1
|
DeDiego ML, Portilla Y, Daviu N, López-García D, Villamayor L, Vázquez-Utrilla P, Mulens-Arias V, Pérez-Yagüe S, Nogales A, Ovejero JG, Gallo-Cordova A, Enjuanes L, Veintemillas-Verdaguer S, Morales MP, Barber DF. Biocompatible Iron Oxide Nanoparticles Display Antiviral Activity Against Two Different Respiratory Viruses in Mice. Int J Nanomedicine 2024; 19:13763-13788. [PMID: 39723174 PMCID: PMC11669338 DOI: 10.2147/ijn.s475323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Background Severe Acute Respiratory syndrome coronavirus 2 (SARS-CoV-2) and Influenza A viruses (IAVs) are among the most important causes of viral respiratory tract infections, causing similar symptoms. IAV and SARS-CoV-2 infections can provoke mild symptoms like fever, cough, sore throat, loss of taste or smell, or they may cause more severe consequences leading to pneumonia, acute respiratory distress syndrome or even death. While treatments for IAV and SARS-CoV-2 infection are available, IAV antivirals often target viral proteins facilitating the emergence of drug-resistant viral variants. Hence, universal treatments against coronaviruses and IAVs are hard to obtain due to genus differences (in the case of coronavirus) or subtypes (in the case of IAV), highlighting the need for novel antiviral therapies. Interestingly, iron oxide nanoparticles (IONPs) with a 10 nm core size and coated with the biocompatible dimercaptosuccinic acid (DMSA: DMSA-IONP-10) display antiviral activity against SARS-CoV-2 in vitro. Methods We analyzed the antiviral activity of DMSA-IONP-10 against SARS-CoV-2 infection in vivo, and against IAV infection in vitro and in vivo. Results DMSA-IONP-10 treatment of mice after SARS-CoV-2 infection impaired virus replication in the lungs and led to a mildly reduced pro-inflammatory cytokine induction after infection, indicating that these IONPs can serve as COVID-19 therapeutic agents. These IONPs also had a prophylactic and therapeutic effect against IAV in tissue cultured cells at non-cytotoxic doses, and a therapeutic effect in IAV-infected-mice, inhibiting viral replication and slightly dampening the inflammatory response after viral infection. As an exacerbated inflammatory response to IAVs and SARS-CoV-2 is detrimental to the host, weakening this response in mice through IONP treatment may reduce disease severity. Interestingly, our data suggest that IONP treatment affects oxidative stress and iron metabolism in cells, which may influence IAV production. Conclusion This study highlights the antiviral activity of DMSA-IONP-10 against important human respiratory viruses.
Collapse
Affiliation(s)
- Marta L DeDiego
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Yadileiny Portilla
- Department of Immunology, Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Neus Daviu
- Department of Immunology, Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Darío López-García
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Laura Villamayor
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Paula Vázquez-Utrilla
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Vladimir Mulens-Arias
- Department of Immunology, Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology, Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, Madrid, Spain
| | - Jesús G Ovejero
- Department of Nanoscience and Nanotechnology, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, Spain
| | - Alvaro Gallo-Cordova
- Department of Nanoscience and Nanotechnology, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Sabino Veintemillas-Verdaguer
- Department of Nanoscience and Nanotechnology, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, Spain
| | - M Puerto Morales
- Department of Nanoscience and Nanotechnology, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, Spain
| | - Domingo F Barber
- Department of Immunology, Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
2
|
Devantier K, Kjær VMS, Griffin S, Kragelund BB, Rosenkilde MM. Advancing the field of viroporins-Structure, function and pharmacology: IUPHAR Review 39. Br J Pharmacol 2024; 181:4450-4490. [PMID: 39224966 DOI: 10.1111/bph.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 09/04/2024] Open
Abstract
Viroporins possess important potential as antiviral targets due to their critical roles during virus life cycles, spanning from virus entry to egress. Although the antiviral amantadine targets the M2 viroporin of influenza A virus, successful progression of other viroporin inhibitors into clinical use remains challenging. These challenges relate in varying proportions to a lack of reliable full-length 3D-structures, difficulties in functionally characterising individual viroporins, and absence of verifiable direct binding between inhibitor and viroporin. This review offers perspectives to help overcome these challenges. We provide a comprehensive overview of the viroporin family, including their structural and functional features, highlighting the moldability of their energy landscapes and actions. To advance the field, we suggest a list of best practices to aspire towards unambiguous viroporin identification and characterisation, along with considerations of potential pitfalls. Finally, we present current and future scenarios of, and prospects for, viroporin targeting drugs.
Collapse
Affiliation(s)
- Kira Devantier
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Viktoria M S Kjær
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen Griffin
- Leeds Institute of Medical Research, St James' University Hospital, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Brown E, Swinscoe G, Lefteri DA, Singh R, Moran A, Thompson RF, Maskell D, Beaumont H, Bentham MJ, Donald C, Kohl A, Macdonald A, Ranson N, Foster R, McKimmie CS, Kalli AC, Griffin S. Inhibitors of the small membrane (M) protein viroporin prevent Zika virus infection. eLife 2024; 13:e68404. [PMID: 39177307 PMCID: PMC11449487 DOI: 10.7554/elife.68404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/22/2024] [Indexed: 08/24/2024] Open
Abstract
Flaviviruses, including Zika virus (ZIKV), are a significant global health concern, yet no licensed antivirals exist to treat disease. The small membrane (M) protein plays well-defined roles during viral egress and remains within virion membranes following release and maturation. However, it is unclear whether M plays a functional role in this setting. Here, we show that M forms oligomeric membrane-permeabilising channels in vitro, with increased activity at acidic pH and sensitivity to the prototypic channel-blocker, rimantadine. Accordingly, rimantadine blocked an early stage of ZIKV cell culture infection. Structure-based channel models, comprising hexameric arrangements of two trans-membrane domain protomers were shown to comprise more stable assemblages than other oligomers using molecular dynamics simulations. Models contained a predicted lumenal rimantadine-binding site, as well as a second druggable target region on the membrane-exposed periphery. In silico screening enriched for repurposed drugs/compounds predicted to bind to either one site or the other. Hits displayed superior potency in vitro and in cell culture compared with rimantadine, with efficacy demonstrably linked to virion-resident channels. Finally, rimantadine effectively blocked ZIKV viraemia in preclinical models, supporting that M constitutes a physiologically relevant target. This could be explored by repurposing rimantadine, or development of new M-targeted therapies.
Collapse
Affiliation(s)
- Emma Brown
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Gemma Swinscoe
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Daniella A Lefteri
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Ravi Singh
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Chemistry, Faculty of Maths and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Amy Moran
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Rebecca F Thompson
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Daniel Maskell
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Hannah Beaumont
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Matthew J Bentham
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Claire Donald
- MRC and University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Alain Kohl
- MRC and University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Andrew Macdonald
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Neil Ranson
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Richard Foster
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Chemistry, Faculty of Maths and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Clive S McKimmie
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Antreas C Kalli
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute for Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Stephen Griffin
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| |
Collapse
|
4
|
Nie MS, Li XH, Zhang S, Zeng DD, Cai YR, Peng DX, Jiang T, Shi JP, Li J. Screening for anti-influenza virus compounds from traditional Mongolian medicine by GFP-based reporter virus. Front Cell Infect Microbiol 2024; 14:1431979. [PMID: 39071166 PMCID: PMC11272615 DOI: 10.3389/fcimb.2024.1431979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Screening for effective antiviral compounds from traditional Mongolian medicine not only aids in the research of antiviral mechanisms of traditional medicines, but is also of significant importance for the development of new antiviral drugs targeting influenza A virus. Our study aimed to establish high-throughput, rapid screening methods for antiviral compounds against influenza A virus from abundant resources of Mongolian medicine. Methods The use of GFP-based reporter viruses plays a pivotal role in antiviral drugs screening by enabling rapid and precise identification of compounds that inhibit viral replication. Herein, a GFP-based reporter influenza A virus was used to identify potent anti-influenza compounds within traditional Mongolian medicine. Results Our study led to the discovery of three active compounds: Cardamonin, Curcumin, and Kaempferide, all of which exhibited significant antiviral properties in vitro. Subsequent analysis confirmed that their effectiveness was largely due to the stimulation of the antiviral signaling pathways of host cells, rather than direct interference with the viral components, such as the viral polymerase. Discussion This study showcased the use of GFP-based reporter viruses in high-throughput screening to unearth antiviral agents from traditional Mongolian medicine, which contains rich antiviral compounds and deserves further exploration. Despite certain limitations, fluorescent reporter viruses present substantial potential for antiviral drug screening research due to their high throughput and efficiency.
Collapse
Affiliation(s)
- Mao-Shun Nie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiao-He Li
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Dan-Dan Zeng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yu-Rong Cai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Da-Xin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jian-Ping Shi
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Jing Li
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. Retracted and republished from: "The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs". mBio 2024; 15:e0017524. [PMID: 38551343 PMCID: PMC11077966 DOI: 10.1128/mbio.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the Food and Drug Administration are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. These recommended antivirals are currently effective for major subtypes of IVs as the compounds target conserved domains in neuraminidase or polymerase acidic (PA) protein. However, this trend may gradually change due to the selection of antiviral drugs and the natural evolution of IVs. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Department of High-Tech Development, Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Epidemic Prevention Laboratory, Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs. mBio 2023; 14:e0127323. [PMID: 37610204 PMCID: PMC10653855 DOI: 10.1128/mbio.01273-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the FDA are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. Notably, owing to the high variability of IVs, no drug exists that can effectively treat all types and subtypes of IVs. Moreover, the current trend of drug resistance is likely to continue as the viral genome is constantly mutating. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
7
|
Low ZY, Wong KH, Wen Yip AJ, Choo WS. The convergent evolution of influenza A virus: Implications, therapeutic strategies and what we need to know. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100202. [PMID: 37700857 PMCID: PMC10493511 DOI: 10.1016/j.crmicr.2023.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Influenza virus infection, more commonly known as the 'cold flu', is an etiological agent that gives rise to recurrent annual flu and many pandemics. Dated back to the 1918- Spanish Flu, the influenza infection has caused the loss of many human lives and significantly impacted the economy and daily lives. Influenza virus can be classified into four different genera: influenza A-D, with the former two, influenza A and B, relevant to humans. The capacity of antigenic drift and shift in Influenza A has given rise to many novel variants, rendering vaccines and antiviral therapies useless. In light of the emergence of a novel betacoronavirus, the SARS-CoV-2, unravelling the underpinning mechanisms that support the recurrent influenza epidemics and pandemics is essential. Given the symptom similarities between influenza and covid infection, it is crucial to reiterate what we know about the influenza infection. This review aims to describe the origin and evolution of influenza infection. Apart from that, the risk factors entail the implication of co-infections, especially regarding the COVID-19 pandemic is further discussed. In addition, antiviral strategies, including the potential of drug repositioning, are discussed in this context. The diagnostic approach is also critically discussed in an effort to understand better and prepare for upcoming variants and potential influenza pandemics in the future. Lastly, this review encapsulates the challenges in curbing the influenza spread and provides insights for future directions in influenza management.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Ka Heng Wong
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
8
|
Xia X, Cheng A, Wang M, Ou X, Sun D, Mao S, Huang J, Yang Q, Wu Y, Chen S, Zhang S, Zhu D, Jia R, Liu M, Zhao XX, Gao Q, Tian B. Functions of Viroporins in the Viral Life Cycle and Their Regulation of Host Cell Responses. Front Immunol 2022; 13:890549. [PMID: 35720341 PMCID: PMC9202500 DOI: 10.3389/fimmu.2022.890549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Viroporins are virally encoded transmembrane proteins that are essential for viral pathogenicity and can participate in various stages of the viral life cycle, thereby promoting viral proliferation. Viroporins have multifaceted effects on host cell biological functions, including altering cell membrane permeability, triggering inflammasome formation, inducing apoptosis and autophagy, and evading immune responses, thereby ensuring that the virus completes its life cycle. Viroporins are also virulence factors, and their complete or partial deletion often reduces virion release and reduces viral pathogenicity, highlighting the important role of these proteins in the viral life cycle. Thus, viroporins represent a common drug-protein target for inhibiting drugs and the development of antiviral therapies. This article reviews current studies on the functions of viroporins in the viral life cycle and their regulation of host cell responses, with the aim of improving the understanding of this growing family of viral proteins.
Collapse
Affiliation(s)
- Xiaoyan Xia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
9
|
Jaber AA, Chowdhury ZM, Bhattacharjee A, Mourin M, Keya CA, Bhuyan ZA. Elucidating molecular mechanisms of acquired resistance to BRAF inhibitors in melanoma using a microfluidic device and deep sequencing. Genomics Inform 2021; 19:e48. [PMID: 35172476 PMCID: PMC8752979 DOI: 10.5808/gi.21040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes small envelope protein (E) that plays a major role in viral assembly, release, pathogenesis, and host inflammation. Previous studies demonstrated that pyrazine ring containing amiloride analogs inhibit this protein in different types of coronavirus including SARS-CoV-1 small envelope protein E (SARS-CoV-1 E). SARS-CoV-1 E has 93.42% sequence identity with SARS-CoV-2 E and shared a conserved domain NS3/small envelope protein (NS3_envE). Amiloride analog hexamethylene amiloride (HMA) can inhibit SARS-CoV-1 E. Therefore, we performed molecular docking and dynamics simulations to explore whether amiloride analogs are effective in inhibiting SARS-CoV-2 E. To do so, SARS-CoV-1 E and SARS-CoV-2 E proteins were taken as receptors while HMA and 3-amino-5-(azepan-1-yl)-N-(diaminomethylidene)-6-pyrimidin-5-ylpyrazine-2-carboxamide (3A5NP2C) were selected as ligands. Molecular docking simulation showed higher binding affinity scores of HMA and 3A5NP2C for SARS-CoV-2 E than SARS-CoV-1 E. Moreover, HMA and 3A5NP2C engaged more amino acids in SARS-CoV-2 E. Molecular dynamics simulation for 1 μs (1,000 ns) revealed that these ligands could alter the native structure of the proteins and their flexibility. Our study suggests that suitable amiloride analogs might yield a prospective drug against coronavirus disease 2019.
Collapse
Affiliation(s)
- Abdullah All Jaber
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka-1229, Bangladesh
| | - Zeshan Mahmud Chowdhury
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka-1229, Bangladesh.,Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Arittra Bhattacharjee
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka-1229, Bangladesh.,Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Muntahi Mourin
- Department of Microbiology, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka-1229, Bangladesh
| | - Zaied Ahmed Bhuyan
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka-1229, Bangladesh
| |
Collapse
|
10
|
Yin H, Jiang N, Shi W, Chi X, Liu S, Chen JL, Wang S. Development and Effects of Influenza Antiviral Drugs. Molecules 2021; 26:molecules26040810. [PMID: 33557246 PMCID: PMC7913928 DOI: 10.3390/molecules26040810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza virus is a highly contagious zoonotic respiratory disease that causes seasonal outbreaks each year and unpredictable pandemics occasionally with high morbidity and mortality rates, posing a great threat to public health worldwide. Besides the limited effect of vaccines, the problem is exacerbated by the lack of drugs with strong antiviral activity against all flu strains. Currently, there are two classes of antiviral drugs available that are chemosynthetic and approved against influenza A virus for prophylactic and therapeutic treatment, but the appearance of drug-resistant virus strains is a serious issue that strikes at the core of influenza control. There is therefore an urgent need to develop new antiviral drugs. Many reports have shown that the development of novel bioactive plant extracts and microbial extracts has significant advantages in influenza treatment. This paper comprehensively reviews the development and effects of chemosynthetic drugs, plant extracts, and microbial extracts with influenza antiviral activity, hoping to provide some references for novel antiviral drug design and promising alternative candidates for further anti-influenza drug development.
Collapse
|
11
|
Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. J Biol Chem 2021; 296:100557. [PMID: 33744283 PMCID: PMC8102919 DOI: 10.1016/j.jbc.2021.100557] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Pascal F Egea
- Department of Biological Chemistry, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Joana Paulino
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian C Monk
- Sir John Walsh Research Institute and Department of Oral Sciences, University of Otago, North Dunedin, Dunedin, New Zealand
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|