1
|
Guo DZ, Chen Y, Meng Y, Bian JJ, Wang Y, Wang JF. Bidirectional Interaction of Sepsis and Sleep Disorders: The Underlying Mechanisms and Clinical Implications. Nat Sci Sleep 2024; 16:1665-1678. [PMID: 39444661 PMCID: PMC11498039 DOI: 10.2147/nss.s485920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
Sepsis is defined as life-threatening organ injury induced by infection, with high incidence and mortality. Sleep disorder is prevalent in septic patients and approximately 50% of patients with sepsis may develop atypical sleep patterns, but many of them may have been underdiagnosed by physicians. Sleep disorders and sepsis exhibit a close bidirectional relationship, with each condition significantly influencing the other. Conversely, sleep deprivation, sleep dysrhythmia and sleep fragmentation have been shown to impact the outcome of sepsis. This review endeavors to offer a comprehensive understanding of the intricate mechanisms that underpin the interplay between sepsis and sleep disorders, in addition to exploring potential clinical intervention strategies that could enhance outcomes for patients suffering from sepsis.
Collapse
Affiliation(s)
- De-Zhi Guo
- School of Basic Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Yu Chen
- School of Basic Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Yan Meng
- Department of Intensive Care, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jin-Jun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jia-Feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Li Y, Lu L, Androulakis IP. The Physiological and Pharmacological Significance of the Circadian Timing of the HPA Axis: A Mathematical Modeling Approach. J Pharm Sci 2024; 113:33-46. [PMID: 37597751 PMCID: PMC10840710 DOI: 10.1016/j.xphs.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
As a potent endogenous regulator of homeostasis, the circadian time-keeping system synchronizes internal physiology to periodic changes in the external environment to enhance survival. Adapting endogenous rhythms to the external time is accomplished hierarchically with the central pacemaker located in the suprachiasmatic nucleus (SCN) signaling the hypothalamus-pituitary-adrenal (HPA) axis to release hormones, notably cortisol, which help maintain the body's circadian rhythm. Given the essential role of HPA-releasing hormones in regulating physiological functions, including immune response, cell cycle, and energy metabolism, their daily variation is critical for the proper function of the circadian timing system. In this review, we focus on cortisol and key fundamental properties of the HPA axis and highlight their importance in controlling circadian dynamics. We demonstrate how systems-driven, mathematical modeling of the HPA axis complements experimental findings, enhances our understanding of complex physiological systems, helps predict potential mechanisms of action, and elucidates the consequences of circadian disruption. Finally, we outline the implications of circadian regulation in the context of personalized chronotherapy. Focusing on the chrono-pharmacology of synthetic glucocorticoids, we review the challenges and opportunities associated with moving toward personalized therapies that capitalize on circadian rhythms.
Collapse
Affiliation(s)
- Yannuo Li
- Chemical & Biochemical Engineering Department, Piscataway, NJ 08854, USA
| | - Lingjun Lu
- Chemical & Biochemical Engineering Department, Piscataway, NJ 08854, USA
| | - Ioannis P Androulakis
- Chemical & Biochemical Engineering Department, Piscataway, NJ 08854, USA; Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08540, USA.
| |
Collapse
|
3
|
de Lima Cavalcanti TYV, Lima MC, Bargi-Souza P, Franca RFO, Peliciari-Garcia RA. Zika Virus Infection Alters the Circadian Clock Expression in Human Neuronal Monolayer and Neurosphere Cultures. Cell Mol Neurobiol 2023; 44:10. [PMID: 38141078 DOI: 10.1007/s10571-023-01445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Rhythmic regulations are virtually described in all physiological processes, including central nervous system development and immunologic responses. Zika virus (ZIKV), a neurotropic arbovirus, has been recently linked to a series of birth defects and neurodevelopmental disorders. Given the well-characterized role of the intrinsic cellular circadian clock within neurogenesis, cellular metabolism, migration, and differentiation among other processes, this study aimed to characterize the influence of ZIKV infection in the circadian clock expression in human neuronal cells. For this, in vitro models of human-induced neuroprogenitor cells (hiNPCs) and neuroblastoma cell line SH-SY5Y, cultured as monolayer and neurospheres, were infected by ZIKV, followed by RNA-Seq and RT-qPCR investigation, respectively. Targeted circadian clock components presented mRNA oscillations only after exogenous synchronizing stimuli (Forskolin) in SH-SY5Y monolayer culture. Interestingly, when these cells were grown as 3D-arranged neurospheres, an intrinsic oscillatory expression pattern was observed for some core clock components without any exogenous stimulation. The ZIKV infection significantly disturbed the mRNA expression pattern of core clock components in both neuroblastoma cell culture models, which was also observed in hiNPCs infected with different strains of ZIKV. The ZIKV-mediated desynchronization of the circadian clock expression in human cells might further contribute to the virus impairment of neuronal metabolism and function observed in adults and ZIKV-induced congenital syndrome. In vitro models of Zika virus (ZIKV) neuronal infection. Human neuroprogenitor cells were cultured as monolayer and neurospheres and infected by ZIKV. Monolayer-cultured cells received forskolin (FSK) as a coupling factor for the circadian clock rhythmicity, while 3D-arranged neurospheres showed an intrinsic oscillatory pattern in the circadian clock expression. The ZIKV infection affected the mRNA expression pattern of core clock components in both cell culture models. The ZIKV-mediated desynchronization of the circadian clock machinery might contribute to the impairment of neuronal metabolism and function observed in both adults (e.g., Guillain-Barré syndrome) and ZIKV-induced congenital syndrome (microcephaly). The graphical abstract has been created with Canva at the canva.com website.
Collapse
Affiliation(s)
- Thaíse Yasmine Vasconcelos de Lima Cavalcanti
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil
| | - Morganna Costa Lima
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafael Freitas Oliveira Franca
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil.
| | - Rodrigo Antonio Peliciari-Garcia
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil.
- Morphophysiology & Pathology Sector, Department of Biological Sciences, Federal University of São Paulo, Rua São Nicolau, 210, Diadema, SP, CEP 09913-030, Brazil.
| |
Collapse
|
4
|
Ng CYH, Tay SH, McIntyre RS, Ho R, Tam WWS, Ho CSH. Elucidating a bidirectional association between rheumatoid arthritis and depression: A systematic review and meta-analysis. J Affect Disord 2022; 311:407-415. [PMID: 35642835 DOI: 10.1016/j.jad.2022.05.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) and depression are conditions which commonly co-exist. Recent longitudinal studies now suggest a bidirectional association between these disorders, with inconsistent results. We conducted a systematic review and meta-analysis to examine this relationship. METHODS Three electronic databases (PubMed, Embase and PsycINFO) were searched from inception to September 4, 2021 for cohort studies evaluating either the risk of depression in RA patients or the risk of RA in patients with depression, as well as the secondary outcome of all-cause mortality risk in RA patients with depression. A random effects model was used to summarize the included studies. RESULTS Eleven cohort studies were included, comprising a total of 39,130 RA patients, 550,782 patients with depression and 7,802,230 controls. RA patients had a 47% greater risk of incident depression compared to controls, while patients with depression had a 34% greater risk of developing RA. Subgroup analysis by age was only significant in the ≥60 years old age group. RA patients with depression had an 80% increased risk of all-cause mortality compared to those without depression. LIMITATIONS The results may have been confounded by factors such as differing methods of depression ascertainment across studies and overlap in presentation between the two conditions. CONCLUSION There exists a bidirectional association between RA and depression especially in the elderly which increases mortality risk. This invites the need for clinicians to screen and be vigilant for the presence of these conditions.
Collapse
Affiliation(s)
- Chester Yan Hao Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sen Hee Tay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Roger Ho
- Department of Psychological Medicine, National University Hospital, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore.
| | - Wilson W S Tam
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Cyrus S H Ho
- Department of Psychological Medicine, National University Hospital, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| |
Collapse
|
5
|
Li G, Liu H, He Y, Hu Z, Gu Y, Li Y, Ye Y, Hu J. Neurological Symptoms and Their Associations With Inflammatory Biomarkers in the Chronic Phase Following Traumatic Brain Injuries. Front Psychiatry 2022; 13:895852. [PMID: 35815027 PMCID: PMC9263586 DOI: 10.3389/fpsyt.2022.895852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The underlying biological mechanisms for neurological symptoms following a traumatic brain injury (TBI) remain poorly understood. This study investigated the associations between serum inflammatory biomarkers and neurological symptoms in the chronic phase following moderate to severe TBI. METHODS The serum interleukin [IL]-1β, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, and the tumor necrosis factor [TNF]-α in 72 TBI patients 6 months to 2 years post injury were measured. Neurological symptoms including depression, chronic headache, sleep disturbance, irritability, anxiety, and global neurological disability was assessed. The associations between the biomarkers and the neurological symptoms were assessed using correlation and regression analysis. RESULTS It was found that the most common post-injury symptom was sleep disturbance (84.7%), followed by chronic headaches (59.7%), irritability (55.6%), and depression (54.2%). TNF-α was a protective factor for chronic headache (OR = 0.473, 95% CI = 0.235-0.952). IL-6 was positively associated with sleep disturbance (r = 0.274, p = 0.021), while IL-5 and IL-12p70 were negatively associated with the degree of global neurological disability (r = -0.325, p = 0.006; r = -0.319, p = 0.007). CONCLUSION This study provides preliminary evidence for the association between chronic inflammation with neurological symptoms following a TBI, which suggests that anti-inflammatory could be a potential target for post-TBI neurological rehabilitation. Further research with larger sample sizes and more related biomarkers are still needed, however, to elucidate the inflammatory mechanisms for this association.
Collapse
Affiliation(s)
- Gangqin Li
- Department of Forensic Psychiatry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hao Liu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yong He
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zeqing Hu
- Department of Forensic Psychiatry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yan Gu
- Department of Forensic Psychiatry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yan Li
- Department of Forensic Psychiatry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Ye
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Junmei Hu
- Department of Forensic Psychiatry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Brenna A, Ripperger JA, Saro G, Glauser DA, Yang Z, Albrecht U. PER2 mediates CREB-dependent light induction of the clock gene Per1. Sci Rep 2021; 11:21766. [PMID: 34741086 PMCID: PMC8571357 DOI: 10.1038/s41598-021-01178-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023] Open
Abstract
Light affects many physiological processes in mammals such as entrainment of the circadian clock, regulation of mood, and relaxation of blood vessels. At the molecular level, a stimulus such as light initiates a cascade of kinases that phosphorylate CREB at various sites, including serine 133 (S133). This modification leads CREB to recruit the co-factor CRCT1 and the histone acetyltransferase CBP to stimulate the transcription of genes containing a CRE element in their promoters, such as Period 1 (Per1). However, the details of this pathway are poorly understood. Here we provide evidence that PER2 acts as a co-factor of CREB to facilitate the formation of a transactivation complex on the CRE element of the Per1 gene regulatory region in response to light or forskolin. Using in vitro and in vivo approaches, we show that PER2 modulates the interaction between CREB and its co-regulator CRTC1 to support complex formation only after a light or forskolin stimulus. Furthermore, the absence of PER2 abolished the interaction between the histone acetyltransferase CBP and CREB. This process was accompanied by a reduction of histone H3 acetylation and decreased recruitment of RNA Pol II to the Per1 gene. Collectively, our data show that PER2 supports the stimulus-dependent induction of the Per1 gene via modulation of the CREB/CRTC1/CBP complex.
Collapse
Affiliation(s)
- Andrea Brenna
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jürgen A Ripperger
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Gabriella Saro
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Dominique A Glauser
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Zhihong Yang
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
7
|
Brancaccio M, Wolfes AC, Ness N. Astrocyte Circadian Timekeeping in Brain Health and Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:87-110. [PMID: 34773228 DOI: 10.1007/978-3-030-81147-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marco Brancaccio
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, UK.
- UK Dementia Research Institute at Imperial College London, London, UK.
| | - Anne C Wolfes
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Natalie Ness
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| |
Collapse
|
8
|
Zakhvataev VE. Tidal variations of background ionizing radiation and circadian timing of the suprachiasmatic nucleus clock. Med Hypotheses 2020; 140:109667. [PMID: 32182557 DOI: 10.1016/j.mehy.2020.109667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
Recently, correlations of different physiological processes in humans with variations in the local lunisolar gravitational tide force have been observed under highly controlled laboratory conditions. Understanding of the physical nature of this phenomenon needs a comprehensive study of its possible molecular mechanisms. One of the possible timing cues is the strong periodic variation of the emanation fields of radon-222 and its progeny produced by tidal deformations of geological environment. In the present work, we argue that this variation could induce temporal modulation of radiation-induced bystander signaling pathways associated with fundamental regulators of gene expression in the suprachiasmatic nucleus clock.
Collapse
Affiliation(s)
- V E Zakhvataev
- Federal Research Center "Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences", 660036 Krasnoyarsk, Russia; Siberian Federal University, 660041 Krasnoyarsk, Russia.
| |
Collapse
|
9
|
Stenzinger M, Karpova D, Unterrainer C, Harenkamp S, Wiercinska E, Hoerster K, Pfeffer M, Maronde E, Bonig H. Hematopoietic-Extrinsic Cues Dictate Circadian Redistribution of Mature and Immature Hematopoietic Cells in Blood and Spleen. Cells 2019; 8:E1033. [PMID: 31491915 PMCID: PMC6769956 DOI: 10.3390/cells8091033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022] Open
Abstract
Circadian oscillations in circulating leukocyte subsets including immature hematopoietic cells have been appreciated; the origin and nature of these alterations remain elusive. Our analysis of wild-type C57BL/6 mice under constant darkness confirmed circadian fluctuations of circulating leukocytes and clonogenic cells in blood and spleen but not bone marrow. Clock gene deficient Bmal1-/- mice lacked this regulation. Cell cycle analyses in the different hematopoietic compartments excluded circadian changes in total cell numbers, rather favoring shifting hematopoietic cell redistribution as the underlying mechanism. Transplant chimeras demonstrate that circadian rhythms within the stroma mediate the oscillations independently of hematopoietic-intrinsic cues. We provide evidence of circadian CXCL12 regulation via clock genes in vitro and were able to confirm CXCL12 oscillation in bone marrow and blood in vivo. Our studies further implicate cortisol as the conveyor of circadian input to bone marrow stroma and mediator of the circadian leukocyte oscillation. In summary, we establish hematopoietic-extrinsic cues as causal for circadian redistribution of circulating mature/immature blood cells.
Collapse
Affiliation(s)
- Miriam Stenzinger
- Institute for Immunology, University Hospital Heidelberg and Institute for Clinical Transfusion Medicine and Cell Therapy, 69120 Heidelberg, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany
| | - Darja Karpova
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christian Unterrainer
- Institute for Immunology, University Hospital Heidelberg and Institute for Clinical Transfusion Medicine and Cell Therapy, 69120 Heidelberg, Germany
| | - Sabine Harenkamp
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany
| | - Eliza Wiercinska
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany
| | - Keven Hoerster
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany
| | - Martina Pfeffer
- Institute for Anatomy II, Division of Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Erik Maronde
- Institute for Anatomy III, Goethe University, 60596 Frankfurt a. M., Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany.
| |
Collapse
|
10
|
Role of Proinflammatory Cytokines in Feedback Modulation of Circadian Clock Gene Rhythms by Saturated Fatty Acids. Sci Rep 2019; 9:8909. [PMID: 31222133 PMCID: PMC6586641 DOI: 10.1038/s41598-019-45322-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 06/04/2019] [Indexed: 01/03/2023] Open
Abstract
Proinflammatory signaling cascades have been implicated in the mechanism by which high fat diet (HFD) and saturated fatty acids (SFA) modulate fundamental circadian properties of peripheral clocks. Because the cytokines TNFα and IL-6 are key signals in HFD- and SFA-induced proinflammatory responses that ultimately lead to systemic insulin resistance, the present study examined the roles of these cytokines in the feedback modulation of peripheral circadian clocks by the proinflammatory SFA, palmitate. IL-6 and TNFα secretion in Bmal1-dLuc fibroblast cultures was increased during palmitate treatment although the time course and amplitude of the inductive response differed between these cytokines. Similar to the time-dependent phase shifts observed in response to palmitate, treatment with IL-6 or with the low dose (0.1 ng/ml) of TNFα at hour 12 (i.e., after forskolin synchronization) induced phase advances of fibroblast Bmal1-dLuc rhythms. In complementary experiments, treatment with neutralizing antibodies against these proinflammatory cytokines or their receptors to inhibit of IL-6- or TNFα-mediated signaling repressed palmitate-induced phase shifts of the fibroblast clock. These studies suggest that TNFα, IL-6 and other proinflammatory cytokines may mediate the feedback modulation of peripheral circadian clocks by SFA-induced inflammatory signaling.
Collapse
|
11
|
Yu-Taeger L, Stricker-Shaver J, Arnold K, Bambynek-Dziuk P, Novati A, Singer E, Lourhmati A, Fabian C, Magg J, Riess O, Schwab M, Stolzing A, Danielyan L, Nguyen HHP. Intranasal Administration of Mesenchymal Stem Cells Ameliorates the Abnormal Dopamine Transmission System and Inflammatory Reaction in the R6/2 Mouse Model of Huntington Disease. Cells 2019; 8:E595. [PMID: 31208073 PMCID: PMC6628278 DOI: 10.3390/cells8060595] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Intrastriatal administration of mesenchymal stem cells (MSCs) has shown beneficial effects in rodent models of Huntington disease (HD). However, the invasive nature of surgical procedure and its potential to trigger the host immune response may limit its clinical use. Hence, we sought to evaluate the non-invasive intranasal administration (INA) of MSC delivery as an effective alternative route in HD. GFP-expressing MSCs derived from bone marrow were intranasally administered to 4-week-old R6/2 HD transgenic mice. MSCs were detected in the olfactory bulb, midbrain and striatum five days post-delivery. Compared to phosphate-buffered saline (PBS)-treated littermates, MSC-treated R6/2 mice showed an increased survival rate and attenuated circadian activity disruption assessed by locomotor activity. MSCs increased the protein expression of DARPP-32 and tyrosine hydroxylase (TH) and downregulated gene expression of inflammatory modulators in the brain 7.5 weeks after INA. While vehicle treated R6/2 mice displayed decreased Iba1 expression and altered microglial morphology in comparison to the wild type littermates, MSCs restored both, Iba1 level and the thickness of microglial processes in the striatum of R6/2 mice. Our results demonstrate significantly ameliorated phenotypes of R6/2 mice after MSCs administration via INA, suggesting this method as an effective delivering route of cells to the brain for HD therapy.
Collapse
Affiliation(s)
- Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Janice Stricker-Shaver
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Katrin Arnold
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, D-04107 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), D-04103 Leipzig, Germany.
| | - Patrycja Bambynek-Dziuk
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Arianna Novati
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Elisabeth Singer
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Ali Lourhmati
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany.
| | - Claire Fabian
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, D-04107 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), D-04103 Leipzig, Germany.
| | - Janine Magg
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, D-70376 Stuttgart, Germany.
- Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, 0025 Yerevan, Armenia.
- Laboratory of Neuroscience, Yerevan State Medical University, 0025 Yerevan, Armenia.
| | - Alexandra Stolzing
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, D-04107 Leipzig, Germany.
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK.
| | - Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany.
- Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, 0025 Yerevan, Armenia.
- Laboratory of Neuroscience, Yerevan State Medical University, 0025 Yerevan, Armenia.
| | - Hoa Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
- Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, 0025 Yerevan, Armenia.
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany.
- Departments of Medical Chemistry and Biochemistry, Yerevan State Medical University, 0025 Yerevan, Armenia.
| |
Collapse
|
12
|
Agorastos A, Hauger RL, Barkauskas DA, Lerman IR, Moeller-Bertram T, Snijders C, Haji U, Patel PM, Geracioti TD, Chrousos GP, Baker DG. Relations of combat stress and posttraumatic stress disorder to 24-h plasma and cerebrospinal fluid interleukin-6 levels and circadian rhythmicity. Psychoneuroendocrinology 2019; 100:237-245. [PMID: 30390522 DOI: 10.1016/j.psyneuen.2018.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acute and chronic stress can lead to a dysregulation of the immune response. Growing evidence suggests peripheral immune dysregulation and low-grade systemic inflammation in posttraumatic stress disorder (PTSD), with numerous reports of elevated plasma interleukin-6 (IL-6) levels. However, only a few studies have assessed IL-6 levels in the cerebrospinal fluid (CSF). Most of those have used single time-point measurements, and thus cannot take circadian level variability and CSF-plasma IL-6 correlations into account. METHODS This study used time-matched, sequential 24-h plasma and CSF measurements to investigate the effects of combat stress and PTSD on physiologic levels and biorhythmicity of IL-6 in 35 male study volunteers, divided in 3 groups: (PTSD = 12, combat controls, CC = 12, and non-deployed healthy controls, HC = 11). RESULTS Our findings show no differences in diurnal mean concentrations of plasma and CSF IL-6 across the three comparison groups. However, a significantly blunted circadian rhythm of plasma IL-6 across 24 h was observed in all combat-zone deployed participants, with or without PTSD, in comparison to HC. CSF IL-6 rhythmicity was unaffected by combat deployment or PTSD. CONCLUSIONS Although no significant group differences in mean IL-6 concentration in either CSF or plasma over a 24-h timeframe was observed, we provide first evidence for a disrupted peripheral IL-6 circadian rhythm as a sequel of combat deployment, with this disruption occurring in both PTSD and CC groups. The plasma IL-6 circadian blunting remains to be replicated and its cause elucidated in future research.
Collapse
Affiliation(s)
- Agorastos Agorastos
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA; Department of Psychiatry, Division of Neurosciences, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Richard L Hauger
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego (UCSD), CA, USA
| | - Donald A Barkauskas
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA
| | - Imanuel R Lerman
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA; Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA
| | - Tobias Moeller-Bertram
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA
| | - Clara Snijders
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Uzair Haji
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Piyush M Patel
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA
| | - Thomas D Geracioti
- University of Cincinnati Medical Center, Department of Psychiatry and Neurobehavioral Sciences, Cincinnati, OH, USA
| | - George P Chrousos
- First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Dewleen G Baker
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego (UCSD), CA, USA.
| |
Collapse
|
13
|
Clocking In Time to Gate Memory Processes: The Circadian Clock Is Part of the Ins and Outs of Memory. Neural Plast 2018; 2018:6238989. [PMID: 29849561 PMCID: PMC5925033 DOI: 10.1155/2018/6238989] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/22/2018] [Accepted: 02/05/2018] [Indexed: 01/11/2023] Open
Abstract
Learning, memory consolidation, and retrieval are processes known to be modulated by the circadian (circa: about; dies: day) system. The circadian regulation of memory performance is evolutionarily conserved, independent of the type and complexity of the learning paradigm tested, and not specific to crepuscular, nocturnal, or diurnal organisms. In mammals, long-term memory (LTM) formation is tightly coupled to de novo gene expression of plasticity-related proteins and posttranslational modifications and relies on intact cAMP/protein kinase A (PKA)/protein kinase C (PKC)/mitogen-activated protein kinase (MAPK)/cyclic adenosine monophosphate response element-binding protein (CREB) signaling. These memory-essential signaling components cycle rhythmically in the hippocampus across the day and night and are clearly molded by an intricate interplay between the circadian system and memory. Important components of the circadian timing mechanism and its plasticity are members of the Period clock gene family (Per1, Per2). Interestingly, Per1 is rhythmically expressed in mouse hippocampus. Observations suggest important and largely unexplored roles of the clock gene protein PER1 in synaptic plasticity and in the daytime-dependent modulation of learning and memory. Here, we review the latest findings on the role of the clock gene Period 1 (Per1) as a candidate molecular and mechanistic blueprint for gating the daytime dependency of memory processing.
Collapse
|
14
|
Pierre K, Rao RT, Hartmanshenn C, Androulakis IP. Modeling the Influence of Seasonal Differences in the HPA Axis on Synchronization of the Circadian Clock and Cell Cycle. Endocrinology 2018; 159:1808-1826. [PMID: 29444258 PMCID: PMC6044315 DOI: 10.1210/en.2017-03226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022]
Abstract
Synchronization of biological functions to environmental signals enables organisms to anticipate and appropriately respond to daily external fluctuations and is critical to the maintenance of homeostasis. Misalignment of circadian rhythms with environmental cues is associated with adverse health outcomes. Cortisol, the downstream effector of hypothalamic-pituitary-adrenal (HPA) activity, facilitates synchronization of peripheral biological processes to the environment. Cortisol levels exhibit substantial seasonal rhythmicity, with peak levels occurring during the short-photoperiod winter months and reduced levels occurring in the long-photoperiod summer season. Seasonal changes in cortisol secretion could therefore alter its entraining capabilities, resulting in a season-dependent modification in the alignment of biological activities with the environment. We develop a mathematical model to investigate the influence of photoperiod-induced seasonal differences in the circadian rhythmicity of the HPA axis on the synchronization of the peripheral circadian clock and cell cycle in a heterogeneous cell population. Model simulations predict that the high-amplitude cortisol rhythms in winter result in the greatest entrainment of peripheral oscillators. Furthermore, simulations predict a circadian gating of the cell cycle with respect to the expression of peripheral clock genes. Seasonal differences in cortisol rhythmicity are also predicted to influence mitotic synchrony, with a high-amplitude winter rhythm resulting in the greatest synchrony and a shift in timing of the cell cycle phases, relative to summer. Our results highlight the primary interactions among the HPA axis, the peripheral circadian clock, and the cell cycle and thereby provide an improved understanding of the implications of circadian misalignment on the synchronization of peripheral regulatory processes.
Collapse
Affiliation(s)
- Kamau Pierre
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rohit T Rao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Clara Hartmanshenn
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
15
|
Bae SA, Androulakis IP. The Synergistic Role of Light-Feeding Phase Relations on Entraining Robust Circadian Rhythms in the Periphery. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017702393. [PMID: 28469414 PMCID: PMC5404903 DOI: 10.1177/1177625017702393] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
The feeding and fasting cycles are strong behavioral signals that entrain biological rhythms of the periphery. The feeding rhythms synchronize the activities of the metabolic organs, such as liver, synergistically with the light/dark cycle primarily entraining the suprachiasmatic nucleus. The likely phase misalignment between the feeding rhythms and the light/dark cycles appears to induce circadian disruptions leading to multiple physiological abnormalities motivating the need to investigate the mechanisms behind joint light-feeding circadian entrainment of peripheral tissues. To address this question, we propose a semimechanistic mathematical model describing the circadian dynamics of peripheral clock genes in human hepatocyte under the control of metabolic and light rhythmic signals. The model takes the synergistically acting light/dark cycles and feeding rhythms as inputs and incorporates the activity of sirtuin 1, a cellular energy sensor and a metabolic enzyme activated by nicotinamide adenine dinucleotide. The clock gene dynamics was simulated under various light-feeding phase relations and intensities, to explore the feeding entrainment mechanism as well as the convolution of light and feeding signals in the periphery. Our model predicts that the peripheral clock genes in hepatocyte can be completely entrained to the feeding rhythms, independent of the light/dark cycle. Furthermore, it predicts that light-feeding phase relationship is a critical factor in robust circadian oscillations.
Collapse
Affiliation(s)
- Seul-A Bae
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
16
|
Monje FJ, Cicvaric A, Acevedo Aguilar JP, Elbau I, Horvath O, Diao W, Glat M, Pollak DD. Disrupted Ultradian Activity Rhythms and Differential Expression of Several Clock Genes in Interleukin-6-Deficient Mice. Front Neurol 2017; 8:99. [PMID: 28382017 PMCID: PMC5360714 DOI: 10.3389/fneur.2017.00099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
The characteristics of the cycles of activity and rest stand out among the most intensively investigated aspects of circadian rhythmicity in humans and experimental animals. Alterations in the circadian patterns of activity and rest are strongly linked to cognitive and emotional dysfunctions in severe mental illnesses such as Alzheimer’s disease (AD) and major depression (MDD). The proinflammatory cytokine interleukin 6 (IL-6) has been prominently associated with the pathogenesis of AD and MDD. However, the potential involvement of IL-6 in the modulation of the diurnal rhythms of activity and rest has not been investigated. Here, we set out to study the role of IL-6 in circadian rhythmicity through the characterization of patterns of behavioral locomotor activity in IL-6 knockout (IL-6 KO) mice and wild-type littermate controls. Deletion of IL-6 did not alter the length of the circadian period or the amount of locomotor activity under either light-entrained or free-running conditions. IL-6 KO mice also presented a normal phase shift in response to light exposure at night. However, the temporal architecture of the behavioral rhythmicity throughout the day, as characterized by the quantity of ultradian activity bouts, was significantly impaired under light-entrained and free-running conditions in IL-6 KO. Moreover, the assessment of clock gene expression in the hippocampus, a brain region involved in AD and depression, revealed altered levels of cry1, dec2, and rev-erb-beta in IL-6 KO mice. These data propose that IL-6 participates in the regulation of ultradian activity/rest rhythmicity and clock gene expression in the mammalian brain. Furthermore, we propose IL-6-dependent circadian misalignment as a common pathogenetic principle in some neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Francisco J Monje
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Ana Cicvaric
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Juan Pablo Acevedo Aguilar
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Immanuel Elbau
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Max Planck Institute of Psychiatry, Munich, Germany
| | - Orsolya Horvath
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Weifei Diao
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Micaela Glat
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
17
|
Sleep quality and cytokine expression after an exhaustive exercise: influence of ACE polymorphism I/D. Sleep Biol Rhythms 2016. [DOI: 10.1007/s41105-016-0077-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Pierre K, Schlesinger N, Androulakis IP. The role of the hypothalamic-pituitary-adrenal axis in modulating seasonal changes in immunity. Physiol Genomics 2016; 48:719-738. [PMID: 27341833 DOI: 10.1152/physiolgenomics.00006.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/23/2016] [Indexed: 12/21/2022] Open
Abstract
Seasonal changes in environmental conditions are accompanied by significant adjustment of multiple biological processes. In temperate regions, the day fraction, or photoperiod, is a robust environmental cue that synchronizes seasonal variations in neuroendocrine and metabolic function. In this work, we propose a semimechanistic mathematical model that considers the influence of seasonal photoperiod changes as well as cellular and molecular adaptations to investigate the seasonality of immune function. Our model predicts that the circadian rhythms of cortisol, our proinflammatory mediator, and its receptor exhibit seasonal differences in amplitude and phase, oscillating at higher amplitudes in the winter season with peak times occurring later in the day. Furthermore, the reduced photoperiod of winter coupled with seasonal alterations in physiological activity induces a more exacerbated immune response to acute stress, simulated in our studies as the administration of an acute dose of endotoxin. Our findings are therefore in accordance with experimental data that reflect the predominance of a proinflammatory state during the winter months. These changes in circadian rhythm dynamics may play a significant role in the seasonality of disease incidence and regulate the diurnal and seasonal variation of disease symptom severity.
Collapse
Affiliation(s)
- Kamau Pierre
- Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey
| | - Naomi Schlesinger
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Ioannis P Androulakis
- Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey; Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, New Jersey; and Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
19
|
Carter SJ, Durrington HJ, Gibbs JE, Blaikley J, Loudon AS, Ray DW, Sabroe I. A matter of time: study of circadian clocks and their role in inflammation. J Leukoc Biol 2016; 99:549-60. [PMID: 26856993 DOI: 10.1189/jlb.3ru1015-451r] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/08/2016] [Indexed: 12/21/2022] Open
Abstract
Circadian rhythms regulate changes in physiology, allowing organisms to respond to predictable environmental demands varying over a 24 h period. A growing body of evidence supports a key role for the circadian clock in the regulation of immune functions and inflammatory responses, which influence the understanding of infections and inflammatory diseases and their treatment. A variety of experimental methods have been used to assess the complex bidirectional crosstalk between the circadian clock and inflammation. In this review, we summarize the organization of the molecular clock, experimental methods used to study circadian rhythms, and both the inflammatory and immune consequences of circadian disturbance.
Collapse
Affiliation(s)
- Stuart J Carter
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Hannah J Durrington
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Julie E Gibbs
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - John Blaikley
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew S Loudon
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David W Ray
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ian Sabroe
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Circadian rhythmicity, variability and correlation of interleukin-6 levels in plasma and cerebrospinal fluid of healthy men. Psychoneuroendocrinology 2014; 44:71-82. [PMID: 24767621 DOI: 10.1016/j.psyneuen.2014.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Interleukin-6 (IL-6) is a cytokine with pleiotropic actions in both the periphery of the body and the central nervous system (CNS). Altered IL-6 secretion has been associated with inflammatory dysregulation and several adverse health consequences. However, little is known about the physiological circadian characteristics and dynamic inter-correlation between circulating and CNS IL-6 levels in humans, or their significance. METHODS Simultaneous assessment of plasma and cerebrospinal fluid (CSF) IL-6 levels was performed hourly in 11 healthy male volunteers over 24h, to characterize physiological IL-6 secretion levels in both compartments. RESULTS IL-6 levels showed considerable within- and between-subject variability in both plasma and CSF, with plasma/CSF ratios revealing consistently higher levels in the CSF. Both CSF and plasma IL-6 levels showed a distinctive circadian variation, with CSF IL-6 levels exhibiting a main 24h, and plasma a biphasic 12h, circadian component. Plasma peaks were roughly at 4 p.m. and 4 a.m., while the CSF peak was at around 7 p.m. There was no correlation between coincident CSF and plasma IL-6 values, but evidence for significant correlations at a negative 7-8h time lag. CONCLUSIONS This study provides evidence in humans for a circadian IL-6 rhythm in CSF and confirms prior observations reporting a plasma biphasic circadian pattern. Our results indicate differential IL-6 regulation across the two compartments and are consistent with local production of IL-6 in the CNS. Possible physiological significance is discussed and implications for further research are highlighted.
Collapse
|
21
|
Circadian Clocks and Inflammation: Reciprocal Regulation and Shared Mediators. Arch Immunol Ther Exp (Warsz) 2014; 62:303-18. [DOI: 10.1007/s00005-014-0286-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
|
22
|
Duhart JM, Leone MJ, Paladino N, Evans JA, Castanon-Cervantes O, Davidson AJ, Golombek DA. Suprachiasmatic astrocytes modulate the circadian clock in response to TNF-α. THE JOURNAL OF IMMUNOLOGY 2013; 191:4656-64. [PMID: 24062487 DOI: 10.4049/jimmunol.1300450] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The immune and the circadian systems interact in a bidirectional fashion. The master circadian oscillator, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, responds to peripheral and local immune stimuli, such as proinflammatory cytokines and bacterial endotoxin. Astrocytes exert several immune functions in the CNS, and there is growing evidence that points toward a role of these cells in the regulation of circadian rhythms. The aim of this work was to assess the response of SCN astrocytes to immune stimuli, particularly to the proinflammatory cytokine TNF-α. TNF-α applied to cultures of SCN astrocytes from Per2(luc) knockin mice altered both the phase and amplitude of PER2 expression rhythms, in a phase-dependent manner. Furthermore, conditioned media from SCN astrocyte cultures transiently challenged with TNF-α induced an increase in Per1 expression in NIH 3T3 cells, which was blocked by TNF-α antagonism. In addition, these conditioned media could induce phase shifts in SCN PER2 rhythms and, when administered intracerebroventricularly, induced phase delays in behavioral circadian rhythms and SCN activation in control mice, but not in TNFR-1 mutants. In summary, our results show that TNF-α modulates the molecular clock of SCN astrocytes in vitro, and also that, in response to this molecule, SCN astrocytes can modulate clock gene expression in other cells and tissues, and induce phase shifts in a circadian behavioral output in vivo. These findings suggest a role for astroglial cells in the alteration of circadian timing by immune activation.
Collapse
Affiliation(s)
- José M Duhart
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, 1876 Bernal, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
23
|
Cermakian N, Lange T, Golombek D, Sarkar D, Nakao A, Shibata S, Mazzoccoli G. Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int 2013; 30:870-88. [PMID: 23697902 DOI: 10.3109/07420528.2013.782315] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Various features, components, and functions of the immune system present daily variations. Immunocompetent cell counts and cytokine levels present variations according to the time of day and the sleep-wake cycle. Moreover, different immune cell types, such as macrophages, natural killer cells, and lymphocytes, contain a circadian molecular clockwork. The biological clocks intrinsic to immune cells and lymphoid organs, together with inputs from the central pacemaker of the suprachiasmatic nuclei via humoral and neural pathways, regulate the function of cells of the immune system, including their response to signals and their effector functions. Consequences of this include, for example, the daily variation in the response to an immune challenge (e.g., bacterial endotoxin injection) and the circadian control of allergic reactions. The circadian-immune connection is bidirectional, because in addition to this circadian control of immune functions, immune challenges and immune mediators (e.g., cytokines) were shown to have strong effects on circadian rhythms at the molecular, cellular, and behavioral levels. This tight crosstalk between the circadian and immune systems has wide-ranging implications for disease, as shown by the higher incidence of cancer and the exacerbation of autoimmune symptoms upon circadian disruption.
Collapse
Affiliation(s)
- Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Scheff JD, Mavroudis PD, Calvano SE, Androulakis IP. Translational applications of evaluating physiologic variability in human endotoxemia. J Clin Monit Comput 2012. [PMID: 23203205 DOI: 10.1007/s10877-012-9418-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dysregulation of the inflammatory response is a critical component of many clinically challenging disorders such as sepsis. Inflammation is a biological process designed to lead to healing and recovery, ultimately restoring homeostasis; however, the failure to fully achieve those beneficial results can leave a patient in a dangerous persistent inflammatory state. One of the primary challenges in developing novel therapies in this area is that inflammation is comprised of a complex network of interacting pathways. Here, we discuss our approaches towards addressing this problem through computational systems biology, with a particular focus on how the presence of biological rhythms and the disruption of these rhythms in inflammation may be applied in a translational context. By leveraging the information content embedded in physiologic variability, ranging in scale from oscillations in autonomic activity driving short-term heart rate variability to circadian rhythms in immunomodulatory hormones, there is significant potential to gain insight into the underlying physiology.
Collapse
Affiliation(s)
- Jeremy D Scheff
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
25
|
Leone MJ, Marpegan L, Duhart JM, Golombek DA. Role of proinflammatory cytokines on lipopolysaccharide-induced phase shifts in locomotor activity circadian rhythm. Chronobiol Int 2012; 29:715-23. [PMID: 22734572 DOI: 10.3109/07420528.2012.682681] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously reported that early night peripheral bacterial lipopolysaccharide (LPS) injection produces phase delays in the circadian rhythm of locomotor activity in mice. We now assess the effects of proinflammatory cytokines on circadian physiology, including their role in LPS-induced phase shifts. First, we investigated whether differential systemic induction of classic proinflammatory cytokines could explain the time-specific behavioral effects of peripheral LPS. Induction levels for plasma interleukin (IL)-1α, IL-1β, IL-6, or tumor necrosis factor (TNF)-α did not differ between animals receiving a LPS challenge in the early day or early night. We next tested the in vivo effects of central proinflammatory cytokines on circadian physiology. We found that intracerebroventricular (i.c.v.) delivery of TNF-α or interleukin IL-1β induced phase delays on wheel-running activity rhythms. Furthermore, we analyzed if these cytokines mediate the LPS-induced phase shifts and found that i.c.v. administration of soluble TNF-α receptor (but not an IL-1β antagonistic) prior to LPS stimulation inhibited the phase delays. Our work suggests that the suprachiasmatic nucleus (SCN) responds to central proinflammatory cytokines in vivo, producing phase shifts in locomotor activity rhythms. Moreover, we show that the LPS-induced phase delays are mediated through the action of TNF-α at the central level, and that systemic induction of proinflammatory cytokines might be necessary, but not sufficient, for this behavioral outcome.
Collapse
Affiliation(s)
- M Juliana Leone
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
26
|
Abstract
Chronic low-grade inflammation, in particular increased concentrations of proinflammatory cytokines such as interleukin (IL)-6 in the circulation, is observed with increasing age, but it is also as a consequence of various medical and psychological conditions, as well as life-style choices. Since molecules such as IL-6 have pleiotropic effects, consequences are wide ranging. This short review summarizes the evidence showing how IL-6 elevations in the context of inflammatory disease affect the organism, with a focus on sleep-related symptoms and fatigue; and conversely, how alterations in sleep duration and quality stimulate increased concentrations of IL-6 in the circulation. Research showing that acute as well as chronic psychological stress also increase concentrations of IL-6 supports the notion of a close link between an organism's response to physiological and psychological perturbations. The findings summarized here further underscore the particular importance of IL-6 as a messenger molecule that connects peripheral regulatory processes with the CNS.
Collapse
Affiliation(s)
- Nicolas Rohleder
- Department of Psychology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts, USA.
| | | | | |
Collapse
|
27
|
O'Callaghan EK, Anderson ST, Moynagh PN, Coogan AN. Long-lasting effects of sepsis on circadian rhythms in the mouse. PLoS One 2012; 7:e47087. [PMID: 23071720 PMCID: PMC3469504 DOI: 10.1371/journal.pone.0047087] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/07/2012] [Indexed: 12/26/2022] Open
Abstract
Daily patterns of activity and physiology are termed circadian rhythms and are driven primarily by an endogenous biological timekeeping system, with the master clock located in the suprachiasmatic nucleus. Previous studies have indicated reciprocal relationships between the circadian and the immune systems, although to date there have been only limited explorations of the long-term modulation of the circadian system by immune challenge, and it is to this question that we addressed ourselves in the current study. Sepsis was induced by peripheral treatment with lipopolysaccharide (5 mg/kg) and circadian rhythms were monitored following recovery. The basic parameters of circadian rhythmicity (free-running period and rhythm amplitude, entrainment to a light/dark cycle) were unaltered in post-septic animals compared to controls. Animals previously treated with LPS showed accelerated re-entrainment to a 6 hour advance of the light/dark cycle, and showed larger phase advances induced by photic stimulation in the late night phase. Photic induction of the immediate early genes c-FOS, EGR-1 and ARC was not altered, and neither was phase-shifting in response to treatment with the 5-HT-1a/7 agonist 8-OH-DPAT. Circadian expression of the clock gene product PER2 was altered in the suprachiasmatic nucleus of post-septic animals, and PER1 and PER2 expression patterns were altered also in the hippocampus. Examination of the suprachiasmatic nucleus 3 months after treatment with LPS showed persistent upregulation of the microglial markers CD-11b and F4/80, but no changes in the expression of various neuropeptides, cytokines, and intracellular signallers. The effects of sepsis on circadian rhythms does not seem to be driven by cell death, as 24 hours after LPS treatment there was no evidence for apoptosis in the suprachiasmatic nucleus as judged by TUNEL and cleaved-caspase 3 staining. Overall these data provide novel insight into how septic shock exerts chronic effects on the mammalian circadian system.
Collapse
Affiliation(s)
- Emma K. O'Callaghan
- Department of Psychology, National University of Ireland Maynooth, Maynooth, County Kildare, Republic of Ireland
| | - Sean T. Anderson
- Department of Psychology, National University of Ireland Maynooth, Maynooth, County Kildare, Republic of Ireland
| | - Paul N. Moynagh
- Institute of Immunology, National University of Ireland Maynooth, Maynooth, County Kildare, Republic of Ireland
| | - Andrew N. Coogan
- Department of Psychology, National University of Ireland Maynooth, Maynooth, County Kildare, Republic of Ireland
- * E-mail:
| |
Collapse
|
28
|
Abstract
During our daily activities, we experience variations in our cognitive performance, which is often accompanied by cravings for small rewards, such as consuming coffee or chocolate. This indicates that the time of day, cognitive performance, and reward may be related to one another. This review will summarize data that describe the influence of the circadian clock on addiction and mood-related behavior and put the data into perspective in relation to memory processes.
Collapse
Affiliation(s)
- Urs Albrecht
- Unit of Biochemistry, Department of Biology, University of Fribourg Fribourg, Switzerland
| |
Collapse
|
29
|
Sadek K, Macklon N, Bruce K, Cagampang F, Cheong Y. Hypothesis: Role for the circadian Clock system and sleep in the pathogenesis of adhesions and chronic pelvic pain? Med Hypotheses 2010; 76:453-6. [PMID: 21146320 DOI: 10.1016/j.mehy.2010.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/14/2010] [Indexed: 11/25/2022]
Abstract
Intra-peritoneal adhesions ensuing from surgery or infection may lead to chronic pelvic pain, bowel obstruction, infertility and additional invasive surgery to resolve adhesion-related complications. As a result adhesions are a major clinical, social and economic concern. The cumulative year-on-year direct costs of adhesion-related readmissions for a 10-year period are more than £ 569 million. The degree of intra-abdominal adhesion formation in an individual patient after a surgical or infective insult remains difficult to predict. This reflects a lack of understanding as to the underlying aetiologies. Several different mechanisms leading to adhesion formation and re-formation have been proposed. These include abnormal modulations in inflammatory status, fibrinolytic pathways and matrix remodelling. A number of preventative strategies have been designed accordingly. However, although each individual model offers specific insights into the aetiology of adhesion formation, none have been shown to provide the basis for a highly effective clinical intervention. A unifying fundamental mechanism remains elusive. In this article we propose that such a mechanism can be found within the molecular control of circadian rhythms and "Clock" gene biology. A number of physiological processes demonstrating circadian variation have been shown to involve 'Clock genes' in the suprachiasmatic nucleus (SCN), which then entrains a similar set of Clock genes in peripheral tissues such as the heart, brain, spleen, lung, liver, skeletal muscle and kidney. The intrinsic time-keeping system influences activity, such as sleep, temperature regulation, rates of metabolism, immune responses, blood pressure and hormone secretion. The function and availability of mediators involved in the inflammatory response, fibrinolytic and anti-coagulation pathways are all under the tight control of the molecular Clock system. These include IL-6, PAI-1, fibrinogen, fibroblasts and TNF-α. We hypothesise that disruptions in the 'Clock system' are central to the causal pathway of adhesion formation. Our hypothesis takes into consideration and utilises current understanding in the field uniting individual principles. Moreover; this hypothesis suggests strategies for optimising existing therapeutic interventions.
Collapse
Affiliation(s)
- Khaled Sadek
- Division of Developmental Origins of Health and Disease (DOHaD), University of Southampton School of Medicine, Coxford Road, Southampton SO16 5YA, United Kingdom.
| | | | | | | | | |
Collapse
|
30
|
Casiraghi LP, Croci DO, Poirier F, Rabinovich GA, Golombek DA. "Time sweet time": circadian characterization of galectin-1 null mice. J Circadian Rhythms 2010; 8:4. [PMID: 20403179 PMCID: PMC2876058 DOI: 10.1186/1740-3391-8-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/19/2010] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Recent evidence suggests a two-way interaction between the immune and circadian systems. Circadian control of immune factors, as well as the effect of immunological variables on circadian rhythms, might be key elements in both physiological and pathological responses to the environment. Among these relevant factors, galectin-1 is a member of a family of evolutionarily-conserved glycan-binding proteins with both extracellular and intracellular effects, playing important roles in immune cell processes and inflammatory responses. Many of these actions have been studied through the use of mice with a null mutation in the galectin-1 (Lgals1) gene. To further analyze the role of endogenous galectin-1 in vivo, we aimed to characterize the circadian behavior of galectin-1 null (Lgals1-/-) mice. METHODS We analyzed wheel-running activity in light-dark conditions, constant darkness, phase responses to light pulses (LP) at circadian time 15, and reentrainment to 6 hour shifts in light-dark schedule in wild-type (WT) and Lgals1-/- mice. RESULTS We found significant differences in free-running period, which was longer in mutant than in WT mice (24.02 vs 23.57 h, p < 0.005), phase delays in response to LP (2.92 vs 1.90 circadian h, p < 0.05), and also in alpha (14.88 vs. 12.35 circadian h, p < 0.05). CONCLUSIONS Given the effect of a null mutation on circadian period and entrainment, we indicate that galectin-1 could be involved in the regulation of murine circadian rhythmicity. This is the first study implicating galectin-1 in the mammalian circadian system.
Collapse
Affiliation(s)
- Leandro P Casiraghi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Argentina
| | - Diego O Croci
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IByME)/CONICET, Argentina
| | - Francoise Poirier
- Jacques Monod Institute, UMR-CNRS7592, Paris Diderot University, 75205 Paris, France
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IByME)/CONICET, Argentina
| | - Diego A Golombek
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Argentina
| |
Collapse
|
31
|
Jilg A, Lesny S, Peruzki N, Schwegler H, Selbach O, Dehghani F, Stehle JH. Temporal dynamics of mouse hippocampal clock gene expression support memory processing. Hippocampus 2010; 20:377-88. [PMID: 19437502 DOI: 10.1002/hipo.20637] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hippocampal plasticity and mnemonic processing exhibit a striking time-of-day dependence and likely implicate a temporally structured replay of memory traces. Molecular mechanisms fulfilling the requirements of sensing time and capturing time-related information are coded in dynamics of so-called clock genes and their protein products, first discovered and described in the hypothalamic suprachiasmatic nucleus. Using real-time PCR and immunohistochemical analyses, we show that in wildtype mice core clock components (mPer1/PER1, mPer2/PER2, mCry1/CRY1, mCry2/CRY2, mClock/CLOCK, mBmal1/BMAL1) are expressed in neurons of all subregions of the hippocampus in a time-locked fashion over a 24-h (diurnal) day/night cycle. Temporal profiling of these transcriptional regulators reveals distinct and parallel peaks, at times when memory traces are usually formed and/or consolidated. The coordinated rhythmic expression of hippocampal clock gene expression is greatly disordered in mice deficient for the clock gene mPer1, a key player implicated in both, maintenance and adaptative plasticity of circadian clocks. Moreover, Per1-knockout animals are severely handicapped in a hippocampus-dependent long-term spatial learning paradigm. We propose that the dynamics of hippocampal clock gene expression imprint a temporal structure on memory processing and shape at the same time the efficacy of behavioral learning.
Collapse
Affiliation(s)
- Antje Jilg
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie, Goethe-University, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Bonda T, Kaminski KA, Kozuch M, Kozieradzka A, Wojtkowska I, Dobrzycki S, Kralisz P, Nowak K, Prokopczuk P, Musial WJ. Circadian variations of interleukin 6 in coronary circulations of patients with myocardial infarction. Cytokine 2010; 50:204-9. [PMID: 20171115 DOI: 10.1016/j.cyto.2010.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 12/08/2009] [Accepted: 01/19/2010] [Indexed: 11/15/2022]
Abstract
UNLABELLED We hypothesize that higher morbidity of patients with ST-segment elevation myocardial infarction (STEMI) in the out-of-office hours differences in outcome after myocardial infarction may depend on the concentrations of inflammatory cytokines. The aim of the study was to determine the relation between the time of percutaneous coronary intervention (PCI) and local concentration of interleukin 6 (IL-6) and its soluble receptors (sIL-6R and sgp130) in patients with STEMI. METHODS AND RESULTS The study included 32 patients with invasively treated left anterior descending artery occlusion and no significant co-morbidities. Blood samples were drawn from coronary sinus and aorta before and after intervention. Patients admitted in the afternoon (13-20) presented significantly higher mean IL-6 levels in all samples than patients admitted in the morning. There was a positive correlation between time of intervention and concentrations of IL-6 in all samplings, but also with transcardiac IL-6 gradient at the end of procedure and IL-6 increase during PCI. We did not find any significant association between time of PCI and concentrations of sIL-6R and sgp130, time from pain to balloon, angiographic parameters or medical history. CONCLUSIONS Coronary concentration of IL-6 in patients with STEMI is significantly higher in the afternoon than in the morning. This might be involved in increased morbidity of those patients.
Collapse
Affiliation(s)
- Tomasz Bonda
- Medical University of Bialystok, Department of Cardiology, ul. Sklodowskiej 24a, Bialystok, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lévi F, Okyar A, Dulong S, Innominato PF, Clairambault J. Circadian Timing in Cancer Treatments. Annu Rev Pharmacol Toxicol 2010; 50:377-421. [DOI: 10.1146/annurev.pharmtox.48.113006.094626] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The circadian timing system is composed of molecular clocks, which drive 24-h changes in xenobiotic metabolism and detoxification, cell cycle events, DNA repair, apoptosis, and angiogenesis. The cellular circadian clocks are coordinated by endogenous physiological rhythms, so that they tick in synchrony in the host tissues that can be damaged by anticancer agents. As a result, circadian timing can modify 2- to 10-fold the tolerability of anticancer medications in experimental models and in cancer patients. Improved efficacy is also seen when drugs are given near their respective times of best tolerability, due to (a) inherently poor circadian entrainment of tumors and (b) persistent circadian entrainment of healthy tissues. Conversely, host clocks are disrupted whenever anticancer drugs are administered at their most toxic time. On the other hand, circadian disruption accelerates experimental and clinical cancer processes. Gender, circadian physiology, clock genes, and cell cycle critically affect outcome on cancer chronotherapeutics. Mathematical and systems biology approaches currently develop and integrate theoretical, experimental, and technological tools in order to further optimize and personalize the circadian administration of cancer treatments.
Collapse
Affiliation(s)
- Francis Lévi
- INSERM, U776 Rythmes Biologiques et Cancers, Hôpital Paul Brousse, Villejuif, F-94807, France
- Univ Paris-Sud, UMR-S0776, Orsay, F-91405, France
- Assistance Publique-Hôpitaux de Paris, Unité de Chronothérapie, Département de Cancérologie, Hôpital Paul Brousse, Villejuif, F-94807, France
| | - Alper Okyar
- INSERM, U776 Rythmes Biologiques et Cancers, Hôpital Paul Brousse, Villejuif, F-94807, France
- Istanbul University Faculty of Pharmacy, Department of Pharmacology, Beyazit TR-34116, Istanbul, Turkey
| | - Sandrine Dulong
- INSERM, U776 Rythmes Biologiques et Cancers, Hôpital Paul Brousse, Villejuif, F-94807, France
- Univ Paris-Sud, UMR-S0776, Orsay, F-91405, France
| | - Pasquale F. Innominato
- INSERM, U776 Rythmes Biologiques et Cancers, Hôpital Paul Brousse, Villejuif, F-94807, France
- Univ Paris-Sud, UMR-S0776, Orsay, F-91405, France
- Assistance Publique-Hôpitaux de Paris, Unité de Chronothérapie, Département de Cancérologie, Hôpital Paul Brousse, Villejuif, F-94807, France
| | - Jean Clairambault
- INSERM, U776 Rythmes Biologiques et Cancers, Hôpital Paul Brousse, Villejuif, F-94807, France
- Univ Paris-Sud, UMR-S0776, Orsay, F-91405, France
- INRIA Rocquencourt, Domaine de Voluceau, BP 105, F-78153 Rocquencourt, France;, , , ,
| |
Collapse
|
34
|
Guess J, Burch JB, Ogoussan K, Armstead CA, Zhang H, Wagner S, Hebert JR, Wood P, Youngstedt SD, Hofseth LJ, Singh UP, Xie D, Hrushesky WJM. Circadian disruption, Per3, and human cytokine secretion. Integr Cancer Ther 2009; 8:329-36. [PMID: 19926609 DOI: 10.1177/1534735409352029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circadian disruption has been linked with inflammation, an established cancer risk factor. Per3 clock gene polymorphisms have also been associated with circadian disruption and with increased cancer risk. Patients completed a questionnaire and provided a blood sample prior to undergoing a colonoscopy (n = 70). Adjusted mean serum cytokine concentrations (IL-6, TNF-alpha, gamma-INF, IL-1ra, IL-1-beta, VEGF) were compared among patients with high and low scores for fatigue (Multidimensional Fatigue Inventory), depressive symptoms (Beck Depression Inventory II), or sleep disruption (Pittsburgh Sleep Quality Index), or among patients with different Per3 clock gene variants. Poor sleep was associated with elevated VEGF, and fatigue-related reduced activity was associated with elevated TNF-alpha concentrations. Participants with the 4/5 or 5/5 Per3 variable tandem repeat sequence had elevated IL-6 concentrations compared to those with the 4/4 genotype. Biological processes linking circadian disruption with cancer remain to be elucidated. Increased inflammatory cytokine secretion may play a role.
Collapse
Affiliation(s)
- Jaclyn Guess
- Department of Epidemiology and Biostatistics, Cancer Prevention and Control Program, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Filipski E, Subramanian P, Carrière J, Guettier C, Barbason H, Lévi F. Circadian disruption accelerates liver carcinogenesis in mice. Mutat Res 2009; 680:95-105. [PMID: 19833225 DOI: 10.1016/j.mrgentox.2009.10.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 10/02/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND The circadian timing system rhythmically controls behavior, physiology, cellular proliferation and xenobiotic metabolism over the 24-h period. The suprachiasmatic nuclei in the hypothalamus coordinate the molecular clocks in most mammalian cells through an array of circadian physiological rhythms including rest-activity, body temperature, feeding patterns and hormonal secretions. As a result, shift work that involves circadian disruption is probably carcinogenic in humans. In experimental models, chronic jet-lag (CJL) suppresses rest-activity and body temperature rhythms and accelerates growth of two transplantable tumors in mice. CJL also suppresses or significantly alters the expression rhythms of clock genes in liver and tumors. Circadian clock disruption from CJL downregulates p53 and upregulates c-Myc, thus favoring cellular proliferation. Here, we investigate the role of CJL as a tumor promoter in mice exposed to the hepatic carcinogen, diethylnitrosamine (DEN). METHODS In experiment 1 (Exp 1), the dose-dependent carcinogenicity of chronic intraperitoneal (i.p.) administration of DEN was explored in mice. In Exp 2, mice received DEN at 10 mg/kg/day (cumulative dose: 243 mg/kg), then were randomized to remain in a photoperiodic regimen where 12 h of light alternates with 12 h of darkness (LD 12:12) or to be submitted to CJL (8-h advance of light onset every 2 days). Rest-activity and body temperature were monitored. Serum liver enzymes were determined repeatedly. Mice were sacrificed and examined for neoplastic lesions at 10 months. RESULTS In Exp 1, DEN produced liver cancers in all the mice receiving 10 mg/kg/day. In Exp 2, mice on CJL had increased mean plasma levels of aspartate aminotransferase and more liver tumors as compared to LD mice at approximately 10 months (p = 0.005 and 0.028, respectively). The mean diameter of the largest liver tumor was twice as large in CJL vs LD mice (8.5 vs 4.4 mm, p = 0.027). In LD, a single histologic tumor type per liver was observed. In CJL, up to four different types were associated in the same liver (hepatocellular- or cholangio-carcinomas, sarcomas or mixed tumors). DEN itself markedly disrupted the circadian rhythms in rest-activity and body temperature in all the mice. DEN-induced disruption was prolonged for >or= 3 months by CJL exposure. CONCLUSIONS The association of circadian disruption with chronic DEN exposure suggests that circadian clocks actively control the mechanisms of liver carcinogenesis in mice. Persistent circadian coordination may further be critical for slowing down and/or reverting cancer development after carcinogen exposure.
Collapse
Affiliation(s)
- Elisabeth Filipski
- INSERM, U776 Rythmes Biologiques et Cancers, Hôpital Paul Brousse, Villejuif F-94807, France
| | | | | | | | | | | |
Collapse
|
36
|
Burioka N, Koyanagi S, Fukuoka Y, Okazaki F, Fujioka T, Kusunose N, Endo M, Suyama H, Chikumi H, Ohdo S, Shimizu E. Influence of intermittent hypoxia on the signal transduction pathways to inflammatory response and circadian clock regulation. Life Sci 2009; 85:372-8. [PMID: 19616563 DOI: 10.1016/j.lfs.2009.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/24/2009] [Accepted: 07/01/2009] [Indexed: 11/19/2022]
Abstract
AIMS Obstructive sleep apnea syndrome (OSAS), characterized by intermittent hypoxia/reoxygenation (IHR), is often associated with changing levels of circulating inflammatory cytokines and causes excessive daytime sleepiness, mood disturbances, and cardiovascular disease. An abnormal rhythm in the expression of circadian clock genes is observed in OSAS patients, and is also implicated in OSAS-related clinical symptoms. IHR-induced signal transduction is thought to underlie OSAS-associated complications. The aim of this study is to elucidate the influence of IHR on signal transduction pathways to inflammatory response and circadian clock regulation. MAIN METHODS To evaluate the direct action of IHR on intracellular signaling, we used a cell culture model to explore the underlying transcriptional events initiated by IHR. KEY FINDINGS Treatment of cultured human lung adenocarcinoma epithelial cells (A549) with IHR resulted in the elevation of mRNA levels of an inflammation cytokine interleukin-6 (IL-6), due to activation of the signaling pathway of nuclear factor-kappaB, a potent transcriptional activator of IL-6. On the other hand, the treatment of cells with IHR had little effect on clock gene response element-driven transcription. As a consequence, there was no significant change in mRNA levels of clock genes in IHR-treated cells. SIGNIFICANCE These results suggest that IHR can activate signal transduction to an inflammatory response, but not to circadian clock regulation. The abnormal rhythm in the expression of clock genes in OSAS patients is attributable to the changed levels of circulating factors that have the ability to modulate clock gene expression.
Collapse
Affiliation(s)
- Naoto Burioka
- Division of Medical Oncology and Molecular Respirology, Faculty of Medicine, Tottori University, 36-1 Nishimachi, Yonago 683-8504, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Lin YM, Chang JH, Yeh KT, Yang MY, Liu TC, Lin SF, Su WW, Chang JG. Disturbance of circadian gene expression in hepatocellular carcinoma. Mol Carcinog 2008; 47:925-33. [PMID: 18444243 DOI: 10.1002/mc.20446] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Circadian rhythm plays an important role in the regulation of digestive system. The human circadian rhythm is controlled by at least nine circadian genes. The aims of this study are to understand the expression of the circadian genes between hepatocellular carcinoma tissues and nontumor tissues, and to explore the possible mechanism(s) contributing to the difference. We analyzed differential expression of the 9 circadian genes in 46 hepatocellular carcinoma and paired noncancerous tissues by real-time quantitative RT-PCR and immunohistochemical detection. We also tested the possible regulatory mechanism(s) by direct sequencing and methylation PCR analysis. Our results showed that decreased expression levels of PER1, PER2, PER3, CRY2, and TIM in hepatocellular carcinomas were observed. Decreased-expression of these genes was not caused by genetic mutations, but by several factors, such as promoter methylation, overexpression of EZH2 or other factors. The down expression of more circadian genes may result in disturbance of cell cycle, and it is correlated with the tumor size. Downregulation of circadian genes results in disturbance of circadian rhythm in hepatocellular carcinoma which may disrupt the control of the central pacemaker and benefit selective survival of cancerous cells and promote carcinogenesis.
Collapse
Affiliation(s)
- Yueh-Min Lin
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Institute of Clinical Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Are circadian rhythms the code of hypothalamic-immune communication? Insights from natural killer cells. Neurochem Res 2007; 33:708-18. [PMID: 17965936 DOI: 10.1007/s11064-007-9501-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2007] [Indexed: 10/22/2022]
Abstract
Circadian rhythms in physiology and behavior are ultimately regulated at the hypothalamic level by the suprachiasmatic nuclei (SCN). This central oscillator transduces photic information to the cellular clocks in the periphery through the autonomic nervous system and the neuroendocrine system. The fact that these two systems have been shown to modulate leukocyte physiology supports the concept that the circadian component is an important aspect of hypothalamic-immune communication. Circadian disruption has been linked to immune dysregulation, and recent reports suggest that several circadian clock genes, in addition to their time-keeping role, are involved in the immune response. In this overview, we summarize the findings demonstrating that Natural Killer (NK) cell function is under circadian control.
Collapse
|
40
|
Lévi F, Focan C, Karaboué A, de la Valette V, Focan-Henrard D, Baron B, Kreutz F, Giacchetti S. Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Adv Drug Deliv Rev 2007; 59:1015-35. [PMID: 17692427 DOI: 10.1016/j.addr.2006.11.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 11/11/2006] [Indexed: 12/27/2022]
Abstract
The circadian timing system controls drug metabolism and cellular proliferation over the 24 h through molecular clocks in each cell, circadian physiology, and the suprachiasmatic nuclei--a hypothalamic pacemaker clock that coordinates circadian rhythms. As a result, both the toxicity and efficacy of over 30 anticancer agents vary by more than 50% as a function of dosing time in experimental models. The circadian timing system also down-regulates malignant growth in experimental models and possibly in cancer patients. Programmable-in-time infusion pumps and rhythmic physiology monitoring devices have made possible the application of chronotherapeutics to more than 2000 cancer patients without hospitalization. This strategy first revealed the antitumor efficacy of oxaliplatin against colorectal cancer. In this disease, international clinical trials have shown a five-fold improvement in patient tolerability and near doubling of antitumor activity through the chronomodulated, in comparison to constant-rate, delivery of oxaliplatin and 5-fluorouracil-leucovorin. Here, the relevance of the peak time, with reference to circadian rhythms, of the chemotherapeutic delivery of these cancer medications for achieving best tolerability was investigated in 114 patients with metastatic colorectal cancer and in 45 patients with non-small cell lung cancer. The incidence of severe adverse events varied up to five-fold as a function of the choice of when during the 24 h the peak dose of the medications was timed. The optimal chronomodulated schedules corresponded to peak delivery rates at 1 a.m. or 4 a.m. for 5-fluorouracil-leucovorin, at 1 p.m. or 4 p.m. for oxaliplatin, and at 4 p.m. for carboplatin. Sex of patient was an important determinant of drug schedule tolerability. This finding is consistent with recent results from a chronotherapy trial involving 554 patients with metastatic colorectal cancer, where sex also predicted survival outcome from chronotherapy, but not conventional drug delivery. Ongoing translational studies, mathematical modeling, and technology developments are further paving the way for tailoring cancer chronotherapeutics to the main rhythmic characteristics of the individual patient. Targeting therapeutic delivery to the dynamics of the cross-talk between the circadian clock, the cell division cycle, and pharmacology pathways represents a new challenge to concurrently improve the quality of life and survival of cancer patients through personalized cancer chronotherapeutics.
Collapse
Affiliation(s)
- Francis Lévi
- INSERM, U776 Rythmes biologiques et cancers, Hôpital Paul Brousse, Villejuif, F-94807, France.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Esquifino AI, Cano P, Jiménez-Ortega V, Fernández-Mateos P, Cardinali DP. Neuroendocrine-immune correlates of circadian physiology: studies in experimental models of arthritis, ethanol feeding, aging, social isolation, and calorie restriction. Endocrine 2007; 32:1-19. [PMID: 17992597 DOI: 10.1007/s12020-007-9009-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
Abstract
Virtually all neuroendocrine and immunological variables investigated in animals and humans display biological periodicity. Circadian rhythmicity is revealed for every hormone in circulation as well as for circulating immune cells, lymphocyte metabolism and transformability, cytokines, receptors, and adhesion molecules. Clock genes, notably the three Period (Per1/Per2/Per3) genes and two Cryptochrome (Cry1/Cry2) genes, are present in immune and endocrine cells and are expressed in a circadian manner in human cells. This review discusses the circadian disruption of hormone release and immune-related mechanisms in several animal models in which circulating cytokines are modified including rat adjuvant arthritis, social isolation in rats and rabbits and alcoholism, the aging process and calorie restriction in rats. In every case the experimental manipulation used perturbed the temporal organization by affecting the shape and amplitude of a rhythm or by modifying the intrinsic oscillatory mechanism itself.
Collapse
Affiliation(s)
- Ana I Esquifino
- Departamento de Bioquimica y Biologia Molecular III, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain.
| | | | | | | | | |
Collapse
|
42
|
Abstract
In mammals, the master circadian clock that drives many biochemical, physiological and behavioral rhythms is located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Generation and maintenance of circadian rhythms rely on complex interlaced feedback loops based on transcriptional and posttranscriptional events involving clock genes and kinases. This clock serves the purpose to organize an organism's biochemistry on a 24 h time scale thereby avoiding interference between biochemical pathways and optimizing performance. Synchronization to environmental 24 h oscillations tunes physiological processes optimally with nature. In this review, I briefly describe the principle of the clock mechanism, its synchronization to the environment and consequences on health when the circadian clock is disrupted.
Collapse
Affiliation(s)
- Urs Albrecht
- Department of Medicine, Division of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
43
|
Abstract
The mammalian circadian system is organized in a hierarchical manner in that a central pacemaker in the suprachiasmatic nucleus (SCN) of the brain's hypothalamus synchronizes cellular circadian oscillators in most peripheral body cells. Fasting-feeding cycles accompanying rest-activity rhythms are the major timing cues in the synchronization of many, if not most, peripheral clocks, suggesting that the temporal coordination of metabolism and proliferation is a major task of the mammalian timing system. The inactivation of noxious food components by hepatic, intestinal, and renal detoxification systems is among the metabolic processes regulated in a circadian manner, with the understanding of the involved clock output pathways emerging. The rhythmic control of xenobiotic detoxification provides the molecular basis for the dosing time-dependence of drug toxicities and efficacy. This knowledge can in turn be used in improving or designing chronotherapeutics for the patients who suffer from many of the major human diseases.
Collapse
Affiliation(s)
- Francis Levi
- INSERM U776, Unité de Chronothérapie, Service de Cancérologie, Hôpital Paul Brousse et Université Paris XI, 94800 Villejuif, France.
| | | |
Collapse
|
44
|
Azama T, Yano M, Oishi K, Kadota K, Hyun K, Tokura H, Nishimura S, Matsunaga T, Iwanaga H, Miki H, Okada K, Hiraoka N, Miyata H, Takiguchi S, Fujiwara Y, Yasuda T, Ishida N, Monden M. Altered expression profiles of clock genes hPer1 and hPer2 in peripheral blood mononuclear cells of cancer patients undergoing surgery. Life Sci 2007; 80:1100-8. [PMID: 17215009 DOI: 10.1016/j.lfs.2006.11.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 11/17/2006] [Accepted: 11/27/2006] [Indexed: 11/26/2022]
Abstract
Patients undergoing surgery often develop symptoms of circadian rhythm disorders such as insomnia or delirium. However, the effect of surgery on the biological clock remains unknown. The present study examines the expression of clock genes in peripheral blood mononuclear cells (PBMCs) and measures plasma hormone concentrations in patients with esophageal cancer and early gastric cancer who underwent surgery. Six blood samples per day were collected from 9 patients with esophageal cancer before and after esophagectomy and from 9 patients with early gastric cancer before and after laparoscopy-assisted distal gastrectomy (LADG). The expression profiles of hPer1 and hPer2 mRNAs in PBMCs were determined by real-time RT-PCR. Plasma melatonin and cortisol concentrations were measured by radioimmunoassay. Plasma melatonin levels decreased in both groups throughout the day and plasma cortisol levels changed after surgery. The acrophase of clock gene expression was altered after surgery as follows: hPer1, from 6:19+/-1:50 to 13:59+/-0:59 (p=0.0003) and from 7:47+/-1:27 to 12:33+/-1:30 (p=0.0043) and hPer2, from 5:01+/-2:59 to 19:30+/-2:15 (p<0.0001) and from 6:49+/-1:59 to 13:39+/-3:06 (p=0.0171) in patients with esophageal and early gastric cancer, respectively. The post-operative phase change of hPer2 was more prominent after esophagectomy than after LADG. Our results suggest that surgical stress affects the peripheral clock as well as endogenous hormones in humans.
Collapse
Affiliation(s)
- Takashi Azama
- Department of Surgery and Clinical Oncology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Motzkus D, Loumi S, Cadenas C, Vinson C, Forssmann WG, Maronde E. Activation of human period-1 by PKA or CLOCK/BMAL1 is conferred by separate signal transduction pathways. Chronobiol Int 2007; 24:783-92. [PMID: 17994337 DOI: 10.1080/07420520701672481] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Circadian clocks are self-sustained biochemical oscillators that autonomously generate a near-24 h cycle in the absence of external signals. The process of synchronization to the environment involves the transcriptional activation of several genes. Photic input signals from the retina are transduced via the retinohypothalamic tract to the central pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. It is known that cells of peripheral organs possess similar molecular organizations, but the signal transductional pathways lack direct light entrainment. It has been assumed that the adaptation of peripheral organs to the SCN phase is achieved by the alternate usage of promoter elements. This question has been addressed by characterizing the signal transductional pathways regulating human Period-1 gene expression in human hepatoma cells (HuH-7). Plasmids coding for key modulators of circadian rhythm, hCLOCK, hBMAL1, and hCRY2 were used to analyze the activation of a human period-1 promoter luciferase (hPER1-luc) construct. Beside classical CLOCK/BMAL1 activation, hPER1-luc was also inducible by the overexpression of the catalytic subunit of PKA (Calpha). The cotransfection of dominant negative constructs to c-FOS, CREB, PKA, and C/EBP were used to characterize both regulatory pathways. It was found that hCLOCK/hBMAL1-mediated hPER1 activation was influenced by AP1, but not significantly by other regulators. Conversely, PKA-induced activation of hPER1 was reduced by the inhibition of CREB and the CCAAT-box binding protein C/EBP, but not by AP1. The present findings imply that CLOCK/BMAL1-mediated activation of hPER1 by AP1 and E-Box elements is distinct from peripheral transcriptional modulation via cAMP-induced CREB and C/EBP.
Collapse
|
46
|
Lévi F, Filipski E, Iurisci I, Li XM, Innominato P. Cross-talks between circadian timing system and cell division cycle determine cancer biology and therapeutics. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:465-75. [PMID: 18419306 DOI: 10.1101/sqb.2007.72.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The circadian clock orchestrates cellular functions over 24 hours, including cell divisions, a process that results from the cell cycle. The circadian clock and cell cycle interact at the level of genes, proteins, and biochemical signals. The disruption or the reinforcement of the host circadian timing system, respectively, accelerates or slows down cancer growth through modifications of host and tumor circadian clocks. Thus, cancer cells not only display mutations of cell cycle genes but also exhibit severe defects in clock gene expression levels or 24-hour patterns, which can in turn favor abnormal proliferation. Most of the experimental research actively ongoing in this field has been driven by the original demonstration that cancer patients with poor circadian rhythms had poor quality of life and poor survival outcome independently of known prognostic factors. Further basic research on the gender dependencies in circadian properties is now warranted, because a large clinical trial has revealed that gender can largely affect the survival outcome of cancer patients on chronotherapeutic delivery. Mathematical models further show that the therapeutic index of chemotherapeutic drugs can be optimized through distinct delivery profiles, depending on the initial host/tumor status and variability in circadian entrainment and/or cell cycle length. Clinical trials and systems-biology approaches in cancer chronotherapeutics raise novel issues to be addressed experimentally in the field of biological clocks. The challenge ahead is to therapeutically harness the circadian timing system to concurrently improve quality of life and down-regulate malignant growth.
Collapse
Affiliation(s)
- F Lévi
- INSERM, U776 Rythmes biologiques et cancers, Hôpital Paul Brousse, Villejuif, F-94807, France
| | | | | | | | | |
Collapse
|
47
|
Arjona A, Sarkar DK. Evidence supporting a circadian control of natural killer cell function. Brain Behav Immun 2006; 20:469-76. [PMID: 16309885 DOI: 10.1016/j.bbi.2005.10.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 10/05/2005] [Accepted: 10/11/2005] [Indexed: 11/25/2022] Open
Abstract
Natural killer (NK) cells participate in the immune response against infection and cancer. An emerging body of epidemiological data supports that circadian homeostasis may constitute a factor risk for cancer development. Physiological rhythms under circadian control persist in the absence of light entrainment and ultimately rely on a molecular clock. We have previously shown that NK cell cytolytic activity follows a daily rhythm and that NK cells enriched from light-entrained rats present 24-h oscillations of clock genes, cytolytic factors, and cytokines. To investigate whether these oscillations are under a genuine circadian control, we assessed the daily expression of clock genes (Per1, Per2, Clock, and Bmal1), a clock-controlled gene (Dbp), cytolytic factors (granzyme B and perforin), and cytokines (IFN-gamma and TNF-alpha) in NK cells enriched from rats maintained in constant darkness (DD). In addition, we investigated whether the disruption of the NK cell clock by RNA interference (RNAi) affects the expression of cytolytic factors and cytokines. Persistent 24-h oscillations were found in the expression levels of clock genes, cytolytic factors, and cytokines in NK cells enriched from DD rats. In addition, RNAi-mediated Per2 knockdown caused a significant decrease of granzyme B and perforin levels in the rat derived NK cell line RNK16. Taken together, these results provide evidence supporting that NK cell function is under circadian regulation.
Collapse
Affiliation(s)
- Alvaro Arjona
- Endocrinology Program and Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | | |
Collapse
|
48
|
Kaeffer B, Pardini L. Clock genes of mammalian cells: Practical implications in tissue culture. In Vitro Cell Dev Biol Anim 2005; 41:311-20. [PMID: 16448219 DOI: 10.1007/s11626-005-0001-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The clock genes family is expressed by all the somatic cells driving central and peripheral circadian rhythms through transcription/translation feedback loops. The circadian clock provides a local time for a cell and a way to integrate the normal environmental changes to smoothly adapt the cellular machinery to new conditions. The central circadian rhythm is retained in primary cultures by neurons of the suprachiasmatic nuclei. The peripheral circadian rhythms of the other somatic cells are progressively dampened down up to loss unless neuronal signals of the central clock are provided for re-entrainment. Under typical culture conditions (obscurity, 37 +/- 1 degrees C, 5-7% CO(2)), freshly explanted peripheral cells harbor chaotic expression of clock genes for 12-14 h and loose, coordinated oscillating patterns of clock components. Cells of normal or cancerous phenotypes established in culture harbor low levels of clock genes idling up to the re-occurrence of new synchronizer signals. Synchronizers are physicochemical cues (like thermic oscillations, short-term exposure to high concentrations of serum or single medium exchange) able to re-induce molecular oscillations of clock genes. The environmental synchronizers are integrated by response elements located in the promoter region of period genes that drive the central oscillator complex (CLOCK:BMAL1 and NPAS2:BMAL1 heterodimers). Only a few cell lines from different species and lineages have been tested for the existence or the functioning of a circadian clockwork. The best characterized cell lines are the immortalized SCN2.2 neurons of rat suprachiasmatic nuclei for the central clock and the Rat-1 fibroblasts or the NIH/3T3 cells for peripheral clocks. Isolation methods of fragile cell phenotypes may benefit from research on the biological clocks to design improved tissue culture media and new bioassays to diagnose pernicious consequences for health of circadian rhythm alterations.
Collapse
Affiliation(s)
- Bertrand Kaeffer
- CRNH de Nantes, Institut National Recherche Agronomique, Unité Fonctions Digestives et Nutrition Humaine, BP 71627 44316, NANTES, Cedex 03, France.
| | | |
Collapse
|
49
|
Arjona A, Sarkar DK. Circadian Oscillations of Clock Genes, Cytolytic Factors, and Cytokines in Rat NK Cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:7618-24. [PMID: 15944262 DOI: 10.4049/jimmunol.174.12.7618] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A growing body of knowledge is revealing the critical role of circadian physiology in the development of specific pathological entities such as cancer. NK cell function participates in the immune response against infection and malignancy. We have reported previously the existence of a physiological circadian rhythm of NK cell cytolytic activity in rats, suggesting the existence of circadian mechanisms subjacent to NK cell function. At the cellular level, circadian rhythms are originated by the sustained transcriptional-translational oscillation of clock genes that form the cellular clock apparatus. Our aim in this study was to investigate the presence of molecular clock mechanisms in NK cells as well as the circadian expression of critical factors involved in NK cell function. For that purpose, we measured the circadian changes in the expression of clock genes (Per1, Per2, Bmal1, Clock), Dbp (a clock-controlled output gene), CREB (involved in clock signaling), cytolytic factors (granzyme B and perforin), and cytokines (IFN-gamma and TNF-alpha) in NK cells enriched from the rat spleen. The results obtained from this study demonstrate for the first time the existence of functional molecular clock mechanisms in NK cells. Moreover, the circadian expression of cytolytic factors and cytokines in NK cells reported in this study emphasizes the circadian nature of NK cell function.
Collapse
Affiliation(s)
- Alvaro Arjona
- Endocrinology Program, Center of Alcohol Studies and Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
50
|
Yeh KT, Yang MY, Liu TC, Chen JC, Chan WL, Lin SF, Chang JG. Abnormal expression of period 1 (PER1) in endometrial carcinoma. J Pathol 2005; 206:111-20. [PMID: 15809976 DOI: 10.1002/path.1756] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The development of endometrial carcinoma (EC) is a multiple-step process, which includes inactivation of tumour suppressor genes, activation of oncogenes, and disturbance of cancer-related genes. Recent studies have shown that the circadian cycle may influence cancer development and prognosis. In this study, the expression of a circadian gene, PER1, was examined in 35 ECs and paired non-tumour tissues by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Expression levels of PER1 were significantly decreased in EC, and mutational analysis of the coding regions, together with methylation analysis of cytosine-phosphate guanosine (CpG) sites in the promoter area, was performed to investigate the possible mechanisms. The analyses detected four single nucleotide polymorphisms in both tumour and non-tumour tissues, which had no relationship with the expression of PER1. In the promoter area of the PER1 gene, the CpG sites were methylated in 31.4% of ECs, but in 11.4% of paired non-tumour tissues (p < 0.05). These results suggest that the down-regulation of PER1 expression in EC was partly due to inactivation of the PER1 gene by DNA methylation of the promoter and partly due to other factors. Analysis of the relationships between the expression of PER1, P53, c-MYC, cyclin A, cyclin B, and cyclin D1 showed no definite relationship. These results suggest that down-regulation of the PER1 gene disrupts the circadian rhythm, which may favour the survival of endometrial cancer cells.
Collapse
Affiliation(s)
- Kun-Tu Yeh
- Department of Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|