1128/spectrum.00702-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Human toxoplasmosis is a life-threatening disease caused by the apicomplexan parasite Toxoplasma gondii. Rapid replication of the tachyzoite is associated with symptomatic disease, while suppressed division of the bradyzoite is responsible for chronic disease. Here, we identified the T. gondii cell cycle mechanism, the G1 restriction checkpoint (R-point), that operates the switch between parasite growth and differentiation. Apicomplexans lack conventional R-point regulators, suggesting adaptation of alternative factors. We showed that Cdk-related G1 kinase TgCrk2 forms alternative complexes with atypical cyclins (TgCycP1, TgCycP2, and TgCyc5) in the rapidly dividing developmentally incompetent RH and slower dividing developmentally competent ME49 tachyzoites and bradyzoites. Examination of cyclins verified the correlation of cyclin expression with growth dependence and development capacity of RH and ME49 strains. We demonstrated that rapidly dividing RH tachyzoites were dependent on TgCycP1 expression, which interfered with bradyzoite differentiation. Using the conditional knockdown model, we established that TgCycP2 regulated G1 duration in the developmentally competent ME49 tachyzoites but not in the developmentally incompetent RH tachyzoites. We tested the functions of TgCycP2 and TgCyc5 in alkaline induced and spontaneous bradyzoite differentiation (rat embryonic brain cells) models. Based on functional and global gene expression analyses, we determined that TgCycP2 also regulated bradyzoite replication, while signal-induced TgCyc5 was critical for efficient tissue cyst maturation. In conclusion, we identified the central machinery of the T. gondii restriction checkpoint comprised of TgCrk2 kinase and three atypical T. gondii cyclins and demonstrated the independent roles of TgCycP1, TgCycP2, and TgCyc5 in parasite growth and development. IMPORTANCE Toxoplasma gondii is a virulent and abundant human pathogen that puts millions of silently infected people at risk of reactivation of the chronic disease. Encysted bradyzoites formed during the chronic stage are resistant to current therapies. Therefore, insights into the mechanism of tissue cyst formation and reactivation are major areas of investigation. The fact that rapidly dividing parasites differentiate poorly strongly suggests that there is a threshold of replication rate that must be crossed to be considered for differentiation. We discovered a cell cycle mechanism that controls the T. gondii growth-rest switch involved in the conversion of dividing tachyzoites into largely quiescent bradyzoites. This switch operates the T. gondii restriction checkpoint using a set of atypical and parasite-specific regulators. Importantly, the novel T. gondii R-point network was not present in the parasite's human and animal hosts, offering a wealth of new and parasite-specific drug targets to explore in the future.
Collapse
Affiliation(s)
- Anatoli V. Naumov
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Dale Chaput
- Proteomics Core, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
| | - Li-Min Ting
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Carmelo A. Alvarez
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Thomas Keller
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Ahmed Ramadan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Michael W. White
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kami Kim
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elena S. Suvorova
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
45
|
Xiao J. Behavioral Changes Induced by Latent Toxoplasmosis Could Arise from CNS Inflammation and Neuropathogenesis. Curr Top Behav Neurosci 2022; 61:303-313. [PMID: 35676595 DOI: 10.1007/7854_2022_370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic infection with Toxoplasma gondii, a neurotropic parasite, has been linked to multiple behavioral changes in rodents and humans. The pathogenic mechanisms underlying these correlations are not known. I discuss here from animal studies the distribution of tissue cysts, the constant immune surveillance, the critical role of cyst burden, and the time-dependent consequences, which I believe are crucial to explaining the behavioral changes. In line with the brain-wide distribution of tissue cysts and chronic neuroinflammation, infected mice displayed a broad range of behavioral phenotypes. Many studies suggest that behavioral changes in mice are directly associated with tissue cyst presence or cyst burden and the host immune response. Cyst burden may not exert direct effects; however, the mechanisms causing behavioral and neuropathological changes are potentially the consequence of cyst burden over time, such as the neuroinflammation required to control the reactivation of tissue cysts. The reduction of neuroinflammation has proven that neuropathogenesis and behavioral abnormalities can be reversed, at least partially, in infected mice. Overall, Toxoplasma-induced behavioral changes are likely to be an indirect consequence of the host immune response in a parasite burden-dependent manner.
Collapse
Affiliation(s)
- Jianchun Xiao
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
46
|
Xiao J, Savonenko A, Yolken RH. Strain-specific pre-existing immunity: A key to understanding the role of chronic Toxoplasma infection in cognition and Alzheimer's diseases? Neurosci Biobehav Rev 2022; 137:104660. [PMID: 35405182 DOI: 10.1016/j.neubiorev.2022.104660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022]
Abstract
Toxoplasma exposure can elicit cellular and humoral immune responses. In the case of chronic Toxoplasma infection, these immune responses are long-lasting. Some studies suggest that pre-existing immunity from Toxoplasma infection can shape immune responses and resistance to other pathogens and brain insults later in life. Much evidence has been generated suggesting Toxoplasma infection may contribute to cognitive impairment in the elderly. However, there have also been studies that disagree with the conclusion. Toxoplasma has many strain types, with virulence being the most notable difference. There is also considerable variation in the outcomes following Toxoplasma exposure ranging from resolved to persistent infection. Therefore, the brain microenvironment, particularly cellular constituents, differs based on the infecting strain (virulent versus hypovirulent) and infection stage (resolved versus persistent). Such difference might play a critical role in determining the outcome of the host on subsequent challengings to the brain. The ability of Toxoplasma strains to set up distinct stages for neurodegenerative pathology through varying degrees of virulence provides unique experimental tools for characterizing these pathways.
Collapse
Affiliation(s)
- Jianchun Xiao
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
47
|
Host cell proteins modulated upon Toxoplasma infection identified using proteomic approaches: a molecular rationale. Parasitol Res 2022; 121:1853-1865. [PMID: 35552534 DOI: 10.1007/s00436-022-07541-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Toxoplasma gondii is a pathogenic protozoan parasite belonging to the apicomplexan phylum that infects the nucleated cells of warm-blooded hosts leading to an infectious disease known as toxoplasmosis. Apicomplexan parasites such as T. gondii can display different mechanisms to control or manipulate host cells signaling at different levels altering the host subcellular genome and proteome. Indeed, Toxoplasma is able to modulate host cell responses (especially immune responses) during infection to its advantage through both structural and functional changes in the proteome of different infected cells. Consequently, parasites can transform the invaded cells into a suitable environment for its own replication and the induction of infection. Proteomics as an applicable tool can identify such critical proteins involved in pathogen (Toxoplasma)-host cell interactions and consequently clarify the cellular mechanisms that facilitate the entry of pathogens into host cells, and their replication and transmission, as well as the central mechanisms of host defense against pathogens. Accordingly, the current paper reviews several proteins (identified using proteomic approaches) differentially expressed in the proteome of Toxoplasma-infected host cells (macrophages and human foreskin fibroblasts) and tissues (brain and liver) and highlights their plausible functions in the cellular biology of the infected cells. The identification of such modulated proteins and their related cell impact (cell responses/signaling) can provide further information regarding parasite pathogenesis and biology that might lead to a better understanding of therapeutic strategies and novel drug targets.
Collapse
|
48
|
Idro R, Ogwang R, Barragan A, Raimondo JV, Masocha W. Neuroimmunology of Common Parasitic Infections in Africa. Front Immunol 2022; 13:791488. [PMID: 35222377 PMCID: PMC8866860 DOI: 10.3389/fimmu.2022.791488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic infections of the central nervous system are an important cause of morbidity and mortality in Africa. The neurological, cognitive, and psychiatric sequelae of these infections result from a complex interplay between the parasites and the host inflammatory response. Here we review some of the diseases caused by selected parasitic organisms known to infect the nervous system including Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei spp., and Taenia solium species. For each parasite, we describe the geographical distribution, prevalence, life cycle, and typical clinical symptoms of infection and pathogenesis. We pay particular attention to how the parasites infect the brain and the interaction between each organism and the host immune system. We describe how an understanding of these processes may guide optimal diagnostic and therapeutic strategies to treat these disorders. Finally, we highlight current gaps in our understanding of disease pathophysiology and call for increased interrogation of these often-neglected disorders of the nervous system.
Collapse
Affiliation(s)
- Richard Idro
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Rodney Ogwang
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Nairobi, Kenya
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Joseph Valentino Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| |
Collapse
|
49
|
Tan S, Tong WH, Vyas A. Impact of Plant-Based Foods and Nutraceuticals on Toxoplasma gondii Cysts: Nutritional Therapy as a Viable Approach for Managing Chronic Brain Toxoplasmosis. Front Nutr 2022; 9:827286. [PMID: 35284438 PMCID: PMC8914227 DOI: 10.3389/fnut.2022.827286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that mainly infects warm-blooded animals including humans. T. gondii can encyst and persist chronically in the brain, leading to a broad spectrum of neurological sequelae. Despite the associated health threats, no clinical drug is currently available to eliminate T. gondii cysts. In a continuous effort to uncover novel therapeutic agents for these cysts, the potential of nutritional products has been explored. Herein, we describe findings from in vitro and in vivo studies that support the efficacy of plant-based foods and nutraceuticals against brain cyst burden and cerebral pathologies associated with chronic toxoplasmosis. Finally, we discuss strategies to increase the translatability of preclinical studies and nutritional products to address whether nutritional therapy can be beneficial for coping with chronic T. gondii infections in humans.
Collapse
|
50
|
Bando H, Fukuda Y, Watanabe N, Olawale JT, Kato K. Depletion of Intracellular Glutamine Pools Triggers Toxoplasma gondii Stage Conversion in Human Glutamatergic Neurons. Front Cell Infect Microbiol 2022; 11:788303. [PMID: 35096641 PMCID: PMC8793678 DOI: 10.3389/fcimb.2021.788303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii chronically infects the brain as latent cysts containing bradyzoites and causes various effects in the host. Recently, the molecular mechanisms of cyst formation in the mouse brain have been elucidated, but those in the human brain remain largely unknown. Here, we show that abnormal glutamine metabolism caused by both interferon-γ (IFN-γ) stimulation and T. gondii infection induce cyst formation in human neuroblastoma cells regardless of the anti-T. gondii host factor nitric oxide (NO) level or Indoleamine 2,3-dioxygenase-1 (IDO1) expression. IFN-γ stimulation promoted intracellular glutamine degradation in human neuronal cells. Additionally, T. gondii infection inhibited the mRNA expression of the host glutamine transporters SLC38A1 and SLC38A2. These dual effects led to glutamine starvation and triggered T. gondii stage conversion in human neuronal cells. Furthermore, these mechanisms are conserved in human iPSC-derived glutamatergic neurons. Taken together, our data suggest that glutamine starvation in host cells is an important trigger of T. gondii stage conversion in human neurons.
Collapse
Affiliation(s)
- Hironori Bando
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
| | - Yasuhiro Fukuda
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
| | - Nina Watanabe
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
| | - Jeje Temitope Olawale
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
- Department of Biochemistry, School of Science, Federal University of Technology, Akure, Nigeria
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
- *Correspondence: Kentaro Kato,
| |
Collapse
|