1
|
Mousavi M, Emrani J, Teleha JC, Jiang G, Johnson BD, Shamshiripour A, Fini EH. Health Risks of Asphalt Emission: State-of-the-Art Advances and Research Gaps. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136048. [PMID: 39405707 DOI: 10.1016/j.jhazmat.2024.136048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 10/01/2024] [Indexed: 12/01/2024]
Abstract
Asphalt-related emissions pose significant health risks due to the release of volatile organic compounds (VOCs) that affect both workers in construction and the general public. Even at low concentrations, certain VOCs are highly toxic, with some of their metabolic byproducts, such as epoxides, known to cause DNA damage, oxidative stress, and other genetic alterations. The health implications are particularly concerning given that these emissions are persistent, and exposure can occur over prolonged periods, especially in urban areas where asphalt is prevalent. However, despite growing awareness, there remain significant gaps in our understanding of the long-term effects of chronic, low-level exposure to asphalt VOCs. Research to date has largely focused on acute exposure effects, particularly in occupational settings, leaving much unknown about the broader impact on the general public, especially vulnerable groups like children and the elderly. Moreover, the complex interactions between asphalt-derived VOCs and other environmental pollutants are not well understood, further complicating our understanding of their cumulative health impact. This paper provides a comprehensive overview of the current research landscape, starting with a discussion of the health risks associated with asphalt VOCs, supported by key findings from recent studies. It then explores the latest technological advancements in VOC detection, characterization, and monitoring, and identifies critical gaps in existing research.
Collapse
Affiliation(s)
- Masoumeh Mousavi
- School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA
| | - Jahangir Emrani
- North Carolina Agricultural & Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | - John C Teleha
- North Carolina Agricultural & Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Northfields Ave, Keiraville, NSW, Australia
| | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259, USA
| | - Ali Shamshiripour
- University of Arizona, 1209 E. Second St., Tucson, AZ 8572113400, USA
| | - Elham H Fini
- School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA.
| |
Collapse
|
2
|
Yang L, Chen H, Gao H, Wang Y, Chen T, Svartengren M, Norbäck D, Wei J, Zheng X, Zhang L, Lu C, Yu W, Wang T, Ji JS, Meng X, Zhao Z, Zhang X. Prenatal and postnatal early life exposure to greenness and particulate matter of different size fractions in relation to childhood rhinitis - A multi-center study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173402. [PMID: 38797418 DOI: 10.1016/j.scitotenv.2024.173402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
The impact of early life exposure to residential greenness on childhood rhinitis and its interaction with particulate matter (PM) of different size fractions remain inconsistent. Herein, we recruited 40,486 preschool children from randomly selected daycare centers in 7 cities in China from 2019 to 2020, and estimated exposure to residential greenness by the normalized difference vegetation index (NDVI) with a 500 m buffer. Exposure to ambient PM (PM1, PM2.5, and PM10) was evaluated using a satellite-based prediction model (daily, at a resolution of 1 km × 1 km). By mixed-effect logistic regression, NDVI values during pregnancy, in the first (0-1 year old) and the second (1-2 years old) year of life were negatively associated with lifetime rhinitis (LR) and current rhinitis (CR) (P < 0.001). PM in the same time windows was associated with increased risks of LR and CR in children, with smaller size fraction of PM showing greater associations. The negative associations between prenatal and postnatal NDVI and LR and CR in preschool children remained robust after adjusting for concomitant exposure to PM, whereas the associations of postnatal NDVI and rhinitis showed significant interactions with PM. At lower levels of PM, postnatal NDVI remained negatively associated with rhinitis and was partly mediated by PM (10.0-40.9 %), while at higher levels of PM, the negative associations disappeared or even turned positive. The cut-off levels of PM were identified for each size fraction of PM. In conclusion, prenatal exposure to greenness had robust impacts in lowering the risk of childhood rhinitis, while postnatal exposure to greenness depended on the co-exposure levels to PM. This study revealed the complex interplay of greenness and PM on rhinitis in children. The exposure time window in prenatal or postnatal period and postnatal concomitant PM levels played important roles in influencing the associations between greenness, PM and rhinitis.
Collapse
Affiliation(s)
- Liu Yang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Han Chen
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai 200032, China
| | - Huiyu Gao
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Ying Wang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Tianyi Chen
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai 200032, China
| | - Magnus Svartengren
- Department of Occupational and Environmental Medicine, Uppsala University Hospital, 751 85 Uppsala, Sweden
| | - Dan Norbäck
- Department of Occupational and Environmental Medicine, Uppsala University Hospital, 751 85 Uppsala, Sweden
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Xiaohong Zheng
- School of Energy & Environment, Southeast University, Nanjing 210096, China
| | - Ling Zhang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chan Lu
- Department of Occupational and Environmental Health, School of Public Health, Xiangya Medical College, Central South University, Changsha 410078, China
| | - Wei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400030, China
| | - Tingting Wang
- School of Nursing & Health Management, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Xia Meng
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China.
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
3
|
Strunz S, Strachan R, Bauer M, Zenclussen AC, Leppert B, Junge KM, Polte T. Maternal Exposure to Low-Dose BDE-47 Induced Weight Gain and Impaired Insulin Sensitivity in the Offspring. Int J Mol Sci 2024; 25:8620. [PMID: 39201308 PMCID: PMC11354368 DOI: 10.3390/ijms25168620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Polybrominated diphenyl ethers (PBDEs), commonly used as synthetic flame retardants, are present in a variety of consumer products, including electronics, polyurethane foams, textiles, and building materials. Initial evidence from epidemiological and experimental studies suggests that maternal PBDE exposure may be associated with a higher BMI in children, with disturbance of energy metabolism and an increased risk of Type 2 diabetes. However, the causality between early exposure to real-life PBDE concentrations and increased weight as well as mechanisms underlying impaired metabolic pathways in the offspring remain elusive. Here, using a mouse model we examined the effect of maternal exposure to 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47), the most abundant congener in human samples, on offspring weight gain and energy homeostasis using a mouse model. Maternal exposure to BDE-47 at low dose resulted in weight gain in female offspring together with an impaired glucose and insulin tolerance in both female and male mice. In vitro and in vivo data suggest increased adipogenesis induced by BDE-47, possibly mediated by DNA hypermethylation. Furthermore, mRNA data suggest that neuronal dysregulation of energy homeostasis, driven via a disturbed leptin signaling may contribute to the observed weight gain as well as impaired insulin and glucose tolerance.
Collapse
Affiliation(s)
- Sandra Strunz
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Immunology, 04318 Leipzig, Germany (M.B.); (A.C.Z.); (K.M.J.)
- Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, University of Leipzig, 04318 Leipzig, Germany
| | - Rebecca Strachan
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Immunology, 04318 Leipzig, Germany (M.B.); (A.C.Z.); (K.M.J.)
| | - Mario Bauer
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Immunology, 04318 Leipzig, Germany (M.B.); (A.C.Z.); (K.M.J.)
| | - Ana C. Zenclussen
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Immunology, 04318 Leipzig, Germany (M.B.); (A.C.Z.); (K.M.J.)
| | - Beate Leppert
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Immunology, 04318 Leipzig, Germany (M.B.); (A.C.Z.); (K.M.J.)
| | - Kristin M. Junge
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Immunology, 04318 Leipzig, Germany (M.B.); (A.C.Z.); (K.M.J.)
- School of Health and Social Sciences, AKAD University Stuttgart, 70191 Stuttgart, Germany
| | - Tobias Polte
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Immunology, 04318 Leipzig, Germany (M.B.); (A.C.Z.); (K.M.J.)
- Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, University of Leipzig, 04318 Leipzig, Germany
| |
Collapse
|
4
|
Robinson M, Burgner D, Lin A, Jacoby P, Eikelboom R, Vijayasekaran S, Brennan-Jones CG. Risk of otitis media in offspring following maternal prenatal stress exposure. Int J Pediatr Otorhinolaryngol 2024; 182:112022. [PMID: 38941719 DOI: 10.1016/j.ijporl.2024.112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVES There is limited but consistent evidence that suggests prenatal factors, including maternal stress, may contribute to susceptibility for otitis media. We aimed to determine the effect of multiple life stress events during pregnancy on risk of acute and recurrent otitis media in offspring at three and five years of age. METHODS Exposure data on stressful life events were collected from pregnant women in a longitudinal prospective pregnancy cohort study, at 18 and 34 weeks' gestation. We used longitudinal regression models stratified by offspring sex to examine associations between the number, type and timing of maternal prenatal stress events and the likelihood of any OM in addition to recurrent OM infection at age three and five years, adjusting for pre-specified prenatal sociodemographic and environmental confounders. RESULTS Each additional stressful life event in pregnancy was associated with increased risk of any OM at both ages (3 years: OR = 1.07, 95%CI = 1.02, 1.12; 5 years: OR = 1.07, 95%CI = 1.02, 1.12), with larger effect sizes for recurrent otitis media (3 years: OR = 1.11, 95%CI = 1.05, 1.17; 5 years: OR = 1.09, 95%CI = 1.04, 1.14). Risk of offspring otitis media did not differ with timing of stress nor by offspring sex. Specific types of stress (pregnancy and relationship problems, issues with other children) were each associated with increased risk of recurrent OM at age three and five years. CONCLUSIONS We observed a dose-response relationship between maternal stressful life events in pregnancy and the risk for offspring otitis media in the preschool years, most marked for recurrent otitis media.
Collapse
Affiliation(s)
- Monique Robinson
- Telethon Kids Institute, The University of Western Australia, Australia.
| | - David Burgner
- Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia; Department of Paediatrics, Monash University, Clayton, Australia
| | - Ashleigh Lin
- School of Population and Global Health, The University of Western Australia, Australia
| | - Peter Jacoby
- Telethon Kids Institute, The University of Western Australia, Australia
| | - Robert Eikelboom
- Ear Sciences Centre, Medical School, The University of Western Australia, Australia; Ear Science Institute Australia, Perth, Australia; Department of Speech-Language Pathology and Audiology, University of Pretoria, Pretoria, South Africa; Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Shyan Vijayasekaran
- Perth ENT Centre, Perth, Australia; Otolaryngology Head and Neck Surgery, Perth Children's Hospital, Perth, Australia; Medical School, The University of Western Australia, Australia
| | | |
Collapse
|
5
|
Mansouri R, Lavigne E, Talarico R, Smargiassi A, Rodriguez-Villamizar LA, Villeneuve PJ. Residential surrounding greenness and the incidence of childhood asthma: Findings from a population-based cohort in Ontario, Canada. ENVIRONMENTAL RESEARCH 2024; 249:118316. [PMID: 38301756 DOI: 10.1016/j.envres.2024.118316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Several epidemiological studies have investigated the possible role that living in areas with greater amounts of greenspace has on the incidence of childhood asthma. These findings have been inconsistent, and few studies explored the relevance of timing of exposure. We investigated the role of residential surrounding greenness on the risk of incident asthma using a population-based retrospective cohort study. We included 982,131 singleton births in Ontario, Canada between 2006 and 2013. Two measures of greenness, the Normalized Difference Vegetation Index (NDVI) and the Green View Index (GVI), were assigned to the residential histories of these infants from pregnancy through to 12 years of age. Longitudinally-based diagnoses of asthma were determined by using provincial administrative health data. The extended Cox hazards model was used to characterize associations between greenness measures and asthma (up to age 12 years) while adjusting for several risk factors. In a fully adjusted model, that included a term for traffic-related air pollution (NO2), we found no association between an interquartile range increase (0.08) of the NDVI during childhood and asthma incidence (HR = 0.99; 95 % CI = 0.99-1.01). In contrast, we found that an 0.08 increase in NDVI during childhood reduced the risk of asthma in children 7-12 years of age by 14 % (HR = 0.86, 95 % CI:0.79-0.95). Seasonal differences in the association between greenness and asthma were noted. Our findings suggest that residential proximity to greenness reduces the risk of asthma in children aged 7-12.
Collapse
Affiliation(s)
- Razieh Mansouri
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada.
| | - Eric Lavigne
- Air Health Science Division, Health Canada, 960 Carling Avenue, Ottawa, Ontario, Canada.
| | - Robert Talarico
- Institute for Clinical Evaluative Sciences, 1053 Carling Avenue, Ottawa, Ontario, Canada.
| | - Audrey Smargiassi
- Center for Public Health Research (CReSP), University of Montreal and CIUSSS Du Centre-Sud-de-l'Île-de-Montréal, 7101 Av Du Parc, Montreal, Quebec, Canada.
| | - Laura A Rodriguez-Villamizar
- Department of Public Health, Universidad Industrial de Santander, Carrera 32 29-31, Bucaramanga, Colombia; Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada.
| | - Paul J Villeneuve
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada.
| |
Collapse
|
6
|
Sivula E, Puharinen H, Hantunen S, Keski-Nisula L, Backman K. Maternal dietary indexes are not linked to early childhood wheezing or atopic eczema. Pediatr Allergy Immunol 2024; 35:e14099. [PMID: 38425169 DOI: 10.1111/pai.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Several recent studies have investigated the association between maternal diet during pregnancy and wheezing or asthma in children. However, whether a specific dietary pattern during pregnancy protects children from wheezing or atopic diseases remains unclear. This study investigated the association between The Alternative Healthy Eating Index for Pregnancy (AHEI-P), the Dietary Inflammatory Index (DII), and the risk for wheezing and atopic eczema in children during the first year of life. METHODS This study included 1330 mother-child pairs who attended the Kuopio Birth Cohort (KuBiCo) study and had dietary information during the last trimester and information on children's health in the first year of life. AHEI-P and DII indicate a healthy diet and dietary inflammation potential during pregnancy. The AHEI-P and DII were compared with reported wheezing and doctor-diagnosed atopic eczema in children during the first year of life. RESULTS Neither AHEI-P nor DII is associated with wheezing or atopic eczema in children when analyzed by continuous variables and by tertiles. The odds ratio (95% CI) for AHEI-P and wheezing was 0.99 (0.98-1.01), for AHEI-P and atopic eczema1.01 (0.99-1.02), for DII and wheezing 1.02 (0.95-1.09), and for DII and atopic eczema 0.97 (0.91-1.04). CONCLUSION In this cohort study, AHEI-P and DII during pregnancy were not associated with wheezing or atopic eczema in the offspring during the first year of life.
Collapse
Affiliation(s)
- Elina Sivula
- School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Heidi Puharinen
- School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sari Hantunen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Leea Keski-Nisula
- Department of Obstetrics and Gynaecology, Kuopio University Hospital and Institute of Clinical Medicine, Obstetrics and Gynaecology, University of Eastern Finland, Kuopio, Finland
| | - Katri Backman
- Department of Pediatrics, Kuopio University Hospital and Institute of Clinical Medicine, Pediatrics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Mijač S, Banić I, Genc AM, Lipej M, Turkalj M. The Effects of Environmental Exposure on Epigenetic Modifications in Allergic Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:110. [PMID: 38256371 PMCID: PMC10820670 DOI: 10.3390/medicina60010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Allergic diseases are one of the most common chronic conditions and their prevalence is on the rise. Environmental exposure, primarily prenatal and early life influences, affect the risk for the development and specific phenotypes of allergic diseases via epigenetic mechanisms. Exposure to pollutants, microorganisms and parasites, tobacco smoke and certain aspects of diet are known to drive epigenetic changes that are essential for immune regulation (e.g., the shift toward T helper 2-Th2 cell polarization and decrease in regulatory T-cell (Treg) differentiation). DNA methylation and histone modifications can modify immune programming related to either pro-allergic interleukin 4 (IL-4), interleukin 13 (IL-13) or counter-regulatory interferon γ (IFN-γ) production. Differential expression of small non-coding RNAs has also been linked to the risk for allergic diseases and associated with air pollution. Certain exposures and associated epigenetic mechanisms play a role in the susceptibility to allergic conditions and specific clinical manifestations of the disease, while others are thought to have a protective role against the development of allergic diseases, such as maternal and early postnatal microbial diversity, maternal helminth infections and dietary supplementation with polyunsaturated fatty acids and vitamin D. Epigenetic mechanisms are also known to be involved in mediating the response to common treatment in allergic diseases, for example, changes in histone acetylation of proinflammatory genes and in the expression of certain microRNAs are associated with the response to inhaled corticosteroids in asthma. Gaining better insight into the epigenetic regulation of allergic diseases may ultimately lead to significant improvements in the management of these conditions, earlier and more precise diagnostics, optimization of current treatment regimes, and the implementation of novel therapeutic options and prevention strategies in the near future.
Collapse
Affiliation(s)
- Sandra Mijač
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
| | - Ivana Banić
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
- Department of Innovative Diagnostics, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia
| | - Ana-Marija Genc
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
| | - Marcel Lipej
- IT Department, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia;
| | - Mirjana Turkalj
- Department of Pediatric Allergy and Pulmonology, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia;
- Faculty of Medicine, J.J. Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
- Faculty of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
8
|
Ren X, Wang L, Wang Z, Wang L, Kong Y, Guo Y, Sun L. Association between parental occupational exposure and the risk of asthma in offspring: A meta-analysis and systematic review. Medicine (Baltimore) 2023; 102:e36345. [PMID: 38050266 PMCID: PMC10695554 DOI: 10.1097/md.0000000000036345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Previous epidemiological studies have shown inconsistent results regarding the relation between the risk of asthma in offspring and parental occupational exposure. Therefore, we conducted a comprehensive and systematic collection of currently available epidemiological data to quantify the correlation between the 2. METHODS Related studies published before March 2023 were identified through searches of the Cochrane Library, Embase, PubMed, and Web of Science databases. The quality of included studies was assessed using the Newcastle-Ottawa Scale, while pooled odds ratios (ORs) with 95% confidence intervals (CIs) were computed using fixed-effect or random-effects models. RESULTS This systematic review included 10 cohort studies, with a total of 89,571 parent-child pairs included in the quantitative analysis. The results exhibited a substantial association between parental occupational exposure to allergens (OR = 1.11; 95% CI: 1.00, 1.23; P = .051) and irritants (OR = 1.19; 95% CI: 1.07, 1.32; P = .001) and an increased risk of asthma in offspring. This association was also observed in the analysis of wheezing (OR = 1.22; 95% CI: 1.11, 1.35; P < .001 and OR = 1.19; 95% CI: 1.08, 1.32; P = .001). Subgroup analysis demonstrated that maternal occupational exposure to allergens (OR = 1.07; 95% CI: 1.02, 1.12; P = .008) and irritants (OR = 1.13; 95% CI: 1.05, 1.21; P = .001) significantly increased the risk of childhood asthma. Furthermore, parental postnatal occupational exposure to allergens (OR = 1.26; 95% CI: 1.10, 1.46; P = .001) and irritants (OR = 1.26; 95% CI: 1.06, 1.49; P = .009) had a more pronounced impact on childhood asthma. Higher levels of exposure (OR = 1.26; 95% CI: 1.10, 1.46; P = .001 and OR = 1.30; 95% CI: 1.16, 1.47; P < .001) were recognized as significant risk factors for childhood asthma. CONCLUSION Parental occupational exposure to allergens and irritants increases the risk of asthma and wheezing in offspring, with maternal exposure, postnatal exposure, and high-dose exposure being the primary risk factors for childhood asthma.
Collapse
Affiliation(s)
- Xiaoting Ren
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lie Wang
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Zhongtian Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lei Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yibu Kong
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Yinan Guo
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Liping Sun
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Jilin, China
| |
Collapse
|
9
|
Balakrishnan B, Callahan SJ, Cherian SV, Subramanian A, Sarkar S, Bhatt N, Scholand MB. Climate Change for the Pulmonologist: A Focused Review. Chest 2023; 164:963-974. [PMID: 37054776 DOI: 10.1016/j.chest.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Climate change adversely impacts global health. Increasingly, temperature variability, inclement weather, declining air quality, and growing food and clean water supply insecurities threaten human health. Earth's temperature is projected to increase up to 6.4 °C by the end of the 21st century, exacerbating the threat. Public and health care professionals, including pulmonologists, perceive the detrimental effects of climate change and air pollution and support efforts to mitigate its effects. In fact, evidence is strong that premature cardiopulmonary death is associated with air pollution exposure via inhalation through the respiratory system, which functions as a portal of entry. However, little guidance is available for pulmonologists in recognizing the effects of climate change and air pollution on the diverse range of pulmonary disorders. To educate and mitigate risk for patients competently, pulmonologists must be armed with evidence-based findings of the impact of climate change and air pollution on specific pulmonary diseases. Our goal is to provide pulmonologists with the background and tools to improve patients' health and to prevent adverse outcomes despite climate change-imposed threats. In this review, we detail current evidence of climate change and air pollution impact on a diverse range of pulmonary disorders. Knowledge enables a proactive and individualized approach toward prevention strategies for patients, rather than merely treating ailments reactively.
Collapse
Affiliation(s)
- Bathmapriya Balakrishnan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV; Occupational and Environmental Health Section, Diffuse Lung Disease and Lung Transplant Network, CHEST, Glenview, IL.
| | - Sean J Callahan
- Division of Pulmonary Medicine, University of Utah Health, Salt Lake City, UT; Division of Pulmonary Medicine, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT; Occupational and Environmental Health Section, Diffuse Lung Disease and Lung Transplant Network, CHEST, Glenview, IL
| | - Sujith V Cherian
- Division of Critical Care, Pulmonary and Sleep Medicine, University of Texas Health-McGovern Medical School, Houston; Occupational and Environmental Health Section, Diffuse Lung Disease and Lung Transplant Network, CHEST, Glenview, IL
| | - Abirami Subramanian
- Department of Pulmonary and Critical Care Medicine, Baylor Scott and White Health, Dallas, TX; Occupational and Environmental Health Section, Diffuse Lung Disease and Lung Transplant Network, CHEST, Glenview, IL
| | - Sauradeep Sarkar
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV
| | - Nitin Bhatt
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University, Columbus, OH; Occupational and Environmental Health Section, Diffuse Lung Disease and Lung Transplant Network, CHEST, Glenview, IL
| | - Mary-Beth Scholand
- Division of Pulmonary Medicine, University of Utah Health, Salt Lake City, UT; Occupational and Environmental Health Section, Diffuse Lung Disease and Lung Transplant Network, CHEST, Glenview, IL
| |
Collapse
|
10
|
Kaali S, Jack DW, Mujtaba MN, Chillrud SN, Ae-Ngibise KA, Kinney PL, Boamah Kaali E, Gennings C, Colicino E, Osei M, Wylie BJ, Agyei O, Quinn A, Asante KP, Lee AG. Identifying sensitive windows of prenatal household air pollution on birth weight and infant pneumonia risk to inform future interventions. ENVIRONMENT INTERNATIONAL 2023; 178:108062. [PMID: 37392730 PMCID: PMC10911234 DOI: 10.1016/j.envint.2023.108062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Prenatal household air pollution impairs birth weight and increases pneumonia risk however time-varying associations have not been elucidated and may have implications for the timing of public health interventions. METHODS The Ghana Randomized Air Pollution and Health Study (GRAPHS) enrolled 1,414 pregnant women from Kintampo, Ghana and measured personal carbon monoxide (CO) exposure four times over pregnancy. Birth weight was measured within 72-hours of birth. Fieldworkers performed weekly pneumonia surveillance and referred sick children to study physicians. The primary pneumonia outcome was one or more physician-diagnosed severe pneumonia episode in the first year of life. We employed reverse distributed lag models to examine time-varying associations between prenatal CO exposure and birth weight and infant pneumonia risk. RESULTS Analyses included n = 1,196 mother-infant pairs. In models adjusting for child sex; maternal age, body mass index (BMI), ethnicity and parity at enrollment; household wealth index; number of antenatal visits; and evidence of placental malaria, prenatal CO exposures from 15 to 20 weeks gestation were inversely associated with birth weight. Sex-stratified models identified a similar sensitive window in males and a window at 10-weeks gestation in females. In models adjusting for child sex, maternal age, BMI and ethnicity, household wealth index, gestational age at delivery and average postnatal child CO exposure, CO exposure during 34-39 weeks gestation were positively associated with severe pneumonia risk, especially in females. CONCLUSIONS Household air pollution exposures in mid- and late- gestation are associated with lower birth weight and higher pneumonia risk, respectively. These findings support the urgent need for deployment of clean fuel stove interventions beginning in early pregnancy.
Collapse
Affiliation(s)
- Seyram Kaali
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana.
| | - Darby W Jack
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, 722 W 168(th) Street, New York, NY 10032, USA
| | - Mohammed N Mujtaba
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory at Columbia University, Palisades, NY, USA
| | - Kenneth A Ae-Ngibise
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Patrick L Kinney
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Ellen Boamah Kaali
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Musah Osei
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Blair J Wylie
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Oscar Agyei
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Ashlinn Quinn
- Berkeley Air Monitoring Group, Fort Collins, CO, USA
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Alison G Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Immunopathological insights into villitis of unknown etiology on the basis of transplant immunology. Placenta 2023; 131:49-57. [PMID: 36473393 DOI: 10.1016/j.placenta.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
Villitis of unknown etiology (VUE) is an inflammatory disease characterized by the infiltration of maternal CD8 +T cells into the placental villi. Although the pathogenesis of VUE is still debated, dysregulation of the immune system appears to be an important factor in the development of the disease. Interaction of maternal T cells with the fetal antigens seems to be the trigger for the VUE onset. In this context, graft vs host disease (GVHD) and allographic rejection seem to share similarities in the VUE immunopathological mechanism, especially those related to immunoregulation. In this review, we compared the immunological characteristics of VUE with allograft rejection, and GVHD favoring a better knowledge of VUE pathogenesis that may contribute to VUE therapeutics strategies in the future.
Collapse
|
12
|
DeVries A, McCauley K, Fadrosh D, Fujimura KE, Stern DA, Lynch SV, Vercelli D. Maternal prenatal immunity, neonatal trained immunity, and early airway microbiota shape childhood asthma development. Allergy 2022; 77:3617-3628. [PMID: 35841380 PMCID: PMC9712226 DOI: 10.1111/all.15442] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The path to childhood asthma is thought to initiate in utero and be further promoted by postnatal exposures. However, the underlying mechanisms remain underexplored. We hypothesized that prenatal maternal immune dysfunction associated with increased childhood asthma risk (revealed by low IFN-γ:IL-13 secretion during the third trimester of pregnancy) alters neonatal immune training through epigenetic mechanisms and promotes early-life airway colonization by asthmagenic microbiota. METHODS We examined epigenetic, immunologic, and microbial features potentially related to maternal prenatal immunity (IFN-γ:IL-13 ratio) and childhood asthma in a birth cohort of mother-child dyads sampled pre-, peri-, and postnatally (N = 155). Epigenome-wide DNA methylation and cytokine production were assessed in cord blood mononuclear cells (CBMC) by array profiling and ELISA, respectively. Nasopharyngeal microbiome composition was characterized at age 2-36 months by 16S rRNA sequencing. RESULTS Maternal prenatal immune status related to methylome profiles in neonates born to non-asthmatic mothers. A module of differentially methylated CpG sites enriched for microbe-responsive elements was associated with childhood asthma. In vitro responsiveness to microbial products was impaired in CBMCs from neonates born to mothers with the lowest IFN-γ:IL-13 ratio, suggesting defective neonatal innate immunity in those who developed asthma during childhood. These infants exhibited a distinct pattern of upper airway microbiota development characterized by early-life colonization by Haemophilus that transitioned to a Moraxella-dominated microbiota by age 36 months. CONCLUSIONS Maternal prenatal immune status shapes asthma development in her child by altering the epigenome and trained innate immunity at birth, and is associated with pathologic upper airway microbial colonization in early life.
Collapse
Affiliation(s)
- Avery DeVries
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
- The BIO5 InstituteThe University of ArizonaTucsonArizonaUSA
| | - Kathryn McCauley
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Benioff Center for Microbiome MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Douglas Fadrosh
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kei E. Fujimura
- Genetic Disease LabCalifornia Department of Public HealthRichmondCaliforniaUSA
| | - Debra A. Stern
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
| | - Susan V. Lynch
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Benioff Center for Microbiome MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Donata Vercelli
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
- The BIO5 InstituteThe University of ArizonaTucsonArizonaUSA
- Department of Cellular and Molecular MedicineThe University of ArizonaTucsonArizonaUSA
- Arizona Center for the Biology of Complex DiseasesThe University of ArizonaTucsonArizonaUSA
| |
Collapse
|
13
|
Lin L, Chen Y, Wei J, Wu S, Wu S, Jing J, Dong G, Cai L. The associations between residential greenness and allergic diseases in Chinese toddlers: A birth cohort study. ENVIRONMENTAL RESEARCH 2022; 214:114003. [PMID: 35931194 DOI: 10.1016/j.envres.2022.114003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Green space in the living environment has been linked to the development of allergic diseases. However, evidence regarding early-onset allergy in toddlers was limited, and the critical exposure window remained unclear. We aimed to investigate associations between residential greenness with allergic diseases in early life. METHODS This prospective birth cohort study included 522 mother-child pairs in Guangzhou, China. We quantified prenatal, postnatal, and early-life (i.e., the first 1000 days of life) residential greenness, estimated from remote satellite data using normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and tree cover. We identified physician-diagnosed allergic diseases (eczema, atopic dermatitis, urticaria, allergic rhinitis, allergic conjunctivitis, food allergy, and asthma) based on medical records at age 2 years. Generalized linear regression was conducted to examine the associations of greenness with allergic outcomes. RESULTS The ranges of residential NDVI and EVI values in 500-m buffer during early life were 0.06-0.70 and 0.03-0.46, respectively. We found a 0.1 unit increase of NDVI in 500-m buffer throughout early life was associated with higher odds of any allergic diseases (prenatal: OR [odds ratio], 1.25; 95%CI, 1.02-1.53; postnatal: OR, 1.24; 95%CI, 1.02-1.52; early-life: OR, 1.25, 95%CI: 1.02-1.53) and higher odds of eczema (prenatal: OR, 1.28; 95%CI, 1.04-1.59; postnatal: OR, 1.24; 95%CI, 1.01-1.54; early-life: OR, 1.26, 95%CI: 1.02-1.56). The results were consistent when using EVI as a proxy for greenness. We only observed that prenatal exposure to the highest tertile of NDVI-500 was adversely associated with any allergic diseases (OR, 1.63; 95%CI, 1.03-2.58) and eczema (OR, 1.70; 95%CI: 1.04-2.78) compared with the lowest tertile. CONCLUSIONS This study identified detrimental associations of residential greenness with allergic diseases especially eczema among toddlers, and pregnancy appears to be the critical exposure window. Our findings highlighted the importance of urban planning to develop friendly-green neighborhood to improve maternal and child health.
Collapse
Affiliation(s)
- Lizi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution And Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yujing Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Shengchi Wu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shu Wu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution And Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Li Cai
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Ason B, Armah FA, Essumang DK. Characterization and quantification of endocrine disruptors in female menstrual blood samples. Toxicol Rep 2022; 9:1877-1882. [PMID: 36561951 PMCID: PMC9764248 DOI: 10.1016/j.toxrep.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 11/06/2022] Open
Abstract
Selected endocrine disrupting chemicals (EDCs) were measured in adult female menstrual blood for the first time in Ghana, Africa, taking into account the importance of non-invasive means of matrices sampling in vulnerable groups, such as pregnant women, the elderly or chronically ill people. The menstrual blood samples of twenty (20) female adults between the ages of 25-45 years were sampled. The Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method was applied for the extraction and clean up, while gas chromatography-mass spectrometry (GC-MS) was used to measure the selected EDCs in adult female menstrual blood, taking into account the composition of menstrual discharge. Diethyl phthalate (DEP), Dibutyl phthalate (DBP) and Bis (2-ethylhexyl) phthalate (DEHP) were detected in all samples, whereas bisphenol A (BPA) was found in 13 participants. Dimethyl phthalate (DMP) was detected in 7 participants, Di-n-octyl phthalate (DNOP) was detected in 3 participants, Bis (2-ethylhexyl) adipate (DEHA) and pyrimidine were detected in 2 participants, while benzyl butyl phthalate (BBP) was detected in only 1 participant. The maximum concentration of DEP measured was 115.6 µg.L-1and the minimum was 439 µg.L-1. DEHP was the next most abundant phthalate with a maximum measured concentration of 982 µg.L-1 and minimum of 95 µg.L-1. The presence of parent phthalates (rather than metabolites) in menstrual blood of all participants studied suggests that bioaccumulation of selected phthalate compounds such as DEHP, DEP and DBP may be occurring with appreciable human toxicity though the carcinogenic exposure risks of DEHP via various routes were much lower than 1 × 10-6 considered to be very low.
Collapse
Affiliation(s)
- Benjamin Ason
- Department of Chemistry, School of Physical Science, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
- Soil Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
- Corresponding author at: Department of Chemistry, School of Physical Science, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Frederick Ato Armah
- Department of Environmental Science, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - David Kofi Essumang
- Department of Chemistry, School of Physical Science, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
15
|
Cahill KM, Johnson TK, Perveen Z, Schexnayder M, Xiao R, Heffernan LM, Langohr IM, Paulsen DB, Penn AL, Noël A. In utero exposures to mint-flavored JUUL aerosol impair lung development and aggravate house dust mite-induced asthma in adult offspring mice. Toxicology 2022; 477:153272. [PMID: 35878681 DOI: 10.1016/j.tox.2022.153272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022]
Abstract
There are few reports concerning electronic nicotine delivery system (ENDS) use during pregnancy and no studies on asthma in prenatally JUUL-exposed offspring. Here, we tested the hypothesis that in utero JUUL exposure causes unfavorable birth outcomes and lasting pulmonary health effects in adult offspring. BALB/c dams were exposed to either air or mint-flavored JUUL aerosol, 1-hr/d, 20 consecutive days during gestation. Offspring were sacrificed on post-natal day (PND) 0 or at 11-week of age, following house dust mite (HDM) challenge. Gene expression was assessed in the uterine/placental tissue of the dams and lung responses were assessed in offspring at PND0 and at 11 weeks of age. JUUL-exposed offspring exhibited decreased body weights and lengths at PND0. These birth outcomes were accompanied by dysregulation of 54 genes associated with hypoxia and oxidative stress in the uterine/placental tissues of JUUL-exposed dams, as well as 24 genes in the lungs of the offspring related to Wnt signaling, plus 9 genes related to epigenetics, and 7 genes related to inflammation. At 11 weeks of age, JUUL + HDM exposed mice exhibited pulmonary inflammation when compared to their respective air + HDM controls. Additionally, the JUUL + HDM exposure dysregulated several genes associated with allergies and asthma. Further, the JUUL + HDM females showed decreased methylation of the promoter region of the Il10ra gene. Taken together, our mouse model shows that inhalation of JUUL aerosols during pregnancy affects the intrauterine environment, impairs lung development, and heightens the effects of allergic airway responses later in life.
Collapse
Affiliation(s)
- Kerin M Cahill
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Trenton K Johnson
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zakia Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Matthew Schexnayder
- Lincoln Memorial University, College of Veterinary Medicine, 6965 Cumberland Gap Parkway, Harrogate, TN, USA
| | - Rui Xiao
- Department of Anesthesiology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Linda M Heffernan
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ingeborg M Langohr
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Daniel B Paulsen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
16
|
Augustine T, Al-Aghbar MA, Al-Kowari M, Espino-Guarch M, van Panhuys N. Asthma and the Missing Heritability Problem: Necessity for Multiomics Approaches in Determining Accurate Risk Profiles. Front Immunol 2022; 13:822324. [PMID: 35693821 PMCID: PMC9174795 DOI: 10.3389/fimmu.2022.822324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Asthma is ranked among the most common chronic conditions and has become a significant public health issue due to the recent and rapid increase in its prevalence. Investigations into the underlying genetic factors predict a heritable component for its incidence, estimated between 35% and 90% of causation. Despite the application of large-scale genome-wide association studies (GWAS) and admixture mapping approaches, the proportion of variants identified accounts for less than 15% of the observed heritability of the disease. The discrepancy between the predicted heritable component of disease and the proportion of heritability mapped to the currently identified susceptibility loci has been termed the ‘missing heritability problem.’ Here, we examine recent studies involving both the analysis of genetically encoded features that contribute to asthma and also the role of non-encoded heritable characteristics, including epigenetic, environmental, and developmental aspects of disease. The importance of vertical maternal microbiome transfer and the influence of maternal immune factors on fetal conditioning in the inheritance of disease are also discussed. In order to highlight the broad array of biological inputs that contribute to the sum of heritable risk factors associated with allergic disease incidence that, together, contribute to the induction of a pro-atopic state. Currently, there is a need to develop in-depth models of asthma risk factors to overcome the limitations encountered in the interpretation of GWAS results in isolation, which have resulted in the missing heritability problem. Hence, multiomics analyses need to be established considering genetic, epigenetic, and functional data to create a true systems biology-based approach for analyzing the regulatory pathways that underlie the inheritance of asthma and to develop accurate risk profiles for disease.
Collapse
Affiliation(s)
- Tracy Augustine
- Laboratory of Immunoregulation, Systems Biology and Immunology Department, Sidra Medicine, Doha, Qatar
| | - Mohammad Ameen Al-Aghbar
- Laboratory of Immunoregulation, Systems Biology and Immunology Department, Sidra Medicine, Doha, Qatar
| | - Moza Al-Kowari
- Laboratory of Immunoregulation, Systems Biology and Immunology Department, Sidra Medicine, Doha, Qatar
| | - Meritxell Espino-Guarch
- Laboratory of Immunoregulation, Systems Biology and Immunology Department, Sidra Medicine, Doha, Qatar
| | - Nicholas van Panhuys
- Laboratory of Immunoregulation, Systems Biology and Immunology Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
17
|
Augustine T, Kumar M, Al Khodor S, van Panhuys N. Microbial Dysbiosis Tunes the Immune Response Towards Allergic Disease Outcomes. Clin Rev Allergy Immunol 2022:10.1007/s12016-022-08939-9. [PMID: 35648372 DOI: 10.1007/s12016-022-08939-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
The hygiene hypothesis has been popularized as an explanation for the rapid increase in allergic disease observed over the past 50 years. Subsequent epidemiological studies have described the protective effects that in utero and early life exposures to an environment high in microbial diversity have in conferring protective benefits against the development of allergic diseases. The rapid advancement in next generation sequencing technology has allowed for analysis of the diverse nature of microbial communities present in the barrier organs and a determination of their role in the induction of allergic disease. Here, we discuss the recent literature describing how colonization of barrier organs during early life by the microbiota influences the development of the adaptive immune system. In parallel, mechanistic studies have delivered insight into the pathogenesis of disease, by demonstrating the comparative effects of protective T regulatory (Treg) cells, with inflammatory T helper 2 (Th2) cells in the development of immune tolerance or induction of an allergic response. More recently, a significant advancement in our understanding into how interactions between the adaptive immune system and microbially derived factors play a central role in the development of allergic disease has emerged. Providing a deeper understanding of the symbiotic relationship between our microbiome and immune system, which explains key observations made by the hygiene hypothesis. By studying how perturbations that drive dysbiosis of the microbiome can cause allergic disease, we stand to benefit by delineating the protective versus pathogenic aspects of human interactions with our microbial companions, allowing us to better harness the use of microbial agents in the design of novel prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Tracy Augustine
- Laboratory of Immunoregulation, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Manoj Kumar
- Microbiome and Host-Microbes Interactions Laboratory, Sidra Medicine, Doha, Qatar
| | - Souhaila Al Khodor
- Microbiome and Host-Microbes Interactions Laboratory, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
18
|
Mohamad Zainal NH, Mohd Nor NH, Saat A, Clifton VL. Childhood allergy susceptibility: The role of the immune system development in the in-utero period. Hum Immunol 2022; 83:437-446. [DOI: 10.1016/j.humimm.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
|
19
|
Hui-Beckman J, Kim BE, Leung DY. Origin of Allergy From In Utero Exposures to the Postnatal Environment. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:8-20. [PMID: 34983104 PMCID: PMC8724834 DOI: 10.4168/aair.2022.14.1.8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 07/11/2021] [Indexed: 04/28/2023]
Abstract
As the incidence of atopic conditions continues to increase, emphasis has been placed on understanding the origin of allergy with hope that prevention measures can be achieved. The perinatal environment is important for this understanding, given that both the immune system and microbiome start forming prenatally. Maternal exposure can greatly impact on fetal health. Additionally, the dysfunctional epithelial barrier is influential in allowing allergens and irritants to penetrate the skin or mucosa, leading to the release of proinflammatory cytokines and mediators to drive type 2 tissue inflammation and the onset of allergy. There are numerous factors related to skin, airway, and gut epithelial barriers dysfunction, and genetic predispositions are also present. Comprehensive birth cohort studies and further mechanistic studies will be keys to understanding the origin of allergy.
Collapse
Affiliation(s)
| | - Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Donald Ym Leung
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
20
|
Machine Learning for Predicting the Risk for Childhood Asthma Using Prenatal, Perinatal, Postnatal and Environmental Factors. Healthcare (Basel) 2021; 9:healthcare9111464. [PMID: 34828510 PMCID: PMC8623896 DOI: 10.3390/healthcare9111464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
The prevalence rate for childhood asthma and its associated risk factors vary significantly across countries and regions. In the case of Morocco, the scarcity of available medical data makes scientific research on diseases such as asthma very challenging. In this paper, we build machine learning models to predict the occurrence of childhood asthma using data from a prospective study of 202 children with and without asthma. The association between different factors and asthma diagnosis is first assessed using a Chi-squared test. Then, predictive models such as logistic regression analysis, decision trees, random forest and support vector machine are used to explore the relationship between childhood asthma and the various risk factors. First, data were pre-processed using a Chi-squared feature selection, 19 out of the 36 factors were found to be significantly associated (p-value < 0.05) with childhood asthma; these include: history of atopic diseases in the family, presence of mites, cold air, strong odors and mold in the child's environment, mode of birth, breastfeeding and early life habits and exposures. For asthma prediction, random forest yielded the best predictive performance (accuracy = 84.9%), followed by logistic regression (accuracy = 82.57%), support vector machine (accuracy = 82.5%) and decision trees (accuracy = 75.19%). The decision tree model has the advantage of being easily interpreted. This study identified important maternal and prenatal risk factors for childhood asthma, the majority of which are avoidable. Appropriate steps are needed to raise awareness about the prenatal risk factors.
Collapse
|
21
|
Effects of intrauterine exposure to concentrated ambient particles on allergic sensitization in juvenile mice. Toxicology 2021; 463:152970. [PMID: 34606951 DOI: 10.1016/j.tox.2021.152970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022]
Abstract
Intrauterine exposure to particulate matter (PM) has been associated with an increased risk of asthma development, which may differ by the age of asthma onset, sex, and pollutant concentration. To investigate the pulmonary effects of in utero exposure to concentrated urban ambient particles (CAPs) in response to house dust mite (HDM) sensitization in juvenile mice. Mice were exposed to CAPs (600 μg/m3 PM2.5) during the gestational period. Twenty-two-day postnatal mice were sensitized with HDM (100 μg, intranasally, 3 times per week). Airway responsiveness (AHR), serum immunoglobulin, and lung inflammation were assessed after 43 days of the postnatal period. Female (n = 47) and male (n = 43) mice were divided into four groups as follows: (1) FA: not exposed to CAPs; (2) CAPs: exposed to CAPs; (3) HDM: sensitized to HDM; and (4) CAPs+HDM: exposed to CAPs and HDM-sensitized. PM2.5 exposure did not worsen lung hyperresponsiveness or allergic inflammation in sensitized animals. The levels of the lung cytokines IL-4, TNF-α, and IL-2 were differentially altered in male and female animals. Males presented hyporesponsiveness and increased lung macrophagic inflammation. There were no epigenetic changes in the IL-4 gene. In conclusion, intrauterine exposure ambient PM2.5 did not worsened allergic pulmonary susceptibility but affected the pulmonary immune profile and lung function, which differed by sex.
Collapse
|
22
|
Park SJ, Sim KH, Shrestha P, Yang JH, Lee YJ. Perfluorooctane sulfonate and bisphenol A induce a similar level of mast cell activation via a common signaling pathway, Fyn-Lyn-Syk activation. Food Chem Toxicol 2021; 156:112478. [PMID: 34363875 DOI: 10.1016/j.fct.2021.112478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 02/04/2023]
Abstract
Perfluoroalkyl compounds (PFCs) as food contaminants are widely distributed persistent organic pollutants (POPs) and have been suggested to induce immune dysfunction. However, their effects on immune function are not conclusive. Mast cells play a central role in allergic and non-allergic inflammatory responses. Therefore, we have examined the effects of PFCs (PFHxS, PFOA, PFOS) on mast cell-mediated inflammatory responses using in vitro mouse bone marrow-derived mast cells (BMMCs) and human mast cells (HMC-1) and in vivo mice model. The effects of PFCs were compared with those of bisphenol A (BPA), a well-studied environmental pollutant. Among PFCs tested, PFOS had the highest effects. Both PFOS and BPA increased degranulation and production of inflammatory eicosanoids in mast cells at a similar level, which subsequently led to increased skin edema and serum LTC4 and PGD2 in mice. Both PFOS and BPA increased not only downstream signaling (PLCγ1, AKT, ERK), but also upstream signaling (Fyn, Lyn, Syk/LAT) in mast cells. Taken together, PFOS and BPA induce mast cell-mediated inflammatory responses via a common signaling pathways. Our results may help establish the scientific basis for understanding the etiology of mast cell-mediated inflammatory responses and improve the immune dysfunction risk assessment for emerging POPs such as PFCs.
Collapse
Affiliation(s)
- Sung-Joon Park
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Kyeong Hwa Sim
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Prafulla Shrestha
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Jae-Ho Yang
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Youn Ju Lee
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea.
| |
Collapse
|
23
|
Chen KD, Huang YH, Guo MMH, Chang LS, Chu CH, Bu LF, Chu CL, Lee CH, Liu SF, Kuo HC. DNA Methylation Array Identifies Golli-MBP as a Biomarker for Disease Severity in Childhood Atopic Dermatitis. J Invest Dermatol 2021; 142:104-113. [PMID: 34293355 DOI: 10.1016/j.jid.2021.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 01/08/2023]
Abstract
In this study, we investigated the changes in global methylation status and its functional relevance in childhood atopic dermatitis (AD). Differences in epigenome-scale methylation events in peripheral blood associated with childhood AD were screened using DNA methylation arrays of 24 patients with AD compared with 24 control subjects. Of the 16,840 differentially methylated CpG regions between AD and control subjects, >97% CpG loci revealed hypomethylation in patients with childhood AD. Among the globally hypomethylated loci, we identified two CpG clusters within the golli-mbp locus of the MBP gene, which was functionally enriched by subnetwork enrichment analysis as an orchestrator among associated genes. The differential hypomethylation of the top-ranked cg24700313 cluster in the golli-mbp locus was validated by pyrosequencing in an independent cohort of 224 children with AD and 44 control subjects. DNA methylation was found to be negatively correlated with disease severity but showed no significant correlation with IgE levels after age adjustment. The multivariate correlation analysis represents a higher score in AD intensity with significantly increased IgE levels and decreased methylation levels in cg27400313. We concluded that methylation loss in the golli-mbp locus is an epigenetic factor associated with disease severity of childhood AD.
Collapse
Affiliation(s)
- Kuang-Den Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mindy Ming-Huey Guo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ling-Sai Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Hsiang Chu
- Department of Statistics, National Cheng-Kung University, Tainan, Taiwan; Institute of Statistics, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Li-Feng Bu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiao-Lun Chu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Shih-Feng Liu
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
24
|
Alsayari A, Muhsinah AB, Almaghaslah D, Annadurai S, Wahab S. Pharmacological Efficacy of Ginseng against Respiratory Tract Infections. Molecules 2021; 26:molecules26134095. [PMID: 34279434 PMCID: PMC8271507 DOI: 10.3390/molecules26134095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory tract infections are underestimated, as they are mild and generally not incapacitating. In clinical medicine, however, these infections are considered a prevalent problem. By 2030, the third most comprehensive reason for death worldwide will be chronic obstructive pulmonary disease (COPD), according to the World Health Organization. The current arsenal of anti-inflammatory drugs shows little or no benefits against COPD. For thousands of years, herbal drugs have been used to cure numerous illnesses; they exhibit promising results and enhance physical performance. Ginseng is one such herbal medicine, known to alleviate pro-inflammatory chemokines and cytokines (IL-2, IL-4, IFN-γ, TNF-α, IL-5, IL-6, IL-8) formed by macrophages and epithelial cells. Furthermore, the mechanisms of action of ginsenoside are still not fully understood. Various clinical trials of ginseng have exhibited a reduction of repeated colds and the flu. In this review, ginseng’s structural features, the pathogenicity of microbial infections, and the immunomodulatory, antiviral, and anti-bacterial effects of ginseng were discussed. The focus was on the latest animal studies and human clinical trials that corroborate ginseng’s role as a therapy for treating respiratory tract infections. The article concluded with future directions and significant challenges. This review would be a valuable addition to the knowledge base for researchers in understanding the promising role of ginseng in treating respiratory tract infections. Further analysis needs to be re-focused on clinical trials to study ginseng’s efficacy and safety in treating pathogenic infections and in determining ginseng-drug interactions.
Collapse
Affiliation(s)
- Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
- Correspondence: or
| |
Collapse
|
25
|
Tsai CK, Cheng HH, Hsu TY, Wang JY, Hung CH, Tsai CC, Lai YJ, Lin YJ, Huang HC, Chan JYH, Tain YL, Chen CC, Tsai TA, Yu HR. Prenatal Exposure to Di-Ethyl Phthalate (DEP) Is Related to Increasing Neonatal IgE Levels and the Altering of the Immune Polarization of Helper-T Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126364. [PMID: 34208324 PMCID: PMC8296186 DOI: 10.3390/ijerph18126364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
Introduction: Phthalates are substances that are added to plastic products to increase their plasticity. These substances are released easily into the environment and can act as endocrine disruptors. Epidemiological studies in children have showed inconsistent findings regarding the relationship between prenatal or postnatal exposure to phthalates and the risk of allergic disease. Our hypothesis is that prenatal exposure to phthalates may contribute to the development of allergies in children. Material and methods: The objective of this study was to determine the associations between urinary phthalate metabolite concentrations in pregnant women, maternal atopic diathesis, maternal lifestyle, and cord blood IgE. Pregnant mothers and paired newborns (n = 101) were enrolled from an antenatal clinic. The epidemiologic data and the clinical information were collected using standard questionnaires and medical records. The maternal blood and urine samples were collected at 24–28 weeks gestation, and cord blood IgE, IL-12p70, IL-4, and IL-10 levels were determined from the newborns at birth. The link between phthalates and maternal IgE was also assessed. To investigate the effects of phthalates on neonatal immunity, cord blood mononuclear cells (MNCs) were used for cytokine induction in another in vitro experiment. Results: We found that maternal urine monoethyl phthalate (MEP) (a metabolite of di-ethyl phthalate (DEP)) concentrations are positively correlated with the cord blood IgE of the corresponding newborns. The cord blood IL-12p70 levels of mothers with higher maternal urine MEP groups (high DEP exposure) were lower than mothers with low DEP exposure. In vitro experiments demonstrated that DEP could enhance IL-4 production of cord blood MNCs rather than adult MNCs. Conclusion: Prenatal DEP exposure is related to neonatal IgE level and alternation of cytokines relevant to Th1/Th2 polarization. This suggests the existence of a link between prenatal exposure to specific plasticizers and the future development of allergies.
Collapse
Affiliation(s)
- Chang-Ku Tsai
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Hsin-Hsin Cheng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Kaohsiung 83301, Taiwan; (H.-H.C.); (T.-Y.H.); (C.-C.T.); (Y.-J.L.); (Y.-J.L.)
| | - Te-Yao Hsu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Kaohsiung 83301, Taiwan; (H.-H.C.); (T.-Y.H.); (C.-C.T.); (Y.-J.L.); (Y.-J.L.)
| | - Jiu-Yao Wang
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan City 704302, Taiwan;
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Ching-Chang Tsai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Kaohsiung 83301, Taiwan; (H.-H.C.); (T.-Y.H.); (C.-C.T.); (Y.-J.L.); (Y.-J.L.)
| | - Yun-Ju Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Kaohsiung 83301, Taiwan; (H.-H.C.); (T.-Y.H.); (C.-C.T.); (Y.-J.L.); (Y.-J.L.)
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Kaohsiung 83301, Taiwan; (H.-H.C.); (T.-Y.H.); (C.-C.T.); (Y.-J.L.); (Y.-J.L.)
| | - Hsin-Chun Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Julie Y. H. Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Chih-Cheng Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Ti-An Tsai
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8713); Fax: +886-7-733-8009
| |
Collapse
|
26
|
Zeng J, Wu W, Tang N, Chen Y, Jing J, Cai L. Maternal Dietary Protein Patterns During Pregnancy and the Risk of Infant Eczema: A Cohort Study. Front Nutr 2021; 8:608972. [PMID: 34150822 PMCID: PMC8206490 DOI: 10.3389/fnut.2021.608972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Previous studies have suggested that maternal dietary protein was associated with allergic diseases in offspring, but few studies have evaluated the influence of dietary protein patterns. This study aimed to explore the prospective association between maternal dietary protein patterns during pregnancy and the risk of infant eczema. Methods: A total of 713 mother-child pairs from a prospective cohort in Guangzhou, China were recruited. Maternal dietary protein was estimated using a validated face-to-face food frequency questionnaire at 20–28 weeks' gestation from 2017 to 2018. Dietary protein patterns were calculated based on the sources of protein. The data of infant eczema was assessed at 6 months of age using the symptom questionnaire of eczema. Logistic regression was carried out to examine the associations between maternal dietary protein patterns and infant eczema. Results: The cumulative incidence of infant eczema at 6 months of age was 51.19%. Mothers of infants with eczema consumed more protein from poultry source during pregnancy than mothers of infants without eczema, while no statistical differences were observed in maternal intakes of protein from cereals and tubers, vegetables, fruits, red meat, fish and seafood, eggs, dairy, soybean, and nuts and seeds. Four dietary protein patterns were identified and termed poultry, plant, dairy and eggs, and red meat and fish. The cumulative incidence of eczema was 61.2, 45.8, 48.0, 51.4% for these four patterns, respectively. Compared to the poultry dietary pattern, the plant pattern and the dairy and eggs pattern were associated with a reduced risk of infant eczema, and the adjusted odds ratios (95% confidence interval) were 0.572 (0.330–0.992), 0.478 (0.274–0.837), respectively. No such association was observed for the red meat and fish dietary protein pattern. Conclusion: This is the first study that focused on the association between maternal dietary protein during pregnancy from a whole-diet perspective and infant eczema. Compared with the poultry dietary protein pattern, the maternal plant pattern and the dairy and eggs pattern during pregnancy were associated with a reduced risk of infant eczema.
Collapse
Affiliation(s)
- Jingjing Zeng
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Weijia Wu
- Department of Scientific Research, Hainan Women and Children's Medical Center, Haikou, China
| | - Nu Tang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yajun Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Li Cai
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Nutrition, Diet and Health, Guangzhou, China
| |
Collapse
|
27
|
Junge KM, Buchenauer L, Elter E, Butter K, Kohajda T, Herberth G, Röder S, Borte M, Kiess W, von Bergen M, Simon JC, Rolle-Kampczyk UE, Lehmann I, Gminski R, Ohlmeyer M, Polte T. Wood emissions and asthma development: Results from an experimental mouse model and a prospective cohort study. ENVIRONMENT INTERNATIONAL 2021; 151:106449. [PMID: 33611105 DOI: 10.1016/j.envint.2021.106449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/22/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Increased use of renewable resources like sustainably produced wood in construction or for all sorts of long-lived products is considered to contribute to reducing society's carbon footprint. However, as a natural, biological material, wood and wood products emit specific volatile organic compounds (VOCs). Therefore, the evaluation of possible health effects due to wood emissions is of major interest. OBJECTIVES We investigated the effects of an exposure to multiple wood-related VOCs on asthma development. METHODS A murine asthma model was used to evaluate possible allergic and inflammatory effects on the lung after short- or long-term and perinatal exposure to pinewood or oriented strand board (OSB). In addition, wood-related VOCs were measured within the German prospective mother-child cohort LINA and their joint effect on early wheezing or asthma development in children until the age of 10 was estimated by Bayesian kernel machine regression (BKMR) stratifying also for family history of atopy (FHA). RESULTS Our experimental data show that neither pinewood nor OSB emissions even at high total VOC levels and a long-lasting exposure period induce significant inflammatory or asthma-promoting effects in sensitized or non-sensitized mice. Moreover, an exposure during the vulnerable time window around birth was also without effect. Consistently, in our mother-child cohort LINA, an exposure to multiple wood-related VOCs during pregnancy or the first year of life was not associated with early wheezing or asthma development in children independent from their FHA. CONCLUSION Our findings indicate that emissions from wood and wood products at levels commonly occurring in the living environment do not exert adverse effects concerning wheezing or asthma development.
Collapse
Affiliation(s)
- Kristin M Junge
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany
| | - Lisa Buchenauer
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany; Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany
| | - Elena Elter
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany; Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany
| | - Katja Butter
- Thünen Institute of Wood Research, Hamburg, Germany
| | - Tibor Kohajda
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Molecular Systems Biology, Leipzig, Germany
| | - Gunda Herberth
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany
| | - Stefan Röder
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany
| | - Michael Borte
- Children's Hospital, Municipal Hospital "St. Georg", Leipzig, Germany
| | - Wieland Kiess
- University of Leipzig, Hospital for Children and Adolescents - Centre for Pediatric Research, Leipzig, Germany; University of Leipzig, LIFE - Leipzig Research Centre for Civilization Diseases, Leipzig, Germany
| | - Martin von Bergen
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Molecular Systems Biology, Leipzig, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | - Jan C Simon
- Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany
| | - Ulrike E Rolle-Kampczyk
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Molecular Systems Biology, Leipzig, Germany
| | - Irina Lehmann
- Charité - Universitätsmedizin Berlin, Environmental Epigenetics and Lung Research Group, Berlin, Germany; Berlin Institute of Health (BIH), Molecular Epidemiology, Berlin, Germany
| | - Richard Gminski
- Institute for Infection Prevention and Hospital Epidemiology, Environmental Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Tobias Polte
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany; Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
28
|
Application of Metabolomics in Pediatric Asthma: Prediction, Diagnosis and Personalized Treatment. Metabolites 2021; 11:metabo11040251. [PMID: 33919626 PMCID: PMC8072856 DOI: 10.3390/metabo11040251] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Asthma in children remains a significant public health challenge affecting 5–20% of children in Europe and is associated with increased morbidity and societal healthcare costs. The high variation in asthma incidence among countries may be attributed to differences in genetic susceptibility and environmental factors. This respiratory disorder is described as a heterogeneous syndrome of multiple clinical manifestations (phenotypes) with varying degrees of severity and airway hyper-responsiveness, which is based on patient symptoms, lung function and response to pharmacotherapy. However, an accurate diagnosis is often difficult due to diversities in clinical presentation. Therefore, identifying early diagnostic biomarkers and improving the monitoring of airway dysfunction and inflammatory through non-invasive methods are key goals in successful pediatric asthma management. Given that asthma is caused by the interaction between genes and environmental factors, an emerging approach, metabolomics—the systematic analysis of small molecules—can provide more insight into asthma pathophysiological mechanisms, enable the identification of early biomarkers and targeted personalized therapies, thus reducing disease burden and societal cost. The purpose of this review is to present evidence on the utility of metabolomics in pediatric asthma through the analysis of intermediate metabolites of biochemical pathways that involve carbohydrates, amino acids, lipids, organic acids and nucleotides and discuss their potential application in clinical practice. Also, current challenges on the integration of metabolomics in pediatric asthma management and needed next steps are critically discussed.
Collapse
|
29
|
Atopy risk among school-aged children in relation to early exposures to a farm environment: A systematic review. Respir Med 2021; 186:106378. [PMID: 34252858 DOI: 10.1016/j.rmed.2021.106378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Childhood atopy is a complex condition with both a genetic and an environmental component. This systematic review will explore the current understanding of the importance of early life exposures to a farm in the development of atopy measured by objective markers of skin prick testing, and specific IgE measurements in school age children. METHODS A systematic review was performed. RESULTS Among 7285 references identified, 14 studies met the inclusion criteria (13 cross-sectional studies and 1 case-control study). The results were fairly consistent in that early farm-related exposures can protect children from becoming atopic at school age. In general, there was heterogeneity in the assessment of outcomes and exposures. CONCLUSIONS Early-life farm exposures are associated with a protective effect on childhood atopy as assessed by objective markers. Future work should focus on understanding specific farm exposures that may important in these associations between atopy and farm exposures in children.
Collapse
|
30
|
Lin YT, Shih H, Jung CR, Wang CM, Chang YC, Hsieh CY, Hwang BF. Effect of exposure to fine particulate matter during pregnancy and infancy on paediatric allergic rhinitis. Thorax 2021; 76:568-574. [PMID: 33707186 DOI: 10.1136/thoraxjnl-2020-215025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND The effect of prenatal and postnatal exposure to fine particulate matter (PM2.5) on the development of allergic rhinitis (AR) is poorly understood. We further identified the vulnerable period for AR development to determine methods to decrease adverse effects. METHODS We used a large population-based birth cohort of 140 911 singleton live infants in Taichung, Taiwan with a highly temporal-resolution satellite-based hybrid model to evaluate the effects of prenatal and early postnatal exposure on the onset of AR. RESULTS Among 140 911 children, 47 276 (33.55%) were cases of incident AR. The mean age of the children with AR at initial diagnosis was 2.97±1.78 years. We identified a significant association of AR with an interquartile range (IQR 17.98 µg/m3) increase in PM2.5 from 30 gestational weeks to 52 weeks after birth. The exposure-response relationship revealed that AR had a significant positive association between PM2.5 of 26-76 µg/m3 (adjusted hazard ratios ranged from 1.00 to 1.05). CONCLUSION Our study provides evidence that both prenatal and postnatal exposures to PM2.5 are associated with later development of AR. The vulnerable time window may be within late gestation and the first year of life. Further study is required to confirm the vulnerable time period of PM2.5 on AR.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hao Shih
- Department of Dentistry, Division of Oral Maxillofacial Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chau-Ren Jung
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan.,Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Chi-Min Wang
- Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan
| | - Ya-Chu Chang
- Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan
| | - Chia-Yun Hsieh
- Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan
| | - Bing-Fang Hwang
- Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan .,Department of Occupational Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
31
|
Maternal prenatal stress exposure and sex-specific risk of severe infection in offspring. PLoS One 2021; 16:e0245747. [PMID: 33513152 PMCID: PMC7845992 DOI: 10.1371/journal.pone.0245747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022] Open
Abstract
Background Maternal stressful life events during pregnancy have been associated with immune dysregulation and increased risk for asthma and atopy in offspring. Few studies have investigated whether prenatal stress is associated with increased overall or specific infectious diseases in childhood, nor explored sex differences. We sought to examine the relationship between the nature and timing of maternal stress in pregnancy and hospitalisation with infection in offspring. Methods Between 1989 and 1992, exposure data on stressful life events were collected from pregnant women (Gen1) in the Raine Study at 18 and 34 weeks’ gestation and linked to statutory state-wide hospital morbidity data. We examined associations between the number, category and timing of maternal prenatal stress events and overall and clinical groups of offspring (Gen2) infection-related hospitalisation until age 16 years, adjusting for maternal age, education, and smoking in pregnancy in addition to the presence of siblings at birth. Results Of 2,141 offspring with complete stress in pregnancy data available, 1,089 had at least one infection-related hospitalisation, with upper respiratory tract infections the most common (n = 556). Each additional stressful life event during pregnancy was associated with increased risk in male offspring for hospitalisation with all infection types. There was little evidence of these associations in girls. Conclusions Increased exposure to stressful life events in utero is associated with sex-specific infection-related hospitalisations in childhood. Prenatal stress may adversely affect early immune development for boys and increase the risk of more severe infections. Mechanistic understanding would inform preventative interventions.
Collapse
|
32
|
Li YL, Xing XQ, Xiao Y, Liu YH, Zhou YS, Zhuang M, Li CQ. Correlation between DNA methylation and Thymic Stromal Lymphopoietin expression in asthmatic airway epithelial cells. Genes Genomics 2020; 42:1399-1406. [PMID: 33040302 DOI: 10.1007/s13258-020-01000-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/15/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The overexpression of TSLP and DNA methylation in asthma were both risk factors the relationship was not clear. OBJECTIVE This study aimed to investigate the relationship between methylation status of TSLP promoter and mRNA/protein expression in asthmatic airway epithelial cells. METHODS Human bronchial epithelial cells were cultured in vitro and divided into: Control group, treated with PBS, model group, sensitized with LPS (10 μg/mL) for 12 h (37 °C, 5% CO2). Other groups were cultured with the pCMV3 plasmid (M + NC/pCMV), pGPH1 plasmid (M + NC/pGPH), DNMT1/pCMV3 plasmid (M + DNMT1/pCMV), and DNMT1/pGPH1 plasmid (M + DNMT1/pGPH) for 48 h. The expression of DNA methyltransferase 1 and TSLP were measured using real-time PCR and western blotting. RESULTS Compared with the control group, TSLP mRNA (1.00 ± 0.00 vs. 2.82 ± 0.81 vs. 1, P < 0.001) and protein (1.07 ± 0.04 vs. 1.46 ± 0.11, P < 0.01) were significantly greater, and the methylation of promoter was lower (92.75 ± 1.26 vs. 58.57 ± 3.34, P < 0.05) in the model group. Compared with the model group, TSLP mRNA (2.82 ± 0.81 vs. 1.17 ± 0.10, P < 0.001) decreased, but TSLP promoter methylation increased (58.57 ± 3.34 vs. 92.58 ± 7.30, P < 0.05) in M + DNMT1/pCMV. TSLP mRNA and protein were higher (2.82 ± 0.81 vs. 5.32 ± 0.21, P < 0.001; 1.46 ± 0.11 vs. 1.94 ± 0.11, respectively, P < 0.01), TSLP promoter methylation was lower (58.57 ± 3.34 vs. 33.57 ± 4.29, P < 0.05) in M + DNMT1/pGPH. CONCLUSIONS Overexpression of TSLP in asthmatic airway epithelial cells may be regulated by DNA demethylation.
Collapse
Affiliation(s)
- Yan-Li Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China.,First Department of Pulmonary and Critical Care Medicine, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, People's Republic of China
| | - Xi-Qian Xing
- First Department of Pulmonary and Critical Care Medicine, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, People's Republic of China
| | - Yi Xiao
- First Department of Pulmonary and Critical Care Medicine, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, People's Republic of China
| | - Yan-Hong Liu
- First Department of Pulmonary and Critical Care Medicine, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, People's Republic of China
| | - Yu-Shan Zhou
- First Department of Pulmonary and Critical Care Medicine, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, People's Republic of China
| | - Min Zhuang
- First Department of Pulmonary and Critical Care Medicine, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, People's Republic of China
| | - Chao-Qian Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
33
|
Lu C, Norbäck D, Li Y, Deng Q. Early-life exposure to air pollution and childhood allergic diseases: an update on the link and its implications. Expert Rev Clin Immunol 2020; 16:813-827. [PMID: 32741235 DOI: 10.1080/1744666x.2020.1804868] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Although mounting evidence has linked environmental factors with childhood allergies, some specific key issues still remain unclear: what is the main environmental factor? what is the critical timing window? And whether these contribute to the development of disease? AREAS COVERED This selective review summarizes recent epidemiological studies on the association between early-life exposure to indoor/outdoor air pollution and childhood allergic diseases. A literature search was conducted in the PubMed and Web of Science for peer-reviewed articles published until April 2020. Exposure to the traffic-related air pollutant, NO2, exposure during pregnancy and early postnatal periods is found to be associated with childhood allergies, and exposure during different trimesters causes different allergic diseases. However, exposure to classical air pollutants (PM10 and SO2) also contributes to childhood allergy in developing countries. In addition, early-life exposure to indoor renovation and mold/dampness significantly increases the risk of allergy in children. A synergistic effect between indoor and outdoor air pollution is found in the development of allergic diseases. EXPERT OPINION Early-life exposure to outdoor air pollution and indoor environmental factors plays an important role in the development of childhood allergic diseases, and the synergy between indoor and outdoor exposures increases allergy risk. The available findings support the hypothesis of the 'fetal origins of childhood allergy,' with new implications for the effective control and early prevention of childhood allergies.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University , Changsha, China.,Hunan Engineering Research Center of Early Life Development and Disease Prevention, XiangYa Hospital, Central South University , Changsha, China
| | - Dan Norbäck
- Department of Medical Sciences, Uppsala University , Uppsala, Sweden
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong , Hong Kong, China
| | - Qihong Deng
- XiangYa School of Public Health, Central South University , Changsha, China.,Hunan Engineering Research Center of Early Life Development and Disease Prevention, XiangYa Hospital, Central South University , Changsha, China.,School of Energy Science and Engineering, Central South University , Changsha, China
| |
Collapse
|
34
|
Bae JW, Im H, Hwang JM, Kim SH, Ma L, Kwon HJ, Kim E, Kim MO, Kwon WS. Vanadium adversely affects sperm motility and capacitation status via protein kinase A activity and tyrosine phosphorylation. Reprod Toxicol 2020; 96:195-201. [PMID: 32659260 DOI: 10.1016/j.reprotox.2020.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 11/19/2022]
Abstract
Vanadium is a chemical element that enters the atmosphere via anthropogenic pollution. Exposure to vanadium affects cancer development and can result in toxic effects. Multiple studies have focused on vanadium's detrimental effect on male reproduction using conventional sperm analysis techniques. This study focused on vanadium's effect on spermatozoa following capacitation at the molecular level, in order to provide a more detailed assessment of vanadium's reproductive toxicity. We observed a decrease in germ cell density and a structural collapse of the testicular organ in seminiferous tubules during vanadium treatment. In addition, various sperm motion parameters were significantly decreased regardless of capacitation status, including sperm motility, rapid sperm motility, and progressive sperm motility. Curvilinear velocity, straight-line velocity, average path velocity, beat cross frequency, and mean amplitude of head lateral displacement were also decreased after capacitation. Capacitation status was altered after capacitation. Vanadium dramatically enhanced protein kinase A (PKA) activity and tyrosine phosphorylation. Taken together, our results suggest that vanadium is detrimental to male fertility by negatively influencing sperm motility, motion kinematics, and capacitation status via abnormal PKA activity and tyrosine phosphorylation before and after capacitation.
Collapse
Affiliation(s)
- Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Hobin Im
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Ju-Mi Hwang
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - So-Hye Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Lei Ma
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Hong Ju Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| |
Collapse
|
35
|
Braun M, Klingelhöfer D, Oremek GM, Quarcoo D, Groneberg DA. Influence of Second-Hand Smoke and Prenatal Tobacco Smoke Exposure on Biomarkers, Genetics and Physiological Processes in Children-An Overview in Research Insights of the Last Few Years. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3212. [PMID: 32380770 PMCID: PMC7246681 DOI: 10.3390/ijerph17093212] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Children are commonly exposed to second-hand smoke (SHS) in the domestic environment or inside vehicles of smokers. Unfortunately, prenatal tobacco smoke (PTS) exposure is still common, too. SHS is hazardous to the health of smokers and non-smokers, but especially to that of children. SHS and PTS increase the risk for children to develop cancers and can trigger or worsen asthma and allergies, modulate the immune status, and is harmful to lung, heart and blood vessels. Smoking during pregnancy can cause pregnancy complications and poor birth outcomes as well as changes in the development of the foetus. Lately, some of the molecular and genetic mechanisms that cause adverse health effects in children have been identified. In this review, some of the current insights are discussed. In this regard, it has been found in children that SHS and PTS exposure is associated with changes in levels of enzymes, hormones, and expression of genes, micro RNAs, and proteins. PTS and SHS exposure are major elicitors of mechanisms of oxidative stress. Genetic predisposition can compound the health effects of PTS and SHS exposure. Epigenetic effects might influence in utero gene expression and disease susceptibility. Hence, the limitation of domestic and public exposure to SHS as well as PTS exposure has to be in the focus of policymakers and the public in order to save the health of children at an early age. Global substantial smoke-free policies, health communication campaigns, and behavioural interventions are useful and should be mandatory.
Collapse
Affiliation(s)
- Markus Braun
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, D-60590 Frankfurt, Germany; (D.K.); (G.M.O.); (D.Q.); (D.A.G.)
| | | | | | | | | |
Collapse
|
36
|
Elter E, Wagner M, Buchenauer L, Bauer M, Polte T. Phthalate Exposure During the Prenatal and Lactational Period Increases the Susceptibility to Rheumatoid Arthritis in Mice. Front Immunol 2020; 11:550. [PMID: 32308655 PMCID: PMC7145968 DOI: 10.3389/fimmu.2020.00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
The prenatal and early postnatal period is highly sensitive to environmental exposures that may interfere with the developmental programming of the immune system leading to an altered disease risk in later life. To clarify the role of early influences in activation or exacerbation of autoimmune diseases like rheumatoid arthritis (RA) we investigated the effect of maternal exposure during the prenatal and lactational period of DBA/1 mice to the plasticizer benzyl butyl phthalate (BBP) on the development of RA in the offspring. Using a mild collagen-induced arthritis (CIA) model, maternal BBP-exposure increased both the prevalence and the severity of RA in the progeny compared to un-exposed dams. Additionally, maternal BBP exposure led to elevated serum IgG1 and IgG2a level in the offspring and increased the IFN-γ and IL-17 release from collagen-re-stimulated spleen cells. Transcriptome analysis of splenocytes isolated from 3-week-old pups before RA-induction revealed considerable changes in gene expression in the offspring from BBP-exposed dams. Among them were regulator of G-protein signaling 1 (rgs1), interleukin-7 receptor (il-7r) and CXC chemokine 4 (cxcr4), all genes that have previously been described as associated with RA pathology. In summary, our results demonstrate that perinatal exposure to BBP increases the susceptibility of the offspring to RA, probably via a phthalate-induced disturbed regulation of RA-relevant genes or signaling pathways.
Collapse
Affiliation(s)
- Elena Elter
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, Leipzig, Germany.,Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Marita Wagner
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, Leipzig, Germany.,Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Lisa Buchenauer
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, Leipzig, Germany.,Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Mario Bauer
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, Leipzig, Germany
| | - Tobias Polte
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, Leipzig, Germany.,Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
37
|
Scott M, De Sario A. DNA methylation changes in cystic fibrosis: Cause or consequence? Clin Genet 2020; 98:3-9. [PMID: 32112395 DOI: 10.1111/cge.13731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
Twin and sibling studies have shown that lung disease severity is variable among cystic fibrosis (CF) patients and affected to the same extent by genetic and nonheritable factors. Genetic factors have been thoroughly assessed, whereas the molecular mechanisms whereby nonheritable factors contribute to the phenotypic variability of CF patients are still unknown. Epigenetic modifications may represent the missing link between nonheritable factors and phenotypic variation in CF. Herein, we review recent studies showing that DNA methylation is altered in CF and we address three possible factors responsible for these variations: (i) overproduction of reactive oxygen species, (ii) depletion of DNA methylation cofactors and (iii) susceptibility to acute and chronic bacterial infections. Also, we hypothesize that the unique DNA methylation profile of each patient can modulate the phenotype and discuss the interest of implementing integrated genomic, epigenomic and transcriptomic studies to further understand the clinical diversity of CF patients (Graphical Abstract).
Collapse
Affiliation(s)
- Madeleine Scott
- LGMR - EA7402, University of Montpellier, Montpellier, France
| | | |
Collapse
|
38
|
Iqbal H, Rhee DK. Ginseng alleviates microbial infections of the respiratory tract: a review. J Ginseng Res 2020; 44:194-204. [PMID: 32148400 PMCID: PMC7031735 DOI: 10.1016/j.jgr.2019.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/26/2022] Open
Abstract
The detrimental impact of air pollution as a result of frequent exposure to fine particles posed a global public health risk mainly to the pulmonary disorders in pediatric and geriatric population. Here, we reviewed the current literature regarding the role of ginseng and/or its components as antimicrobials, especially against pathogens that cause respiratory infections in animal and in vitro models. Some of the possible mechanisms for ginseng-mediated viral inhibition suggested are improvements in systemic and mucosa-specific antibody responses, serum hemagglutinin inhibition, lymphocyte proliferation, cell survival rate, and viral clearance in the lungs. In addition, ginseng reduces the expression levels of proinflammatory cytokines (IFN-γ, TNF-α, IL-2, IL-4, IL-5, IL-6, IL-8) and chemokines produced by airway epithelial cells and macrophages, thus preventing weight loss. In case of bacterial infections, ginseng acts by alleviating inflammatory cytokine production, increasing survival rates, and activating phagocytes and natural killer cells. In addition, ginseng inhibits biofilm formation and induces the dispersion and dissolution of mature biofilms. Most clinical trials revealed that ginseng, at various dosages, is a safe and effective method of seasonal prophylaxis, relieving the symptoms and reducing the risk and duration of colds and flu. Taken together, these findings support the efficacy of ginseng as a therapeutic and prophylactic agent for respiratory infections.
Collapse
Key Words
- ARI, acute respiratory illness
- Bacteria
- COPD, chronic obstructive pulmonary disease
- Clinical trials
- GSLS, ginseng stem–leaf saponins
- Ginseng
- HRV, human rhinovirus
- IFN, interferon
- IL, interleukin
- IgA, immunoglobulin A
- PD, protopanaxadiol
- PT, protopanaxatriol
- ROS, reactive oxygen species
- RSV, respiratory syncytial virus
- RTIs, respiratory tract infections
- Respiratory tract infections
- TNF-α, tumor necrosis factor-alpha
- Virus
Collapse
Affiliation(s)
| | - Dong-kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
39
|
Leppert B, Strunz S, Seiwert B, Schlittenbauer L, Schlichting R, Pfeiffer C, Röder S, Bauer M, Borte M, Stangl GI, Schöneberg T, Schulz A, Karkossa I, Rolle-Kampczyk UE, Thürmann L, von Bergen M, Escher BI, Junge KM, Reemtsma T, Lehmann I, Polte T. Maternal paraben exposure triggers childhood overweight development. Nat Commun 2020; 11:561. [PMID: 32047148 PMCID: PMC7012887 DOI: 10.1038/s41467-019-14202-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/17/2019] [Indexed: 01/09/2023] Open
Abstract
Parabens are preservatives widely used in consumer products including cosmetics and food. Whether low-dose paraben exposure may cause adverse health effects has been discussed controversially in recent years. Here we investigate the effect of prenatal paraben exposure on childhood overweight by combining epidemiological data from a mother–child cohort with experimental approaches. Mothers reporting the use of paraben-containing cosmetic products have elevated urinary paraben concentrations. For butyl paraben (BuP) a positive association is observed to overweight within the first eight years of life with a stronger trend in girls. Consistently, maternal BuP exposure of mice induces a higher food intake and weight gain in female offspring. The effect is accompanied by an epigenetic modification in the neuronal Pro-opiomelanocortin (POMC) enhancer 1 leading to a reduced hypothalamic POMC expression. Here we report that maternal paraben exposure may contribute to childhood overweight development by altered POMC-mediated neuronal appetite regulation. Parabens are preservatives widely used in consumer products including cosmetics and food. Here the authors demonstrate that maternal paraben exposure may contribute to childhood overweight development by an altered neuronal appetite regulation.
Collapse
Affiliation(s)
- Beate Leppert
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Sandra Strunz
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Department of Dermatology Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Bettina Seiwert
- Department for Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Linda Schlittenbauer
- Department for Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Rita Schlichting
- Department for Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Christiane Pfeiffer
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Stefan Röder
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Mario Bauer
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Michael Borte
- Children's Hospital, Municipal Hospital St. Georg, Leipzig, Germany
| | - Gabriele I Stangl
- Institute of Agriculture and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena, Leipzig, Germany
| | - Torsten Schöneberg
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Isabell Karkossa
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ulrike E Rolle-Kampczyk
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Loreen Thürmann
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Environmental Epigenetics and Lung Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Molecular Epidemiology, Berlin Institute of Health (BIH), Berlin, Germany
| | - Martin von Bergen
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Beate I Escher
- Department for Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Kristin M Junge
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Thorsten Reemtsma
- Department for Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Irina Lehmann
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany. .,Environmental Epigenetics and Lung Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany. .,Molecular Epidemiology, Berlin Institute of Health (BIH), Berlin, Germany.
| | - Tobias Polte
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany. .,Department of Dermatology Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany.
| |
Collapse
|
40
|
Li Z, Li N, Guo C, Li X, Qian Y, Yang Y, Wei Y. The global DNA and RNA methylation and their reversal in lung under different concentration exposure of ambient air particulate matter in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:396-402. [PMID: 30731271 DOI: 10.1016/j.ecoenv.2019.01.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Particulate matter (PM) in air pollution is a pervasive risk factor in pulmonary diseases that are always associated with gene expression level alterations in many specific-genes. DNA methylation (5-methylcytosine [5mC]) and RNA methylation (N6-methyladenine [6 mA]) influence the gene expression from transcription and post-transcription level, and the DNA hydroxymethylation (5-hydroxymethylcytosine [5hmC]) is the oxidized form of 5mC. In the present study, the levels of global 5mC, 5hmC and 6 mA of lungs in experimental mice were investigated. We divided the animals into 3 groups randomly, the group 1 was exposed to heavy PM for 24 h in the unfiltered chamber, the group 2 was exposed to filtered air in the filtered chamber, and the group 3 was 10 of the mice in the group 1 after 24 h exposure and then being moved to the filtered chamber for further 120 h exposure. The morphology of lungs showed that acute PM exposure impaired the structure of pulmonary alveolus. Meanwhile, the global level of DNA methylation was decreased, and DNA hydroxymethylation and RNA methylation levels were increased in lungs after PM exposure for only 24 h. Very notably, after being exposed in purified air for 120 h, the pulmonary morphology, the global levels of DNA methylation, DNA hydroxymethylation and RNA methylation of lungs were all reversed. The present study clearly demonstrated the alteration of DNA and RNA methylation after acute heavy PM exposure and emphasized the reversal of the symptoms caused by PM exposure after the air purification, which provided us a new idea for the intervention of the adverse health effects from air pollution. CAPSULE: Acute PM exposure resulted in reduced global DNA methylation and increased global DNA hydroxymethylcytosine and RNA methylation, and air purification reversed these alterations.
Collapse
Affiliation(s)
- Zhigang Li
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Nannan Li
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Guo
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoqian Li
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Qian
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yining Yang
- Senior High School, Beijing No.171 High School, 100013, China
| | - Yongjie Wei
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
41
|
Vereen S, Gebretsadik T, Johnson N, Hartman TJ, Veeranki SP, Piyathilake C, Mitchel EF, Kocak M, Cooper WO, Dupont WD, Tylavsky F, Carroll KN. Association Between Maternal 2nd Trimester Plasma Folate Levels and Infant Bronchiolitis. Matern Child Health J 2019; 23:164-172. [PMID: 30027465 DOI: 10.1007/s10995-018-2610-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objectives Viral bronchiolitis is the most common cause of infant hospitalization. Folic acid supplementation is important during the periconceptional period to prevent neural tube defects. An area of investigation is whether higher prenatal folate is a risk factor for childhood respiratory illnesses. We investigated the association between maternal 2nd trimester plasma folate levels and infant bronchiolitis. Methods We conducted a retrospective cohort analysis in a subset of mother-infant dyads (n = 676) enrolled in the Conditions Affecting Neurocognitive Development and Learning in Early Childhood study and Tennessee Medicaid. Maternal folate status was determined using 2nd trimester (16-28 weeks) plasma samples. Bronchiolitis diagnosis in the first year of life was ascertained using International Classification of Diagnosis-9 codes from Medicaid administrative data. We used multivariable logistic regression to assess the adjusted association of prenatal folate levels and infant bronchiolitis outcome. Results Half of the women in this lower-income and predominately African-American (84%) study population had high levels of folate (median 2nd trimester level 19.2 ng/mL) and 21% of infants had at least one bronchiolitis healthcare visit. A relationship initially positive then reversing between maternal plasma folate and infant bronchiolitis was observed that did not reach statistical significance (poverall = .112, pnonlinear effect = .088). Additional adjustment for dietary methyl donor intake did not significantly alter the association. Conclusions for Practice Results did not confirm a statistically significant association between maternal 2nd trimester plasma folate levels and infant bronchiolitis. Further work is needed to investigate the role of folate, particularly higher levels, in association with early childhood respiratory illnesses.
Collapse
Affiliation(s)
- Shanda Vereen
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Divisions of General Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Asthma Health Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tebeb Gebretsadik
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Asthma Health Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Terryl J Hartman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sreenivas P Veeranki
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Divisions of General Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Asthma Health Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chandrika Piyathilake
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward F Mitchel
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mehmet Kocak
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - William O Cooper
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Divisions of General Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William D Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Asthma Health Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frances Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kecia N Carroll
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA. .,Divisions of General Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA. .,Center for Asthma Health Research, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt University School of Medicine, 313 Oxford House, 1313 21st Avenue South, Nashville, TN, 37232-4313, USA.
| |
Collapse
|
42
|
Rychlik KA, Sillé FCM. Environmental exposures during pregnancy: Mechanistic effects on immunity. Birth Defects Res 2019; 111:178-196. [PMID: 30708400 DOI: 10.1002/bdr2.1469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
In human studies, it is well established that exposures during embryonic and fetal development periods can influence immune health. Coupled with genetic predisposition, these exposures can alter lifetime chronic and infectious disease trajectory, and, ultimately, life expectancy. Fortunately, as research advances, mechanisms governing long-term effects of prenatal exposures are coming to light and providing the opportunity for intervention and risk reduction. For instance, human association studies have provided a foundation for the association of prenatal exposure to particulate matter with early immunosuppression and later allergic disease in the offspring. Only recently, the mechanisms mediating this response have been revealed and there is much we have yet to discover. Although cellular immune response is understood for many exposure scenarios, molecular pathways are still unidentified. This review will provide commentary and synthesis of the current literature regarding environmental exposures during pregnancy and mechanisms determining immune outcomes. Shared mechanistic features and current gaps in the state of the science are identified and discussed. To such purpose, we address exposures by their immune effect type: immunosuppression, autoimmunity, inflammation and tissue damage, hypersensitivity, and general immunomodulation.
Collapse
Affiliation(s)
- Kristal A Rychlik
- Department of Environmental Health and Engineering, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Fenna C M Sillé
- Department of Environmental Health and Engineering, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
43
|
Gallant MJ, Ellis AK. What can we learn about predictors of atopy from birth cohorts and cord blood biomarkers? Ann Allergy Asthma Immunol 2019; 120:138-144. [PMID: 29413337 DOI: 10.1016/j.anai.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Mallory J Gallant
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Allergy Research Unit, Kingston General Hospital, Kingston, Ontario, Canada
| | - Anne K Ellis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Allergy Research Unit, Kingston General Hospital, Kingston, Ontario, Canada; Department of Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
44
|
Kim HB. Modifiable prenatal environmental factors for the prevention of childhood asthma. ALLERGY ASTHMA & RESPIRATORY DISEASE 2019; 7:179. [DOI: 10.4168/aard.2019.7.4.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 09/01/2023]
Affiliation(s)
- Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| |
Collapse
|
45
|
Lee YJ. Potential health effects of emerging environmental contaminants perfluoroalkyl compounds. Yeungnam Univ J Med 2018; 35:156-164. [PMID: 31620588 PMCID: PMC6784697 DOI: 10.12701/yujm.2018.35.2.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/27/2022] Open
Abstract
Environmental contaminants are one of the important causal factors for development of various human diseases. In particular, the perinatal period is highly vulnerable to environmental toxicants and resultant dysregulation of fetal development can cause detrimental health outcomes potentially affecting life-long health. Perfluoroalkyl compounds (PFCs), emerging environmental pollutants, are man-made organic molecules, which are widely used in diverse industries and consumer products. PFCs are non-degradable and bioaccumulate in the environment. Importantly, PFCs can be found in cord blood and breast milk as well as in the general population. Due to their physicochemical properties and potential toxicity, many studies have evaluated the health effects of PFCs. This review summarizes the epidemiological and experimental studies addressing the association of PFCs with neurotoxicity and immunotoxicity. While the relationships between PFC levels and changes in neural and immune health are not yet conclusive, accumulative studies provide evidence for positive associations between PFC levels and the incidence of attention deficit hyperactivity disorder and reduced immune response to vaccination both in children and adults. In conclusion, PFCs have the potential to affect human health linked with neurological disorders and immunosuppressive responses. However, our understanding of the molecular mechanism of the effects of PFCs on human health is still in its infancy. Therefore, along with efforts to develop methods to reduce exposure to PFCs, studies on the mode of action of these chemicals are required in the near future.
Collapse
Affiliation(s)
- Youn Ju Lee
- Department of Pharmacology, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
46
|
Berger K, Eskenazi B, Balmes J, Holland N, Calafat AM, Harley KG. Associations between prenatal maternal urinary concentrations of personal care product chemical biomarkers and childhood respiratory and allergic outcomes in the CHAMACOS study. ENVIRONMENT INTERNATIONAL 2018; 121:538-549. [PMID: 30293015 PMCID: PMC6239199 DOI: 10.1016/j.envint.2018.09.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Personal care product chemicals may be contributing to risk for asthma and other atopic illnesses. The existing literature is conflicting, and many studies do not control for multiple chemical exposures. METHODS We quantified concentrations of three phthalate metabolites, three parabens, and four other phenols in urine collected twice during pregnancy from 392 women. We measured T helper 1 (Th1) and T helper 2 (Th2) cells in their children's blood at ages two, five, and seven, and assessed probable asthma, aeroallergies, eczema, and lung function at age seven. We conducted linear and logistic regressions, controlling for additional biomarkers measured in this population as selected by Bayesian Model Averaging. RESULTS The majority of comparisons showed null associations. Mono-n-butyl phthalate (MnBP) was associated with higher Th2% (RR: 10.40, 95% CI: 3.37, 17.92), and methyl paraben was associated with lower Th1% (RR: -3.35, 95% CI: -6.58, -0.02) and Th2% at borderline significance (RR: -4.45, 95% CI: -8.77, 0.08). Monoethyl phthalate was associated with lower forced expiratory flow from 25 to 75% of forced vital capacity (FEF25-75%) (RR: -3.22 L/s, 95% CI: -6.02, -0.34). Propyl paraben (OR: 0.86, 95% CI: 0.74, 0.99) was associated with decreased odds of probable asthma. CONCLUSIONS While some biomarkers, particularly those from low molecular weight phthalates, were associated with an atopic cytokine profile and poorer lung function, no biomarkers were associated with a corresponding increase in atopic disease.
Collapse
Affiliation(s)
- Kimberly Berger
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA
| | - John Balmes
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA
| | - Nina Holland
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, GA 30341, USA
| | - Kim G Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| |
Collapse
|
47
|
Li Y, Zhou J, Rui X, Zhou L, Mo X. PM2.5 exposure exacerbates allergic rhinitis in mice by increasing DNA methylation in the IFN-γ gene promoter in CD4+T cells via the ERK-DNMT pathway. Toxicol Lett 2018; 301:98-107. [PMID: 30481581 DOI: 10.1016/j.toxlet.2018.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 01/29/2023]
Abstract
Allergic rhinitis (AR) is a common chronic inflammatory disease that has a significant impact on the quality of life of patients. Our previous study suggested that PM2.5 might affect pediatric AR through epigenetic regulation, but the underlying mechanisms remained unclear. In this study, an experimental murine AR model was created, and the nasal symptoms, pathological changes, the DNA methylation level of the IFN-γ gene promoter and activation of the ERK-DNMT pathway were evaluated after treatment with PM2.5. Our results showed that PM2.5 exposure led to more severe symptoms of AR in mice. In addition, PM2.5 exposure significantly decreased the percentage of Th1 T cells in the AR group, and this change was correlated with increased DNA methylation of the IFN-γ gene promoter in CD4 + T cells (r=-0.916, p = 0.029). In addition, PM2.5 exposure increased the activation of the ERK-DNMT pathway in CD4+ T cells, and inhibiting this effect rescued the polarization of the Th1/Th2 balance toward Th2, thereby decreasing the risk of AR. Our findings demonstrate that PM2.5 exposure could exacerbate AR by increasing the DNA methylation of the IFN-γ gene promoter in CD4 + T cells via the ERK-DNMT pathway, and these effects were rescued when the ERK-DNMT pathway was inhibited.
Collapse
Affiliation(s)
- Youjin Li
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, China
| | - Xiaoqing Rui
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin Zhou
- Research Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xi Mo
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
48
|
Katsoulis K, Ismailos G, Kipourou M, Kostikas K. Microbiota and asthma: Clinical implications. Respir Med 2018; 146:28-35. [PMID: 30665515 DOI: 10.1016/j.rmed.2018.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/01/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Konstantinos Katsoulis
- Pulmonary Department, 424 Army General Hospital, Periferiaki Odos, 56429, Efkarpia, Thessaloniki, Greece
| | - Georgios Ismailos
- Experimental-Research Center ELPEN, ELPEN Pharmaceuticals, Leoforos Marathonos 95, 19009, Pikermi, Attika, Greece
| | - Maria Kipourou
- Pulmonary Department, 424 Army General Hospital, Periferiaki Odos, 56429, Efkarpia, Thessaloniki, Greece.
| | - Konstantinos Kostikas
- 2nd Respiratory Medicine Department, University of Athens Medical School, Attikon Hospital, Athens, Greece
| |
Collapse
|
49
|
Abstract
Objective: The purpose of the study was to examine the relationship of maternal complications during pregnancy and prenatal exposures with childhood asthma among low-income families in Karachi, Pakistan. Methods: Parents/guardians of children with and without asthma visiting a charity hospital were enrolled. Information about prenatal and perinatal exposures was collected. Univariable and multiple stepwise logistic regression analysis were conducted to explore the relationship of socio-demographic, maternal complications during pregnancy, access to prenatal care, and exposure to animals and pests while pregnant with childhood asthma. Results: Maternal symptoms of nocturnal cough (adjusted OR [aOR = 2.87, 95% CI = 1.60-5.14) and wheezing (aOR = 5.57, 95% CI = 2.32-13.37) during pregnancy significantly increased the odds of childhood asthma. The family history of asthma or hay fever, also elevated the odds of childhood asthma (adjusted OR [aOR] = 5.86 (3.03-11.34). The odds of asthma among children whose mothers received prenatal care by Dai, an unskilled health worker, were significantly elevated. Lastly, prenatal exposure to rats/mice and contact with goats while pregnant was significantly associated with childhood asthma. Whereas, prenatal exposure to cows/cattle reduces the odds of childhood asthma. Conclusions: This study identified important maternal and prenatal risk factors for childhood asthma, the majority of which are avoidable. Appropriate steps are needed to create awareness about the prenatal risk factors in this population.
Collapse
Affiliation(s)
- Ahmed A Arif
- Department of Public Health Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Shelby D Veri
- Department of Public Health Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
50
|
Pradella F, van Ewijk R. As Long as the Breath Lasts: In Utero Exposure to Ramadan and the Occurrence of Wheezing in Adulthood. Am J Epidemiol 2018; 187:2100-2108. [PMID: 29961865 DOI: 10.1093/aje/kwy132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/22/2018] [Indexed: 11/14/2022] Open
Abstract
While prenatal exposure to Ramadan has been shown to be negatively associated with general physical and mental health, studies on specific organs remain scarce. In this study, we explored whether Ramadan exposure during pregnancy affects the occurrence of wheezing, a main symptom of obstructive airway disease. Using data from the Indonesian Family Life Survey collected between 1997 and 2008 (waves 2-4), we compared wheezing occurrence among adult Muslims who had been in utero during Ramadan with that in adult Muslims who had not been in utero during Ramadan. Wheezing prevalence was higher among adult Muslims who had been in utero during Ramadan, independent of the pregnancy phase in which the exposure to Ramadan occurred. Moreover, this association tended to increase with age, being strongest among those aged about 45 years or older. This is in line with fetal programming theory, suggesting that impacts of in utero exposures often manifest only after reproductive age. Particularly strong associations were detected for smokers. The respiratory system of prenatally exposed Muslims thus seems to perform worse in mitigating later ex utero harmful influences such as smoking. This study suggests that exposure to Ramadan during pregnancy may have lasting consequences for adult lung functionality.
Collapse
Affiliation(s)
- Fabienne Pradella
- Gutenberg School of Management and Economics, Faculty of Law and Economics, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Reyn van Ewijk
- Gutenberg School of Management and Economics, Faculty of Law and Economics, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|