1
|
Qi X, Zhao R, Yao X, Liu Q, Liu P, Zhu Z, Tu C, Gong W, Li X. Getah virus Nsp3 binds G3BP to block formation of bona fide stress granules. Int J Biol Macromol 2024; 279:135274. [PMID: 39226976 DOI: 10.1016/j.ijbiomac.2024.135274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Stress granules (SGs) are cytoplasmic aggregates of proteins and mRNA that form in response to diverse environmental stressors, including viral infections. Several viruses possess the ability to block the formation of stress granules by targeting the SGs marker protein G3BP. However, the molecular functions and mechanisms underlying the regulation of SGs formation by Getah virus (GETV) remain unclear. In this study, we found that GETV infection triggered the formation of Nsp3-G3BP aggregates, which differed in composition from SGs. Further studies revealed that the presence of these aggregates was dependent on the activation of the PKR/eIF2α signaling pathway. Interestingly, we found that Nsp3 HVD domain blocked the formation of SGs by binding to G3BP NTF2 domain. Moreover, knockout of G3BP in NCI-H1299 cells had no effect on GETV replication, while overexpression of G3BP to form the genuine SGs significantly inhibited GETV replication. Overall, our study elucidates a novel role GETV Nsp3 to change the composition of SG as well as cellular stress response.
Collapse
Affiliation(s)
- Xiaoyi Qi
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ruihan Zhao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaohui Yao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Qinqiu Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Panrao Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhenbang Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Changchun Tu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Wenjie Gong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiangdong Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Aïqui-Reboul-Paviet O, Bakhache W, Bernard E, Holsteyn L, Neyret A, Briant L. The Rac1-PAK1-Arp2/3 signaling axis regulates CHIKV nsP1-induced filopodia and optimal viral genome replication. J Virol 2024; 98:e0061224. [PMID: 39297643 PMCID: PMC11495065 DOI: 10.1128/jvi.00612-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/10/2024] [Indexed: 10/23/2024] Open
Abstract
Alphavirus infection induces dramatic remodeling of host cellular membranes, producing filopodia-like and intercellular extensions. The formation of filopodia-like extensions has been primarily assigned to the replication protein nsP1, which binds and reshapes the host plasma membrane when expressed alone. While reported decades ago, the molecular mechanisms behind nsP1 membrane deformation remain unknown. Using mammalian epithelial cells and Chikungunya virus (CHIKV) as models, we characterized nsP1-induced membrane deformations as highly dynamic actin-rich lamellipodia and filopodia-like extensions. Through pharmacological inhibition and genetic invalidation, we identified the critical contribution of the Rac1 GTPase and its downstream effectors PAK1 and the actin nucleator Arp2 in nsP1-induced membrane deformation. An intact Rac1-PAK1-Arp2 signaling axis was also required for optimal CHIKV genome replication. Therefore, our results designate the Rac1-PAK1-Arp2 pathway as an essential signaling node for CHIKV infection and establish a parallel requirement for host factors involved in nsP1-induced plasma membrane reshaping and assembly of a functional replication complex.IMPORTANCEThe alphavirus nsP1 protein dramatically remodels host cellular membranes, resulting in the formation of filopodia-like extensions. Although described decades ago, the molecular mechanisms controlling these membrane deformations and their functional importance remain elusive. Our study provides mechanistic insight, uncovering the critical role of the Rac1 GTPase, along with its downstream effectors PAK1 and the actin nucleator Arp2, in the nsP1-associated phenotype. Furthermore, we demonstrate that the Rac1-PAK1-Arp2 pathway is essential for optimal CHIKV genome replication. Our findings establish a parallel in the cellular mechanisms governing nsP1-induced plasma membrane reshaping and the production of a functional replication complex in infected cells.
Collapse
Affiliation(s)
| | - William Bakhache
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Eric Bernard
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Lise Holsteyn
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Aymeric Neyret
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Laurence Briant
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| |
Collapse
|
3
|
Liu J, Guan G, Wu C, Wang B, Chu K, Zhang X, He S, Zhang N, Yang G, Jin Z, Zhao T. SARS-CoV-2 Nucleocapsid Protein Antagonizes GADD34-Mediated Innate Immune Pathway through Atypical Foci. Molecules 2024; 29:4792. [PMID: 39459161 PMCID: PMC11510332 DOI: 10.3390/molecules29204792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The integrated stress response, especially stress granules (SGs), contributes to host immunity. Typical G3BP1+ stress granules (tSGs) are usually formed after virus infection to restrain viral replication and stimulate innate immunity. Recently, several SG-like foci or atypical SGs (aSGs) with proviral function have been found during viral infection. We have shown that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein induces atypical N+/G3BP1+ foci (N+foci), leading to the inhibition of host immunity and facilitation of viral infection. However, the precise mechanism has not been well clarified yet. In this study, we showed that the SARS-CoV-2 N (SARS2-N) protein inhibits dsRNA-induced growth arrest and DNA damage-inducible 34 (GADD34) expression. Mechanistically, the SARS2-N protein promotes the interaction between GADD34 mRNA and G3BP1, sequestering GADD34 mRNA into the N+foci. Importantly, we found that GADD34 participates in IRF3 nuclear translocation through its KVRF motif and promotes the transcription of downstream interferon genes. The suppression of GADD34 expression by the SARS2-N protein impairs the nuclear localization of IRF3 and compromises the host's innate immune response, which facilitates viral replication. Taking these findings together, our study revealed a novel mechanism by which the SARS2-N protein antagonized the GADD34-mediated innate immune pathway via induction of N+foci. We think this is a critical strategy for viral pathogenesis and has potential therapeutic implications.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Guanwen Guan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chunxiu Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bingbing Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kaifei Chu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xu Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Su He
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Naru Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Geng Yang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Zhigang Jin
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Tiejun Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
4
|
Yao Z, Ramachandran S, Huang S, Kim E, Jami-Alahmadi Y, Kaushal P, Bouhaddou M, Wohlschlegel JA, Li MM. Interaction of chikungunya virus glycoproteins with macrophage factors controls virion production. EMBO J 2024; 43:4625-4655. [PMID: 39261662 PMCID: PMC11480453 DOI: 10.1038/s44318-024-00193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/13/2024] Open
Abstract
Despite their role as innate sentinels, macrophages can serve as cellular reservoirs of chikungunya virus (CHIKV), a highly-pathogenic arthropod-borne alphavirus that has caused large outbreaks among human populations. Here, with the use of viral chimeras and evolutionary selection analysis, we define CHIKV glycoproteins E1 and E2 as critical for virion production in THP-1 derived human macrophages. Through proteomic analysis and functional validation, we further identify signal peptidase complex subunit 3 (SPCS3) and eukaryotic translation initiation factor 3 subunit K (eIF3k) as E1-binding host proteins with anti-CHIKV activities. We find that E1 residue V220, which has undergone positive selection, is indispensable for CHIKV production in macrophages, as its mutation attenuates E1 interaction with the host restriction factors SPCS3 and eIF3k. Finally, we show that the antiviral activity of eIF3k is translation-independent, and that CHIKV infection promotes eIF3k translocation from the nucleus to the cytoplasm, where it associates with SPCS3. These functions of CHIKV glycoproteins late in the viral life cycle provide a new example of an intracellular evolutionary arms race with host restriction factors, as well as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Zhenlan Yao
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sangeetha Ramachandran
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Serina Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erin Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Prashant Kaushal
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Mehdi Bouhaddou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Melody Mh Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Kril V, Hons M, Amadori C, Zimberger C, Couture L, Bouery Y, Burlaud-Gaillard J, Karpov A, Ptchelkine D, Thienel AL, Kümmerer BM, Desfosses A, Jones R, Roingeard P, Meertens L, Amara A, Reguera J. Alphavirus nsP3 organizes into tubular scaffolds essential for infection and the cytoplasmic granule architecture. Nat Commun 2024; 15:8106. [PMID: 39285216 PMCID: PMC11405681 DOI: 10.1038/s41467-024-51952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024] Open
Abstract
Alphaviruses, such as chikungunya virus (CHIKV), are mosquito-borne viruses that represent a significant threat to human health due to the current context of global warming. Efficient alphavirus infection relies on the activity of the non-structural protein 3 (nsP3), a puzzling multifunctional molecule whose role in infection remains largely unknown. NsP3 is a component of the plasma membrane-bound viral RNA replication complex (vRC) essential for RNA amplification and is also found in large cytoplasmic aggregates of unknown function. Here, we report the cryo-electron microscopy (cryo-EM) structure of the CHIKV nsP3 at 2.35 Å resolution. We show that nsP3 assembles into tubular structures made by a helical arrangement of its alphavirus unique domain (AUD). The nsP3 helical scaffolds are consistent with crown structures found on tomographic reconstructions of the mature viral RCs. In addition, nsP3 helices assemble into cytoplasmic granules organized in a network of tubular structures that contain viral genomic RNA and capsid as well as host factors required for productive infection. Structure-guided mutagenesis identified residues that prevent or disturb nsP3 assemblies, resulting in impaired viral replication or transcription. Altogether, our results reveal an unexpected nsP3-dependent molecular organization essential for different phases of alphavirus infection.
Collapse
Affiliation(s)
- Vasiliya Kril
- Université de Paris-Cité, Biology of Emerging Viruses Team, INSERM U944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Michael Hons
- European Molecular Biology Laboratory, Grenoble, France
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen Synchrotron DESY, Hamburg, Germany
| | - Celine Amadori
- Université de Paris-Cité, Biology of Emerging Viruses Team, INSERM U944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Claire Zimberger
- Aix-Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Laurine Couture
- Université de Paris-Cité, Biology of Emerging Viruses Team, INSERM U944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Yara Bouery
- Université de Paris-Cité, Biology of Emerging Viruses Team, INSERM U944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Julien Burlaud-Gaillard
- Université́ de Tours, INSERM U1259 MAVIVH et Plateforme IBiSA de Microscopie Electronique, Tours, France
| | - Andrei Karpov
- Aix-Marseille Université, CNRS, AFMB UMR 7257, Turing Centre for Living Systems, 13288, Marseille, France
- Viral Macromolecular Complexes Team, ERL-INSERM U1324, Marseille, France
| | - Denis Ptchelkine
- Aix-Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | - Beate M Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Rhian Jones
- Aix-Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
- Viral Macromolecular Complexes Team, ERL-INSERM U1324, Marseille, France
| | - Philippe Roingeard
- Université́ de Tours, INSERM U1259 MAVIVH et Plateforme IBiSA de Microscopie Electronique, Tours, France
| | - Laurent Meertens
- Université de Paris-Cité, Biology of Emerging Viruses Team, INSERM U944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Ali Amara
- Université de Paris-Cité, Biology of Emerging Viruses Team, INSERM U944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France.
| | - Juan Reguera
- Aix-Marseille Université, CNRS, AFMB UMR 7257, Marseille, France.
- Viral Macromolecular Complexes Team, ERL-INSERM U1324, Marseille, France.
| |
Collapse
|
6
|
Yao Z, Liu Y, Chen Q, Chen X, Zhu Z, Song S, Ma X, Yang P. The divergent effects of G3BP orthologs on human stress granule assembly imply a centric role for the core protein interaction network. Cell Rep 2024; 43:114617. [PMID: 39120973 DOI: 10.1016/j.celrep.2024.114617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) mediated by G3BP1/2 proteins and non-translating mRNAs mediates stress granule (SG) assembly. We investigated the phylogenetic evolution of G3BP orthologs from unicellular yeast to mammals and identified both conserved and divergent features. The modular domain organization of G3BP orthologs is generally conserved. However, invertebrate orthologs displayed reduced capacity for SG assembly in human cells compared to vertebrate orthologs. We demonstrated that the protein-interaction network facilitated by the NTF2L domain is a crucial determinant of this specificity. The evolution of the G3BP1 network coincided with its exploitation by certain viruses, as evident from the interaction between viral proteins and G3BP orthologs in insects and vertebrates. We revealed the importance and divergence of the G3BP interaction network in human SG formation. Leveraging this network, we established a 7-component in vitro SG reconstitution system for quantitative studies. These findings highlight the significance of G3BP network divergence in the evolution of biological processes.
Collapse
Affiliation(s)
- Zhiying Yao
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yi Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Qi Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaoxin Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhenshuo Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Sha Song
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xianjue Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Peiguo Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Omler A, Mutso M, Vaher M, Freitas JR, Taylor A, David CT, Moseley GW, Liu X, Merits A, Mahalingam S. Exploring Barmah Forest virus pathogenesis: molecular tools to investigate non-structural protein 3 nuclear localization and viral genomic determinants of replication. mBio 2024; 15:e0099324. [PMID: 38953633 PMCID: PMC11323547 DOI: 10.1128/mbio.00993-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
Barmah Forest virus (BFV) is a mosquito-borne virus that causes arthralgia with accompanying rash, fever, and myalgia in humans. The virus is mainly found in Australia and has caused outbreaks associated with significant health concerns. As the sole representative of the Barmah Forest complex within the genus Alphavirus, BFV is not closely related genetically to other alphaviruses. Notably, basic knowledge of BFV molecular virology has not been well studied due to a lack of critical investigative tools such as an infectious clone. Here we describe the construction of an infectious BFV cDNA clone based on Genbank sequence and demonstrate that the clone-derived virus has in vitro and in vivo properties similar to naturally occurring virus, BFV field isolate 2193 (BFV2193-FI). A substitution in nsP4, V1911D, which was identified in the Genbank reference sequence, was found to inhibit virus rescue and replication. T1325P substitution in nsP2 selected during virus passaging was shown to be an adaptive mutation, compensating for the inhibitory effect of nsP4-V1911D. The two mutations were associated with changes in viral non-structural polyprotein processing and type I interferon (IFN) induction. Interestingly, a nuclear localization signal, active in mammalian but not mosquito cells, was identified in nsP3. A point mutation abolishing nsP3 nuclear localization attenuated BFV replication. This effect was more prominent in the presence of type I interferon signaling, suggesting nsP3 nuclear localization might be associated with IFN antagonism. Furthermore, abolishing nsP3 nuclear localization reduced virus replication in mice but did not significantly affect disease.IMPORTANCEBarmah Forest virus (BFV) is Australia's second most prevalent arbovirus, with approximately 1,000 cases reported annually. The clinical symptoms of BFV infection include rash, polyarthritis, arthralgia, and myalgia. As BFV is not closely related to other pathogenic alphaviruses or well-studied model viruses, our understanding of its molecular virology and mechanisms of pathogenesis is limited. There is also a lack of molecular tools essential for corresponding studies. Here we describe the construction of an infectious clone of BFV, variants harboring point mutations, and sequences encoding marker protein. In infected mammalian cells, nsP3 of BFV was located in the nuclei. This finding extends our understanding of the diverse mechanisms used by alphavirus replicase proteins to interact with host cells. Our novel observations highlight the complex synergy through which the viral replication machinery evolves to correct mutation errors within the viral genome.
Collapse
Affiliation(s)
- Ailar Omler
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Margit Mutso
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mihkel Vaher
- The Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Joseph R. Freitas
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Adam Taylor
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Cassandra T. David
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Gregory W. Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Xiang Liu
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Andres Merits
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
8
|
Hick TAH, Geertsema C, Nguyen W, Bishop CR, van Oosten L, Abbo SR, Dumenil T, van Kuppeveld FJM, Langereis MA, Rawle DJ, Tang B, Yan K, van Oers MM, Suhrbier A, Pijlman GP. Safety concern of recombination between self-amplifying mRNA vaccines and viruses is mitigated in vivo. Mol Ther 2024; 32:2519-2534. [PMID: 38894543 PMCID: PMC11405153 DOI: 10.1016/j.ymthe.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Self-amplifying mRNA (SAM) vaccines can be rapidly deployed in the event of disease outbreaks. A legitimate safety concern is the potential for recombination between alphavirus-based SAM vaccines and circulating viruses. This theoretical risk needs to be assessed in the regulatory process for SAM vaccine approval. Herein, we undertake extensive in vitro and in vivo assessments to explore recombination between SAM vaccine and a wide selection of alphaviruses and a coronavirus. SAM vaccines were found to effectively limit alphavirus co-infection through superinfection exclusion, although some co-replication was still possible. Using sensitive cell-based assays, replication-competent alphavirus chimeras were generated in vitro as a result of rare, but reproducible, RNA recombination events. The chimeras displayed no increased fitness in cell culture. Viable alphavirus chimeras were not detected in vivo in C57BL/6J, Rag1-/- and Ifnar-/- mice, in which high levels of SAM vaccine and alphavirus co-replicated in the same tissue. Furthermore, recombination between a SAM-spike vaccine and a swine coronavirus was not observed. In conclusion we state that although the ability of SAM vaccines to recombine with alphaviruses might be viewed as an environmental safety concern, several key factors substantially mitigate against in vivo emergence of chimeric viruses from SAM vaccine recipients.
Collapse
Affiliation(s)
- Tessy A H Hick
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Wilson Nguyen
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Cameron R Bishop
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Linda van Oosten
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Sandra R Abbo
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Frank J M van Kuppeveld
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Martijn A Langereis
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Daniel J Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; Global Virus Network Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4072 and 4029, Australia.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
9
|
Li M, Hou Y, Zhou Y, Yang Z, Zhao H, Jian T, Yu Q, Zeng F, Liu X, Zhang Z, Zhao YG. LLPS of FXR proteins drives replication organelle clustering for β-coronaviral proliferation. J Cell Biol 2024; 223:e202309140. [PMID: 38587486 PMCID: PMC11001562 DOI: 10.1083/jcb.202309140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
β-Coronaviruses remodel host endomembranes to form double-membrane vesicles (DMVs) as replication organelles (ROs) that provide a shielded microenvironment for viral RNA synthesis in infected cells. DMVs are clustered, but the molecular underpinnings and pathophysiological functions remain unknown. Here, we reveal that host fragile X-related (FXR) family proteins (FXR1/FXR2/FMR1) are required for DMV clustering induced by expression of viral non-structural proteins (Nsps) Nsp3 and Nsp4. Depleting FXRs results in DMV dispersion in the cytoplasm. FXR1/2 and FMR1 are recruited to DMV sites via specific interaction with Nsp3. FXRs form condensates driven by liquid-liquid phase separation, which is required for DMV clustering. FXR1 liquid droplets concentrate Nsp3 and Nsp3-decorated liposomes in vitro. FXR droplets facilitate recruitment of translation machinery for efficient translation surrounding DMVs. In cells depleted of FXRs, SARS-CoV-2 replication is significantly attenuated. Thus, SARS-CoV-2 exploits host FXR proteins to cluster viral DMVs via phase separation for efficient viral replication.
Collapse
Affiliation(s)
- Meng Li
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Yali Hou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Yuzheng Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Zhenni Yang
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Hongyu Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Tao Jian
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, P.R. China
| | - Qianxi Yu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Fuxing Zeng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Xiaotian Liu
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Yan G. Zhao
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
| |
Collapse
|
10
|
Garvanska DH, Alvarado RE, Mundt FO, Lindqvist R, Duel JK, Coscia F, Nilsson E, Lokugamage K, Johnson BA, Plante JA, Morris DR, Vu MN, Estes LK, McLeland AM, Walker J, Crocquet-Valdes PA, Mendez BL, Plante KS, Walker DH, Weisser MB, Överby AK, Mann M, Menachery VD, Nilsson J. The NSP3 protein of SARS-CoV-2 binds fragile X mental retardation proteins to disrupt UBAP2L interactions. EMBO Rep 2024; 25:902-926. [PMID: 38177924 PMCID: PMC10897489 DOI: 10.1038/s44319-023-00043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1, FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and reduced levels of viral antigen in lungs during the early stages of infection. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins and provides molecular insight into the possible underlying molecular defects in fragile X syndrome.
Collapse
Affiliation(s)
- Dimitriya H Garvanska
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R Elias Alvarado
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Filip Oskar Mundt
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Josephine Kerzel Duel
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Coscia
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emma Nilsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Kumari Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bryan A Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Dorothea R Morris
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Michelle N Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Leah K Estes
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alyssa M McLeland
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jordyn Walker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Blanca Lopez Mendez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Melanie Bianca Weisser
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna K Överby
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Gaurav N, Kumar S, Raghavendhar S, Tripathi PK, Gupta S, Arya R, Patel AK. Transcriptome analysis of Huh7 cells upon Chikungunya virus infection and capsid transfection reveals regulation of distinct cellular and metabolic pathways. Virology 2024; 589:109953. [PMID: 38043141 DOI: 10.1016/j.virol.2023.109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Chikungunya virus (CHIKV) causes persistent arthritis and neurological problems imposing a huge burden globally. The present study aims to understand the interaction mechanism of Chikungunya virus and CHIKV-capsid in Huh7 cells. The RNA-sequencing and qRT-PCR method was used for the transcript and gene profiles of CHIKV virus and CHIKV capsid alone. Transcriptional analysis showed capsid induced 1114 and 956 differentially expressed genes (DEGs) to be upregulated and downregulated respectively, while in virus, 933 genes were upregulated and 956 were downregulated. Total 202 DEGs were common in both capsid and virus; and nine were validated using qRT-PCR. Identified DEGs were found to be associated with metabolic pathways such as Diabetes, cardiac disease, and visual impairment. Further, knock-down study on one of the DEGs (MafA) responsible for insulin regulation showed low viral proteins expression suggesting a reduction in virus-infection. Thus, the study provides insight into the interplay of the virus-host factors assisting virus replication.
Collapse
Affiliation(s)
- Nitika Gaurav
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India; University of Colorado, Anschutz Medical Campus, Colorado, USA
| | - Shivani Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India; The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Siva Raghavendhar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India; Division of Infectious Diseases, University of Utah, Salt Lake City, UT, 84132, USA
| | - Praveen Kumar Tripathi
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India; Indian Council of Medical Research, National Institute of Malaria Research, Ranchi, Jharkhand, 834010, India
| | - Shipra Gupta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ravi Arya
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
12
|
He S, Gou H, Zhou Y, Wu C, Ren X, Wu X, Guan G, Jin B, Huang J, Jin Z, Zhao T. The SARS-CoV-2 nucleocapsid protein suppresses innate immunity by remodeling stress granules to atypical foci. FASEB J 2023; 37:e23269. [PMID: 37889852 DOI: 10.1096/fj.202201973rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Viruses deploy multiple strategies to suppress the host innate immune response to facilitate viral replication and pathogenesis. Typical G3BP1+ stress granules (SGs) are usually formed in host cells after virus infection to restrain viral translation and to stimulate innate immunity. Thus, viruses have evolved various mechanisms to inhibit SGs or to repurpose SG components such as G3BP1. Previous studies showed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection inhibited host immunity during the early stage of COVID-19. However, the precise mechanism is not yet well understood. Here we showed that the SARS-CoV-2 nucleocapsid (SARS2-N) protein suppressed the double-stranded RNA (dsRNA)-induced innate immune response, concomitant with inhibition of SGs and the induction of atypical SARS2-N+ /G3BP1+ foci (N+ foci). The SARS2-N protein-induced formation of N+ foci was dependent on the ability of its ITFG motif to hijack G3BP1, which contributed to suppress the innate immune response. Importantly, SARS2-N protein facilitated viral replication by inducing the formation of N+ foci. Viral mutations within SARS2-N protein that impair the formation of N+ foci are associated with the inability of the SARS2-N protein to suppress the immune response. Taken together, our study has revealed a novel mechanism by which SARS-CoV-2 suppresses the innate immune response via induction of atypical N+ foci. We think that this is a critical strategy for viral pathogenesis and has potential therapeutic implications.
Collapse
Affiliation(s)
- Su He
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Hongwei Gou
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yulin Zhou
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Chunxiu Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Xinxin Ren
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xiajunpeng Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Guanwen Guan
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Boxing Jin
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jinhua Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhigang Jin
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Tiejun Zhao
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Dominguez F, Palchevska O, Frolova EI, Frolov I. Alphavirus-based replicons demonstrate different interactions with host cells and can be optimized to increase protein expression. J Virol 2023; 97:e0122523. [PMID: 37877718 PMCID: PMC10688356 DOI: 10.1128/jvi.01225-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Alphavirus replicons are being developed as self-amplifying RNAs aimed at improving the efficacy of mRNA vaccines. These replicons are convenient for genetic manipulations and can express heterologous genetic information more efficiently and for a longer time than standard mRNAs. However, replicons mimic many aspects of viral replication in terms of induction of innate immune response, modification of cellular transcription and translation, and expression of nonstructural viral genes. Moreover, all replicons used in this study demonstrated expression of heterologous genes in cell- and replicon's origin-specific modes. Thus, many aspects of the interactions between replicons and the host remain insufficiently investigated, and further studies are needed to understand the biology of the replicons and their applicability for designing a new generation of mRNA vaccines. On the other hand, our data show that replicons are very flexible expression systems, and additional modifications may have strong positive impacts on protein expression.
Collapse
Affiliation(s)
- Francisco Dominguez
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oksana Palchevska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elena I. Frolova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ilya Frolov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Pahmeier F, Lavacca TM, Goellner S, Neufeldt CJ, Prasad V, Cerikan B, Rajasekharan S, Mizzon G, Haselmann U, Funaya C, Scaturro P, Cortese M, Bartenschlager R. Identification of host dependency factors involved in SARS-CoV-2 replication organelle formation through proteomics and ultrastructural analysis. J Virol 2023; 97:e0087823. [PMID: 37905840 PMCID: PMC10688318 DOI: 10.1128/jvi.00878-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Remodeling of the cellular endomembrane system by viruses allows for efficient and coordinated replication of the viral genome in distinct subcellular compartments termed replication organelles. As a critical step in the viral life cycle, replication organelle formation is an attractive target for therapeutic intervention, but factors central to this process are only partially understood. In this study, we corroborate that two viral proteins, nsp3 and nsp4, are the major drivers of membrane remodeling in SARS-CoV-2 infection. We further report a number of host cell factors interacting with these viral proteins and supporting the viral replication cycle, some of them by contributing to the formation of the SARS-CoV-2 replication organelle.
Collapse
Affiliation(s)
- Felix Pahmeier
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Teresa-Maria Lavacca
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Sarah Goellner
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Christopher J. Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | | | - Giulia Mizzon
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
- German Center for Infection Research, Heidelberg partner site, Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Charlotta Funaya
- Electron Microscopy Core Facility, Heidelberg University, Heidelberg, Germany
| | - Pietro Scaturro
- Systems Arbovirology, Leibniz Institute of Virology, Hamburg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
- German Center for Infection Research, Heidelberg partner site, Heidelberg, Germany
- Division “Virus-Associated Carcinogenesis”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Frolova EI, Palchevska O, Dominguez F, Frolov I. Alphavirus-induced transcriptional and translational shutoffs play major roles in blocking the formation of stress granules. J Virol 2023; 97:e0097923. [PMID: 37902397 PMCID: PMC10688339 DOI: 10.1128/jvi.00979-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/01/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE Our study highlights the mechanisms behind the cell's resistance to stress granule (SG) formation after infection with Old World alphaviruses. Shortly after infection, the replication of these viruses hinders the cell's ability to form SGs, even when exposed to chemical inducers such as sodium arsenite. This resistance is primarily attributed to virus-induced transcriptional and translational shutoffs, rather than interactions between the viral nsP3 and the key components of SGs, G3BP1/2, or the ADP-ribosylhydrolase activity of nsP3 macro domain. While interactions between G3BPs and nsP3 are essential for the formation of viral replication complexes, their role in regulating SG development appears to be small, if any. Cells harboring replicating viruses or replicons with lower abilities to inhibit transcription and/or translation, but expressing wild-type nsP3, retain the ability for SG development. Understanding these mechanisms of regulation of SG formation contributes to our knowledge of viral replication and the intricate relationships between alphaviruses and host cells.
Collapse
Affiliation(s)
- Elena I. Frolova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oksana Palchevska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Francisco Dominguez
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ilya Frolov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
16
|
Gao X, Li J, Wu T, Dou J, Zhang W, Jia H, Zhang Z, Liu X, Li Y. The Isolation and Characterization of a Novel Group III-Classified Getah Virus from a Commercial Modified Live Vaccine against PRRSV. Viruses 2023; 15:2090. [PMID: 37896867 PMCID: PMC10611409 DOI: 10.3390/v15102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
As an epizootic causative agent, the Getah virus (GETV) can cause moderate illness in horses, lethal disease in foxes, and reproductive disorders and fetal death in pigs. Due to the wide range of hosts and multiple routes of transmission, GETV has become a growing potential threat to the global livestock industry, and even to public health. More attention and research on GETV are urgently needed. In this study, we successfully isolated a novel GETV strain, named BJ0304, from a commercial live vaccine against porcine reproductive and respiratory syndrome virus (PRRSV) and determined its growth kinetics. Then, genetic and phylogenetic analyses were performed. The results revealed that BJ0304 was clustered into Group III, and it was most related to the GETV-V1 strain based on the complete genome sequence. Furthermore, the pathogenicity of the isolate was assessed and found to be a low virulent strain in mice relative to its closest homolog GETV-V1. Finally, mutation and glycosylation analysis showed that a unique mutation (171 T > I) at one amino acid of E2, which affected the glycosylation of E2, may be associated with viral pathogenicity. In summary, the general characteristic of a novel Group III-classified GETV-BJ0304 isolated from commercial live PRRSV vaccine was defined and then mutation/glycosylation-related potential virulence factor was discussed. This study highlights the complexity of GETV transmission routes in swine and the need for more surveillance on commercial animal vaccines, contributes to the understanding of genetic characterization of clinical isolates, provides possible virulence factors in favor of unveiling the viral pathogenesis, and eventually lays the foundation for the prevention and control of GETV.
Collapse
Affiliation(s)
- Xintao Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (J.L.); (T.W.); (J.D.); (Z.Z.)
| | - Jialei Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (J.L.); (T.W.); (J.D.); (Z.Z.)
| | - Tong Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (J.L.); (T.W.); (J.D.); (Z.Z.)
| | - Jinping Dou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (J.L.); (T.W.); (J.D.); (Z.Z.)
| | - Wenrong Zhang
- College of Life Sciences, Capital Normal University, Beijing 100081, China;
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zhifang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (J.L.); (T.W.); (J.D.); (Z.Z.)
| | - Xingjian Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (J.L.); (T.W.); (J.D.); (Z.Z.)
| | - Yinü Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (J.L.); (T.W.); (J.D.); (Z.Z.)
| |
Collapse
|
17
|
Pampeno C, Hurtado A, Opp S, Meruelo D. Channeling the Natural Properties of Sindbis Alphavirus for Targeted Tumor Therapy. Int J Mol Sci 2023; 24:14948. [PMID: 37834397 PMCID: PMC10573789 DOI: 10.3390/ijms241914948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Sindbis alphavirus vectors offer a promising platform for cancer therapy, serving as valuable models for alphavirus-based treatment. This review emphasizes key studies that support the targeted delivery of Sindbis vectors to tumor cells, highlighting their effectiveness in expressing tumor-associated antigens and immunomodulating proteins. Among the various alphavirus vectors developed for cancer therapy, Sindbis-vector-based imaging studies have been particularly extensive. Imaging modalities that enable the in vivo localization of Sindbis vectors within lymph nodes and tumors are discussed. The correlation between laminin receptor expression, tumorigenesis, and Sindbis virus infection is examined. Additionally, we present alternative entry receptors for Sindbis and related alphaviruses, such as Semliki Forest virus and Venezuelan equine encephalitis virus. The review also discusses cancer treatments that are based on the alphavirus vector expression of anti-tumor agents, including tumor-associated antigens, cytokines, checkpoint inhibitors, and costimulatory immune molecules.
Collapse
Affiliation(s)
| | | | | | - Daniel Meruelo
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
18
|
Mukhopadhyay C, Zhou P. Role(s) of G3BPs in Human Pathogenesis. J Pharmacol Exp Ther 2023; 387:100-110. [PMID: 37468286 PMCID: PMC10519580 DOI: 10.1124/jpet.122.001538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Ras-GTPase-activating protein (SH3 domain)-binding proteins (G3BP) are RNA binding proteins that play a critical role in stress granule (SG) formation. SGs protect critical mRNAs from various environmental stress conditions by regulating mRNA stability and translation to maintain regulated gene expression. Recent evidence suggests that G3BPs can also regulate mRNA expression through interactions with RNA outside of SGs. G3BPs have been associated with a number of disease states, including cancer progression, invasion, metastasis, and viral infections, and may be useful as a cancer therapeutic target. This review summarizes the biology of G3BP including their structure, function, localization, role in cancer progression, virus replication, mRNA stability, and SG formation. We will also discuss the potential of G3BPs as a therapeutic target. SIGNIFICANCE STATEMENT: This review will discuss the molecular mechanism(s) and functional role(s) of Ras-GTPase-activating protein (SH3 domain)-binding proteins in the context of stress granule formation, interaction with viruses, stability of RNA, and tumorigenesis.
Collapse
Affiliation(s)
- Chandrani Mukhopadhyay
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York
| |
Collapse
|
19
|
de Andrade Vieira Alves F, Nunes PCG, Arruda LV, Salomão NG, Rabelo K. The Innate Immune Response in DENV- and CHIKV-Infected Placentas and the Consequences for the Fetuses: A Minireview. Viruses 2023; 15:1885. [PMID: 37766291 PMCID: PMC10535478 DOI: 10.3390/v15091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Dengue virus (DENV) and chikungunya (CHIKV) are arthropod-borne viruses belonging to the Flaviviridae and Togaviridae families, respectively. Infection by both viruses can lead to a mild indistinct fever or even lead to more severe forms of the diseases, which are characterized by a generalized inflammatory state and multiorgan involvement. Infected mothers are considered a high-risk group due to their immunosuppressed state and the possibility of vertical transmission. Thereby, infection by arboviruses during pregnancy portrays a major public health concern, especially in countries where epidemics of both diseases are regular and public health policies are left aside. Placental involvement during both infections has been already described and the presence of either DENV or CHIKV has been observed in constituent cells of the placenta. In spite of that, there is little knowledge regarding the intrinsic earlier immunological mechanisms that are developed by placental cells in response to infection by both arboviruses. Here, we approach some of the current information available in the literature about the exacerbated presence of cells involved in the innate immune defense of the placenta during DENV and CHIKV infections.
Collapse
Affiliation(s)
- Felipe de Andrade Vieira Alves
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro/UERJ, Rio de Janeiro 20550170, RJ, Brazil; (F.d.A.V.A.); (L.V.A.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil
| | - Priscila Conrado Guerra Nunes
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil;
| | - Laíza Vianna Arruda
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro/UERJ, Rio de Janeiro 20550170, RJ, Brazil; (F.d.A.V.A.); (L.V.A.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil
| | - Natália Gedeão Salomão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil;
| | - Kíssila Rabelo
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro/UERJ, Rio de Janeiro 20550170, RJ, Brazil; (F.d.A.V.A.); (L.V.A.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil
| |
Collapse
|
20
|
Garvanska DH, Alvarado RE, Mundt FO, Nilsson E, Duel JK, Coscia F, Lindqvist R, Lokugamage K, Johnson BA, Plante JA, Morris DR, Vu MN, Estes LK, McLeland AM, Walker J, Crocquet-Valdes PA, Mendez BL, Plante KS, Walker DH, Weisser MB, Overby AK, Mann M, Menachery VD, Nilsson J. SARS-CoV-2 hijacks fragile X mental retardation proteins for efficient infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555899. [PMID: 37693415 PMCID: PMC10491247 DOI: 10.1101/2023.09.01.555899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1 and FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and have delayed disease onset in vivo. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins for efficient infection and provides molecular insight to the possible underlying molecular defects in fragile X syndrome.
Collapse
Affiliation(s)
- Dimitriya H Garvanska
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rojelio E Alvarado
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Filip Oskar Mundt
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emma Nilsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Josephine Kerzel Duel
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Coscia
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Kumari Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bryan A Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, United States
| | - Dorothea R Morris
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Michelle N Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Leah K Estes
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alyssa M McLeland
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jordyn Walker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, United States
| | | | - Blanca Lopez Mendez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, United States
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Melanie Bianca Weisser
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna K Overby
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, United States
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Palchevska O, Dominguez F, Frolova EI, Frolov I. Alphavirus-induced transcriptional and translational shutoffs play major roles in blocking the formation of stress granules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547824. [PMID: 37461699 PMCID: PMC10349968 DOI: 10.1101/2023.07.05.547824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Alphavirus infections cause multiple alterations in the intracellular environment that can have both positive and negative effects on viral replication. The Old World alphaviruses, such as Sindbis (SINV), chikungunya (CHIKV), and Semliki Forest viruses, hinder the ability of vertebrate cells to form stress granules (SGs). Previously, this inhibitory function was attributed to the hypervariable domain (HVD) of nsP3, which sequesters the key components of SGs, G3BP1 and G3BP2, and to the nsP3 macro domain. The macro domain possesses ADP-ribosylhydrolase activity, which can diminish the ADP-ribosylation of G3BP1 during viral replication. However, our recent findings do not support the prevailing notions. We demonstrate that the interactions between SINV- or CHIKV-specific nsP3s and G3BPs, and the ADP-ribosylhydrolase activity are not major contributors to the inhibitory process, at least when nsP3 is expressed at biologically relevant levels. Instead, the primary factors responsible for suppressing SG formation are virus-induced transcriptional and translational shutoffs that rapidly develop within the first few hours post infection. Poorly replicating SINV variants carrying mutated nsP3 HVD still inhibit SG development even in the presence of NaAs. Conversely, SINV mutants lacking transcription and/or translation inhibitory functions lose their ability to inhibit SGs, despite expressing high levels of wt nsP3. Moreover, we found that stable cell lines expressing GFP-nsP3 fusions retain the capacity to form SGs when exposed to sodium arsenite. However, our results do not rule out a possibility that additional virus-induced changes in cell biology may contribute to the suppression of SG formation.
Collapse
Affiliation(s)
- Oksana Palchevska
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| | | | - Elena I. Frolova
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| | - Ilya Frolov
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
22
|
Liu Y, Yao Z, Lian G, Yang P. Biomolecular phase separation in stress granule assembly and virus infection. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1099-1118. [PMID: 37401177 PMCID: PMC10415189 DOI: 10.3724/abbs.2023117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/06/2023] [Indexed: 07/05/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a crucial mechanism for cellular compartmentalization. One prominent example of this is the stress granule. Found in various types of cells, stress granule is a biomolecular condensate formed through phase separation. It comprises numerous RNA and RNA-binding proteins. Over the past decades, substantial knowledge has been gained about the composition and dynamics of stress granules. SGs can regulate various signaling pathways and have been associated with numerous human diseases, such as neurodegenerative diseases, cancer, and infectious diseases. The threat of viral infections continues to loom over society. Both DNA and RNA viruses depend on host cells for replication. Intriguingly, many stages of the viral life cycle are closely tied to RNA metabolism in human cells. The field of biomolecular condensates has rapidly advanced in recent times. In this context, we aim to summarize research on stress granules and their link to viral infections. Notably, stress granules triggered by viral infections behave differently from the canonical stress granules triggered by sodium arsenite (SA) and heat shock. Studying stress granules in the context of viral infections could offer a valuable platform to link viral replication processes and host anti-viral responses. A deeper understanding of these biological processes could pave the way for innovative interventions and treatments for viral infectious diseases. They could potentially bridge the gap between basic biological processes and interactions between viruses and their hosts.
Collapse
Affiliation(s)
- Yi Liu
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Zhiying Yao
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Guiwei Lian
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Peiguo Yang
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| |
Collapse
|
23
|
Guo L, Hu C, Liu Y, Chen X, Song D, Shen R, Liu Z, Jia X, Zhang Q, Gao Y, Deng Z, Zuo T, Hu J, Zhu W, Cai J, Yan G, Liang J, Lin Y. Directed natural evolution generates a next-generation oncolytic virus with a high potency and safety profile. Nat Commun 2023; 14:3410. [PMID: 37296165 PMCID: PMC10256765 DOI: 10.1038/s41467-023-39156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Oncolytic viruses (OVs) represent a type of encouraging multi-mechanistic drug for the treatment of cancer. However, attenuation of virulence, which is generally required for the development of OVs based on pathogenic viral backbones, is frequently accompanied by a compromised killing effect on tumor cells. By exploiting the property of viruses to evolve and adapt in cancer cells, we perform directed natural evolution on refractory colorectal cancer cell HCT-116 and generate a next-generation oncolytic virus M1 (NGOVM) with an increase in the oncolytic effect of up to 9690-fold. The NGOVM has a broader antitumor spectrum and a more robust oncolytic effect in a range of solid tumors. Mechanistically, two critical mutations are identified in the E2 and nsP3 genes, which accelerate the entry of M1 virus by increasing its binding to the Mxra8 receptor and antagonize antiviral responses by inhibiting the activation of PKR and STAT1 in tumor cells, respectively. Importantly, the NGOVM is well tolerated in both rodents and nonhuman primates. This study implies that directed natural evolution is a generalizable approach for developing next-generation OVs with an expanded scope of application and high safety.
Collapse
Affiliation(s)
- Li Guo
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Cheng Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yang Liu
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoyu Chen
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Deli Song
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Runling Shen
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhanzhen Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xudong Jia
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qinfen Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuanzhu Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhezhi Deng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Tao Zuo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun Hu
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Cai
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guangmei Yan
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiankai Liang
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yuan Lin
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital-Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
24
|
Yao Z, Ramachandran S, Huang S, Jami-Alahmadi Y, Wohlschlegel JA, Li MMH. Chikungunya virus glycoproteins transform macrophages into productive viral dissemination vessels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542714. [PMID: 37398144 PMCID: PMC10312455 DOI: 10.1101/2023.05.29.542714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Despite their role as innate sentinels, macrophages are cellular reservoirs for chikungunya virus (CHIKV), a highly pathogenic arthropod-borne alphavirus that has caused unprecedented epidemics worldwide. Here, we took interdisciplinary approaches to elucidate the CHIKV determinants that subvert macrophages into virion dissemination vessels. Through comparative infection using chimeric alphaviruses and evolutionary selection analyses, we discovered for the first time that CHIKV glycoproteins E2 and E1 coordinate efficient virion production in macrophages with the domains involved under positive selection. We performed proteomics on CHIKV-infected macrophages to identify cellular proteins interacting with the precursor and/or mature forms of viral glycoproteins. We uncovered two E1-binding proteins, signal peptidase complex subunit 3 (SPCS3) and eukaryotic translation initiation factor 3 (eIF3k), with novel inhibitory activities against CHIKV production. These results highlight how CHIKV E2 and E1 have been evolutionarily selected for viral dissemination likely through counteracting host restriction factors, making them attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Zhenlan Yao
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sangeetha Ramachandran
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Serina Huang
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Melody M H Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
25
|
Powers JM, Lyski ZL, Weber WC, Denton M, Streblow MM, Mayo AT, Haese NN, Nix CD, Rodríguez-Santiago R, Alvarado LI, Rivera-Amill V, Messer WB, Streblow DN. Infection with chikungunya virus confers heterotypic cross-neutralizing antibodies and memory B-cells against other arthritogenic alphaviruses predominantly through the B domain of the E2 glycoprotein. PLoS Negl Trop Dis 2023; 17:e0011154. [PMID: 36913428 PMCID: PMC10036167 DOI: 10.1371/journal.pntd.0011154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 03/23/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
Infections with Chikungunya virus, a mosquito-borne alphavirus, cause an acute febrile syndrome often followed by chronic arthritis that persists for months to years post-infection. Neutralizing antibodies are the primary immune correlate of protection elicited by infection, and the major goal of vaccinations in development. Using convalescent blood samples collected from both endemic and non-endemic human subjects at multiple timepoints following suspected or confirmed chikungunya infection, we identified antibodies with broad neutralizing properties against other alphaviruses within the Semliki Forest complex. Cross-neutralization generally did not extend to the Venezuelan Equine Encephalitis virus (VEEV) complex, although some subjects had low levels of VEEV-neutralizing antibodies. This suggests that broadly neutralizing antibodies elicited following natural infection are largely complex restricted. In addition to serology, we also performed memory B-cell analysis, finding chikungunya-specific memory B-cells in all subjects in this study as remotely as 24 years post-infection. We functionally assessed the ability of memory B-cell derived antibodies to bind to chikungunya virus, and related Mayaro virus, as well as the highly conserved B domain of the E2 glycoprotein thought to contribute to cross-reactivity between related Old-World alphaviruses. To specifically assess the role of the E2 B domain in cross-neutralization, we depleted Mayaro and Chikungunya virus E2 B domain specific antibodies from convalescent sera, finding E2B depletion significantly decreases Mayaro virus specific cross-neutralizing antibody titers with no significant effect on chikungunya virus neutralization, indicating that the E2 B domain is a key target of cross-neutralizing and potentially cross-protective neutralizing antibodies.
Collapse
Affiliation(s)
- John M. Powers
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Zoe L. Lyski
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Whitney C. Weber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Magdalene M. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Adam T. Mayo
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nicole N. Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Chad D. Nix
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | | | - Luisa I. Alvarado
- Ponce Health Sciences University/ Ponce Research Institute, Ponce, Puerto Rico
| | | | - William B. Messer
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Medicine, Division of Infectious Disease Oregon Health and Science University, Portland, Oregon, United States of America
- OHSU-PSU School of Public Health, Program in Epidemiology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| |
Collapse
|
26
|
Fragile X-Related Protein FXR1 Controls Human Adenovirus Capsid mRNA Metabolism. J Virol 2023; 97:e0153922. [PMID: 36749074 PMCID: PMC9972981 DOI: 10.1128/jvi.01539-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human adenoviruses (HAdVs) are widespread pathogens causing a variety of diseases. A well-controlled expression of virus capsid mRNAs originating from the major late transcription unit (MLTU) is essential for forming the infectious virus progeny. However, regulation of the MLTU mRNA metabolism has mainly remained enigmatic. In this study, we show that the cellular RNA-binding protein FXR1 controls the stability of the HAdV-5 MLTU mRNAs, as depletion of FXR1 resulted in increased steady-state levels of MLTU mRNAs. Surprisingly, the lack of FXR1 reduced viral capsid protein accumulation and formation of the infectious virus progeny, indicating an opposing function of FXR1 in HAdV-5 infection. Further, the long FXR1 isoform interfered with MLTU mRNA translation, suggesting FXR1 isoform-specific functions in virus-infected cells. We also show that the FXR1 protein interacts with N6-methyladenosine (m6A)-modified MLTU mRNAs, thereby acting as a novel m6A reader protein in HAdV-5 infected cells. Collectively, our study identifies FXR1 as a regulator of MLTU mRNA metabolism in the lytic HAdV-5 life cycle. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing various self-limiting diseases, such as the common cold and conjunctivitis. Even though adenoviruses have been studied for more than 6 decades, there are still gaps in understanding how the virus interferes with the host cell to achieve efficient growth. In this study, we identified the cellular RNA-binding protein FXR1 as a factor manipulating the HAdV life cycle. We show that the FXR1 protein specifically interferes with mRNAs encoding essential viral capsid proteins. Since the lack of the FXR1 protein reduces virus growth, we propose that FXR1 can be considered a novel cellular proviral factor needed for efficient HAdV growth. Collectively, our study provides new detailed insights about the HAdV-host interactions, which might be helpful when developing countermeasures against pathogenic adenovirus infections and for improving adenovirus-based therapies.
Collapse
|
27
|
Insect-Specific Chimeric Viruses Potentiated Antiviral Responses and Inhibited Pathogenic Alphavirus Growth in Mosquito Cells. Microbiol Spectr 2023; 11:e0361322. [PMID: 36511715 PMCID: PMC9927327 DOI: 10.1128/spectrum.03613-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most alphaviruses are transmitted by mosquito vectors and infect a wide range of vertebrate hosts, with a few exceptions. Eilat virus (EILV) in this genus is characterized by a host range restricted to mosquitoes. Its chimeric viruses have been developed as safe and effective vaccine candidates and diagnostic tools. Here, we investigated the interactions between these insect-specific viruses (ISVs) and mosquito cells, unveiling their potential roles in determining vector competence and arbovirus transmission. By RNA sequencing, we found that these ISVs profoundly modified host cell gene expression profiles. Two EILV-based chimeras, consisting of EILV's nonstructural genes and the structural genes of Chikungunya virus (CHIKV) or Venezuelan equine encephalitis virus (VEEV), namely, EILV/CHIKV (E/C) and EILV/VEEV (E/V), induced more intensive transcriptome regulation than parental EILV and activated different antiviral mechanisms in host cells. We demonstrated that E/C robustly promoted antimicrobial peptide production and E/V strongly upregulated the RNA interference pathway components. This also highlighted the intrinsic divergences between CHIKV and VEEV, representatives of the Old World and New World alphaviruses. In contrast, EILV triggered a limited antiviral response. We further showed that initial chimera infections efficiently inhibited subsequent pathogenic alphavirus replication, especially in the case of E/V infection, which almost prevented VEEV and Sindbis virus (SINV) superinfections. Altogether our study provided valuable information on developing ISVs as biological control agents. IMPORTANCE Mosquito-borne alphaviruses can cause emerging and reemerging infectious diseases, posing a considerable threat to human and animal health worldwide. However, no specific antivirals or commercial vaccines are currently available. Therefore, it is vital to develop biological control measures to contain virus transmission. Insect-specific EILV and its chimeras are supposed to induce superinfection exclusion owing to the close phylogenetical relationship with pathogenic alphaviruses. These viruses might also, like bacterial symbionts, modulate mosquito hosts' vector competence for arboviruses. However, little is known about the responses of mosquitoes or mosquito cells to ISV infections. Here, we found that EILV barely elicited antiviral defenses in host cells, while its chimeras, namely, E/C and E/V, potentiated the responses via different mechanisms. Furthermore, we showed that initial chimera infections could largely inhibit subsequent pathogenic alphavirus infections. Taken together, our study proposed insect-specific chimeras as a promising candidate for developing biological control measures against pathogenic alphaviruses.
Collapse
|
28
|
Pro-Viral and Anti-Viral Roles of the RNA-Binding Protein G3BP1. Viruses 2023; 15:v15020449. [PMID: 36851663 PMCID: PMC9959972 DOI: 10.3390/v15020449] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Viruses depend on host cellular resources to replicate. Interaction between viral and host proteins is essential for the pathogens to ward off immune responses as well as for virus propagation within the infected cells. While different viruses employ unique strategies to interact with diverse sets of host proteins, the multifunctional RNA-binding protein G3BP1 is one of the common targets for many viruses. G3BP1 controls several key cellular processes, including mRNA stability, translation, and immune responses. G3BP1 also serves as the central hub for the protein-protein and protein-RNA interactions within a class of biomolecular condensates called stress granules (SGs) during stress conditions, including viral infection. Increasing evidence suggests that viruses utilize distinct strategies to modulate G3BP1 function-either by degradation, sequestration, or redistribution-and control the viral life cycle positively and negatively. In this review, we summarize the pro-viral and anti-viral roles of G3BP1 during infection among different viral families.
Collapse
|
29
|
Ogorek TJ, Golden JE. Advances in the Development of Small Molecule Antivirals against Equine Encephalitic Viruses. Viruses 2023; 15:413. [PMID: 36851628 PMCID: PMC9958955 DOI: 10.3390/v15020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Venezuelan, western, and eastern equine encephalitic alphaviruses (VEEV, WEEV, and EEEV, respectively) are arboviruses that are highly pathogenic to equines and cause significant harm to infected humans. Currently, human alphavirus infection and the resulting diseases caused by them are unmitigated due to the absence of approved vaccines or therapeutics for general use. These circumstances, combined with the unpredictability of outbreaks-as exemplified by a 2019 EEE surge in the United States that claimed 19 patient lives-emphasize the risks posed by these viruses, especially for aerosolized VEEV and EEEV which are potential biothreats. Herein, small molecule inhibitors of VEEV, WEEV, and EEEV are reviewed that have been identified or advanced in the last five years since a comprehensive review was last performed. We organize structures according to host- versus virus-targeted mechanisms, highlight cellular and animal data that are milestones in the development pipeline, and provide a perspective on key considerations for the progression of compounds at early and later stages of advancement.
Collapse
Affiliation(s)
- Tyler J. Ogorek
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer E. Golden
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
30
|
Activity, Template Preference, and Compatibility of Components of RNA Replicase of Eastern Equine Encephalitis Virus. J Virol 2023; 97:e0136822. [PMID: 36533950 PMCID: PMC9888243 DOI: 10.1128/jvi.01368-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV) usually cycles between Culiseta melanura mosquitoes and birds; however, it can also infect humans. EEEV has a positive-sense RNA genome that, in infected cells, serves as an mRNA for the P1234 polyprotein. P1234 undergoes a series of precise cleavage events producing four nonstructural proteins (nsP1-4) representing subunits of the RNA replicase. Here, we report the construction and properties of a trans-replicase for EEEV. The template RNA of EEEV was shown to be replicated by replicases of diverse alphaviruses. The EEEV replicase, on the other hand, demonstrated limited ability in replicating template RNAs originating from alphaviruses of the Semliki Forest virus complex. The replicase of EEEV was also successfully reconstructed from P123 and nsP4 components. The ability of EEEV P123 to form functional RNA replicases with heterologous nsP4s was more efficient using EEEV template RNA than heterologous alphavirus template RNA. This finding indicates that unlike with previously studied Semliki Forest complex alphaviruses, P123 and/or its processing products have a leading role in EEEV template RNA recognition. Infection of HEK293T cells harboring the EEEV template RNA with EEEV or Western equine encephalitis virus prominently activated expression of a reporter encoded in the template RNA; the effect was much smaller for infection with other alphaviruses and not detectable upon flavivirus infection. At the same time, EEEV infection resulted only in a limited activation of the template RNA of chikungunya virus. Thus, cells harboring reporter-carrying template RNAs can be used as sensitive and selective biosensors for different alphaviruses. IMPORTANCE Infection of EEEV in humans can cause serious neurologic disease with an approximately 30% fatality rate. Although human infections are rare, a record-breaking number was documented in 2019. The replication of EEEV has a unique requirement for host factors but is poorly studied, partly because the virus requires biosafety level 3 facilities which can limit the scope of experiments; at the same time, these studies are crucial for developing antiviral approaches. The EEEV trans-replicase developed here contributes significantly to research on EEEV, providing a safe and versatile tool for studying the virus RNA replication. Using this system, the compatibility of EEEV replicase components with counterparts from other alphaviruses was analyzed. The obtained data can be used to develop unique biosensors that provide alternative methods for detection, identification, quantitation, and neutralization of viable alphaviruses that are compatible with high throughput, semiautomated approaches.
Collapse
|
31
|
Byers NM, Burns PL, Stuchlik O, Reed MS, Ledermann JP, Pohl J, Powers AM. Identification of mosquito proteins that differentially interact with alphavirus nonstructural protein 3, a determinant of vector specificity. PLoS Negl Trop Dis 2023; 17:e0011028. [PMID: 36696390 PMCID: PMC9876241 DOI: 10.1371/journal.pntd.0011028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/17/2022] [Indexed: 01/26/2023] Open
Abstract
Chikungunya virus (CHIKV) and the closely related onyong-nyong virus (ONNV) are arthritogenic arboviruses that have caused significant, often debilitating, disease in millions of people. However, despite their kinship, they are vectored by different mosquito subfamilies that diverged 180 million years ago (anopheline versus culicine subfamilies). Previous work indicated that the nonstructural protein 3 (nsP3) of these alphaviruses was partially responsible for this vector specificity. To better understand the cellular components controlling alphavirus vector specificity, a cell culture model system of the anopheline restriction of CHIKV was developed along with a protein expression strategy. Mosquito proteins that differentially interacted with CHIKV nsP3 or ONNV nsP3 were identified. Six proteins were identified that specifically bound ONNV nsP3, ten that bound CHIKV nsP3 and eight that interacted with both. In addition to identifying novel factors that may play a role in virus/vector processing, these lists included host proteins that have been previously implicated as contributing to alphavirus replication.
Collapse
Affiliation(s)
- Nathaniel M. Byers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- * E-mail:
| | - Paul L. Burns
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Olga Stuchlik
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Matthew S. Reed
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jeremy P. Ledermann
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ann M. Powers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| |
Collapse
|
32
|
Westcott CE, Isom CM, Karki D, Sokoloski KJ. Dancing with the Devil: A Review of the Importance of Host RNA-Binding Proteins to Alphaviral RNAs during Infection. Viruses 2023; 15:164. [PMID: 36680204 PMCID: PMC9865062 DOI: 10.3390/v15010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Alphaviruses are arthropod-borne, single-stranded positive sense RNA viruses that rely on the engagement of host RNA-binding proteins to efficiently complete the viral lifecycle. Because of this reliance on host proteins, the identification of host/pathogen interactions and the subsequent characterization of their importance to viral infection has been an intensive area of study for several decades. Many of these host protein interaction studies have evaluated the Protein:Protein interactions of viral proteins during infection and a significant number of host proteins identified by these discovery efforts have been RNA Binding Proteins (RBPs). Considering this recognition, the field has shifted towards discovery efforts involving the direct identification of host factors that engage viral RNAs during infection using innovative discovery approaches. Collectively, these efforts have led to significant advancements in the understanding of alphaviral molecular biology; however, the precise extent and means by which many RBPs influence viral infection is unclear as their specific contributions to infection, as per any RNA:Protein interaction, have often been overlooked. The purpose of this review is to summarize the discovery of host/pathogen interactions during alphaviral infection with a specific emphasis on RBPs, to use new ontological analyses to reveal potential functional commonalities across alphaviral RBP interactants, and to identify host RBPs that have, and have yet to be, evaluated in their native context as RNA:Protein interactors.
Collapse
Affiliation(s)
- Claire E. Westcott
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Cierra M. Isom
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Deepa Karki
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Disease (CPM), University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
33
|
Guan Y, Wang Y, Fu X, Bai G, Li X, Mao J, Yan Y, Hu L. Multiple functions of stress granules in viral infection at a glance. Front Microbiol 2023; 14:1138864. [PMID: 36937261 PMCID: PMC10014870 DOI: 10.3389/fmicb.2023.1138864] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 03/05/2023] Open
Abstract
Stress granules (SGs) are distinct RNA granules induced by various stresses, which are evolutionarily conserved across species. In general, SGs act as a conservative and essential self-protection mechanism during stress responses. Viruses have a long evolutionary history and viral infections can trigger a series of cellular stress responses, which may interact with SG formation. Targeting SGs is believed as one of the critical and conservative measures for viruses to tackle the inhibition of host cells. In this systematic review, we have summarized the role of SGs in viral infection and categorized their relationships into three tables, with a particular focus on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Moreover, we have outlined several kinds of drugs targeting SGs according to different pathways, most of which are potentially effective against SARS-CoV-2. We believe this review would offer a new view for the researchers and clinicians to attempt to develop more efficacious treatments for virus infection, particularly for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yuelin Guan
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Wang
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xudong Fu
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Guannan Bai
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xue Li
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhua Mao
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yongbin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Yongbin Yan,
| | - Lidan Hu
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Lidan Hu,
| |
Collapse
|
34
|
Skidmore AM, Bradfute SB. The life cycle of the alphaviruses: From an antiviral perspective. Antiviral Res 2023; 209:105476. [PMID: 36436722 PMCID: PMC9840710 DOI: 10.1016/j.antiviral.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The alphaviruses are a widely distributed group of positive-sense, single stranded, RNA viruses. These viruses are largely arthropod-borne and can be found on all populated continents. These viruses cause significant human disease, and recently have begun to spread into new populations, such as the expansion of Chikungunya virus into southern Europe and the Caribbean, where it has established itself as endemic. The study of alphaviruses is an active and expanding field, due to their impacts on human health, their effects on agriculture, and the threat that some pose as potential agents of biological warfare and terrorism. In this systematic review we will summarize both historic knowledge in the field as well as recently published data that has potential to shift current theories in how alphaviruses are able to function. This review is comprehensive, covering all parts of the alphaviral life cycle as well as a brief overview of their pathology and the current state of research in regards to vaccines and therapeutics for alphaviral disease.
Collapse
Affiliation(s)
- Andrew M Skidmore
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3245, Albuquerque, NM, 87131, USA.
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3330A, Albuquerque, NM, 87131, USA.
| |
Collapse
|
35
|
Brownsword MJ, Locker N. A little less aggregation a little more replication: Viral manipulation of stress granules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1741. [PMID: 35709333 PMCID: PMC10078398 DOI: 10.1002/wrna.1741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 01/31/2023]
Abstract
Recent exciting studies have uncovered how membrane-less organelles, also known as biocondensates, are providing cells with rapid response pathways, allowing them to re-organize their cellular contents and adapt to stressful conditions. Their assembly is driven by the phase separation of their RNAs and intrinsically disordered protein components into condensed foci. Among these, stress granules (SGs) are dynamic cytoplasmic biocondensates that form in response to many stresses, including activation of the integrated stress response or viral infections. SGs sit at the crossroads between antiviral signaling and translation because they concentrate signaling proteins and components of the innate immune response, in addition to translation machinery and stalled mRNAs. Consequently, they have been proposed to contribute to antiviral activities, and therefore are targeted by viral countermeasures. Equally, SGs components can be commandeered by viruses for their own efficient replication. Phase separation processes are an important component of the viral life cycle, for example, driving the assembly of replication factories or inclusion bodies. Therefore, in this review, we will outline the recent understanding of this complex interplay and tug of war between viruses, SGs, and their components. This article is categorized under: RNA in Disease and Development > RNA in Disease Translation > Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Matthew J. Brownsword
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyUK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyUK
| |
Collapse
|
36
|
Wang L, Guzmán M, Sola I, Enjuanes L, Zuñiga S. Cytoplasmic ribonucleoprotein complexes, RNA helicases and coronavirus infection. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1078454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA metabolism in the eukaryotic cell includes the formation of ribonucleoprotein complexes (RNPs) that, depending on their protein components, have a different function. Cytoplasmic RNPs, such as stress granules (SGs) or P-bodies (PBs) are quite relevant during infections modulating viral and cellular RNA expression and as key players in the host cell antiviral response. RNA helicases are abundant components of RNPs and could have a significant effect on viral infection. This review focuses in the role that RNPs and RNA helicases have during coronavirus (CoVs) infection. CoVs are emerging highly pathogenic viruses with a large single-stranded RNA genome. During CoV infection, a complex network of RNA-protein interactions in different RNP structures is established. In general, RNA helicases and RNPs have an antiviral function, but there is limited knowledge on whether the viral protein interactions with cell components are mediators of this antiviral effect or are part of the CoV antiviral counteraction mechanism. Additional data is needed to elucidate the role of these RNA-protein interactions during CoV infection and their potential contribution to viral replication or pathogenesis.
Collapse
|
37
|
Kim T, Abraham R, Pieterse L, Yeh JX, Griffin DE. Cell-Type-Dependent Role for nsP3 Macrodomain ADP-Ribose Binding and Hydrolase Activity during Chikungunya Virus Infection. Viruses 2022; 14:v14122744. [PMID: 36560748 PMCID: PMC9787352 DOI: 10.3390/v14122744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV) causes outbreaks of rash, arthritis, and fever associated with neurologic complications, where astrocytes are preferentially infected. A determinant of virulence is the macrodomain (MD) of nonstructural protein 3 (nsP3), which binds and removes ADP-ribose (ADPr) from ADP-ribosylated substrates and regulates stress-granule disruption. We compared the replication of CHIKV 181/25 (WT) and MD mutants with decreased ADPr binding and hydrolase (G32S) or increased ADPr binding and decreased hydrolase (Y114A) activities in C8-D1A astrocytic cells and NSC-34 neuronal cells. WT CHIKV replication was initiated more rapidly with earlier nsP synthesis in C8-D1A than in NSC-34 cells. G32S established infection, amplified replication complexes, and induced host-protein synthesis shut-off less efficiently than WT and produced less infectious virus, while Y114A replication was close to WT. However, G32S mutation effects on structural protein synthesis were cell-type-dependent. In NSC-34 cells, E2 synthesis was decreased compared to WT, while in C8-D1A cells synthesis was increased. Excess E2 produced by G32S-infected C8-D1A cells was assembled into virus particles that were less infectious than those from WT or Y114A-infected cells. Because nsP3 recruits ADP-ribosylated RNA-binding proteins in stress granules away from translation-initiation factors into nsP3 granules where the MD hydrolase can remove ADPr, we postulate that suboptimal translation-factor release decreased structural protein synthesis in NSC-34 cells while failure to de-ADP-ribosylate regulatory RNA-binding proteins increased synthesis in C8-D1A cells.
Collapse
|
38
|
Kehn-Hall K, Bradfute SB. Understanding host responses to equine encephalitis virus infection: implications for therapeutic development. Expert Rev Anti Infect Ther 2022; 20:1551-1566. [PMID: 36305549 DOI: 10.1080/14787210.2022.2141224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV) are mosquito-borne New World alphaviruses that cause encephalitis in equids and humans. These viruses can cause severe disease and death, as well as long-term severe neurological symptoms in survivors. Despite the pathogenesis and weaponization of these viruses, there are no approved therapeutics for treating infection. AREAS COVERED In this review, we describe the molecular pathogenesis of these viruses, discuss host-pathogen interactions needed for viral replication, and highlight new avenues for drug development with a focus on host-targeted approaches. EXPERT OPINION Current approaches have yielded some promising therapeutics, but additional emphasis should be placed on advanced development of existing small molecules and pursuit of pan-encephalitic alphavirus drugs. More research should be conducted on EEEV and WEEV, given their high lethality rates.
Collapse
Affiliation(s)
- Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.,Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Steven B Bradfute
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
39
|
Wang S, Merits A. G3BP/Rin-Binding Motifs Inserted into Flexible Regions of nsP2 Support RNA Replication of Chikungunya Virus. J Virol 2022; 96:e0127822. [PMID: 36226983 PMCID: PMC9645214 DOI: 10.1128/jvi.01278-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus. In infected cells, its positive-sense RNA genome is translated into polyproteins that are subsequently processed into four nonstructural proteins (nsP1 to 4), the virus-encoded subunits of the RNA replicase. However, for RNA replication, interactions between nsPs and host proteins are also needed. These interactions are mostly mediated through the intrinsically disordered C-terminal hypervariable domain (HVD) in nsP3. Duplicate FGDF motifs in the HVD are required for interaction with mammalian RasGAP SH3-binding proteins (G3BPs) and their mosquito homolog Rin; these interactions are crucial for CHIKV RNA replication. In this study, we inactivated G3BP/Rin-binding motifs in the HVD and inserted peptides containing either native or inactivated G3BP/Rin-binding motifs into flexible regions of nsP1, nsP2, or nsP4. Insertion of native motifs into nsP1 or nsP2 but not into the C terminus of nsP4 activated CHIKV RNA replication in human cells in a G3BP-dependent manner. In mosquito cells, activation also resulted from the insertion of inactive motifs after residue 8 or 466 in nsP2; however, the effect was significantly larger when the inserted sequence contained native motifs. Nonetheless, CHIKV mutants harboring mutations in the HVD and containing insertions of native motifs in nsP2 were not viable in mosquito cells. In contrast, mutant genomes containing native motifs after residue 466 or 618 in nsP2 replicated in BHK-21 cells, with the latter mutant forming infectious progeny. Thus, the binding of G3BPs to nsP2 can support CHIKV RNA replication and restore the infectivity of viruses lacking G3BP-binding motifs in the HVD of nsP3. IMPORTANCE CHIKV is a reemerging alphavirus that has spread throughout more than 60 countries and is the causative agent of chikungunya fever. No approved drugs or vaccines are available for the treatment or prevention of CHIKV infection. CHIKV replication depends on the ability of its replicase proteins to interact with host cell factors, and a better understanding of host cell factor roles in viral infection will increase our understanding of CHIKV RNA replication and provide new strategies for viral infection attenuation. Here, we demonstrate that the motifs required for the binding of host G3BP/Rin proteins remain functional when transferred from their natural location in nsP3 to different replicase proteins and may enable mutant viruses to complete a full replication cycle. To our knowledge, this is the first demonstration of interaction motifs for crucial host factors being successfully transferred from one replicase protein to another subunit of alphavirus replicase.
Collapse
Affiliation(s)
- Sainan Wang
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
40
|
Abstract
Stress granules (SGs) are cytoplasmic biomolecular condensates containing proteins and RNAs in response to stress. Ras-GTPase–activating protein binding protein 1 (G3BP1) is a core SG protein. Caprin-1 and ubiquitin specific peptidase 10 (USP10) interact with G3BP1, facilitating and suppressing SG formation, respectively. The crystal structures of the nuclear transport factor 2-like (NTF2L) domain of G3BP1 in complex with the G3BP1-interacting motif (GIM) of Caprin-1 and USP10 show that both GIMs bind to the same hydrophobic pocket of G3BP1. Moreover, both GIMs suppressed the liquid–liquid phase separation (LLPS) of G3BP1, suggesting that Caprin-1 likely facilitates SG formation via other mechanisms. Thus, we dissected various domains of Caprin-1 and investigated their role in LLPS in vitro and SG formation in cells. The C-terminal domain of Caprin-1 underwent spontaneous LLPS, whereas the N-terminal domain and GIM of Caprin-1 suppressed LLPS of G3BP1. The opposing effect of the N- and C-terminal domains of Caprin-1 on SG formation were demonstrated in cells with or without the endogenous Caprin-1. We propose that the N- and C-terminal domains of Caprin-1 regulate SG formation in a “yin and yang” fashion, mediating the dynamic and reversible assembly of SGs.
Collapse
|
41
|
Yang E, Huang S, Jami-Alahmadi Y, McInerney GM, Wohlschlegel JA, Li MMH. Elucidation of TRIM25 ubiquitination targets involved in diverse cellular and antiviral processes. PLoS Pathog 2022; 18:e1010743. [PMID: 36067236 PMCID: PMC9481182 DOI: 10.1371/journal.ppat.1010743] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/16/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022] Open
Abstract
The tripartite motif (TRIM) family of E3 ubiquitin ligases is well known for its roles in antiviral restriction and innate immunity regulation, in addition to many other cellular pathways. In particular, TRIM25-mediated ubiquitination affects both carcinogenesis and antiviral response. While individual substrates have been identified for TRIM25, it remains unclear how it regulates diverse processes. Here we characterized a mutation, R54P, critical for TRIM25 catalytic activity, which we successfully utilized to "trap" substrates. We demonstrated that TRIM25 targets proteins implicated in stress granule formation (G3BP1/2), nonsense-mediated mRNA decay (UPF1), nucleoside synthesis (NME1), and mRNA translation and stability (PABPC4). The R54P mutation abolishes TRIM25 inhibition of alphaviruses independently of the host interferon response, suggesting that this antiviral effect is a direct consequence of ubiquitination. Consistent with that, we observed diminished antiviral activity upon knockdown of several TRIM25-R54P specific interactors including NME1 and PABPC4. Our findings highlight that multiple substrates mediate the cellular and antiviral activities of TRIM25, illustrating the multi-faceted role of this ubiquitination network in modulating diverse biological processes.
Collapse
Affiliation(s)
- Emily Yang
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - Serina Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Gerald M. McInerney
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Melody M. H. Li
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Neyret A, Bernard E, Aïqui-Reboul-Paviet O, Bakhache W, Eldin P, Chaloin L, Briant L. Identification of a non-canonical G3BP-binding sequence in a Mayaro virus nsP3 hypervariable domain. Front Cell Infect Microbiol 2022; 12:958176. [PMID: 36034716 PMCID: PMC9403187 DOI: 10.3389/fcimb.2022.958176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Ras-GTPase-activating SH3 domain-binding-proteins 1 (G3BP1) and 2 (G3BP2) are multifunctional RNA-binding proteins involved in stress granule nucleation, previously identified as essential cofactors of Old World alphaviruses. They are recruited to viral replication complexes formed by the Chikungunya virus (CHIKV), Semliki Forest virus (SFV), and Sindbis virus (SINV) via an interaction with a duplicated FGxF motif conserved in the hypervariable domain (HVD) of virus-encoded nsP3. According to mutagenesis studies, this FGxF duplication is strictly required for G3BP binding and optimal viral growth. Contrasting with this scenario, nsP3 encoded by Mayaro virus (MAYV), an arthritogenic virus grouped with Old World alphaviruses, contains a single canonical FGxF sequence. In light of this unusual feature, we questioned MAYV nsP3/G3BPs relationships. We report that G3BP1 and G3BP2 are both required for MAYV growth in human cells and bind nsP3 protein. In infected cells, they are recruited to nsP3-containing cytosolic foci and active replication complexes. Unexpectedly, deletion of the single FGxF sequence in MAYV nsP3 did not abolish these phenotypes. Using mutagenesis and in silico modeling, we identify an upstream FGAP amino acid sequence as an additional MAYV nsP3/G3BP interaction motif required for optimal viral infectivity. These results, therefore, highlight a non-conventional G3BP binding sequence in MAYV nsP3.
Collapse
|
43
|
Lasswitz L, Zapatero-Belinchón FJ, Moeller R, Hülskötter K, Laurent T, Carlson LA, Goffinet C, Simmons G, Baumgärtner W, Gerold G. The Tetraspanin CD81 Is a Host Factor for Chikungunya Virus Replication. mBio 2022; 13:e0073122. [PMID: 35612284 PMCID: PMC9239085 DOI: 10.1128/mbio.00731-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthritogenic reemerging virus replicating in plasma membrane-derived compartments termed "spherules." Here, we identify the human transmembrane protein CD81 as host factor required for CHIKV replication. Ablation of CD81 results in decreased CHIKV permissiveness, while overexpression enhances infection. CD81 is dispensable for virus uptake but critically required for viral genome replication. Likewise, murine CD81 is crucial for CHIKV permissiveness and is expressed in target cells such as dermal fibroblasts, muscle and liver cells. Whereas related alphaviruses, including Ross River virus (RRV), Semliki Forest virus (SFV), Sindbis virus (SINV) and Venezuelan equine encephalitis virus (VEEV), also depend on CD81 for infection, RNA viruses from other families, such as coronaviruses, replicate independently of CD81. Strikingly, the replication-enhancing function of CD81 is linked to cholesterol binding. These results define a mechanism exploited by alphaviruses to hijack the membrane microdomain-modeling protein CD81 for virus replication through interaction with cholesterol. IMPORTANCE In this study, we discover the tetraspanin CD81 as a host factor for the globally emerging chikungunya virus and related alphaviruses. We show that CD81 promotes replication of viral genomes in human and mouse cells, while virus entry into cells is independent of CD81. This provides novel insights into how alphaviruses hijack host proteins to complete their life cycle. Alphaviruses replicate at distinct sites of the plasma membrane, which are enriched in cholesterol. We found that the cholesterol-binding ability of CD81 is important for its function as an alphavirus host factor. This discovery thus broadens our understanding of the alphavirus replication process and the use of host factors to reprogram cells into virus replication factories.
Collapse
Affiliation(s)
- Lisa Lasswitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Francisco J. Zapatero-Belinchón
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Rebecca Moeller
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Timothée Laurent
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Lars-Anders Carlson
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Christine Goffinet
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Graham Simmons
- Vitalant Research Institute, University of California, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Gisa Gerold
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| |
Collapse
|
44
|
Lüscher B, Verheirstraeten M, Krieg S, Korn P. Intracellular mono-ADP-ribosyltransferases at the host-virus interphase. Cell Mol Life Sci 2022; 79:288. [PMID: 35536484 PMCID: PMC9087173 DOI: 10.1007/s00018-022-04290-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 01/22/2023]
Abstract
The innate immune system, the primary defense mechanism of higher organisms against pathogens including viruses, senses pathogen-associated molecular patterns (PAMPs). In response to PAMPs, interferons (IFNs) are produced, allowing the host to react swiftly to viral infection. In turn the expression of IFN-stimulated genes (ISGs) is induced. Their products disseminate the antiviral response. Among the ISGs conserved in many species are those encoding mono-ADP-ribosyltransferases (mono-ARTs). This prompts the question whether, and if so how, mono-ADP-ribosylation affects viral propagation. Emerging evidence demonstrates that some mono-ADP-ribosyltransferases function as PAMP receptors and modify both host and viral proteins relevant for viral replication. Support for mono-ADP-ribosylation in virus–host interaction stems from the findings that some viruses encode mono-ADP-ribosylhydrolases, which antagonize cellular mono-ARTs. We summarize and discuss the evidence linking mono-ADP-ribosylation and the enzymes relevant to catalyze this reversible modification with the innate immune response as part of the arms race between host and viruses.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Maud Verheirstraeten
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Patricia Korn
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
45
|
Tossavainen H, Uğurlu H, Karjalainen M, Hellman M, Antenucci L, Fagerlund R, Saksela K, Permi P. Structure of SNX9 SH3 in complex with a viral ligand reveals the molecular basis of its unique specificity for alanine-containing class I SH3 motifs. Structure 2022; 30:828-839.e6. [PMID: 35390274 DOI: 10.1016/j.str.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/22/2021] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
Abstract
Class I SH3 domain-binding motifs generally comply with the consensus sequence [R/K]xØPxxP, the hydrophobic residue Ø being proline or leucine. We have studied the unusual Ø = Ala-specificity of SNX9 SH3 by determining its complex structure with a peptide present in eastern equine encephalitis virus (EEEV) nsP3. The structure revealed the length and composition of the n-Src loop as important factors determining specificity. We also compared the affinities of EEEV nsP3 peptide, its mutants, and cellular ligands to SNX9 SH3. These data suggest that nsP3 has evolved to minimize reduction of conformational entropy upon binding, hence acquiring stronger affinity, enabling takeover of SNX9. The RxAPxxP motif was also found in human T cell leukemia virus-1 (HTLV-1) Gag polyprotein. We found that this motif was required for efficient HTLV-1 infection, and that the specificity of SNX9 SH3 for the RxAPxxP core binding motif was importantly involved in this process.
Collapse
Affiliation(s)
- Helena Tossavainen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla FI-40014, Finland
| | - Hasan Uğurlu
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki FI-00014 Finland
| | - Mikael Karjalainen
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla FI-40014, Finland
| | - Maarit Hellman
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla FI-40014, Finland
| | - Lina Antenucci
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla FI-40014, Finland; Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla FI-40014, Finland
| | - Riku Fagerlund
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki FI-00014 Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki FI-00014 Finland
| | - Perttu Permi
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla FI-40014, Finland; Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla FI-40014, Finland.
| |
Collapse
|
46
|
Nabeel-Shah S, Lee H, Ahmed N, Burke GL, Farhangmehr S, Ashraf K, Pu S, Braunschweig U, Zhong G, Wei H, Tang H, Yang J, Marcon E, Blencowe BJ, Zhang Z, Greenblatt JF. SARS-CoV-2 nucleocapsid protein binds host mRNAs and attenuates stress granules to impair host stress response. iScience 2022; 25:103562. [PMID: 34901782 PMCID: PMC8642831 DOI: 10.1016/j.isci.2021.103562] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/25/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein is essential for viral replication, making it a promising target for antiviral drug and vaccine development. SARS-CoV-2 infected patients exhibit an uncoordinated immune response; however, the underlying mechanistic details of this imbalance remain obscure. Here, starting from a functional proteomics workflow, we cataloged the protein-protein interactions of SARS-CoV-2 proteins, including an evolutionarily conserved specific interaction of N with the stress granule resident proteins G3BP1 and G3BP2. N localizes to stress granules and sequesters G3BPs away from their typical interaction partners, thus attenuating stress granule formation. We found that N binds directly to host mRNAs in cells, with a preference for 3' UTRs, and modulates target mRNA stability. We show that the N protein rewires the G3BP1 mRNA-binding profile and suppresses the physiological stress response of host cells, which may explain the imbalanced immune response observed in SARS-CoV-2 infected patients.
Collapse
Affiliation(s)
- Syed Nabeel-Shah
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hyunmin Lee
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Computer Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nujhat Ahmed
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Giovanni L Burke
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaghayegh Farhangmehr
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kanwal Ashraf
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Shuye Pu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | - Guoqing Zhong
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Hong Wei
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| | - Hua Tang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jianyi Yang
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhaolei Zhang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Computer Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
47
|
Ciota AT. Eastern Equine Encephalitis Virus Taxonomy, Genomics, and Evolution. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:14-19. [PMID: 34734630 DOI: 10.1093/jme/tjab079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 06/13/2023]
Abstract
Eastern equine encephalitis virus (EEEV; Togaviridae, Alphavirus) is an arthropod-borne virus (arbovirus) primarily maintained in an enzootic cycle between Culiseta melanura (Coquillett) and passerine birds. EEEV, which has the highest reported case- fatality rate among arbovirus in the Americas, is responsible for sporadic outbreaks in the Eastern and Midwest United States. Infection is associated with severe neurologic disease and mortality in horses, humans, and other vertebrate hosts. Here, we review what is known about EEEV taxonomy, functional genomics, and evolution, and identify gaps in knowledge regarding the role of EEEV genetic diversity in transmission and disease.
Collapse
Affiliation(s)
- Alexander T Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY
| |
Collapse
|
48
|
Mamidi P, Nayak TK, Kumar A, Kumar S, Chatterjee S, De S, Datey A, Ghosh S, Keshry SS, Singh S, Laha E, Ray A, Chattopadhyay S, Chattopadhyay S. MK2a inhibitor CMPD1 abrogates chikungunya virus infection by modulating actin remodeling pathway. PLoS Pathog 2021; 17:e1009667. [PMID: 34780576 PMCID: PMC8592423 DOI: 10.1371/journal.ppat.1009667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Chikungunya virus (CHIKV) epidemics around the world have created public health concern with the unavailability of effective drugs and vaccines. This emphasizes the need for molecular understanding of host-virus interactions for developing effective targeted antivirals. Microarray analysis was carried out using CHIKV strain (Prototype and Indian) infected Vero cells and two host isozymes, MAPK activated protein kinase 2 (MK2) and MAPK activated protein kinase 3 (MK3) were selected for further analysis. The substrate spectrum of both enzymes is indistinguishable and covers proteins involved in cytokines production, endocytosis, reorganization of the cytoskeleton, cell migration, cell cycle control, chromatin remodeling and transcriptional regulation. Gene silencing and drug treatment were performed in vitro and in vivo to unravel the role of MK2/MK3 in CHIKV infection. Gene silencing of MK2 and MK3 abrogated around 58% CHIKV progeny release from the host cell and a MK2 activation inhibitor (CMPD1) treatment demonstrated 68% inhibition of viral infection suggesting a major role of MAPKAPKs during late CHIKV infection in vitro. Further, it was observed that the inhibition in viral infection is primarily due to the abrogation of lamellipodium formation through modulation of factors involved in the actin cytoskeleton remodeling pathway. Moreover, CHIKV-infected C57BL/6 mice demonstrated reduction in the viral copy number, lessened disease score and better survivability after CMPD1 treatment. In addition, reduction in expression of key pro-inflammatory mediators such as CXCL13, RAGE, FGF, MMP9 and increase in HGF (a CHIKV infection recovery marker) was observed indicating the effectiveness of the drug against CHIKV. Taken together it can be proposed that MK2 and MK3 are crucial host factors for CHIKV infection and can be considered as important target for developing effective anti-CHIKV strategies. Chikungunya virus has been a dreaded disease from the first time it occurred in 1952 Tanzania. Since then it has been affecting the different parts of the world at different time periods in large scale. It is typically transmitted to humans by bites of Aedes aegypti and Aedes albopictus mosquitoes. Although, studies have been undertaken to combat its prevalence still there are no effective strategies like vaccines or antivirals against it. Therefore it is essential to understand the virus and host interaction to overcome this hurdle. In this study two host factors MK2 and MK3 have been taken into consideration to see how they affect the multiplication of the virus. The in vitro and in vivo experiments conducted demonstrated that inhibition of MK2 and MK3 not only restricted viral release but also decreased the disease score and allowed better survivability. Therefore, MK2 and MK3 could be considered as the key targets in the anti CHIKV approach.
Collapse
Affiliation(s)
| | - Tapas Kumar Nayak
- National Institute of Science Education and Research, Bhubaneswar, India
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Abhishek Kumar
- Institute of Life Sciences, Bhubaneswar, India
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Sameer Kumar
- Institute of Life Sciences, Bhubaneswar, India
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Sanchari Chatterjee
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Saikat De
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ankita Datey
- Institute of Life Sciences, Bhubaneswar, India
- KIIT school of Biotechnology, Bhubaneswar, India
| | - Soumyajit Ghosh
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Supriya Suman Keshry
- Institute of Life Sciences, Bhubaneswar, India
- KIIT school of Biotechnology, Bhubaneswar, India
| | - Sharad Singh
- Institute of Life Sciences, Bhubaneswar, India
- KIIT school of Biotechnology, Bhubaneswar, India
| | - Eshna Laha
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Amrita Ray
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | | | | |
Collapse
|
49
|
Abstract
Alphaviruses are positive-strand RNA viruses, typically transmitted by mosquitoes between vertebrate hosts. They encode four essential replication proteins, the non-structural proteins nsP1-4, which possess the enzymatic activities of RNA capping, RNA helicase, site-specific protease, ADP-ribosyl removal and RNA polymerase. Alphaviruses have been key models in the study of membrane-associated RNA replication, which is a conserved feature among the positive-strand RNA viruses of animals and plants. We review new structural and functional information on the nsPs and their interaction with host proteins and membranes, as well as with viral RNA sequences. The dodecameric ring structure of nsP1 is likely to be one of the evolutionary innovations that facilitated the success of the progenitors of current positive-strand RNA viruses.
Collapse
Affiliation(s)
- Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
50
|
Complete genetic dissection and cell type-specific replication of old world alphaviruses, getah virus (GETV) and sagiyama virus (SAGV). J Microbiol 2021; 59:1044-1055. [PMID: 34570337 DOI: 10.1007/s12275-021-1361-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Getah virus (GETV), which was first isolated in Malaysia in 1955, and Sagiyama virus (SAGV), isolated in Japan in 1956, are members of the genus Alphavirus in the family Togaviridae. It is a consensus view that SAGV is a variant of GETV. In the present study, we determined the complete sequences of the prototype GETV MM2021 and SAGV M6-Mag132 genomic RNA extracted from plaque-purified viruses. The MM2021 genome was 11,692 nucleotides (nt) in length in the absence of 3' poly(A) tail, and the length of M6-Mag132 genome was 11,698 nt. Through sequence alignment of MM2021 and M6-Mag132, we located all the amino acid differences between these two strains, which were scattered in all the encoded proteins. Subsequently, we validated the close evolutionary relationship between GETV and SAGV by constructing phylogenetic trees based on either complete genomes or structural genomes. We eventually analyzed the growth kinetics of GETV and SAGV as well as other representative alphaviruses in various mammalian and insect cell lines. It was shown that human-oriented cell lines such as HEK-293T and Hela cells were relatively resistant to GETV and SAGV infection due to absence of proviral factors or species-specific barrier. On the other hand, both GETV and SAGV replicated efficiently in non-human cell lines. Our results provide essential genetic information for future epidemiological surveillance on Alphaviruses and lay the foundation for developing effective interventions against GETV and SAGV.
Collapse
|