1
|
Liu T, Chen X, Zhang G, Zhao J, Lu Q, Wang F, Li H, Liu B, Zhu P. An LCMS/MS method for the simultaneous determination of ten antimicrobials and its application in critically ill patients. J Pharm Biomed Anal 2025; 252:116489. [PMID: 39357099 DOI: 10.1016/j.jpba.2024.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Significant pharmacokinetic variation occurs in critically ill patients, leading to underexposure to antibiotics and poor prognosis. In this study, we developed a simple, sensitive, and fast liquid chromatography tandem mass spectrometry (LCMS/MS) platform for the simultaneous quantification of 8 antibacterial and 2 antifungal drugs, which is optimally suited for clinically efficient, real-time therapeutic drug monitoring (TDM). Multiple reaction monitoring (MRM) mass spectrometry was used in this method, and samples were prepared via protein precipitation with methanol. Chromatographic separation was accomplished on a BGIU Column-U02 (2.1x50 mm, 3 µm), with six stable isotopes and one analog as an internal standard. The overall turnaround time of the assay was 5 minutes. All the drugs tested (piperacillin, cefoperazone, meropenem, levofloxacin, moxifloxacin, daptomycin, linezolid, vancomycin, fluconazole and voriconazole) were linear in the test concentration range (r ≥ 0.9900), the accuracy was 95 %-111 %, the precision variation coefficient was greater than or equal to 10 %, the lower limit of quantitation was 0.31-7.51 mg/L, and the coefficient of variation of the matrix factor was less than 10 %. The recovery rates ranged from 85 % to 115 %, and the antibiotics were stable at 4°C and -20°C for 6 days, with an offset of greater than or equal to 15 %. This method was successfully applied to routine TDM in 252 elderly critically ill patients.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | | | - Guanxuanzi Zhang
- Department of Health Services, General Hospital of Central Theater Command, Wuhan 430060, China
| | - Jing Zhao
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Lu
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Fang Wang
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongxia Li
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China.
| | - Bing Liu
- Department of adult cardiac surgery, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Ping Zhu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
2
|
Saad MO, Mohamed A, Mohamed Ibrahim MI. Abbreviated Urine Collection Compared With 24-Hour Urine Collection for Measuring Creatinine Clearance in Adult Critically Ill Patients: A Systematic Review. Ann Pharmacother 2025; 59:61-70. [PMID: 38619016 DOI: 10.1177/10600280241241820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
OBJECTIVE To evaluate the accuracy of abbreviated urine collection (≤12 hours) compared with 24-hour urine collection for measuring creatinine clearance (CrCl) in critically ill adult patients. DATA SOURCES We searched PubMed, Embase, Web of Science, Google Scholar, and ProQuest Dissertations and Thesis Global; screened reference lists of included studies; and contacted the authors when needed. English studies only were considered with no restriction on dates. STUDY SELECTION AND DATA EXTRACTION After duplicate removal, 2 reviewers screened titles/abstracts, reviewed full-text articles, and extracted data independently. Studies that compared abbreviated versus 24-hour urine collection for measuring CrCl were included. We assessed the risk of bias using the QUADAS-2 tool. We extracted correlation coefficients, mean prediction errors (ME)-as a measure of bias, and root mean squared prediction errors (RMSE)-as a measure of precision. DATA SYNTHESIS Five studies were included, comprising 528 adult critically ill adults from surgical, medical, and trauma intensive care units (ICUs). Three studies had high risk of bias, and 2 had low risk. The studies evaluated different durations of urine collection, including 30-minute, 2-hour, 4-hour, 6-hour, and 12-hour. Mean 24-hour CrCl ranged from 57 mL/min/1.73 m2 to 103 mL/min. Abbreviated urine collection led to CrCl that correlated well with the 24-hour measured CrCl (correlation coefficient ranged from 0.8 to 0.95). Mean prediction error ranged from 5 mL/min/1.73 m2 to 16 mL/min (from 8% to 25% of the 24-hour CrCl). Root mean squared prediction error calculated from 1 study was 30.5 mL/min/1.73 m2. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Abbreviated urine collection is used to measure CrCl for renal drug dosing in critically ill patients, but its accuracy is not well-established. CONCLUSIONS Abbreviated urine collection may overestimate CrCl compared with 24-hour urine collection. Larger, well-conducted studies are needed to evaluate the accuracy of CrCl measured using different durations of urine collection in critically ill patients.
Collapse
Affiliation(s)
- Mohamed Omar Saad
- Pharmacy Department, Al Wakra Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Adham Mohamed
- Saint Luke's Hospital of Kansas City, Kansas City, MO, USA
| | | |
Collapse
|
3
|
Robinson JC, ElSaban M, Smischney NJ, Wieruszewski PM. Oral blood pressure augmenting agents for intravenous vasopressor weaning. World J Clin Cases 2024; 12:6892-6904. [DOI: 10.12998/wjcc.v12.i36.6892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 10/21/2024] [Indexed: 10/31/2024] Open
Abstract
Intravenous (IV) vasopressors are essential in the management of hypotension and shock. Initiation of oral vasoactive agents to facilitate weaning of IV vasopressors to liberate patients from the intensive care unit is common despite conflicting evidence regarding the benefits of this practice. While midodrine appears to be the most frequently studied oral vasoactive agent for this purpose, its adverse effect profile may preclude its use in certain populations. In addition, some patients may require persistent use of IV vasopressors for hypotension refractory to midodrine. The use of additional and alternative oral vasoactive agents bearing different mechanisms of action is emerging. This article provides a comprehensive review of the pharmacology, clinical uses, dosing strategies, and safety considerations of oral vasoactive agents and their application in the intensive care setting.
Collapse
Affiliation(s)
- John C Robinson
- Department of Pharmacy, Mayo Clinic, Phoenix, AZ 85054, United States
| | - Mariam ElSaban
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Nathan J Smischney
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, United States
| | - Patrick M Wieruszewski
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, United States
- Department of Pharmacy, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
4
|
Wu J, Zheng X, Zhang L, Wang J, Lv Y, Xi Y, Wu D. Population pharmacokinetics of intravenous daptomycin in critically ill patients: implications for selection of dosage regimens. Front Pharmacol 2024; 15:1378872. [PMID: 38756382 PMCID: PMC11096781 DOI: 10.3389/fphar.2024.1378872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Daptomycin is gaining prominence for the treatment of methicillin-resistant Staphylococcus aureus infections. However, the dosage selection for daptomycin in critically ill patients remains uncertain, especially in Chinese patients. This study aimed to establish the population pharmacokinetics of daptomycin in critically ill patients, optimize clinical administration plans, and recommend appropriate dosage for critically ill patients in China. The study included 64 critically ill patients. Blood samples were collected at the designated times. The blood daptomycin concentration was determined using validated liquid chromatography-tandem mass spectrometry. A nonlinear mixed-effects model was applied for the population pharmacokinetic analysis and Monte Carlo simulations of daptomycin. The results showed a two-compartment population pharmacokinetic model of daptomycin in critically ill adult Han Chinese patients. Monte Carlo simulations revealed that a daily dose of 400 mg of daptomycin was insufficient for the majority of critically ill adult patients to achieve the anti-infective target. For critically ill adult patients with normal renal function (creatinine clearance rate >90 mL/min), the probability of achieving the target only reached 90% when the daily dose was increased to 700 mg. For patients undergoing continuous renal replacement therapy (CRRT), 24 h administration of 500 mg met the pharmacodynamic goals and did not exceed the safety threshold in most patients. Therefore, considering its efficacy and safety, intravenous daptomycin doses are best scaled according to creatinine clearance, and an increased dose is recommended for critically ill patients with hyperrenalism. For patients receiving CRRT, medication is recommended at 24 h intervals.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongfang Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Katip W, Rayanakorn A, Sornsuvit C, Wientong P, Oberdorfer P, Taruangsri P, Nampuan T. High-Loading-Dose Colistin with Nebulized Administration for Carbapenem-Resistant Acinetobacter baumannii Pneumonia in Critically Ill Patients: A Retrospective Cohort Study. Antibiotics (Basel) 2024; 13:287. [PMID: 38534721 DOI: 10.3390/antibiotics13030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) infections pose a serious threat, with high morbidity and mortality rates. This retrospective cohort study, conducted at Nakornping Hospital between January 2015 and October 2022, aimed to evaluate the efficacy and safety of a high loading dose (LD) of colistin combined with nebulized colistin in critically ill patients with CRAB pneumonia. Of the 261 patients included, 95 received LD colistin, and 166 received LD colistin with nebulized colistin. Multivariate Cox regression analysis, adjusted for baseline covariates using inverse probability weighting, showed no significant difference in 30-day survival between patients who received LD colistin and those who received LD colistin with nebulized colistin (adjusted hazard ratio [aHR]: 1.17, 95% confidence interval [CI]: 0.80-1.72, p = 0.418). Likewise, there were no significant differences in clinical response (aHR: 0.93, 95% CI: 0.66-1.31, p = 0.688), microbiological response (aHR: 1.21, 95% CI: 0.85-1.73, p = 0.279), or nephrotoxicity (aHR: 1.14, 95% CI: 0.79-1.64, p = 0.492) between the two treatment groups. No significant adverse events related to nebulized colistin were reported. These findings suggest that the addition of nebulized colistin may not offer additional benefits in terms of 30-day survival, clinical or microbiological response, or nephrotoxicity in these patients.
Collapse
Affiliation(s)
- Wasan Katip
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Epidemiological and Innovative Research Group of Infectious Diseases (EIRGID), Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ajaree Rayanakorn
- Epidemiological and Innovative Research Group of Infectious Diseases (EIRGID), Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuleegone Sornsuvit
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Purida Wientong
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Peninnah Oberdorfer
- Epidemiological and Innovative Research Group of Infectious Diseases (EIRGID), Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Teerapong Nampuan
- Department of Pharmacy, Nakornping Hospital, Chiang Mai 50180, Thailand
| |
Collapse
|
6
|
Torbic H, Tonelli AR. Sotatercept for Pulmonary Arterial Hypertension in the Inpatient Setting. J Cardiovasc Pharmacol Ther 2024; 29:10742484231225310. [PMID: 38361351 DOI: 10.1177/10742484231225310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Patients with pulmonary arterial hypertension (PAH) who are admitted to the hospital pose a challenge to the multidisciplinary healthcare team due to the complexity of the pathophysiology of their disease state and PAH-specific medication considerations. Pulmonary arterial hypertension is a progressive disease that may lead to death as a result of right ventricular (RV) failure. During acute on chronic RV failure it is critical to decrease the pulmonary vascular resistance with the goal of improving RV function and prognosis; therefore, aggressive PAH-treatment based on disease risk stratification is essential. Pulmonary arterial hypertension treatment for acute on chronic RV failure can be impacted by end-organ damage, hemodynamic instability, drug interactions, and PAH medications dosage and delivery. Sotatercept, a first in class activin signaling inhibitor that works on the bone morphogenetic protein/activin pathway is on track for Food and Drug Administration approval for the treatment of PAH based on results of recent trials in where the medication led to clinical and hemodynamic improvements, even when added to traditional PAH-specific therapies. The purpose of this review is to highlight important considerations when starting or continuing sotatercept in patients admitted to the hospital with PAH.
Collapse
Affiliation(s)
- Heather Torbic
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH, USA
| | - Adriano R Tonelli
- Department of Pulmonary, Allergy and Critical Care Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
7
|
Mei Y, Tong X, Hu Y, Liu W, Wang J, Lv K, Li X, Cao L, Wang Z, Xiao W, Gao X. Comparative pharmacokinetics of six bioactive components of Shen-Wu-Yi-Shen tablets in normal and chronic renal failure rats based on UPLC-TSQ-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116818. [PMID: 37348793 DOI: 10.1016/j.jep.2023.116818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shen-Wu-Yi-Shen tablets (SWYST), a Chinese patent medicine consisting of 12 herbal medicines, was formulated by a famous TCM nephrologist, Zou Yunxiang. It is clinically used to improve the symptoms of nausea, vomiting, poor appetite, dry mouth and throat, and dry stool in patients with chronic renal failure (CRF) accompanied by qi and yin deficiency, dampness, and turbidity. SWYST can reduce urea nitrogen, blood creatinine, and urinary protein loss, and increase the endogenous creatinine clearance rate. However, little is known about its pharmacokinetics. AIM OF STUDY To compare the pharmacokinetics of six bioactive components after oral administration of SWYST in normal and adenine-induced CRF rats. MATERIALS AND METHODS A method based on ultra-performance liquid chromatography coupled with a triple-stage quadrupole mass spectrometer (UPLC-TSQ-MS/MS) was developed and validated to determine the six bioactive compounds (albiflorin, paeoniflorin, plantagoguanidinic acid, rhein, aloe-emodin, and emodin) in rat plasma. Rat plasma samples were prepared using protein precipitation. Chromatography was performed on an Agilent Eclipse Plus C18 column (3.0 × 50 mm, 1.8 μm) using gradient elution with a mobile phase composed of acetonitrile and water containing 0.1% (v/v) formic acid, while detection was achieved by electrospray ionization MS under the multiple selective reaction monitoring modes. After SWYST administration, rat plasma was collected at different time points, and the pharmacokinetic parameters of six analytes were calculated and analyzed based on the measured plasma concentrations. RESULTS The UPLC-TSQ-MS/MS method was fully validated for its satisfactory linearity (r ≥ 0.9913), good precisions (RSD <11.5%), and accuracy (RE: -13.4∼13.1%), as well as acceptable limits in the extraction recoveries, matrix effects, and stability (RSD <15%). In normal rats, the six analytes were rapidly absorbed (Tmax ≤ 2 h), and approximately 80% of their total exposure was eliminated within 10 h. Moreover, in normal rats, the AUC0-t and Cmax of albiflorin, plantagoguanidinic acid, and rhein exhibited linear pharmacokinetics within the dose ranges, while that of paeoniflorin is non-linear. However, in CRF rats, the six analytes exhibited reduced elimination and significantly different AUC or Cmax values. These changes may reflect a decreased renal clearance rate or inhibition of drug-metabolizing enzymes and transporters in the liver and gastrointestinal tract caused by CRF. CONCLUSIONS A sensitive UPLC-TSQ-MS/MS method was validated and used to investigate the pharmacokinetics of SWYST in normal and CRF rats. This is the first study to investigate the pharmacokinetics of SWYST, and our findings elucidate the causes of their different pharmacokinetic behaviors in CRF rats. Furthermore, the results provide useful information to guide further research on the pharmacokinetic-pharmacodynamic correlation and clinical application of SWYST.
Collapse
Affiliation(s)
- Yudan Mei
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiaoyu Tong
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China
| | - Yumei Hu
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China
| | - Wenjun Liu
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China
| | - Jiajia Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China
| | - Kaihong Lv
- China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xu Li
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China
| | - Wei Xiao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China.
| | - Xia Gao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China.
| |
Collapse
|
8
|
Li L, Sassen S, Hunfeld N, Smeets T, Ewoldt T, van den Berg SAA, Koch BCP, Endeman H. Population pharmacokinetics of dexamethasone in critically ill COVID-19 patients: Does inflammation play a role? J Crit Care 2023; 78:154395. [PMID: 37542750 DOI: 10.1016/j.jcrc.2023.154395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
PURPOSE The aim of this study is to design a population pharmacokinetic study to gain a deeper understanding of the pharmacokinetics of dexamethasone in critically ill COVID-19 patients in order to identify relevant covariates that can be used to personalize dosing regimens. METHODS Blood samples from critically ill patients receiving fixed-dose intravenous dexamethasone (6 mg/day) for the treatment of COVID-19 were sampled in a retrospective pilot study. The data were analyzed using Nonlinear Mixed Effects Modeling (NONMEM) software for population pharmacokinetic analysis and clinically relevant covariates were selected and evaluated. RESULTS A total of 51 dexamethasone samples from 18 patients were analyzed and a two-compartment model fit the data best. The mean population estimates were 2.85 L/h (inter-individual-variability 62.9%) for clearance, 15.4 L for the central volume of distribution, 12.3 L for the peripheral volume of distribution and 2.1 L/h for the inter-compartmental distribution clearance. The covariate analysis showed a significant negative correlation between dexamethasone clearance and CRP. CONCLUSIONS Dexamethasone PK parameters in ICU COVID patients were substantially different from those from non-ICU non-COVID patients, and inflammation may play an important role in dexamethasone exposure. This finding suggests that fixed-dose dexamethasone over several days may not be appropriate for ICU COVID patients.
Collapse
Affiliation(s)
- Letao Li
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Sebastiaan Sassen
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nicole Hunfeld
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tim Smeets
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tim Ewoldt
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sjoerd A A van den Berg
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Henrik Endeman
- Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Ravichandran P, Pruskowski KA. Pharmacologic Considerations for Antimicrobials and Anticoagulants after Burn Injury. EUROPEAN BURN JOURNAL 2023; 4:573-583. [PMID: 39600026 PMCID: PMC11571861 DOI: 10.3390/ebj4040038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2024]
Abstract
Derangements in pharmacokinetics and pharmacodynamics (PK/PD) of burn patients are poorly understood and lacking consistent data. This leads to an absence of consensus regarding pharmacologic management of burn patients, complicating their care. In order to effectively manage burn critical illness, knowledge of pharmacologic parameters and their changes is necessary. It is also imperative that the clinician understands how these changes will affect drug dosing. A common practice is to increase antibiotic dosing and/or frequency; however, this may not be necessary and doses should be adjusted to patient- and drug-specific parameters. Additionally, monitoring assays for antibiotic levels as well as coagulation factors can be useful for adjusting dosages to best treat the patient. This review focuses on alterations in PK/PD as well as other physiologic changes after burn injury, with special reference to care in military and austere settings.
Collapse
Affiliation(s)
- Pranav Ravichandran
- F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kaitlin A. Pruskowski
- F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
| |
Collapse
|
10
|
Harnisch LO, Brockmöller J, Hapke A, Sindern J, Bruns E, Evertz R, Toischer K, Danner BC, Mielke D, Rohde V, Abboud T. Oral Drug Absorption and Drug Disposition in Critically Ill Cardiac Patients. Pharmaceutics 2023; 15:2598. [PMID: 38004576 PMCID: PMC10674156 DOI: 10.3390/pharmaceutics15112598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: In critically ill cardiac patients, parenteral and enteral food and drug administration routes may be used. However, it is not well known how drug absorption and metabolism are altered in this group of adult patients. Here, we analyze drug absorption and metabolism in patients after cardiogenic shock using the pharmacokinetics of therapeutically indicated esomeprazole. (2) Methods: The pharmacokinetics of esomeprazole were analyzed in a consecutive series of patients with cardiogenic shock and controls before and after elective cardiac surgery. Esomeprazole was administered orally or with a nasogastric tube and once as an intravenous infusion. (3) Results: The maximum plasma concentration and AUC of esomeprazole were, on average, only half in critically ill patients compared with controls (p < 0.005) and remained lower even seven days later. Interestingly, esomeprazole absorption was also markedly compromised on day 1 after elective surgery. The metabolites of esomeprazole showed a high variability between patients. The esomeprazole sulfone/esomeprazole ratio reflecting CYP3A4 activity was significantly lower in critically ill patients even up to day 7, and this ratio was negatively correlated with CRP values (p = 0.002). The 5'-OH-esomeprazole and 5-O-desmethyl-esomeprazol ratios reflecting CYP2C19 activity did not differ significantly between critically ill and control patients. (4) Conclusions: Gastrointestinal drug absorption can be significantly reduced in critically ill cardiac patients compared with elective patients with stable cardiovascular disease. The decrease in bioavailability indicates that, under these conditions, any vital medication should be administered intravenously to maintain high levels of medications. After shock, hepatic metabolism via the CYP3A4 enzyme may be reduced.
Collapse
Affiliation(s)
- Lars-Olav Harnisch
- Department of Anesthesiology, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University of Göttingen Medical Center, 37075 Göttingen, Germany; (J.B.); (E.B.)
| | - Anne Hapke
- Department of Neurosurgery, University of Göttingen Medical Center, 37075 Göttingen, Germany; (A.H.); (D.M.); (V.R.); (T.A.)
- Department of Otorhinolaryngology-Head and Neck Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Juliane Sindern
- Department of Neurosurgery, University of Göttingen Medical Center, 37075 Göttingen, Germany; (A.H.); (D.M.); (V.R.); (T.A.)
- Department of Anesthesiology and Critical Care Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Ellen Bruns
- Department of Clinical Pharmacology, University of Göttingen Medical Center, 37075 Göttingen, Germany; (J.B.); (E.B.)
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, 37075 Göttingen, Germany; (R.E.); (K.T.)
| | - Karl Toischer
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, 37075 Göttingen, Germany; (R.E.); (K.T.)
| | - Bernhard C. Danner
- Department of Cardiac, Thoracic and Vascular Surgery, University of Göttingen Medical Center, 37075 Göttingen, Germany;
| | - Dorothee Mielke
- Department of Neurosurgery, University of Göttingen Medical Center, 37075 Göttingen, Germany; (A.H.); (D.M.); (V.R.); (T.A.)
| | - Veit Rohde
- Department of Neurosurgery, University of Göttingen Medical Center, 37075 Göttingen, Germany; (A.H.); (D.M.); (V.R.); (T.A.)
| | - Tammam Abboud
- Department of Neurosurgery, University of Göttingen Medical Center, 37075 Göttingen, Germany; (A.H.); (D.M.); (V.R.); (T.A.)
| |
Collapse
|
11
|
Grewal A, Thabet P, Dubinsky S, Purkayastha D, Wong K, Marko R, Hiremath S, Hutton B, Kanji S. Antimicrobial pharmacokinetics and dosing in critically ill adults receiving prolonged intermittent renal replacement therapy: A systematic review. Pharmacotherapy 2023; 43:1206-1220. [PMID: 37596844 DOI: 10.1002/phar.2861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/23/2023] [Accepted: 07/16/2023] [Indexed: 08/20/2023]
Abstract
Prolonged intermittent renal replacement therapy (PIRRT) is gaining popularity as a renal replacement modality in intensive care units, but there is a relative lack of guidance regarding antimicrobial clearance and dosing when compared with other modalities. The objectives of this systematic review were to: (1) identify and describe the pharmacokinetics (PK) of relevant antimicrobials used in critically ill adults receiving PIRRT, (2) evaluate the quality of evidence supporting these data, and (3) propose dosing recommendations based on the synthesis of these data. A search strategy for multiple databases was designed and executed to identify relevant published evidence describing the PK of antimicrobials used in critically ill adults receiving PIRRT. Quality assessment, evaluation of reporting, and relevant data extraction were conducted in duplicate. Synthesis of PK/pharmacodynamic (PD) outcomes, dosing recommendations from study authors, and physicochemical properties of included antibiotics were assessed by investigators in addition to the quality of evidence to develop dosing recommendations. Thirty-nine studies enrolling 452 patients met criteria for inclusion and provided PK and/or PD data for 20 antimicrobials in critically ill adults receiving PIRRT. Nineteen studies describe both PK and PD outcomes. Vancomycin (12 studies, 171 patients), meropenem (7 studies, 84 patients), and piperacillin/tazobactam (5 studies, 56 patients) were the most frequent antimicrobials encountered. The quality of evidence was deemed strong for 7/20 antimicrobials, and strong dosing recommendations were determined for 9/20 antimicrobials. This systematic review updates and addresses issues of quality in previous systematic reviews on this topic. Despite an overall low quality of evidence, strong recommendations were able to be made for almost half of the identified antimicrobials. Knowledge gaps persist for many antimicrobials, and higher quality studies (i.e., population PK studies with assessment of PD target attainment) are needed to address these gaps.
Collapse
Affiliation(s)
| | | | | | | | - Kristy Wong
- University of Waterloo, Waterloo, Ontario, Canada
| | - Ryan Marko
- The Ottawa Hospital, Ottawa, Ontario, Canada
| | | | - Brian Hutton
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Salmaan Kanji
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Dzierba AL, Stollings JL, Devlin JW. A pharmacogenetic precision medicine approach to analgesia and sedation optimization in critically ill adults. Pharmacotherapy 2023; 43:1154-1165. [PMID: 36680385 DOI: 10.1002/phar.2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/22/2023]
Abstract
Precision medicine is a growing field in critical care. Research increasingly demonstrated pharmacogenomic variability to be an important determinant of analgesic and sedative drug response in the intensive care unit (ICU). Genome-wide association and candidate gene finding studies suggest analgesic and sedatives tailored to an individual's genetic makeup, environmental adaptations, in addition to several other patient- and drug-related factors, will maximize effectiveness and help mitigate harm. However, the number of pharmacogenetic studies in ICU patients remains small and no prospective studies have been published using pharmacogenomic data to optimize analgesic or sedative therapy in critically ill patients. Current recommendations for treating ICU pain and agitation are based on controlled studies having low external validity, including the failure to consider pharmacogenomic factors affecting response. Use of a precision medicine approach to individualize pharmacotherapy focused on optimizing ICU patient comfort and safety may improve the outcomes of critically ill adults. Additionally, benefits and risks of analgesic and/or sedative therapy in an individual may be informed with large, standardized datasets. The purpose of this review was to describe a precision medicine approach focused on optimizing analgesic and sedative therapy in individual ICU patients to optimize clinical outcomes and reduce safety concerns.
Collapse
Affiliation(s)
- Amy L Dzierba
- Department of Pharmacy, New York-Presbyterian Hospital, New York, New York, USA
- Center for Acute Respiratory Failure, Columbia University College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, New York, USA
| | - Joanna L Stollings
- Department of Pharmaceutical Services, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Nashville, Tennessee, USA
| | - John W Devlin
- School of Pharmacy, Northeastern University, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Almohaish S, Cook AM, Brophy GM, Rhoney DH. Personalized antiseizure medication therapy in critically ill adult patients. Pharmacotherapy 2023; 43:1166-1181. [PMID: 36999346 DOI: 10.1002/phar.2797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023]
Abstract
Precision medicine has the potential to have a significant impact on both drug development and patient care. It is crucial to not only provide prompt effective antiseizure treatment for critically ill patients after seizures start but also have a proactive mindset and concentrate on epileptogenesis and the underlying cause of the seizures or seizure disorders. Critical illness presents different treatment issues compared with the ambulatory population, which makes it challenging to choose the best antiseizure medications and to administer them at the right time and at the right dose. Since there is a paucity of information available on antiseizure medication dosing in critically ill patients, therapeutic drug monitoring is a useful tool for defining each patient's personal therapeutic range and assisting clinicians in decision-making. Use of pharmacogenomic information relating to pharmacokinetics, hepatic metabolism, and seizure etiology may improve safety and efficacy by individualizing therapy. Studies evaluating the clinical implementation of pharmacogenomic information at the point-of-care and identification of biomarkers are also needed. These studies may make it possible to avoid adverse drug reactions, maximize drug efficacy, reduce drug-drug interactions, and optimize medications for each individual patient. This review will discuss the available literature and provide future insights on precision medicine use with antiseizure therapy in critically ill adult patients.
Collapse
Affiliation(s)
- Sulaiman Almohaish
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Pharmacy Practice, Clinical Pharmacy College, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aaron M Cook
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Gretchen M Brophy
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Denise H Rhoney
- Division of Practice Advancement and Clinical Education, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Sridharan K, Mulubwa M, Qader AM. Population Pharmacokinetic Modeling and Dose Optimization of Acetaminophen and its Metabolites Following Intravenous Infusion in Critically ill Adults. Eur J Drug Metab Pharmacokinet 2023; 48:531-540. [PMID: 37389726 DOI: 10.1007/s13318-023-00841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Acetaminophen (paracetamol) is a ubiquitously administered drug in critically ill patients. Considering the dearth of literature, we evaluated the population pharmacokinetics of intravenous acetaminophen and its principal metabolites (sulfate and glucuronide) in this population. METHODS Critically ill adults receiving intravenous acetaminophen were included in the study. One to three blood samples were withdrawn per patient for the estimation of acetaminophen, and its metabolites (acetaminophen glucuronide and acetaminophen sulfate). High-performance liquid chromatography was used for measuring serum concentrations. We used nonlinear mixed-effect modeling for estimating the primary pharmacokinetic parameters of acetaminophen and its metabolites. The effect of covariates was evaluated followed by dose optimization using Monte Carlo simulation. Patient factors such as demographic information, liver and renal function tests were used as covariates in population pharmacokinetic analysis. The therapeutic range for serum acetaminophen concentration was considered to be 66-132 μM, while 990 μM was considered as the threshold for toxic concentration. RESULTS Eighty-seven participants were recruited. A joint two-compartment acetaminophen pharmacokinetic model linked to glucuronide and sulfate metabolite compartments was used. The central and peripheral volume distributions were 7.87 and 8.87 L/70 kg, respectively. Estimated clearance (CL) was 0.58 L/h/70 kg, while intercompartmental clearance was 44.2 L/h/70 kg. The glucuronide and sulfate metabolite CL were 22 and 94.7 L/h/70 kg, respectively. Monte Carlo simulation showed that twice-daily administration of acetaminophen would result in a relatively higher proportion of patient population achieving and retaining serum concentrations in the therapeutic range, with reduced risk of concentrations remaining in the toxic range. CONCLUSION A joint pharmacokinetic model for intravenous acetaminophen and its principal metabolites in a critically ill patient population has been developed. Acetaminophen CL in this patient population is reduced. We propose a reduction in the frequency of administration to reduce the risk of supra-therapeutic concentrations in this population.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Pharmacology & Therapeutics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain.
| | - Mwila Mulubwa
- Drug Discovery and Development Centre (H3D), University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Ali Mohamed Qader
- Salmaniya medical complex, Manama, Kingdom of Bahrain
- College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
15
|
Mertens B, Elkayal O, Dreesen E, Wauters J, Meersseman P, Debaveye Y, Degezelle K, Vermeersch P, Gijsen M, Spriet I. Isavuconazole Exposure in Critically Ill Patients Treated with Extracorporeal Membrane Oxygenation: Two Case Reports and a Narrative Literature Review. Antibiotics (Basel) 2023; 12:1085. [PMID: 37508181 PMCID: PMC10376546 DOI: 10.3390/antibiotics12071085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Effective dosing of isavuconazole in patients supported by extracorporeal membrane oxygenation (ECMO) is important due to the role of isavuconazole as a first-line treatment in patients with influenza- and COVID-19-associated pulmonary aspergillosis. To date, robust pharmacokinetic data in patients supported by ECMO are limited. Therefore, it is unknown whether ECMO independently impacts isavuconazole exposure. We measured isavuconazole plasma concentrations in two patients supported by ECMO and estimated individual pharmacokinetic parameters using non-compartmental analysis and two previously published population pharmacokinetic models. Furthermore, a narrative literature review on isavuconazole exposure in adult patients receiving ECMO was performed. The 24 h areas under the concentration-time curve and trough concentrations of isavuconazole were lower in both patients compared with exposure values published before. In the literature, highly variable isavuconazole concentrations have been documented in patients with ECMO support. The independent effect of ECMO versus critical illness itself on isavuconazole exposure cannot be deduced from our and previously published (case) reports. Pending additional data, therapeutic drug monitoring is recommended in critically ill patients, regardless of ECMO support.
Collapse
Affiliation(s)
- Beatrijs Mertens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and Pharmacy Department, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Omar Elkayal
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Erwin Dreesen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven and Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Philippe Meersseman
- Department of Microbiology, Immunology and Transplantation, KU Leuven and Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Yves Debaveye
- Department of Cellular and Molecular Medicine, KU Leuven and Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Karlien Degezelle
- Department of Perfusion Technology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Matthias Gijsen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and Pharmacy Department, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and Pharmacy Department, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
16
|
Allen JM, Surajbali D, Nguyen DQ, Kuczek J, Tran M, Hachey B, Feild C, Shoulders BR, Smith SM, Voils SA. Impact of Piperacillin-Tazobactam Dosing in Septic Shock Patients Using Real-World Evidence: An Observational, Retrospective Cohort Study. Ann Pharmacother 2023; 57:653-661. [PMID: 36154486 PMCID: PMC10433263 DOI: 10.1177/10600280221125919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sepsis and septic shock are associated with significant morbidity and mortality. Rapid initiation of appropriate antibiotic therapy is essential, as inadequate therapy early during septic shock has been shown to increase the risk of mortality. However, despite the importance of appropriate antibiotic initiation, in clinical practice, concerns for renal dysfunction frequently lead to antibiotic dose reduction, with scant evidence on the impact of this practice in septic shock patients. OBJECTIVE The purpose if this article is to investigate the rate and impact of piperacillin-tazobactam dose adjustment in early phase septic shock patients using real-world electronic health record (EHR) data. METHODS A multicenter, observational, retrospective cohort study was conducted of septic shock patients who received at least 48 hours of piperacillin-tazobactam therapy and concomitant receipt of norepinephrine. Subjects were stratified into 2 groups according to their cumulative 48-hour piperacillin-tazobactam dose: low piperacillin-tazobactam dosing (LOW; <27 g) group and normal piperacillin-tazobactam dosing (NORM; ≥27 g) group. To account for potential confounding variables, propensity score matching was used. The primary study outcome was 28-day norepinephrine-free days (NFD). RESULTS In all, 1279 patients met study criteria. After propensity score matching (n = 608), the NORM group had more median NFD (23.9 days [interquartile range, IQR: 0-27] vs 13.6 days [IQR: 0-27], P = 0.021). The NORM group also had lower rates of in-hospital mortality/hospice disposition (25.9% [n = 79] vs 35.5% [n = 108]), P = 0.014). Other secondary outcomes were similar between the treatment groups. CONCLUSIONS AND RELEVANCE In the propensity score-matched cohort, the NORM group had significantly more 28-day NFD. Piperacillin-tazobactam dose reduction in early phase septic shock is associated with worsened clinical outcomes. Clinicians should be vigilant to avoid piperacillin-tazobactam dose reduction in early phase septic shock.
Collapse
Affiliation(s)
- John M. Allen
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Orlando, FL, USA
| | | | | | | | - Maithi Tran
- Winter Haven Hospital, Winter Haven, FL, USA
| | | | - Carinda Feild
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Orlando, FL, USA
| | - Bethany R. Shoulders
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Orlando, FL, USA
| | - Steven M. Smith
- Department of Pharmaceutical Outcomes and Policy, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Stacy A. Voils
- Cardiovascular & Metabolism Medical Science Liaison, Syneos Health/Janssen, Gainesville, FL, USA
| |
Collapse
|
17
|
Kanji S, Williamson D, Hartwick M. Potential pharmacological confounders in the setting of death determined by neurologic criteria: a narrative review. Can J Anaesth 2023; 70:713-723. [PMID: 37131030 PMCID: PMC10202973 DOI: 10.1007/s12630-023-02415-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 05/04/2023] Open
Abstract
Guidelines for the determination of death by neurologic criteria (DNC) require an absence of confounding factors if clinical examination alone is to be used. Drugs that depress the central nervous system suppress neurologic responses and spontaneous breathing and must be excluded or reversed prior to proceeding. If these confounding factors cannot be eliminated, ancillary testing is required. These drugs may be present after being administered as part of the treatment of critically ill patients. While measurement of serum drug concentrations can help guide the timing of assessments for DNC, they are not always available or feasible. In this article, we review sedative and opioid drugs that may confound DNC, along with pharmacokinetic factors that govern the duration of drug action. Pharmacokinetic parameters including a context-sensitive half-life of sedatives and opioids are highly variable in critically ill patients because of the multitude of clinical variables and conditions that can affect drug distribution and clearance. Patient-, disease-, and treatment-related factors that influence the distribution and clearance of these drugs are discussed including end organ function, age, obesity, hyperdynamic states, augmented renal clearance, fluid balance, hypothermia, and the role of prolonged drug infusions in critically ill patients. In these contexts, it is often difficult to predict how long after drug discontinuation the confounding effects will take to dissipate. We propose a conservative framework for evaluating when or if DNC can be determined by clinical criteria alone. When pharmacologic confounders cannot be reversed, or doing so is not feasible, ancillary testing to confirm the absence of brain blood flow should be obtained.
Collapse
Affiliation(s)
- Salmaan Kanji
- Department of Pharmacy, The Ottawa Hospital, 501 Smyth Rd, Ottawa, ON, K1H 8L6, Canada.
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| | - David Williamson
- Faculté de pharmacie, Université de Montréal, Montreal, QC, Canada
- Pharmacy Department, Hôpital du Sacré-Cœur de Montréal and CIUSSS-Nord-de-l'ile-de-Montreal Research Center, Montreal, QC, Canada
| | - Michael Hartwick
- Department of Pharmacy, The Ottawa Hospital, 501 Smyth Rd, Ottawa, ON, K1H 8L6, Canada
- Department of Critical Care, The Ottawa Hospital, Ottawa, Canada
| |
Collapse
|
18
|
Stašek J, Keller F, Kočí V, Klučka J, Klabusayová E, Wiewiorka O, Strašilová Z, Beňovská M, Škardová M, Maláska J. Update on Therapeutic Drug Monitoring of Beta-Lactam Antibiotics in Critically Ill Patients—A Narrative Review. Antibiotics (Basel) 2023; 12:antibiotics12030568. [PMID: 36978435 PMCID: PMC10044408 DOI: 10.3390/antibiotics12030568] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Beta-lactam antibiotics remain one of the most preferred groups of antibiotics in critical care due to their excellent safety profiles and their activity against a wide spectrum of pathogens. The cornerstone of appropriate therapy with beta-lactams is to achieve an adequate plasmatic concentration of a given antibiotic, which is derived primarily from the minimum inhibitory concentration (MIC) of the specific pathogen. In a critically ill patient, the plasmatic levels of drugs could be affected by many significant changes in the patient’s physiology, such as hypoalbuminemia, endothelial dysfunction with the leakage of intravascular fluid into interstitial space and acute kidney injury. Predicting antibiotic concentration from models based on non-critically ill populations may be misleading. Therapeutic drug monitoring (TDM) has been shown to be effective in achieving adequate concentrations of many drugs, including beta-lactam antibiotics. Reliable methods, such as high-performance liquid chromatography, provide the accurate testing of a wide range of beta-lactam antibiotics. Long turnaround times remain the main drawback limiting their widespread use, although progress has been made recently in the implementation of different novel methods of antibiotic testing. However, whether the TDM approach can effectively improve clinically relevant patient outcomes must be proved in future clinical trials.
Collapse
Affiliation(s)
- Jan Stašek
- Department of Internal Medicine and Cardiology, Faculty of Medicine, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Filip Keller
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic
| | - Veronika Kočí
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic
| | - Jozef Klučka
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
| | - Eva Klabusayová
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
| | - Ondřej Wiewiorka
- Department of Laboratory Medicine, Division of Clinical Biochemistry, University Hospital Brno, 625 00 Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Zuzana Strašilová
- Department of Laboratory Medicine, Division of Clinical Biochemistry, University Hospital Brno, 625 00 Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Miroslava Beňovská
- Department of Laboratory Medicine, Division of Clinical Biochemistry, University Hospital Brno, 625 00 Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Markéta Škardová
- Department of Clinical Pharmacy, Hospital Pharmacy, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Jan Maláska
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
- 2nd Department of Anaesthesiology University Hospital Brno, 620 00 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
19
|
Baalbaki N, Duijvelaar E, Said MM, Schippers J, Bet PM, Twisk J, Fritchley S, Longo C, Mahmoud K, Maitland-van der Zee AH, Bogaard HJ, Swart EL, Aman J, Bartelink IH. Pharmacokinetics and pharmacodynamics of imatinib for optimal drug repurposing from cancer to COVID-19. Eur J Pharm Sci 2023; 184:106418. [PMID: 36870577 PMCID: PMC9979628 DOI: 10.1016/j.ejps.2023.106418] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
INTRODUCTION In the randomized double-blind placebo-controlled CounterCOVID study, oral imatinib treatment conferred a positive clinical outcome and a signal for reduced mortality in COVID-19 patients. High concentrations of alpha-1 acid glycoprotein (AAG) were observed in these patients and were associated with increased total imatinib concentrations. AIMS This post-hoc study aimed to compare the difference in exposure following oral imatinib administration in COVID-19 patients to cancer patients and assess assocations between pharmacokinetic (PK) parameters and pharmacodynamic (PD) outcomes of imatinib in COVID-19 patients. We hypothesize that a relatively higher drug exposure of imatinib in severe COVID-19 patients leads to improved pharmacodynamic outcome parameters. METHODS 648 total concentration plasma samples obtained from 168 COVID-19 patients were compared to 475 samples of 105 cancer patients, using an AAG-binding model. Total trough concentration at steady state (Cttrough) and total average area under the concentration-time curve (AUCtave) were associated with ratio between partial oxygen pressure and fraction of inspired oxygen (P/F), WHO ordinal scale (WHO-score) and liberation of oxygen supplementation (O2lib). Linear regression, linear mixed effects models and time-to-event analysis were adjusted for possible confounders. RESULTS AUCtave and Cttrough were respectively 2.21-fold (95%CI 2.07-2.37) and 1.53-fold (95%CI 1.44-1.63) lower for cancer compared to COVID-19 patients. Cttrough, not AUCtave, associated significantly with P/F (β=-19,64; p-value=0.014) and O2lib (HR 0.78; p-value= 0.032), after adjusting for sex, age, neutrophil-lymphocyte ratio, dexamethasone concomitant treatment, AAG and baseline P/F-and WHO-score. Cttrough, but not AUCtave associated significantly with WHO-score. These results suggest an inverse relationship between PK-parameters, Cttrough and AUCtave, and PD outcomes. CONCLUSION COVID-19 patients exhibit higher total imatinib exposure compared to cancer patients, attributed to differences in plasma protein concentrations. Higher imatinib exposure in COVID-19 patients did not associate with improved clinical outcomes. Cttrough and AUCtave inversely associated with some PD-outcomes, which may be biased by disease course, variability in metabolic rate and protein binding. Therefore, additional PKPD analyses into unbound imatinib and its main metabolite may better explain exposure-response.
Collapse
Affiliation(s)
- Nadia Baalbaki
- Department of Pulmonary Medicine, Amsterdam UMC, location AMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Public Health, Amsterdam, the Netherlands.
| | - Erik Duijvelaar
- Department of Pulmonary Medicine, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Medhat M Said
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Job Schippers
- Department of Pulmonary Medicine, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Pierre M Bet
- Amsterdam Public Health, Amsterdam, the Netherlands; Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jos Twisk
- Amsterdam Public Health, Amsterdam, the Netherlands; Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | | | - Cristina Longo
- Department of Pulmonary Medicine, Amsterdam UMC, location AMC, Amsterdam, the Netherlands
| | - Kazien Mahmoud
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Anke H Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam UMC, location AMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Public Health, Amsterdam, the Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Eleonora L Swart
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Imke H Bartelink
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Clinical Experience, Characteristics, and Performance of an Acetaminophen Absorption Test in Critically Ill Patients. Am J Ther 2023; 30:e95-e102. [PMID: 34387562 DOI: 10.1097/mjt.0000000000001436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Altered drug and nutrient absorption presents a unique challenge in critically ill patients. Performing an acetaminophen absorption test (AAT) has been used as a marker for gastric motility and upper small bowel absorption; thus, it may provide objective data regarding enteral absorptive ability in critically ill patients. STUDY QUESTION What is the clinical experience with AAT when used as a surrogate marker for enteral absorption in critically ill patients? STUDY DESIGN This single-center, retrospective, cohort study evaluated serum acetaminophen concentrations within 180 minutes following 1-time enteral administration of an AAT. Patients admitted to the surgical and medical intensive care units and medical intensive care units over a 7-year period were evaluated. Groups were defined as positive (acetaminophen concentration of ≥10 mg/L) or negative (acetaminophen concentration of <10 mg/L) AAT. MEASURES AND OUTCOMES The outcomes were to describe the clinical experience, characteristics, and performance of AAT. RESULTS Forty-eight patients were included. Patients were 58.5 ± 14 years of age, mostly male (58.3%), and admitted to the surgical intensive care unit (66.7%). Median hospital length of stay was 47.5 (27-78.8) days. Thirty-four patients (70.8%) had a positive AAT [median concentration, 14 (12-18) mg/L]. Median time to first detectable concentration was 37 (33-64) minutes. AAT characteristics were similar between the groups including total dose, weight-based dose, time to first and second assays, drug formulation, and site of administration between groups. There were no independent risk factors identified on regression analysis for negative AAT. CONCLUSIONS An acetaminophen dose of 15 mg/kg with 2 coordinated serum concentrations approximately 30 and 60 minutes after administration is a reasonable construct for AAT. Future research is needed to assess AAT utility, safety, and clinical outcomes for predicting patient ability to absorb enteral feeds and medications.
Collapse
|
21
|
Morales Castro D, Dresser L, Granton J, Fan E. Pharmacokinetic Alterations Associated with Critical Illness. Clin Pharmacokinet 2023; 62:209-220. [PMID: 36732476 PMCID: PMC9894673 DOI: 10.1007/s40262-023-01213-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2023] [Indexed: 02/04/2023]
Abstract
Haemodynamic, metabolic, and biochemical derangements in critically ill patients affect drug pharmacokinetics and pharmacodynamics making dose optimisation particularly challenging. Appropriate therapeutic dosing depends on the knowledge of the physiologic changes caused by the patient's comorbidities, underlying disease, resuscitation strategies, and polypharmacy. Critical illness will result in altered drug protein binding, ionisation, and volume of distribution; it will also decrease oral drug absorption, intestinal and hepatic metabolism, and renal clearance. In contrast, the resuscitation strategies and the use of vasoactive drugs may oppose these effects by leading to a hyperdynamic state that will increase blood flow towards the major organs including the brain, heart, kidneys, and liver, with the subsequent increase of drug hepatic metabolism and renal excretion. Metabolism is the main mechanism for drug clearance and is one of the main pharmacokinetic processes affected; it is influenced by patient-specific factors, such as comorbidities and genetics; therapeutic-specific factors, including drug characteristics and interactions; and disease-specific factors, like organ dysfunction. Moreover, organ support such as mechanical ventilation, renal replacement therapy, and extracorporeal membrane oxygenation may contribute to both inter- and intra-patient variability of drug pharmacokinetics. The combination of these competing factors makes it difficult to predict drug response in critically ill patients. Pharmacotherapy targeted to therapeutic goals and therapeutic drug monitoring is currently the best option for the safe care of the critically ill. The aim of this paper is to review the alterations in drug pharmacokinetics associated with critical illness and to summarise the available evidence.
Collapse
Affiliation(s)
- Diana Morales Castro
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, 585 University Avenue, 9-MaRS, Toronto, ON, M5G 2N2, Canada. .,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
| | - Linda Dresser
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - John Granton
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, 585 University Avenue, 9-MaRS, Toronto, ON, M5G 2N2, Canada.,Department of Medicine, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, 585 University Avenue, 9-MaRS, Toronto, ON, M5G 2N2, Canada.,Department of Medicine, Toronto General Hospital, University of Toronto, Toronto, ON, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Polyzogopoulou E, Amoiridou P, Abraham TP, Ventoulis I. Acute liver injury in COVID-19 patients hospitalized in the intensive care unit: Narrative review. World J Gastroenterol 2022; 28:6662-6688. [PMID: 36620339 PMCID: PMC9813941 DOI: 10.3748/wjg.v28.i47.6662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/19/2022] Open
Abstract
In recent years, humanity has been confronted with a global pandemic due to coronavirus disease 2019 (COVID-19), which has caused an unprecedented health and economic crisis worldwide. Apart from the respiratory symptoms, which are considered the principal manifestations of COVID-19, it has been recognized that COVID-19 constitutes a systemic inflammatory process affecting multiple organ systems. Across the spectrum of organ involvement in COVID-19, acute liver injury (ALI) has been gradually gaining increasing attention by the international scientific community. COVID-19 associated liver impairment can affect a considerable proportion of COVID-19 patients and seems to correlate with the severity of the disease course. Indeed, COVID-19 patients hospitalized in the intensive care unit (ICU) run a greater risk of developing ALI due to the severity of their clinical condition and in the context of multi-organ failure. The putative pathophysiological mechanisms of COVID-19 induced ALI in ICU patients remain poorly understood and appear to be multifactorial in nature. Several theories have been proposed to explain the occurrence of ALI in the ICU setting, such as hypoperfusion and ischemia due to hemodynamic instability, passive liver congestion as a result of congestive heart failure, ischemia-reperfusion injury, hypoxia due to respiratory failure, mechanical ventilation itself, sepsis and septic shock, cytokine storm, endotheliitis with concomitant coagulopathy, drug-induced liver injury, parenteral nutrition and direct cytopathic viral effect. It should be noted that no specific therapy for COVID-19 induced ALI exists. Therefore, the therapeutic approach lies in preventive measures and is exclusively supportive once ALI ensues. The aim of the current review is to scrutinize the existing evidence on COVID-19 associated ALI in ICU patients, explore its clinical implications, shed light on the underlying pathophysiological mechanisms and propose potential therapeutic approaches. Ongoing research on the particular scientific field will further elucidate the pathophysiology behind ALI and address unresolved issues, in the hope of mitigating the tremendous health consequences imposed by COVID-19 on ICU patients.
Collapse
Affiliation(s)
- Effie Polyzogopoulou
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens 12462, Greece
| | - Pinelopi Amoiridou
- Department of Intensive Care, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Theodore P Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, CA 94117, United States
| | - Ioannis Ventoulis
- Department of Occupational Therapy, University of Western Macedonia, Ptolemaida 50200, Greece
| |
Collapse
|
23
|
Population Pharmacokinetic Model and Optimal Sampling Strategies for Micafungin in Critically Ill Patients Diagnosed with Invasive Candidiasis. Antimicrob Agents Chemother 2022; 66:e0111322. [PMID: 36377940 PMCID: PMC9765295 DOI: 10.1128/aac.01113-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Candida bloodstream infections are associated with high attributable mortality, where early initiation of adequate antifungal therapy is important to increase survival in critically ill patients. The exposure variability of micafungin, a first-line agent used for the treatment of invasive candidiasis, in critically ill patients is significant, potentially resulting in underexposure in a substantial portion of these patients. The objective of this study was to develop a population pharmacokinetic model including appropriate sampling strategies for assessing micafungin drug exposure in critically ill patients to support adequate area under the concentration-time curve (AUC) determination. A two-compartment pharmacokinetic model was developed using data from intensive care unit (ICU) patients (n = 19), with the following parameters: total body clearance (CL), volume of distribution of the central compartment (V1), inter-compartmental clearance (CL12), and volume of distribution of the peripheral compartment (V2). The final model was evaluated with bootstrap analysis and the goodness-of-fit plots for the population and individual predicted micafungin plasma concentrations. Optimal sampling strategies (with sampling every hour, 24 h per day) were developed with 1- and 2-point sampling schemes. Final model parameters (±SD) were: CL = 1.03 (0.37) (L/h/1.85 m2), V1 = 0.17 (0.07) (L/kg LBMc), CL12 = 1.80 (4.07) (L/h/1.85 m2), and V2 = 0.12 (0.06) (L/kg LBMc). Sampling strategies with acceptable accuracy and precision were developed to determine the micafungin AUC. The developed model with optimal sampling procedures provides the opportunity to achieve quick optimization of the micafungin exposure from a single blood sample using Bayesian software and may be helpful in guiding early dose decision-making.
Collapse
|
24
|
Model-informed precision dosing of beta-lactam antibiotics and ciprofloxacin in critically ill patients: a multicentre randomised clinical trial. Intensive Care Med 2022; 48:1760-1771. [PMID: 36350354 PMCID: PMC9645317 DOI: 10.1007/s00134-022-06921-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Individualising drug dosing using model-informed precision dosing (MIPD) of beta-lactam antibiotics and ciprofloxacin has been proposed as an alternative to standard dosing to optimise antibiotic efficacy in critically ill patients. However, randomised clinical trials (RCT) on clinical outcomes have been lacking. METHODS This multicentre RCT, including patients admitted to the intensive care unit (ICU) who were treated with antibiotics, was conducted in eight hospitals in the Netherlands. Patients were randomised to MIPD with dose and interval adjustments based on monitoring serum drug levels (therapeutic drug monitoring) combined with pharmacometric modelling of beta-lactam antibiotics and ciprofloxacin. The primary outcome was ICU length of stay (LOS). Secondary outcomes were ICU mortality, hospital mortality, 28-day mortality, 6-month mortality, delta sequential organ failure assessment (SOFA) score, adverse events and target attainment. RESULTS In total, 388 (MIPD n = 189; standard dosing n = 199) patients were analysed (median age 64 [IQR 55-71]). We found no significant differences in ICU LOS between MIPD compared to standard dosing (10 MIPD vs 8 standard dosing; IRR = 1.16; 95% CI 0.96-1.41; p = 0.13). There was no significant difference in target attainment before intervention at day 1 (T1) (55.6% MIPD vs 60.9% standard dosing; p = 0.24) or at day 3 (T3) (59.5% vs 60.4%; p = 0.84). There were no significant differences in other secondary outcomes. CONCLUSIONS We could not show a beneficial effect of MIPD of beta-lactam antibiotics and ciprofloxacin on ICU LOS in critically ill patients. Our data highlight the need to identify other approaches to dose optimisation.
Collapse
|
25
|
Ewoldt TMJ, Abdulla A, Hunfeld N, Li L, Smeets TJL, Gommers D, Koch BCP, Endeman H. The impact of sepsis on hepatic drug metabolism in critically ill patients: a narrative review. Expert Opin Drug Metab Toxicol 2022; 18:413-421. [PMID: 35912845 DOI: 10.1080/17425255.2022.2106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hepatic drug metabolism is important in improving drug dosing strategies in sepsis. Pharmacokinetics in the critically ill population are severely altered due to changes in absorption, distribution, excretion and metabolization. Hepatic drug metabolism might be altered due to changes in hepatic blood flow, drug metabolizing protein availability, and protein binding. The purpose of this review is to examine evidence on whether hepatic drug metabolism is significantly affected in septic patients, and to provide insights in the need for future research. AREAS COVERED This review describes the effect of sepsis on hepatic drug metabolism in humans. Clinical trials, pathophysiological background information and example drug groups are further discussed. The literature search has been conducted in Embase, Medline ALL Ovid, and Cochrane CENTRAL register of trials. EXPERT OPINION Limited research has been conducted on drug metabolism in the sepsis population, with some trials having researched healthy individuals using endotoxin injections. Notwithstanding this limitation, hepatic drug metabolism seems to be decreased for certain drugs in sepsis. More research on the pharmacokinetic behavior of hepatic metabolized drugs in sepsis is warranted, using inflammatory biomarkers, hemodynamic changes, mechanical ventilation, organ support, and catecholamine infusion as possible confounders.
Collapse
Affiliation(s)
- Tim M J Ewoldt
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alan Abdulla
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicole Hunfeld
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Letao Li
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tim J L Smeets
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Diederik Gommers
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Qi Y, Liu G. A UPLC-MS/MS method for simultaneous determination of eight special-grade antimicrobials in human plasma and application in TDM. J Pharm Biomed Anal 2022; 220:114964. [DOI: 10.1016/j.jpba.2022.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
|
27
|
Valentine K, Kummick J. PICU Pharmacology. Pediatr Clin North Am 2022; 69:509-529. [PMID: 35667759 DOI: 10.1016/j.pcl.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The care of the critically-ill child often includes medications used to optimize organ function, treat infections, and provide comfort. Pediatric pharmacology has some key differences that should be leveraged for safe pharmacologic management.
Collapse
Affiliation(s)
- Kevin Valentine
- Indiana University School of Medicine, Riley Hospital for Children, 705 Riley Hospital Drive, Suite 4900, Indianapolis, IN 46202, USA.
| | - Janelle Kummick
- Butler University College of Pharmacy and Health Sciences, Riley Hospital for Children, 705 Riley Hospital Drive, Room W6111, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Hegde A. Drug Levels in ICU – T or F. Indian J Crit Care Med 2022; 26:663. [PMID: 35836634 PMCID: PMC9237148 DOI: 10.5005/jp-journals-10071-24261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
How to cite this article: Hegde A. Drug Levels in ICU – T or F. Indian J Crit Care Med 2022;26(6):663.
Collapse
Affiliation(s)
- Ashit Hegde
- Medicine and Intensive Care, PD Hinduja Hospital, Mumbai, Maharashtra, India
- Ashit Hegde, Consultant, Medicine and Intensive Care, PD Hinduja Hospital, Mumbai, Maharashtra, India, Phone: +91 2224462250, e-mail:
| |
Collapse
|
29
|
Forsberg J, Bedard E, Mahmoud SH. Bioavailability of Orally Administered Drugs in Critically Ill Patients. J Pharm Pract 2022:8971900221100205. [PMID: 35521821 DOI: 10.1177/08971900221100205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Critically ill patients managed in the Intensive Care Unit (ICU) suffer from several pathophysiological alterations due to critical illness resulting in potential changes in the pharmacokinetics of drugs including systemic absorption. Nevertheless, these patients are still given some medications in unadjusted doses thereby putting the patients at a risk for therapy failure. The objective for this study was to summarize the available evidence regarding oral drug absorption in the ICU. A literature search of the databases MEDLINE, EMBASE, and PubMed was conducted on (February 24, 2020). Articles discussing the rate and/or extent of orally administered drugs in critically ill patients were included. A total of 58 studies were found: 17 interventional studies, 33 observational studies (30 prospective, 3 retrospective) and 8 case reports. A total of 43 articles reported altered drug absorption in critically ill patients suggesting the need for alternative measures to facilitate treatment success. The absorption of orally administered drugs may be altered in critically ill patients. Measures for altered drug absorption in critically ill patients were suggested such as holding tube feeding before and after medication administration, increasing doses of orally administrated drugs and using alternate routes of administration.
Collapse
Affiliation(s)
- Johanna Forsberg
- Division for Pharmacokinetics, Department of Pharmaceutical Biosciences, Faculty of Pharmacy, 8097Uppsala University, Uppsala, Sweden
| | - Emma Bedard
- Faculty of Pharmacy and Pharmaceutical Sciences, 70414University of Alberta, Edmonton, AB, Canada
| | - Sherif H Mahmoud
- Faculty of Pharmacy and Pharmaceutical Sciences, 70414University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
Toner P, Boyle AJ, McNamee JJ, Callaghan K, Nutt C, Johnston P, Trinder J, McFarland M, Verghis R, McAuley DF, O'Kane CM. Aspirin as a Treatment for ARDS: A Randomized, Placebo-Controlled Clinical Trial. Chest 2022; 161:1275-1284. [PMID: 34785236 DOI: 10.1016/j.chest.2021.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/05/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND There is no pharmacologic treatment for ARDS. Platelets play an important role in the pathophysiology of ARDS. Preclinical, observational, and clinically relevant models of ARDS indicate aspirin as a potential therapeutic option. RESEARCH QUESTION Is enteral aspirin (75 mg, once daily) safe and effective in improving surrogate outcomes in adult patients with ARDS? STUDY DESIGN AND METHODS This randomized, double-blind (patient and investigator), allocation-concealed, placebo-controlled phase 2 trial was conducted in five UK ICUs. Patients fulfilling the Berlin definition of ARDS were randomly assigned at a 1:1 ratio to receive enteral aspirin (75 mg) or placebo, for a maximum of 14 days, using a computer-generated randomization schedule, with variable block size, stratified by vasopressor requirement. The primary end point was oxygenation index (OI) on day 7. Secondary outcomes included safety parameters and other respiratory physiological markers. Analyses were by intention to treat. RESULTS The trial was stopped early, due to slow recruitment, after 49 of a planned 60 patients were recruited. Twenty-four patients were allocated to aspirin and 25 to placebo. There was no significant difference in day 7 OI [aspirin group: unadjusted mean, 54.4 (SD 26.8); placebo group: 42.4 (SD 25); mean difference, 12.0; 95% CI, -6.1 to 30.1; P = .19]. Aspirin did not significantly impact the secondary outcomes. There was no difference in the number of adverse events between the groups (13 in each; OR, 1.04; 95% CI, 0.56-1.94; P = .56). INTERPRETATION Aspirin was well tolerated but did not improve OI or other physiological outcomes; a larger trial is not feasible in its current design. TRIAL REGISTRATION ClinicalTrials.gov; No.: NCT02326350; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- Philip Toner
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland; Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland.
| | - Andrew J Boyle
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland; Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland
| | - James J McNamee
- Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland
| | | | - Christopher Nutt
- Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland
| | | | - John Trinder
- Ulster Hospital, Dundonald, Belfast, Northern Ireland
| | - Margaret McFarland
- Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland
| | - Rejina Verghis
- Northern Ireland Clinical Trial Unit, Royal Hospitals, Belfast, Northern Ireland
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland; Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
31
|
Population Pharmacokinetics of Caspofungin and Dose Simulations in Heart Transplant Recipients. Antimicrob Agents Chemother 2022; 66:e0224921. [PMID: 35389237 PMCID: PMC9116478 DOI: 10.1128/aac.02249-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of heart transplantation (HTx) on the pharmacokinetics (PK) of caspofungin is not well-characterized. The aim of this study was to investigate the population PK of caspofungin in HTx and non-HTx patients and to identify covariates that may affect the PK of caspofungin. Seven successive blood samples were collected before administration and at 1, 2, 6, 10, 16, and 24 h after the administration of caspofungin for at least 3 days. This study recruited 27 HTx recipients and 31 non-HTx patients with 414 plasma concentrations in total. A nonlinear mixed-effects model was used to describe the population PK of caspofungin. The PK of caspofungin was best described by a two-compartment model. The clearance (CL) and volume of the central compartment (Vc) of caspofungin were 0.385 liter/h and 4.27 liters, respectively. The intercompartmental clearance (Q) and the volume of the peripheral compartment (Vp) were 2.85 liters/h and 6.01 liters, respectively. In the final model, we found that albumin (ALB) affected the CL of caspofungin with an adjustment factor of -1.01, and no other covariates were identified. In this study, HTx was not found to affect the PK of caspofungin. Based on the simulations, the dose of caspofungin should be proportionately increased in patients with decreased ALB levels.
Collapse
|
32
|
Bass GA, Dzierba AL, Taylor B, Lane-Fall M, Kaplan LJ. Tertiary peritonitis: considerations for complex team-based care. Eur J Trauma Emerg Surg 2022; 48:811-825. [PMID: 34302503 PMCID: PMC8308068 DOI: 10.1007/s00068-021-01750-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/18/2021] [Indexed: 12/14/2022]
Abstract
Peritonitis, as a major consequence of hollow visceral perforation, anastomotic disruption, ischemic necrosis, or other injuries of the gastrointestinal tract, often drives acute care in the emergency department, operating room, and the ICU. Chronic critical illness (CCI) represents a devastating challenge in modern surgical critical care where successful interventions have fostered a growing cohort of patients with prolonged dependence on mechanical ventilation and other organ supportive therapies who would previously have succumbed much earlier in the acute phase of critical illness. An important subset of CCI patients are those who have survived an emergency abdominal operation, but who subsequently require prolonged open abdomen management complicated by persistent peritoneal space infection or colonization, fistula formation, and gastrointestinal (GI) tract dysfunction; these patients are described as having tertiary peritonitis (TP).The organ dysfunction cascade in TP terminates in death in between 30 and 64% of patients. This narrative review describes key-but not all-elements in a framework for the coordinate multiprofessional team-based management of a patient with tertiary peritonitis to mitigate this risk of death and promote recovery. Given the prolonged critical illness course of this unique patient population, early and recurrent Palliative Care Medicine consultation helps establish goals of care, support adjustment to changes in life circumstance, and enable patient and family centered care.
Collapse
Affiliation(s)
- Gary Alan Bass
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Perelman School of Medicine, University of Pennsylvania, 51 N. 39th Street, MOB 1, Suite 120, Philadelphia, PA 19104 USA
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, USA
- European Society of Trauma and Emergency Surgery, Visceral Trauma Section, Philadelphia, USA
| | - Amy L. Dzierba
- Department of Pharmacy, New York-Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY USA
| | - Beth Taylor
- Department of Research for Patient Care Services, Barnes-Jewish Hospital, St. Louis, MO USA
| | - Meghan Lane-Fall
- Department of Anesthesia and Critical Care, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, 5 Dulles, Philadelphia, PA 19104 USA
| | - Lewis J. Kaplan
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Perelman School of Medicine, University of Pennsylvania, 51 N. 39th Street, MOB 1, Suite 120, Philadelphia, PA 19104 USA
- Surgical Services, Section of Surgical Critical Care, Corporal Michael J Crescenz VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104 USA
| |
Collapse
|
33
|
Biomarkers Predicting Tissue Pharmacokinetics of Antimicrobials in Sepsis: A Review. Clin Pharmacokinet 2022; 61:593-617. [PMID: 35218003 PMCID: PMC9095522 DOI: 10.1007/s40262-021-01102-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
The pathophysiology of sepsis alters drug pharmacokinetics, resulting in inadequate drug exposure and target-site concentration. Suboptimal exposure leads to treatment failure and the development of antimicrobial resistance. Therefore, we seek to optimize antimicrobial therapy in sepsis by selecting the right drug and the correct dosage. A prerequisite for achieving this goal is characterization and understanding of the mechanisms of pharmacokinetic alterations. However, most infections take place not in blood but in different body compartments. Since tissue pharmacokinetic assessment is not feasible in daily practice, we need to tailor antibiotic treatment according to the specific patient’s pathophysiological processes. The complex pathophysiology of sepsis and the ineffectiveness of current targeted therapies suggest that treatments guided by biomarkers predicting target-site concentration could provide a new therapeutic strategy. Inflammation, endothelial and coagulation activation markers, and blood flow parameters might be indicators of impaired tissue distribution. Moreover, hepatic and renal dysfunction biomarkers can predict not only drug metabolism and clearance but also drug distribution. Identification of the right biomarkers can direct drug dosing and provide timely feedback on its effectiveness. Therefore, this might decrease antibiotic resistance and the mortality of critically ill patients. This article fills the literature gap by characterizing patient biomarkers that might be used to predict unbound plasma-to-tissue drug distribution in critically ill patients. Although all biomarkers must be clinically evaluated with the ultimate goal of combining them in a clinically feasible scoring system, we support the concept that the appropriate biomarkers could be used to direct targeted antibiotic dosing.
Collapse
|
34
|
Lizza BD, Raush N, Micek ST. Antibiotic Optimization in the Intensive Care Unit. Semin Respir Crit Care Med 2022; 43:125-130. [PMID: 35172362 DOI: 10.1055/s-0041-1740972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Effective antimicrobial therapy remains paramount to successful treatment of patients with critical illness, such as pneumonia and sepsis. Unfortunately, critically ill patients often exhibit altered pharmacokinetics and pharmacodynamics (PK/PD) that make this endeavor challenging. Particularly in sepsis, alterations in volume of distribution (Vd) and protein binding lead to unpredictable effects on serum levels of various antimicrobials. Additionally, metabolic pathways and excretion may be significantly impacted due to end-organ failure. These dynamic factors may increase the likelihood of deleterious effects such as treatment failure or toxicity. Meeting these challenging scenarios has led to various strategies meant to improve clinical cure without untoward consequences. Vancomycin and β-lactam antimicrobials are frequently utilized and have been the focus of dose optimization strategies including extended infusion (EI) or continuous infusion (CI). Available data suggests that administration of vancomycin by CI may reduce the risk of nephrotoxicity without increasing the risk of treatment failure, although retrospective data are largely utilized in supporting this method. Other efforts to optimize vancomycin have focused on transitioning from trough-based therapeutic drug monitoring (TDM) to area-under-the-curve: minimum inhibitory concentration (AUC:MIC) ratios. Despite the creation of more user-friendly methods of calculation and data suggesting reduced rates of nephrotoxicity, widespread implementation is limited, in part due to clinician comfort. Use of β-lactams in patients with sepsis is similarly problematic due to observational data demonstrating fluctuations in serum levels in the setting of critical illness. Implementing TDM of agents such as piperacillin-tazobactam, cefepime, and meropenem has been suggested as a method of improving time above MIC (T >MIC). This practice is limited by the lack of access to commercial assays and the failure of rigorous studies to demonstrate improved treatment success. Clinicians should be aware of these challenges and should refine their dosing strategies based on individualized patient factors to reduce treatment failure.
Collapse
Affiliation(s)
| | - Nick Raush
- Barnes Jewish Hospital, Saint Louis, Missouri.,Forrest General Hospital, Hattiesburg, Mississippi
| | - Scott T Micek
- Barnes Jewish Hospital, Saint Louis, Missouri.,University of Health Sciences and Pharmacy, Saint Louis, Missouri
| |
Collapse
|
35
|
Torbic H, Hohlfelder B, Krishnan S, Tonelli AR. A Review of Pulmonary Arterial Hypertension Treatment in Extracorporeal Membrane Oxygenation: A Case Series of Adult Patients. J Cardiovasc Pharmacol Ther 2022; 27:10742484211069005. [PMID: 35006031 DOI: 10.1177/10742484211069005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Little data is published describing the use of medications prescribed for pulmonary arterial hypertension (PAH) in patients receiving extracorporeal membrane oxygenation (ECMO). Even though many patients with PAH may require ECMO as a bridge to transplant or recovery, little is reported regarding the use of PAH medications in this setting. METHODS This retrospective case series summarizes the clinical experience of 8 patients with PAH receiving ECMO and reviews medication management in the setting of ECMO. RESULTS Eight PAH patients, 5 of whom were female, ranging in age from 21 to 61 years old, were initiated on ECMO. Veno-arterial (VA) ECMO was used in 4 patients, veno-venous (VV) ECMO and hybrid ECMO configurations in 2 patients respectively. Common indications for ECMO included cardiogenic shock, bridge to transplant, and cardiac arrest. All patients were on intravenous (IV) prostacyclin therapy at baseline. Refractory hypotension was noted in 7 patients of whom 5 patients required downtitration or discontinuation of baseline PAH therapies. Three patients had continuous inhaled epoprostenol added during their time on ECMO. In patients who were decannulated from ECMO, PAH therapies were typically resumed or titrated back to baseline dosages. One patient required no adjustment in PAH therapy while on ECMO. Two patients were not able to be decannulated from ECMO. CONCLUSION The treatment of critically ill PAH patients is challenging given a variety of factors that could affect PAH drug concentrations. In particular, PAH patients on prostacyclin analogues placed on VA ECMO appear to have pronounced systemic vasodilation requiring vasopressors which is alleviated by temporarily reducing the intravenous prostacyclin dose. Patients should be closely monitored for potential need for rapid titrations in prostacyclin therapy to maintain hemodynamic stability.
Collapse
Affiliation(s)
- Heather Torbic
- 2569Department of Pharmacy, Cleveland Clinic, Cleveland, OH, USA
| | | | - Sudhir Krishnan
- Department of Critical Care Medicine, 2569Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Adriano R Tonelli
- Department of Pulmonary and Critical Care Medicine, 2569Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
36
|
Kim YK, Kim HS, Park S, Kim HI, Lee SH, Lee DH. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1353-1364. [PMID: 35224630 PMCID: PMC9047688 DOI: 10.1093/jac/dkac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/05/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yong Kyun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hyoung Soo Kim
- Department of Thoracic and Cardiovascular Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Sunghoon Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hwan-il Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Sun Hee Lee
- Department of Thoracic and Cardiovascular Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Dong-Hwan Lee
- Department of Clinical Pharmacology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
- Corresponding author. E-mail:
| |
Collapse
|
37
|
Sonesson A, Bjørnsdottir I, Christensen JK. Meeting report: 3rd workshop of the peptide ADME discussion group. Xenobiotica 2021; 51:1470-1474. [PMID: 34919491 DOI: 10.1080/00498254.2021.2020377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Challenges and opportunities within peptide ADME (absorption, distribution, metabolism and elimination) were presented and discussed at the 3rd online workshop of the Peptide ADME Discussion Group (3rd of February 2021). This article summarises the presentations and discussions from this workshop.The following topics were covered:Peptide drug-drug interactionsImpact of septic shock on PK and PD of the peptide selepressinMS processing software for metabolite identification of peptidesProfiling of peptides in preclinical drug developmentStrategy for immunogenicity testing of peptidesIn vitro stability testing of peptides for inhalation and automated LC-MS.
Collapse
|
38
|
Barra ME, Edlow BL, Lund JT, DeSanctis KS, Vetrano J, Reilly-Tremblay C, Zhang ER, Bodien YG, Brown EN, Solt K. Stability of extemporaneously prepared preservative-free methylphenidate 5 mg/mL intravenous solution. Am J Health Syst Pharm 2021; 79:359-363. [PMID: 34788364 DOI: 10.1093/ajhp/zxab420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DISCLAIMER In an effort to expedite the publication of articles , AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. PURPOSE To advance the implementation of consciousness-promoting therapies in patients with acute disorders of consciousness, the availability of potential therapeutic agents in formulations suitable for administration in hospitalized patients in the presence of complex comorbid conditions is paramount. The purpose of this study is to evaluate the long-term stability of extemporaneously prepared preservative-free methylphenidate hydrochloride (HCl) 5 mg/mL intravenous solution for experimental use. METHODS A methylphenidate 5 mg/mL solution was prepared under proper aseptic techniques with Methylphenidate Hydrochloride, USP, powder mixed in sterile water for solution. Methylphenidate HCl 5 mg/mL solution was sterilized by filtration technique under USP <797>-compliant conditions. Samples were stored refrigerated (2-8°C) and analyzed at approximately days 1, 30, 60, 90, 180, and 365. At each time point, chemical and physical stability were evaluated by visual inspection, pH measurement, membrane filtration procedure, turbidometric or photometric technique, and high-performance liquid chromatography analysis. RESULTS Over the 1-year study period, the samples retained 96.76% to 102.04% of the initial methylphenidate concentration. There was no significant change in the visual appearance, pH level, or particulate matter during the study period. The sterility of samples was maintained and endotoxin levels were undetectable throughout the 1-year stability period. CONCLUSION Extemporaneously prepared preservative-free methylphenidate 5 mg/mL intravenous solution was physically and chemically stable at 32, 61, 95, 186, and 365 days when stored in amber glass vials at refrigerated temperatures (2-8°C).
Collapse
Affiliation(s)
- Megan E Barra
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - James T Lund
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA, USA
| | | | - John Vetrano
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA, USA
| | | | - Edlyn R Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Boston, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
39
|
Teder K, Maddison L, Soeorg H, Meos A, Karjagin J. The Pharmacokinetic Profile and Bioavailability of Enteral N-Acetylcysteine in Intensive Care Unit. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111218. [PMID: 34833436 PMCID: PMC8620940 DOI: 10.3390/medicina57111218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022]
Abstract
Background and Objectives: N-acetylcysteine (NAC) is a mucolytic agent used to prevent ventilator-associated pneumonia in intensive care units. This study aimed to evaluate the oral bioavailability of NAC in critically ill patients with pneumonia, isolated acute brain injury and abdominal sepsis. Materials and Methods: This quantitative and descriptive study compared NAC's pharmacokinetics after intravenous and enteral administration. 600 mg of NAC was administered in both ways, and the blood levels for NAC were measured. Results: 18 patients with pneumonia, 19 patients with brain injury and 17 patients with abdominal sepsis were included in the population pharmacokinetic modelling. A three-compartmental model without lag-time provided the best fit to the data. Oral bioavailability was estimated as 11.6% (95% confidence interval 6.3-16.9%), similar to bioavailability in healthy volunteers and patients with chronic pulmonary diseases. Conclusions: The bioavailability of enteral NAC of ICU patients with different diseases is similar to the published data on healthy volunteers.
Collapse
Affiliation(s)
- Kersti Teder
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia;
- Pharmacy Department, Tartu University Hospital, L. Puusepa 8, 50406 Tartu, Estonia
- Correspondence: ; Tel.: +372-566-849-33
| | - Liivi Maddison
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia; (L.M.); (J.K.)
- Clinic of Anaesthesiology and Intensive Care, Tartu University Hospital, L. Puusepa 8, 50406 Tartu, Estonia
| | - Hiie Soeorg
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia;
| | - Andres Meos
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia;
| | - Juri Karjagin
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia; (L.M.); (J.K.)
- Clinic of Anaesthesiology and Intensive Care, Tartu University Hospital, L. Puusepa 8, 50406 Tartu, Estonia
| |
Collapse
|
40
|
Celestin MN, Musteata FM. Impact of Changes in Free Concentrations and Drug-Protein Binding on Drug Dosing Regimens in Special Populations and Disease States. J Pharm Sci 2021; 110:3331-3344. [PMID: 34089711 PMCID: PMC8458247 DOI: 10.1016/j.xphs.2021.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022]
Abstract
Over the last few decades, scientists and clinicians have often focused their attention on the unbound fraction of drugs as an indicator of efficacy and the eventual outcome of drug treatments for specific illnesses. Typically, the total drug concentration (bound and unbound) in plasma is used in clinical trials to assess a compound's efficacy. However, the free concentration of a drug tends to be more closely related to its activity and interaction with the body. Thus far, measuring the unbound concentration has been a challenge. Several mechanistic models have attempted to solve this problem by estimating the free drug fraction from available data such as total drug and binding protein concentrations. The aims of this review are first, to give an overview of the methods that have been used to date to calculate the unbound drug fraction. Second, to assess the pharmacokinetic parameters affected by changes in drug protein binding in special populations such as pediatrics, the elderly, pregnancy, and obesity. Third, to review alterations in drug protein binding in some selected disease states and how these changes impact the clinical outcomes for the patients; the disease states include critical illnesses, transplantation, renal failure, chronic kidney disease, and epilepsy. And finally, to discuss how various disease states shift the ratio of unbound to total drug and the consequences of such shifts on dosing adjustments and reaching the therapeutic target.
Collapse
Affiliation(s)
- Marie N Celestin
- Albany College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, 106 New Scotland Avenue, Albany, NY 12208, United States
| | - Florin M Musteata
- Albany College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, 106 New Scotland Avenue, Albany, NY 12208, United States.
| |
Collapse
|
41
|
Pharmacokinetic Variability and Target Attainment of Fluconazole in Critically Ill Patients. Microorganisms 2021; 9:microorganisms9102068. [PMID: 34683388 PMCID: PMC8538061 DOI: 10.3390/microorganisms9102068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Fluconazole is one of the oldest antifungal drugs. Previous studies have raised concerns considering variability in exposure and inadequate target attainment in critically ill patients. The current study aims to define variability and target attainment for fluconazole exposure in a large group of critically ill patients. Methods: In this pharmacokinetic study, daily plasma trough samples and, if possible, 24 h urine samples were collected to determine fluconazole concentration. A minimum target trough concentration of 10-15 mg/L was selected, corresponding to a free area under the concentration-time curve above the minimum inhibitory concentration (fAUC/MIC) of at least 100 for an MIC of 4 mg/L. Covariates that significantly influenced fluconazole exposure were identified. Results: In total, 288 plasma samples from 43 patients, with a median age of 66 years, were included. The median fluconazole trough concentration was 22.9 mg/L. A notable component of the measured concentrations was below the target trough concentrations (13% <10 mg/L and 27% <15 mg/L). The intra- and intersubject variability were 28.3% and 50.5%, respectively. The main covariates determining fluconazole exposure were the administered dose (mg/kg), augmented renal clearance, and renal replacement therapy. Conclusions: Fluconazole trough concentrations are variable in critically ill patients and a considerable number of these concentrations was below the predefined target trough concentrations.
Collapse
|
42
|
Maguigan KL, Al-Shaer MH, Peloquin CA. Beta-Lactams Dosing in Critically Ill Patients with Gram-Negative Bacterial Infections: A PK/PD Approach. Antibiotics (Basel) 2021; 10:1154. [PMID: 34680734 PMCID: PMC8532626 DOI: 10.3390/antibiotics10101154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-lactam antibiotics are often the backbone of treatment for Gram-negative infections in the critically ill. Beta-lactams exhibit time-dependent killing, and their efficacy depends on the percentage of dosing interval that the concentration remains above the minimum inhibitory concentration. The Gram-negative resistance rates of pathogens are increasing in the intensive care unit (ICU), and critically ill patients often possess physiology that makes dosing more challenging. The volume of distribution is usually increased, and drug clearance is variable. Augmented renal clearance and hypermetabolic states increase the clearance of beta-lactams, while acute kidney injury reduces the clearance. To overcome the factors affecting ICU patients and decreasing susceptibilities, dosing strategies involving higher doses, and extended or continuous infusions may be required. In this review, we specifically examined pharmacokinetic models in ICU patients, to determine the desired beta-lactam regimens for clinical breakpoints of Enterobacterales and Pseudomonas aeruginosa, as determined by the European Committee on Antimicrobial Susceptibility Testing. The beta-lactams evaluated included penicillins, cephalosporins, carbapenems, and monobactams. We found that when treating less-susceptible pathogens, especially P. aeruginosa, continuous infusions are frequently needed to achieve the desired pharmacokinetic/pharmacodynamic targets. More studies are needed to determine optimal dosing strategies in the novel beta-lactams.
Collapse
Affiliation(s)
- Kelly L. Maguigan
- Pharmacy Department, University of Florida Health Shands Hospital, Gainesville, FL 32608, USA;
| | - Mohammad H. Al-Shaer
- Infectious Disease Pharmacokinetics Lab, College of Pharmacy and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Charles A. Peloquin
- Infectious Disease Pharmacokinetics Lab, College of Pharmacy and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
43
|
Van Daele R, Wauters J, Vandenbriele C, Lagrou K, Vos R, Debaveye Y, Spriet I. Interaction between flucloxacillin and azoles: Is isavuconazole next? Mycoses 2021; 64:1508-1511. [PMID: 34553797 DOI: 10.1111/myc.13373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Isavuconazole is a triazole antifungal drug, approved for the treatment of invasive aspergillosis and mucormycosis. It has been previously reported that an interaction between flucloxacillin and voriconazole may lead to subtherapeutic voriconazole exposure, when used concomitantly. Since isavuconazole is also metabolised via cytochrome P450 enzymes, the same interaction may be expected. OBJECTIVES We aim to document exposure to isavuconazole in patients concomitantly treated with flucloxacillin. PATIENTS We report two patients treated with both isavuconazole and flucloxacillin, in whom we determined isavuconazole concentrations. RESULTS Low isavuconazole trough concentrations (<1 mg/L) were observed in two patients under concomitant treatment with flucloxacillin. CONCLUSIONS In combination with flucloxacillin, low isavuconazole concentrations were observed but an adequate isavuconazole exposure may be reached with dose augmentation. Therapeutic drug monitoring of isavuconazole is recommended to ensure an adequate exposure.
Collapse
Affiliation(s)
- Ruth Van Daele
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven and Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Sciences, KU Leuven and Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Clinical Department of Laboratory Medicine, National Reference Centre for Mycosis, Excellence Centre for Medical Mycology (ECMM), University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Robin Vos
- Clinical Department Respiratory Diseases, BREATHE, University Hospitals Leuven and Chrometa Department, KU Leuven, Leuven, Belgium
| | - Yves Debaveye
- Department of Cellular and Molecular Medicine, KU Leuven and Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Sakuraya M, Yoshida T, Sasabuchi Y, Yoshihiro S, Uchino S. Clinical prediction scores and early anticoagulation therapy for new-onset atrial fibrillation in critical illness: a post-hoc analysis. BMC Cardiovasc Disord 2021; 21:423. [PMID: 34496749 PMCID: PMC8424957 DOI: 10.1186/s12872-021-02235-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose This study sought to describe the epidemiology of anticoagulation therapy for critically ill patients with new-onset atrial fibrillation (NOAF) according to CHA2DS2-VASc and HAS-BLED scores and to assess the efficacy of early anticoagulation therapy. Method Adult patients who developed NOAF during intensive care unit stay were included. We compared the patients who were treated with and without anticoagulation therapy within 48 h from AF onset. The primary outcome was a composite outcome that included mortality and ischemic stroke during the period until hospital discharge.
Results In total, 308 patients were included in this analysis. Anticoagulants were administered to 95 and 33 patients within 48 h and after 48 h from NOAF onset, respectively. After grouping the patients into four according to their CHA2DS2-VASc and HAS-BLED bleeding scores, we found that the proportion of anticoagulation therapy administered was similar among all groups. After adjustment using a multivariable Cox regression model, we noted that early anticoagulation therapy did not decrease the composite outcome (adjusted hazard ratio [HR] 0.77; 95% confidence interval [CI] 0.47‒1.23). However, in patients without rhythm control drugs, early anticoagulation was significantly associated with better outcomes (adjusted HR 0.46; 95% CI; 0.22‒0.87, P = 0.041). Conclusions We found that clinical prediction scores were supposedly not used in the decision to implement anticoagulation therapy and that early anticoagulation therapy did not improve clinical outcomes in critically ill patients with NOAF. Trial registration UMIN-CTR UMIN000026401. Registered 5 March 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02235-8.
Collapse
Affiliation(s)
- Masaaki Sakuraya
- Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital, Jigozen 1-3-3, Hatsukaichi, Hiroshima, 738-8503, Japan.
| | - Takuo Yoshida
- Intensive Care Unit, Department of Anesthesiology, Jikei University School of Medicine, Tokyo, Japan.,Department of Intensive Care Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Yusuke Sasabuchi
- Data Science Center, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shodai Yoshihiro
- Pharmaceutical Department, JA Hiroshima General Hospital, Hatsukaichi, Hiroshima, Japan
| | - Shigehiko Uchino
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University Saitama Medical Centre, Saitama, Japan
| |
Collapse
|
45
|
Callaway K, Lakkad M, Painter JT, Dayer L, Oswalt AK. The Impact of Continuous Infusion Compared to Intravenous Bolus Administration of Pantoprazole on Length of Intensive Care Unit Stay in Critically Ill Patients. J Pharm Pract 2021; 36:276-280. [PMID: 34376087 DOI: 10.1177/08971900211036096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: To determine if intravenous (IV) bolus pantoprazole increases intensive care unit (ICU) length of stay compared to IV infusion pantoprazole for treatment of gastrointestinal (GI) bleeding in critically ill patients. Methods: This retrospective cohort study included adult patients admitted to the ICU with GI bleeds. Patients treated with IV pantoprazole from January 1, 2017 to December 31, 2017 were analyzed in the continuous infusion group, and patients treated from March 1, 2018 to February 28, 2019 were analyzed in the bolus only group. Patients with pregnancy, variceal bleeds, or lower GI bleeds were excluded. Intensive care unit length of stay was compared between the two cohorts using the Mann Whitney U test. Adjusted analysis was conducted using the generalized linear model with gamma log link to estimate the effect of type of infusion on ICU length of stay. Results: A total of 145 patients were included in the analysis, with 72 patients in the continuous infusion group and 73 patients in the bolus only group. The median ICU length of stay was 70.5 hours for continuous infusion and 64 hours for bolus only pantoprazole (P-value = .577). In the adjusted analysis, there was no difference in ICU length of stay between the continuous infusion and bolus only groups (RR, 1.06; 95% CI, .76-1.47). Conclusion: Intensive care unit length of stay was not prolonged with the use of IV bolus only compared to continuous infusion pantoprazole. Intravenous bolus only pantoprazole may be used in critically ill patients for treatment of upper GI bleeding.
Collapse
Affiliation(s)
- Katelynn Callaway
- 15499University of Arkansas for Medical Sciences, College of Pharmacy, Little Rock, AR, USA
| | - Mrinmayee Lakkad
- 15499University of Arkansas for Medical Sciences, College of Pharmacy, Little Rock, AR, USA
| | - Jacob T Painter
- 15499University of Arkansas for Medical Sciences, College of Pharmacy, Little Rock, AR, USA
| | - Lindsey Dayer
- 15499University of Arkansas for Medical Sciences, College of Pharmacy, Little Rock, AR, USA
| | - Allison K Oswalt
- 15499University of Arkansas for Medical Sciences, College of Pharmacy, Little Rock, AR, USA
| |
Collapse
|
46
|
Van Daele R, Brüggemann RJ, Dreesen E, Depuydt P, Rijnders B, Cotton F, Fage D, Gijsen M, Van Zwam K, Debaveye Y, Wauters J, Spriet I. Pharmacokinetics and target attainment of intravenous posaconazole in critically ill patients during extracorporeal membrane oxygenation. J Antimicrob Chemother 2021; 76:1234-1241. [PMID: 33517360 DOI: 10.1093/jac/dkab012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/04/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Posaconazole is an antifungal drug used for prophylaxis and treatment of invasive fungal infections. Severe influenza has been identified as a risk factor for invasive pulmonary aspergillosis in critically ill patients. In this population, extracorporeal membrane oxygenation (ECMO) is used as rescue therapy, although little is known about the pharmacokinetics (PK) of posaconazole during ECMO. OBJECTIVES To determine the PK and target attainment of six patients treated with IV posaconazole under ECMO and to develop a population PK model that can be used to simulate the PTA. METHODS Critically ill patients treated with posaconazole and ECMO were included in this study. Plasma samples were collected at several timepoints within one dosing interval on two occasions: an early (Day 2-3) and a late (Day 4-7) sampling day. Daily trough concentrations were measured. RESULTS The median (IQR) AUC0-24, CL and Vd were 34.3 (28.3-37.7) mg·h/L, 8.7 (8.0-10.6) L/h and 389 (314-740) L, if calculated with non-compartmental analysis based on the observed concentrations. All measured trough concentrations were ≥0.7 mg/L and 11/16 were ≥1 mg/L, which are the haematological thresholds for prophylaxis and treatment of invasive aspergillosis, respectively. The targeted PTA (>90%) was attained for prophylaxis but not for treatment. CONCLUSIONS ECMO does not appear to influence posaconazole exposure compared with haematology patients. However, some trough levels were below the lower limit for treatment. An a priori dose adjustment does not appear to be necessary but drug monitoring is recommended.
Collapse
Affiliation(s)
- Ruth Van Daele
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Roger J Brüggemann
- Department of Pharmacy and Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen and Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erwin Dreesen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Depuydt
- Department of Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Bart Rijnders
- Department of Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Frédéric Cotton
- Department of Clinical Chemistry, LHUB-ULB, Erasme Hospital and, Université Libre de Bruxelles, Bruxelles, Belgium
| | - David Fage
- Department of Clinical Chemistry, LHUB-ULB, Erasme Hospital and, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Matthias Gijsen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Kenny Van Zwam
- Department of Perfusion, University Hospitals Leuven, Leuven, Belgium
| | - Yves Debaveye
- Intensive Care Unit, University Hospitals Leuven and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven and Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Optimizing Antimicrobial Drug Dosing in Critically Ill Patients. Microorganisms 2021; 9:microorganisms9071401. [PMID: 34203510 PMCID: PMC8305961 DOI: 10.3390/microorganisms9071401] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
A fundamental step in the successful management of sepsis and septic shock is early empiric antimicrobial therapy. However, for this to be effective, several decisions must be addressed simultaneously: (1) antimicrobial choices should be adequate, covering the most probable pathogens; (2) they should be administered in the appropriate dose, (3) by the correct route, and (4) using the correct mode of administration to achieve successful concentration at the infection site. In critically ill patients, antimicrobial dosing is a common challenge and a frequent source of errors, since these patients present deranged pharmacokinetics, namely increased volume of distribution and altered drug clearance, which either increased or decreased. Moreover, the clinical condition of these patients changes markedly over time, either improving or deteriorating. The consequent impact on drug pharmacokinetics further complicates the selection of correct drug schedules and dosing during the course of therapy. In recent years, the knowledge of pharmacokinetics and pharmacodynamics, drug dosing, therapeutic drug monitoring, and antimicrobial resistance in the critically ill patients has greatly improved, fostering strategies to optimize therapeutic efficacy and to reduce toxicity and adverse events. Nonetheless, delivering adequate and appropriate antimicrobial therapy is still a challenge, since pathogen resistance continues to rise, and new therapeutic agents remain scarce. We aim to review the available literature to assess the challenges, impact, and tools to optimize individualization of antimicrobial dosing to maximize exposure and effectiveness in critically ill patients.
Collapse
|
48
|
Sridharan K, Abbasi MY, Mulubwa M. Population Pharmacokinetics and Dose Optimization of Vancomycin in Critically Ill Children. Eur J Drug Metab Pharmacokinet 2021; 46:539-546. [PMID: 34156647 DOI: 10.1007/s13318-021-00695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Critically ill children may exhibit varied vancomycin pharmacokinetic parameters mainly due to altered protein binding, extracellular volume, and renal elimination. The objective of this study was to assess the pharmacokinetics of vancomycin in critically ill children and determine the optimum dose regimen. METHODS This was a cross-sectional study of critically ill children admitted to a pediatric intensive care unit. They received vancomycin dose of 15 mg/kg every 8 h for mild infections or every 6 h if infection was moderate or severe. A nonlinear mixed-effects modeling approach was applied in estimating pharmacokinetic parameters using Monolix 2019R2®. We performed Monte Carlo simulations to assess and optimize the dosing regimen using Simulx®. We used the ratio of the area under the concentration-time curve up to 24 h to minimum inhibitory concentration (AUC0-24/MIC) ≥ 400 as the pharmacokinetic-pharmacodynamic target. RESULTS Fifty-eight critically ill children with 145 concentrations were included in the present study. A one-compartment pharmacokinetic model with linear elimination described the concentration-time profile well. The estimated median (95% confidence intervals) volume of distribution (Vd) was 13.3 (10.8-16.5) l and clearance (CL) was 1.23 (1.03-1.45) l/h. Creatinine clearance significantly affected the CL of vancomycin. Monte Carlo simulations revealed that a dose of either 15 mg/kg 6 hourly or 20 mg/kg 8 hourly was likely to result into most critically ill children attaining the vancomycin lead pharmacokinetic-pharmacodynamic target. CONCLUSION We established pharmacokinetic parameters of vancomycin for critically ill children. We also observed that the current dosing regimen practiced in the intensive care unit was inadequate for achieving the pharmacokinetic-pharmacodynamic target. We recommend vancomycin dose escalation in critically ill pediatric patients from 15 mg/kg 8 hourly (current dosing regimen) to either 6 hourly or 20 mg/kg 8 hourly with intense therapeutic drug monitoring for adverse effects.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Pharmacology and Therapeutics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain.
| | - Mohammad Yaseen Abbasi
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Mwila Mulubwa
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
49
|
Barreto EF, Webb AJ, Pais GM, Rule AD, Jannetto PJ, Scheetz MH. Setting the Beta-Lactam Therapeutic Range for Critically Ill Patients: Is There a Floor or Even a Ceiling? Crit Care Explor 2021; 3:e0446. [PMID: 34136822 PMCID: PMC8202642 DOI: 10.1097/cce.0000000000000446] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Beta-lactam antibiotics exhibit high interindividual variability in drug concentrations in patients with critical illness which led to an interest in the use of therapeutic drug monitoring to improve effectiveness and safety. To implement therapeutic drug monitoring, it is necessary to define the beta-lactam therapeutic range-in essence, what drug concentration would prompt a clinician to make dose adjustments up or down. This objective of this narrative review was to summarize evidence for the "floor" (for effectiveness) and "ceiling" (for toxicity) for the beta-lactam therapeutic range to be used with individualized therapeutic drug monitoring. DATA SOURCES Research articles were sourced from PubMed using search term combinations of "pharmacokinetics," "pharmacodynamics," "toxicity," "neurotoxicity," "therapeutic drug monitoring," "beta-lactam," "cefepime," "meropenem," "piperacillin/tazobactam," "ICU," and "critical illness." STUDY SELECTION Articles were selected if they included preclinical, translational, or clinical data on pharmacokinetic and pharmacodynamic thresholds for effectiveness and safety for beta-lactams in critical illness. DATA SYNTHESIS Experimental data indicate a beta-lactam concentration above the minimum inhibitory concentration of the organism for greater than or equal to 40-60% of the dosing interval is needed, but clinical data indicate that higher concentrations may be preferrable. In the first 48 hours of critical illness, a free beta-lactam concentration at or above the susceptibility breakpoint of the most likely pathogen for 100% of the dosing interval would be reasonable (typically based on Pseudomonas aeruginosa). After 48 hours, the lowest acceptable concentration could be tailored to 1-2× the observed minimum inhibitory concentration of the organism for 100% of the dosing interval (often a more susceptible organism). Neurotoxicity is the primary dose-dependent adverse effect of beta-lactams, but the evidence remains insufficient to link a specific drug concentration to greater risk. CONCLUSIONS As studies advance the understanding of beta-lactam exposure and response in critically ill patients, it is essential to clearly define the acceptable therapeutic range to guide regimen selection and adjustment.
Collapse
Affiliation(s)
- Erin F Barreto
- Department of Pharmacy, Mayo Clinic, Rochester, MN
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| | - Andrew J Webb
- Department of Pharmacy, Oregon Health and Science University, Portland, OR
| | - Gwendolyn M Pais
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL
- Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL
| | - Andrew D Rule
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
- Division of Epidemiology, Mayo Clinic, Rochester, MN
| | - Paul J Jannetto
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN
| | - Marc H Scheetz
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL
- Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL
| |
Collapse
|
50
|
Nappi F, Iervolino A, Avtaar Singh SS. Thromboembolic Complications of SARS-CoV-2 and Metabolic Derangements: Suggestions from Clinical Practice Evidence to Causative Agents. Metabolites 2021; 11:341. [PMID: 34070672 PMCID: PMC8229698 DOI: 10.3390/metabo11060341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome (SARS) Coronavirus (CoV)-2 is a recently identified positive sense single-strand RNA (ssRNA) β-coronavirus. The viral spike proteins infect human hosts by binding to the cellular receptor angiotensin-converting enzyme 2 (ACE2). The infection causes a systemic illness involving cell metabolism. This widespread involvement is implicated in the pathophysiology of the illness which ranges from mild to severe, requiring multi organ support, ranging from oxygen supplementation to full cardiovascular and respiratory support. Patients with multiple co-existing comorbidities are also at a higher risk. The aim of this review is to explore the exact mechanisms by which COVID-19 affects patients systemically with a primary focus on the bleeding and thrombotic complications linked with the disease. Issues surrounding the thrombotic complications following administration of the ChAdOx1 nCoV-19 (Astra-Zeneca-Oxford) vaccine have also been illustrated. Risk stratification and treatment options in these patients should be tailored according to clinical severity with input from a multidisciplinary team.
Collapse
Affiliation(s)
- Francesco Nappi
- Centre Cardiologique du Nord de Saint-Denis, Department of Cardiac Surgery, 93200 Saint-Denis, France
| | - Adelaide Iervolino
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy;
| | - Sanjeet Singh Avtaar Singh
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank G81 4DY, UK;
| |
Collapse
|