1
|
Dai F, Hu C, Li X, Zhang Z, Wang H, Zhou W, Wang J, Geng Q, Dong Y, Tang C. Cav3.2 channel regulates cerebral ischemia/reperfusion injury: a promising target for intervention. Neural Regen Res 2024; 19:2480-2487. [PMID: 38526284 PMCID: PMC11090426 DOI: 10.4103/1673-5374.390966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/05/2023] [Accepted: 10/25/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00028/figure1/v/2024-03-08T184507Z/r/image-tiff Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury. Various calcium channels are involved in cerebral ischemia/reperfusion injury. Cav3.2 channel is a main subtype of T-type calcium channels. T-type calcium channel blockers, such as pimozide and mibefradil, have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury. However, the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear. Here, in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons. The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons. We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury. Cav3.2 knockout markedly reduced infarct volume and brain water content, and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury. Additionally, Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress, inflammatory response, and neuronal apoptosis. In the hippocampus of Cav3.2-knockout mice, calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury. These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling. Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Feibiao Dai
- Graduate School, Wannan Medical College, Wuhu, Anhui Province, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Chengyun Hu
- Graduate School, Wannan Medical College, Wuhu, Anhui Province, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Xue Li
- Graduate School, Wannan Medical College, Wuhu, Anhui Province, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Zhetao Zhang
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Hongtao Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Wanjun Zhou
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Jiawu Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Qingtian Geng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Yongfei Dong
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Chaoliang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| |
Collapse
|
2
|
Forghani N, Hosseinian S, Akhoond-Ali Z, Gholami AA, Assaran-Darban R, Vafaee F. Effect of acute and chronic stress on memory impairment and hippocampal oxidative stress following global cerebral ischemia in adult male rats. Res Pharm Sci 2024; 19:436-446. [PMID: 39399732 PMCID: PMC11468166 DOI: 10.4103/rps.rps_24_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 11/25/2023] [Accepted: 08/04/2024] [Indexed: 10/15/2024] Open
Abstract
Background and purpose Stress, especially immobility stress, is quite common and one of the most important and influential risk factors in neurological disorders. This study aimed to investigate the effect of acute and chronic immobility stress on the level of cortical and hippocampal oxidative stress indicators and memory impairment following global cerebral ischemia. Experimental approach In this study, 48 male Wistar rats were randomly divided into 6 groups: 1, sham (S); 2, sham-acute stress (SSA); 3, sham-chronic stress (SSC); 4, ischemia (IS); 5, ischemia-acute stress (ISA); 6, ischemia-chronic stress (ISC). The Morris water maze (MWM) test was performed 14 days after surgery, and cortisol levels and oxidative stress factors such as malondialdehyde MDA and total thiol were measured. Findings/Results In the MWM test, the time to find the platform (latency time) in the ISC and IS groups significantly increased compared to the S group. The time spent in the target quarter in these two groups was significantly reduced compared to the S group on the day of the probe. The results showed a significant increase in cortisol levels and malondialdehyde concentration in the ISA, ISC, and IS groups compared to the S group, but there was no significant difference in total thiol concentration. No significant difference was observed in the level of oxidative stress factors in the cortex. Conclusion and implication Chronic immobility stress could reduce antioxidant factors in the hippocampus and exacerbate memory impairment caused by global ischemia.
Collapse
Affiliation(s)
- Nafiseh Forghani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Akhoond-Ali
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Abroumand Gholami
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cellular Biology and Anatomical Sciences, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Assaran-Darban
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Li R, Lou Q, Ji T, Li Y, Yang H, Ma Z, Zhu Y, Qian C, Yang W, Wang Y, Luo S. Mechanism of Astragalus mongholicus Bunge ameliorating cerebral ischemia-reperfusion injury: Based on network pharmacology analysis and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118157. [PMID: 38588987 DOI: 10.1016/j.jep.2024.118157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus mongholicus Bunge (AMB) is a herb with wide application in traditional Chinese medicine, exerting a wealth of pharmacological effects. AMB has been proven to have an evident therapeutic effect on ischemic cerebrovascular diseases, including cerebral ischemia-reperfusion injury (CIRI). However, the specific mechanism underlying AMB in CIRI remains unclear. AIM OF THE STUDY This study aimed to investigate the potential role of AMB in CIRI through a comprehensive approach of network pharmacology and in vivo experimental research. METHODS The intersection genes of drugs and diseases were obtained through analysis of the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and Gene Expression Omnibus (GEO) database. The protein-protein interaction (PPI) network was created through the string website. Meanwhile, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was carried out using R studio, and thereafter the key genes were screened. Then, the molecular docking prediction was made between the main active ingredients and target genes, and hub genes with high binding energy were obtained. In addition, molecular dynamic (MD) simulation was used to validate the result of molecular docking. Based on the results of network pharmacology, we used animal experiments to verify the predicted hub genes. First, the rat middle cerebral artery occlusion and reperfusion (MACO/R) model was established and the effective dose of AMB in CIRI was determined by behavioral detection and 2,3,5-Triphenyltetrazolium chloride (TTC) staining. Then the target proteins corresponding to the hub genes were measured by Western blot. Moreover, the level of neuronal death was measured using hematoxylin and eosin (HE) and Nissl staining. RESULTS Based on the analysis of the TCMSP database and GEO database, a total of 62 intersection target genes of diseases and drugs were obtained. The KEGG enrichment analysis showed that the therapeutic effect of AMB on CIRI might be realized through the advanced glycation endproduct-the receptor of advanced glycation endproduct (AGE-RAGE) signaling pathway in diabetic complications, nuclear factor kappa-B (NF-κB) signaling pathway and other pathways. Molecular docking results showed that the active ingredients of AMB had good binding potential with hub genes that included Prkcb, Ikbkb, Gsk3b, Fos and Rela. Animal experiments showed that AWE (60 g/kg) could alleviate CIRI by regulating the phosphorylation of PKCβ, IKKβ, GSK3β, c-Fos and NF-κB p65 proteins. CONCLUSION AMB exerts multi-target and multi-pathway effects against CIRI, and the underlying mechanism may be related to anti-apoptosis, anti-inflammation, anti-oxidative stress and inhibiting calcium overload.
Collapse
Affiliation(s)
- Rui Li
- Anhui Medical College (Anhui Academy of Medical Sciences), Hefei, 230061, PR China
| | - Qi Lou
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Hefei, 230031, PR China
| | - Tingting Ji
- Department of Pharmacy, Anhui Medical College, Hefei, 230601, PR China
| | - Yincan Li
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, PR China
| | - Haoran Yang
- Department of Pharmacy, Anhui Medical College, Hefei, 230601, PR China
| | - Zheng Ma
- Anhui Medical College (Anhui Academy of Medical Sciences), Hefei, 230061, PR China
| | - Yu Zhu
- Anhui Medical College (Anhui Academy of Medical Sciences), Hefei, 230061, PR China
| | - Can Qian
- Anhui Medical College (Anhui Academy of Medical Sciences), Hefei, 230061, PR China
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China.
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, PR China.
| | - Shengyong Luo
- Anhui Medical College (Anhui Academy of Medical Sciences), Hefei, 230061, PR China; Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Hefei, 230031, PR China.
| |
Collapse
|
4
|
Lu CW, Lin TY, Chiu KM, Lee MY, Wang SJ. Gypenoside XVII Reduces Synaptic Glutamate Release and Protects against Excitotoxic Injury in Rats. Biomolecules 2024; 14:589. [PMID: 38785996 PMCID: PMC11118014 DOI: 10.3390/biom14050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Excitotoxicity is a common pathological process in neurological diseases caused by excess glutamate. The purpose of this study was to evaluate the effect of gypenoside XVII (GP-17), a gypenoside monomer, on the glutamatergic system. In vitro, in rat cortical nerve terminals (synaptosomes), GP-17 dose-dependently decreased glutamate release with an IC50 value of 16 μM. The removal of extracellular Ca2+ or blockade of N-and P/Q-type Ca2+ channels and protein kinase A (PKA) abolished the inhibitory effect of GP-17 on glutamate release from cortical synaptosomes. GP-17 also significantly reduced the phosphorylation of PKA, SNAP-25, and synapsin I in cortical synaptosomes. In an in vivo rat model of glutamate excitotoxicity induced by kainic acid (KA), GP-17 pretreatment significantly prevented seizures and rescued neuronal cell injury and glutamate elevation in the cortex. GP-17 pretreatment decreased the expression levels of sodium-coupled neutral amino acid transporter 1, glutamate synthesis enzyme glutaminase and vesicular glutamate transporter 1 but increased the expression level of glutamate metabolism enzyme glutamate dehydrogenase in the cortex of KA-treated rats. In addition, the KA-induced alterations in the N-methyl-D-aspartate receptor subunits GluN2A and GluN2B in the cortex were prevented by GP-17 pretreatment. GP-17 also prevented the KA-induced decrease in cerebral blood flow and arginase II expression. These results suggest that (i) GP-17, through the suppression of N- and P/Q-type Ca2+ channels and consequent PKA-mediated SNAP-25 and synapsin I phosphorylation, reduces glutamate exocytosis from cortical synaptosomes; and (ii) GP-17 has a neuroprotective effect on KA-induced glutamate excitotoxicity in rats through regulating synaptic glutamate release and cerebral blood flow.
Collapse
Affiliation(s)
- Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (C.-W.L.); (T.-Y.L.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (C.-W.L.); (T.-Y.L.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan;
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Department of Medical Research, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan;
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
5
|
Shao J, Lang Y, Ding M, Yin X, Cui L. Transcription Factor EB: A Promising Therapeutic Target for Ischemic Stroke. Curr Neuropharmacol 2024; 22:170-190. [PMID: 37491856 PMCID: PMC10788889 DOI: 10.2174/1570159x21666230724095558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 07/27/2023] Open
Abstract
Transcription factor EB (TFEB) is an important endogenous defensive protein that responds to ischemic stimuli. Acute ischemic stroke is a growing concern due to its high morbidity and mortality. Most survivors suffer from disabilities such as numbness or weakness in an arm or leg, facial droop, difficulty speaking or understanding speech, confusion, impaired balance or coordination, or loss of vision. Although TFEB plays a neuroprotective role, its potential effect on ischemic stroke remains unclear. This article describes the basic structure, regulation of transcriptional activity, and biological roles of TFEB relevant to ischemic stroke. Additionally, we explore the effects of TFEB on the various pathological processes underlying ischemic stroke and current therapeutic approaches. The information compiled here may inform clinical and basic studies on TFEB, which may be an effective therapeutic drug target for ischemic stroke.
Collapse
Affiliation(s)
- Jie Shao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Manqiu Ding
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
6
|
Montes P, Ortíz-Islas E, Rodríguez-Pérez CE, Ruiz-Sánchez E, Silva-Adaya D, Pichardo-Rojas P, Campos-Peña V. Neuroprotective-Neurorestorative Effects Induced by Progesterone on Global Cerebral Ischemia: A Narrative Review. Pharmaceutics 2023; 15:2697. [PMID: 38140038 PMCID: PMC10747486 DOI: 10.3390/pharmaceutics15122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Progesterone (P4) is a neuroactive hormone having pleiotropic effects, supporting its pharmacological potential to treat global (cardiac-arrest-related) cerebral ischemia, a condition associated with an elevated risk of dementia. This review examines the current biochemical, morphological, and functional evidence showing the neuroprotective/neurorestorative effects of P4 against global cerebral ischemia (GCI). Experimental findings show that P4 may counteract pathophysiological mechanisms and/or regulate endogenous mechanisms of plasticity induced by GCI. According to this, P4 treatment consistently improves the performance of cognitive functions, such as learning and memory, impaired by GCI. This functional recovery is related to the significant morphological preservation of brain structures vulnerable to ischemia when the hormone is administered before and/or after a moderate ischemic episode; and with long-term adaptive plastic restoration processes of altered brain morphology when treatment is given after an episode of severe ischemia. The insights presented here may be a guide for future basic research, including the study of P4 administration schemes that focus on promoting its post-ischemia neurorestorative effect. Furthermore, considering that functional recovery is a desired endpoint of pharmacological strategies in the clinic, they could support the study of P4 treatment for decreasing dementia in patients who have suffered an episode of GCI.
Collapse
Affiliation(s)
- Pedro Montes
- Laboratorio de Neuroinmunoendocrinología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Emma Ortíz-Islas
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Elizabeth Ruiz-Sánchez
- Laboratorio de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Pavel Pichardo-Rojas
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA;
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| |
Collapse
|
7
|
Chang XQ, Xu L, Zuo YX, Liu YG, Li J, Chi HT. Emerging trends and hotspots of Nuclear factor erythroid 2-related factor 2 in nervous system diseases. World J Clin Cases 2023; 11:7833-7851. [DOI: 10.12998/wjcc.v11.i32.7833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND The Nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor has attracted much attention in the context of neurological diseases. However, none of the studies have systematically clarified this field's research hotspots and evolution rules.
AIM To investigate the research hotspots, evolution patterns, and future research trends in this field in recent years.
METHODS We conducted a comprehensive literature search in the Web of Science Core Collection database using the following methods: (((((TS=(NFE2 L2)) OR TS=(Nfe2 L2 protein, mouse)) OR TS=(NF-E2-Related Factor 2)) OR TS=(NRF2)) OR TS=(NFE2L2)) OR TS=(Nuclear factor erythroid2-related factor 2) AND (((((((TS=(neurological diseases)) OR TS=(neurological disorder)) OR TS=(brain disorder)) OR TS=(brain injury)) OR TS=(central nervous system disease)) OR TS=(CNS disease)) OR TS=(central nervous system disorder)) OR TS=(CNS disorder) AND Language = English from 2010 to 2022. There are just two forms of literature available: Articles and reviews. Data were processed with the software Cite-Space (version 6.1. R6).
RESULTS We analyzed 1884 articles from 200 schools in 72 countries/regions. Since 2015, the number of publications in this field has increased rapidly. China has the largest number of publications, but the articles published in the United States have better centrality and H-index. Among the top ten authors with the most published papers, five of them are from China, and the author with the most published papers is Wang Handong. The institution with the most articles was Nanjing University. To their credit, three of the top 10 most cited articles were written by Chinese scholars. The keyword co-occurrence map showed that "oxidative stress", "NRF2", "activation", "expression" and "brain" were the five most frequently used keywords.
CONCLUSION Research on the role of NRF2 in neurological diseases continues unabated. Researchers in developed countries published more influential papers, while Chinese scholars provided the largest number of articles. There have been numerous studies on the mechanism of NRF2 transcription factor in neurological diseases. NRF2 is also emerging as a potentially effective target for the treatment of neurological diseases. However, despite decades of research, our knowledge of NRF2 transcription factor in nervous system diseases is still limited. Further studies are needed in the future.
Collapse
Affiliation(s)
- Xue-Qin Chang
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian 116011, Liaoning Province, China
| | - Ling Xu
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian 116011, Liaoning Province, China
| | - Yi-Xuan Zuo
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian 116011, Liaoning Province, China
| | - Yi-Guo Liu
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian 116011, Liaoning Province, China
| | - Jia Li
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian 116011, Liaoning Province, China
| | - Hai-Tao Chi
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian 116011, Liaoning Province, China
| |
Collapse
|
8
|
Xia X, Li M, Wei R, Li J, Lei Y, Zhang M. Intracerebral hirudin injection alleviates cognitive impairment and oxidative stress and promotes hippocampal neurogenesis in rats subjected to cerebral ischemia. Neuropathology 2023; 43:362-372. [PMID: 36918198 DOI: 10.1111/neup.12897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 03/16/2023]
Abstract
Cerebral ischemia starts with cerebral blood flow interruption that causes severely limited oxygen and glucose supply, eliciting a cascade of pathological events, such as excitotoxicity, oxidative stress, calcium dysregulation, and inflammatory response, which could ultimately result in neuronal death. Hirudin has beneficial effects in ischemic stroke and possesses antioxidant and anti-inflammatory properties. Therefore, we investigated the biological functions of hirudin and its related mechanisms in cerebral ischemia. The ischemia-like conditions were induced by transient middle cerebral artery occlusion (MCAO). To investigate hirudin roles, intracerebroventricular injection of 10 U hirudin was given to the rats. Cognitive and motor functions were examined by beam walking and Morris water maze tests. 2,3,5-triphenyl tetrazolium chloride-stained brain sections were used to measure infarct volume. Oxidative stress was determined by assessment of oxidative stress markers. The proliferated cells were labeled by BrdU and Nestin double staining. Western blotting was performed to measure protein levels. Hirudin administration improved cognitive and motor deficits post-ischemia. Hirudin reduced brain infarction and neurological damage in MCAO-subjected rats. Hirudin alleviated oxidative stress and enhanced neurogenesis in ischemic rats. Hirudin facilitated the promotion of phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and serine-threonine kinase. In sum, hirudin alleviates cognitive deficits by attenuating oxidative stress and promoting hippocampal neurogenesis through the regulation of ERK1/2 and serine-threonine kinase in MCAO-subjected rats.
Collapse
Affiliation(s)
- Xianfeng Xia
- Department of Traditional Chinese Medicine, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Min Li
- Department of Neurology, Baoji Third People's Hospital, Baoji, China
| | - Renxian Wei
- Department of Traditional Chinese Medicine, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jin Li
- Department of Traditional Chinese Medicine, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Yulin Lei
- Department of Traditional Chinese Medicine, Zhucheng Street Hospital, Wuhan, China
| | - Meikui Zhang
- Department of Traditional Chinese Medicine, The General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
9
|
Liu Z, Wang J, Jin X, Gao P, Zhao Y, Yin M, Ma X, Xin Z, Zhao Y, Zhou X, Gao W. 1,8-Cineole Alleviates OGD/R-Induced Oxidative Damage and Restores Mitochondrial Function by Promoting the Nrf2 Pathway. Biol Pharm Bull 2023; 46:1371-1384. [PMID: 37532524 DOI: 10.1248/bpb.b23-00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
This study examined the effects of 1,8-cineole on reducing oxidative stress injury and restoring mitochondrial function in oxygen-glucose deprivation and reoxygenation (OGD/R) HT22 cells via the nuclear factor erythrocyte 2 related factor 2 (Nrf2) pathway. The optimal concentration of 1,8-cineole to reduce OGD/R injury was screened via cell morphology, cell survival rate, and lactate dehydrogenase (LDH) leakage rate. Oxidative damage was observed by measuring superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) activities, and reactive oxygen species (ROS), glutathione (GSH), protein carbonyl, malondialdehyde (MDA), lipid peroxidation (LPO) content, and 8-hydroxy-2 deoxyguanosine (8-OHDG) expression. Mitochondrial function was observed by mitochondrial membrane potential (MMP) and ATPase activity. Nrf2 pathways were observed by the expression levels of total Nrf2, nucleus Nrf2, reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H): quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), the mRNA levels of HO-1 and NQO1. Among different concentrations of 1,8-cineole for promoting HT22 cell proliferation and attenuated OGD/R injury, 10 µmol/L 1,8-cineole was the best. After 1,8-cineole treatment, SOD, GSH-PX, and CAT activities and GSH content increased, while ROS, MDA, LPO, protein carbonyl, and 8-OHDG levels decreased. 1,8-Cineole could restore MMP and increase mitochondrial enzyme activity. It could also increase the total Nrf2, nucleus Nrf2, NQO1, and HO-1, and Nrf2 inhibitor brusatol reduced the effect of 1,8-cineole. Immunofluorescence assay showed that 1,8-cineole could facilitate the transfer of Nrf2 into the nucleus. 1,8-cineole increased the mRNA levels of NQO1 and HO-1. The above results showed that 1,8-cineole could alleviate OGD/R-induced oxidative damage and restores mitochondrial function by activating the Nrf2 signal pathway.
Collapse
Affiliation(s)
- Zhenyi Liu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Jing Wang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Xiaofei Jin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Ping Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Yanmeng Zhao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Meijuan Yin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Xian Ma
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Ziyuan Xin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Yuemou Zhao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Xiaohong Zhou
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Weijuan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| |
Collapse
|
10
|
Waseem A, Rashid S, Rashid K, Khan MA, Khan R, Haque R, Seth P, Raza SS. Insight into the transcription factors regulating Ischemic Stroke and Glioma in Response to Shared Stimuli. Semin Cancer Biol 2023; 92:102-127. [PMID: 37054904 DOI: 10.1016/j.semcancer.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.
Collapse
Affiliation(s)
- Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Sumaiya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Khalid Rashid
- Department of Cancer Biology, Vontz Center for Molecular Studies, Cincinnati, OH 45267-0521
| | | | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City,Mohali, Punjab 140306, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya -824236, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Haryana-122052, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India; Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| |
Collapse
|
11
|
Zhang T, Wu J, Yao X, Zhang Y, Wang Y, Han Y, Wu Y, Xu Z, Lan J, Han S, Zou H, Sun Q, Wang D, Zhang J, Wang G. The Aldose Reductase Inhibitor Epalrestat Maintains Blood-Brain Barrier Integrity by Enhancing Endothelial Cell Function during Cerebral Ischemia. Mol Neurobiol 2023; 60:3741-3757. [PMID: 36940077 DOI: 10.1007/s12035-023-03304-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/08/2023] [Indexed: 03/21/2023]
Abstract
Excessive activation of aldose reductase (AR) in the brain is a risk factor for aggravating cerebral ischemia injury. Epalrestat is the only AR inhibitor with proven safety and efficacy, which is used in the clinical treatment of diabetic neuropathy. However, the molecular mechanisms underlying the neuroprotection of epalrestat remain unknown in the ischemic brain. Recent studies have found that blood-brain barrier (BBB) damage was mainly caused by increased apoptosis and autophagy of brain microvascular endothelial cells (BMVECs) and decreased expression of tight junction proteins. Thus, we hypothesized that the protective effect of epalrestat is mainly related to regulating the survival of BMVECs and tight junction protein levels after cerebral ischemia. To test this hypothesis, a mouse model of cerebral ischemia was established by permanent middle cerebral artery ligation (pMCAL), and the mice were treated with epalrestat or saline as a control. Epalrestat reduced the ischemic volume, enhanced BBB function, and improved the neurobehavior after cerebral ischemia. In vitro studies revealed that epalrestat increased the expression of tight junction proteins, and reduced the levels of cleaved-caspase3 and LC3 proteins in mouse BMVECs (bEnd.3 cells) exposed to oxygen-glucose deprivation (OGD). In addition, bicalutamide (an AKT inhibitor) and rapamycin (an mTOR inhibitor) increased the epalrestat-induced reduction in apoptosis and autophagy related protein levels in bEnd.3 cells with OGD treatment. Our findings suggest that epalrestat improves BBB function, which may be accomplished by reducing AR activation, promoting tight junction proteins expression, and upregulating AKT/mTOR signaling pathway to inhibit apoptosis and autophagy in BMVECs.
Collapse
Affiliation(s)
- Tongshuai Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Jinrong Wu
- Department of Anaesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xinmin Yao
- Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Yao Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Yue Wang
- Department of Anesthesiology, Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yang Han
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Yun Wu
- The Medical Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhenyu Xu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Jing Lan
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Siyu Han
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Haifeng Zou
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Qixu Sun
- Department of Gastroenterology, Penglai People's Hospital, Yantai, 264117, Shandong, China
| | - Dandan Wang
- Wu Lian De Memorial Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Jingyu Zhang
- The Medical Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Guangyou Wang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
12
|
Yin M, Liu Z, Wang J, Gao W. Buyang Huanwu decoction alleviates oxidative injury of cerebral ischemia-reperfusion through PKCε/Nrf2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115953. [PMID: 36442760 DOI: 10.1016/j.jep.2022.115953] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke is a significant risk factor for human health, and Buyang Huanwu Decoction is a classical and famous Chinese formula for treating it, but without clear pharmacological mechanism. AIM OF THE STUDY The aim of this study was to investigate that the molecular mechanism of BYHWD activation of the PKCε/Nrf2 signaling pathway to attenuate cerebral ischemia-reperfusion (I/R) oxidative damage. MATERIALS AND METHODS The MCAO method was used to establish a brain I/R injury model in SD rats, and neurological deficits were evaluated by neurological function score. Neuronal damage was observed by Nissl staining and immunofluorescence detection of MAP2 expression. Oxidative damage was observed by ROS, SOD, GSH-PX, MDA, and 8-OHdG. Changes in mitochondrial membrane potential were detected by using the fluorescent probe JC-1. The Western blot analysis detected protein expression of PKCε, P-PKCε, total Nrf2, nuclear Nrf2, HO-1, and NQO1. RESULTS BYHWD significantly enhanced neural function, reduced neuronal damage, inhibited the production of ROS, decreased MDA and 8-OHdG levels, increased SOD and GSH-PX activity to reduce oxidative damage, and restored mitochondrial membrane potential. BYHWD and Nrf2 activator TBHQ increased total Nrf2, nucleus Nrf2 protein expression, and its downstream HO-1 and NQO1 proteins, and the administration of the Nrf2 inhibitor brusatol reduced the enhancing effect of BYHWD. Meanwhile, BYHWD increased the expression of PKCε and P-PKCε and the administration of the PKCε inhibitor εV1-2 reduced the effect of BYHWD in increasing the expression of PKCε, P-PKCε, nuclear Nrf2, and HO-1, as well as promoting the effect of Nrf2 translocation to the nucleus. CONCLUSION This study marks the first to demonstrate that BYHWD ameliorates oxidative damage and attenuates brain I/R injury by activating the PKCε/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Meijuan Yin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Zhenyi Liu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Jing Wang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China; Hebei Medical University, Shijiazhuang, 050017, China.
| | - Weijuan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| |
Collapse
|
13
|
Li M, Tang H, Li Z, Tang W. Emerging Treatment Strategies for Cerebral Ischemia-Reperfusion Injury. Neuroscience 2022; 507:112-124. [PMID: 36341725 DOI: 10.1016/j.neuroscience.2022.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) injury is a common feature of ischemic stroke which occurs when the blood supply is restored after a period of ischemia in the brain. Reduced blood-flow to the brain during CI/RI compromises neuronal cell health as a result of mitochondrial dysfunction, oxidative stress, cytokine production, inflammation and tissue damage. Reperfusion therapy during CI/RI can restore the blood flow to ischemic regions of brain which are not yet infarcted. The long-term goal of CI/RI therapy is to reduce stroke-related neuronal cell death, disability and mortality. A range of drug and interventional therapies have emerged that can alleviate CI/RI mediated oxidative stress, inflammation and apoptosis in the brain. Herein, we review recent studies on CI/RI interventions for which a mechanism of action has been described and the potential of these therapeutic modalities for future use in the clinic.
Collapse
Affiliation(s)
- Mengxing Li
- College of Acupuncture and Massage (Rehabilitation Medical College), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Heyong Tang
- College of Integrated Chinese and Western Medicine (School of Life Sciences), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhen Li
- College of Acupuncture and Massage (Rehabilitation Medical College), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wei Tang
- College of Acupuncture and Massage (Rehabilitation Medical College), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
14
|
Muacevic A, Adler JR, Goktekin MC, Giden R, Koyuncu İ. Meteorin-Like Protein Levels Decrease in Patients With Acute Ischaemic Stroke. Cureus 2022; 14:e32042. [PMID: 36600830 PMCID: PMC9803575 DOI: 10.7759/cureus.32042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Ongoing research aims to investigate blood-based biomarkers and use them in acute ischaemic stroke (AIS) diagnosis and management of patients with AIS. PURPOSE The purpose of the present study was to investigate the meteorin-like protein (Metrnl) levels secreted by adipose tissue in patients with AIS. METHODS The study groups included healthy controls (n=30) and patients diagnosed with AIS via magnetic resonance imaging (MRI) in the emergency department (n=35) during the one-year period. The basic laboratory values and Metrnl, total antioxidant capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) levels of the patients were compared. The Metrnl levels were measured using enzyme-linked immunosorbent assays. RESULTS In the present study, the Metrnl (p=0.001) and TAC (p=0.009) levels decreased significantly, whereas the TOS (p<0.001) and OSI (p<0.001) levels increased significantly in the patients with AIS compared to the healthy controls. Furthermore, a cut-off value of ≤1.63% meteorin-like protein rendered the sensitivity and specificity rates of 91.43% and 71.43%, respectively, in the patients with AIS. In addition, there was a significant negative correlation between the decreased meteorin-like protein levels and the infarct diameter in patients with AIS. CONCLUSION In patients with AIS, the meteorin-like protein levels decreased inversely with the infarct diameter, and at the same time, there was an increase in TOS and OSI levels and a decrease in TAC levels.
Collapse
|
15
|
Yang L, Tao Y, Luo L, Zhang Y, Wang X, Meng X. Dengzhan Xixin injection derived from a traditional Chinese herb Erigeron breviscapus ameliorates cerebral ischemia/reperfusion injury in rats via modulation of mitophagy and mitochondrial apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114988. [PMID: 35032588 DOI: 10.1016/j.jep.2022.114988] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengzhan Xixin injection (DX), a preparation of extracts from traditional Chinese medicine Erigeron breviscapus (Vaniot) Hand.-Mazz., has been widely used in clinical treatment of cerebral ischemia sequelae in China for a long history. However, its underlying mechanisms remain unclear. AIM OF THE STUDY The objective of this present study aimed to investigate the therapeutic effects of DX on cerebral ischemia/reperfusion (I/R) injury in a rat model. Meanwhile, its underlying molecular mechanisms on mitochondrial protection were further interpreted. MATERIALS AND METHODS The major components of DX were detected by high-performance liquid chromatography analysis. The model of cerebral I/R injury was established by middle cerebral artery occlusion (MCAO) in SD rats. We firstly performed neurobehavioral score, the regional cerebral blood flow (rCBF) assay, and TTC, HE and Nissl staining for evaluating the effects of DX on I/R injury. And then, the cortical levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP) were determined by commercial kits. Whereafter, real time-PCR and transmission electron microscopy were employed to investigate the relative copy number of mitochondrial DNA (mtDNA) and neuronal ultrastructure changes, respectively. Further, the potential interactions of major components in DX with mitophagy/apoptosis-related proteins were predicted by Schrodinger molecular docking. The expression of mitophagy-related proteins LC3, p62, TOM20, PINK1 and Parkin was estimated by western blot and immunofluorescence analyses. Furthermore, TUNEL staining and western blot were used to detect the apoptotic phenomenon and the protein expression of Bax, Bcl-2, Cytochrome c (Cyto-c) and cleaved Caspase-3. RESULTS DX mainly contains scutellarin, 3,4-O-dicaffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid, caffeic acid and 5-O-caffeoylquinic acid. Compared with the model group, DX could remarkably relieve ischemia-provoked neurological deficit, rCBF deficiency and cerebral infarction. Pathological changes and neuronal loss in a MCAO model of rats were memorably ameliorated by DX administration. Meanwhile, DX reduced the surged ROS and MDA, while increased the level of SOD. Notably, DX treatment conversed the collapse of ATP and MMP, along with decreased in the relative copy number of mtDNA, contributing to the maintaining of mitochondrial ultrastructure via the increased number of autophagy lysosomes. The representative ingredients in DX had a potential bind with the active sites of mitophagy/apoptosis-related proteins. DX stimulated the protein expression of LC3, PINK1 and Parkin, while reduced the levels of p62 and TOM20. In addition, DX confined TUNEL-positive cell rate with the decreased expressions of Bax, Cyto-c and cleaved Caspase-3 as well as the increased Bcl-2 level. CONCLUSIONS We demonstrated that the protection of DX against brain ischemia could attribute to alleviating mitochondrial damage by upregulating mitophagy and inhibiting mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liuling Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
16
|
Li Y, Zhang JJ, Chen RJ, Chen L, Chen S, Yang XF, Min JW. Genistein mitigates oxidative stress and inflammation by regulating Nrf2/HO-1 and NF-κB signaling pathways in hypoxic-ischemic brain damage in neonatal mice. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:32. [PMID: 35282070 PMCID: PMC8848430 DOI: 10.21037/atm-21-4958] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/26/2021] [Indexed: 01/26/2023]
Abstract
Background Oxidative stress and neuroinflammation play crucial roles in the progression of neonatal hypoxic-ischemic brain damage (HIBD). Genistein, a natural phytoestrogen, has been found to protect against ischemic brain injury. However, its effects and potential mechanisms in HIBD have not yet been explored. Methods A neonatal mouse model of hypoxia-ischemia (HI) and a cell model of oxygen-glucose deprivation/reperfusion (OGD/R) were employed. In the in vivo study, genistein (10 mg/kg; ip) was administered in mice once daily for 3 consecutive days before the operation and once immediately after HI. The effects of genistein treatment on acute brain damage and long-term responses were evaluated. Neuronal injury and apoptosis were estimated using hematoxylin and eosin (H&E) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, respectively. The expression of apoptosis-related proteins were also measured by Western blot analysis. Dihydroethidium (DHE) staining and glutathione (GSH) and malondialdehyde (MDA) production were determined to assess the extent of oxidative stress. The messenger RNA (mRNA) levels of proinflammatory cytokines were detected using real-time quantitative polymerase chain reaction (RT-qPCR) to evaluate the extent of neuroinflammation. In the in vitro study, cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) assays, as well as propidium iodide (PI) staining, were performed to analyse the neuroprotective effects of genistein on primary cortical neurons. Western blot assays were used to detect the levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), phosphorylated inhibitor kappa B-α (p-IκB-α) and phosphorylated nuclear factor-kappa B (p-NF-κB) both in vivo and in vitro. Results Our results showed that genistein treatment effectively reduced cerebral infarction, attenuated neuronal injury and apoptosis, and contributed to the long-term recovery of neurological outcomes and brain atrophy in neonatal HIBD mice. Moreover, genistein ameliorated HIBD-induced oxidative stress and neuroinflammation. Meanwhile, genistein significantly increased cell viability, reversed neuronal injury and decreased cell apoptosis after OGD/R injury. Finally, the activation of the Nrf2/HO-1 pathway and inhibition of the NF-κB pathway by genistein were verified in the brain tissues of neonatal mice subjected to HIBD and in primary cortical neurons exposed to OGD/R. Conclusions Genistein exerted neuroprotective effects on HIBD by attenuating oxidative stress and neuroinflammation through the Nrf2/HO-1 and NF-κB signalling pathways.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Jin-Jia Zhang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Ru-Jia Chen
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Ling Chen
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Su Chen
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Xiao-Fei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Jia-Wei Min
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
17
|
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021; 26:5001. [PMID: 34443584 PMCID: PMC8399750 DOI: 10.3390/molecules26165001] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Leonardo Eugênio Vieira
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
18
|
Neuroprotective effects of theobromine in transient global cerebral ischemia-reperfusion rat model. Biochem Biophys Res Commun 2021; 571:74-80. [PMID: 34303966 DOI: 10.1016/j.bbrc.2021.07.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023]
Abstract
Transient global cerebral ischemia (tGCI) is a cerebrovascular disorder characterized by a brief decline in blood flow, neurological deficits, and is often predictive of stroke. Theobromine (TBR) is consumed worldwide in chocolates, tea, and cocoa products. TBR is a natural stimulant and vasoactive alkaloid that may protect against ischemic injury. In this study, neuroprotective potential of theobromine (TBR) was evaluated in 2-vessel occlusion transient global cerebral ischemia-reperfusion (tGCI/R) rat model. Rats were treated with TBR (50, 100 mg/kg, p.o.) for 7 successive days, and subjected to bilateral common carotid artery occlusion (20 min) or sham surgery after last dose of TBR. Severe neurological deficits accompanied by brain infarction, blood-brain barrier abnormalities, and oedema were noted in rats subjected to tGCI/R, and these effects were prevented by TBR. TBR protected against lipid peroxidation and enhanced glutathione level in brain against tGCI/R. TBR pre-treatment for 7 days prevented tGCI/R induced cell death (lactate dehydrogenase, caspase-3), vascular injury (MMP-9), and inflammation (TNF-α, NFκB) in rat whole brain. TBR protected against glutamate excitotoxicity and GABAergic decline in the brain of rats against tGCI/R injury. Findings of this study showed that TBR can alleviate chances of stroke by preventing acute episodes of cerebral ischemia.
Collapse
|
19
|
Glutaredoxin 1 protects neurons from oxygen-glucose deprivation/reoxygenation (OGD/R)-induced apoptosis and oxidative stress via the modulation of GSK-3β/Nrf2 signaling. J Bioenerg Biomembr 2021; 53:369-379. [PMID: 33956252 DOI: 10.1007/s10863-021-09898-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/09/2021] [Indexed: 12/18/2022]
Abstract
Increasing evidence has indicated that glutaredoxin 1 (GRX1) is a potent antioxidant protein that promotes cell survival under conditions of oxidative stress. Oxidative stress-induced neuronal injury contributes to cerebral ischemia/reperfusion injury. However, the role of GRX1-mediated antioxidant defense against neuronal damage during cerebral ischemia/reperfusion injury has not been thoroughly investigated. Thus, the objective of this study was to evaluate whether GRX1 protects neurons against oxygen-glucose deprivation/reoxygenation (OGD/R)-evoked oxidative stress injury in an in vitro model of cerebral ischemia/reperfusion injury. Our data revealed that GRX1 was induced by OGD/R treatment in neurons. Functional assays indicated that loss of GRX1 exacerbated OGD/R-induced apoptosis and the generation of reactive oxygen species (ROS), while GRX1 up-regulation protected against OGD/R-evoked neuronal injury. Further investigation revealed that GRX1 promoted the nuclear expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and enhanced transcription of the Nrf2/antioxidant response element (ARE) in GOD/R-exposed neurons. Furthermore, GRX1 promoted the activation of Nrf2/ARE associated with the modulation of glycogen synthase kinase-3β (GSK-3β). GSK-3β inhibition blocked GRX1 knockdown-mediated suppression of Nrf2 activation. Notably, the suppression of Nrf2 partially reversed GRX1-mediated anti-oxidative stress injury in OGD/R-exposed neurons. In summary, these findings indicate that GRX1 protects neurons against OGD/R-induced oxidative stress injury by enhancing Nrf2 activation via the modulation of GSK-3β. Our study suggests that GRX1 is a potential neuroprotective protein that protects against cerebral ischemia/reperfusion injury.
Collapse
|
20
|
Neuroprotective Effects of Salicin in a Gerbil Model of Transient Forebrain Ischemia by Attenuating Oxidative Stress and Activating PI3K/Akt/GSK3β Pathway. Antioxidants (Basel) 2021; 10:antiox10040629. [PMID: 33924188 PMCID: PMC8074613 DOI: 10.3390/antiox10040629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Salicin is a major natural compound of willow bark and displays diverse beneficial biological properties, such as antioxidant activity. However, little information available for the neuroprotective potential of salicin against ischemic brain injury has been reported. Thus, this study was performed to investigate the neuroprotective potential of salicin against ischemia and reperfusion (IR) injury and its mechanisms in the hippocampus using a gerbil model of 5-min transient ischemia (TI) in the forebrain, in which a massive loss (death) of pyramidal neurons cells occurred in the subfield Cornu Ammonis 1 (CA1) among the hippocampal subregions (CA1-3) at 5 days after TI. To examine neuroprotection by salicin, gerbils were pretreated with salicin alone or together with LY294002, which is a phosphatidylinositol 3-kinase (PI3K) inhibitor, once daily for 3 days before TI. Treatment with 20 mg/kg of salicin significantly protected CA1 pyramidal neurons against the ischemic injury. Treatment with 20 mg/kg of salicin significantly reduced the TI-induced increase in superoxide anion generation and lipid peroxidation in the CA1 pyramidal neurons after TI. The treatment also reinstated the TI-induced decrease in superoxide dismutases (SOD1 and SOD2), catalase, and glutathione peroxidase in the CA1 pyramidal cells after TI. Moreover, salicin treatment significantly elevated the levels of phosphorylation of Akt and glycogen synthase kinase-3β (GSK3β), which is a major downstream target of PI3K, in the ischemic CA1. Notably, the neuroprotective effect of salicin was abolished by LY294002. Taken together, these findings clearly indicate that salicin protects against ischemic brain injury by attenuating oxidative stress and activating the PI3K/Akt/GSK3β pathway.
Collapse
|
21
|
Jittiwat J, Chonpathompikunlert P, Sukketsiri W. Neuroprotective effects of Apium graveolens against focal cerebral ischemia occur partly via antioxidant, anti-inflammatory, and anti-apoptotic pathways. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2256-2263. [PMID: 33006386 DOI: 10.1002/jsfa.10846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/19/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Stroke is a neurological disease caused by a sudden disturbance of cerebral blood flow to the brain, leading to loss of brain function. Recently, accumulating lines of evidence have suggested that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, we investigated the possible protective effects of Apium graveolens, a medicinal plant with putative neuroprotective activity, against oxidative-stress-related brain damage and brain damage due to inflammation induced by focal cerebral ischemia. METHODS Male adult Wistar rats were administered with an extract of A. graveolens orally 14 days before permanent occlusion of their right middle cerebral artery. The brain infarct volumes of rats in each group were determined by 2,3,5-triphenyltetrazolium chloride staining, and the density of neurons in the cortex and hippocampus of rats was determined by cresyl violet staining. The levels of malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase in the cerebral cortex and hippocampus of the rats were also quantified at the end of the study period. RESULTS Our results show that A. graveolens extract significantly decreased infarct volume and improved neuronal density in the cortex and hippocampus of rats receiving A. graveolens extract compared with those rats receiving no treatment. This neuroprotective effect was found to occur partly due to antioxidant, anti-inflammatory, and anti-apoptotic effects. CONCLUSION Our study demonstrates that A. graveolens helps to reduce the severity of cognitive damage caused by focal cerebral ischemia. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinatta Jittiwat
- Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
| | - Pennapa Chonpathompikunlert
- Expert Centre of Innovative Health Food (InnoFood), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, Thailand
| | - Wanida Sukketsiri
- Department of Pharmacology, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
22
|
Mu D, Qin H, Jiao M, Hua S, Sun T. Modeling the neuro-protection of theaflavic acid from black tea and its synergy with nimodipine via mitochondria apoptotic pathway. J Zhejiang Univ Sci B 2021; 22:123-135. [PMID: 33615753 DOI: 10.1631/jzus.b2000540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ischemic stroke presents a leading cause of mortality and morbidity worldwide. Theaflavic acid (TFA) is a theaflavin isolated from black tea that exerts a potentially neuro-protective effect. However, the dynamic properties of TFA-mediated protection remain largely unknown. In the current study, we evaluated the function of TFA in the mitochondria apoptotic pathway using mathematical modeling. We found that TFA-enhanced B-cell lymphoma 2 (Bcl-2) overexpression can theoretically give rise to bistability. The bistability is highly robust against parametric stochasticity while also conferring considerable variability in survival threshold. Stochastic simulations faithfully match the TFA dose response pattern seen in experimental studies. In addition, we identified a dose- and time-dependent synergy between TFA and nimodipine, a clinically used neuro-protective drug. This synergistic effect was enhanced by bistability independent of temporal factors. Precise application of pulsed doses of TFA can also promote survival compared with sustained TFA treatment. These data collectively demonstrate that TFA treatment can give rise to bistability and that synergy between TFA and nimodipine may offer a promising strategy for developing therapeutic neuro-protection against ischemic stroke.
Collapse
Affiliation(s)
- Dan Mu
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China
| | - Huaguang Qin
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China
| | - Mengjie Jiao
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China
| | - Shaogui Hua
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China
| | - Tingzhe Sun
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China.
| |
Collapse
|
23
|
Xu J, Guo Q, Huo K, Song Y, Li N, Du J. JZL184 protects hippocampal neurons from oxygen-glucose deprivation-induced injury via activating Nrf2/ARE signaling pathway. Hum Exp Toxicol 2020; 40:1084-1094. [PMID: 33375871 DOI: 10.1177/0960327120984220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
JZL184 is a selective inhibitor of monoacylglycerol lipase (MAGL) that has neuroprotective effect. However, the role of JZL184 in cerebral ischemia/reperfusion (I/R) injury and the exact mechanism have not been fully understood. This study was designed to elucidate the role of JZL184 in cerebral I/R injury induced by oxygen-glucose deprivation/reoxygenation (OGD/R) in hippocampal neurons. Hippocampal neurons were pretreated with various concentrations of JZL184 for 2 h, followed by OGD for 3 h and reoxygen for 24 h. Our results showed that JZL184 improved cell viability in hippocampal neurons in response to OGD/R. JZL184 treatment significantly inhibited the production of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as increased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in OGD/R-induced hippocampal neurons. The increased TNF-α, IL-1β, and IL-6 productions in OGD/R-induced hippocampal neurons were decreased after treatment with JZL184. Moreover, the OGD/R-caused intense TUNEL staining in hippocampal neurons was attenuated by JZL184. JZL184 treatment prevented OGD/R-caused increases in bax and cleaved caspase-3 expression and a decrease in bcl-2 expression. Furthermore, JZL184 treatment significantly promoted the activation of Nrf2/ARE signaling pathway in OGD/R-induced hippocampal neurons. Additionally, silencing of Nrf2 reversed the protective effect of JZL184 on hippocampal neurons under OGD/R condition. Taken together, these findings suggested that JZL184 exerted protective effect against OGD/R-induced injury in hippocampal neurons via activating Nrf2/ARE signaling pathway, which provided in vitro experimental support for the therapeutic benefit of JZL184 in cerebral ischemia.
Collapse
Affiliation(s)
- Jing Xu
- Department of Emergency, 12480The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China.,These authors contributed equally to this work
| | - Qinyue Guo
- Department of Critical Care Medicine, 12480The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China.,These authors contributed equally to this work
| | - Kang Huo
- Department of Neurology, 12480The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| | - Yinxue Song
- Department of Emergency, 12480The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| | - Na Li
- Department of Laboratory, 12480The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| | - Junkai Du
- Department of Emergency, 12480The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| |
Collapse
|
24
|
Kalisvaart ACJ, Wilkinson CM, Gu S, Kung TFC, Yager J, Winship IR, van Landeghem FKH, Colbourne F. An update to the Monro-Kellie doctrine to reflect tissue compliance after severe ischemic and hemorrhagic stroke. Sci Rep 2020; 10:22013. [PMID: 33328490 PMCID: PMC7745016 DOI: 10.1038/s41598-020-78880-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
High intracranial pressure (ICP) can impede cerebral blood flow resulting in secondary injury or death following severe stroke. Compensatory mechanisms include reduced cerebral blood and cerebrospinal fluid volumes, but these often fail to prevent raised ICP. Serendipitous observations in intracerebral hemorrhage (ICH) suggest that neurons far removed from a hematoma may shrink as an ICP compliance mechanism. Here, we sought to critically test this observation. We tracked the timing of distal tissue shrinkage (e.g. CA1) after collagenase-induced striatal ICH in rat; cell volume and density alterations (42% volume reduction, 34% density increase; p < 0.0001) were highest day one post-stroke, and rebounded over a week across brain regions. Similar effects were seen in the filament model of middle cerebral artery occlusion (22% volume reduction, 22% density increase; p ≤ 0.007), but not with the Vannucci-Rice model of hypoxic-ischemic encephalopathy (2.5% volume increase, 14% density increase; p ≥ 0.05). Concerningly, this 'tissue compliance' appears to cause sub-lethal damage, as revealed by electron microscopy after ICH. Our data challenge the long-held assumption that 'healthy' brain tissue outside the injured area maintains its volume. Given the magnitude of these effects, we posit that 'tissue compliance' is an important mechanism invoked after severe strokes.
Collapse
Affiliation(s)
- Anna C J Kalisvaart
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Cassandra M Wilkinson
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Sherry Gu
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Tiffany F C Kung
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Jerome Yager
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Ian R Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Frank K H van Landeghem
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta Hospital, Edmonton, Canada
| | - Frederick Colbourne
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
| |
Collapse
|
25
|
Fang X, Ma Q, Zhang KX, Yao SY, Feng Y, Jin YS, Liang S. Synthesis of phthalide derivatives and evaluation on their antiplatelet aggregation and antioxidant activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1176-1187. [PMID: 31755304 DOI: 10.1080/10286020.2019.1681982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
As part of our continuing efforts to discover structurally interesting bioactive phthalide derivatives, 23 of them with a structure incorporating thiophen or halogens were designed and synthesized, 17 of which are previously unreported. In vitro antiplatelet aggregation activity screening showed that 14b could significantly inhibit platelet aggregation induced by arachidonic acid, compared with edaravone (p < 0.01). Meanwhile, oxidative damage models using SH-SY5Y and PC12 cells induced by H2O2 were built to evaluate the antioxidant activity of the phthalide derivatives. In SH-SY5Y cells, compared with aspirin, 1a significantly increased the relative cell survival rate (p < 0.05). Compared with edaravone, 1a (p < 0.01) and 15b (p < 0.05) significantly increased the relative cell survival rate. In PC12 cells, 1a (p < 0.01), 15b (p < 0.01), and 12a (p < 0.05) remarkably increased the cell survival rate compared with edaravone. The present study identified lead structures to develop potential anti-ischemic stroke agents.
Collapse
Affiliation(s)
- Xin Fang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiang Ma
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kai-Xia Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Song-Yun Yao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yi Feng
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yong-Sheng Jin
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Shuang Liang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
26
|
Bao K, Chen TL, Zhang S, Huang ZZ, Huang YF, Huang ZH, Zhu YY, Wu QN, Duan JA, Zhang ZZ, Wu CJ, Ding QQ. A succinyl isoflavone identified in natto promotes anti-ischemic effects in the middle cerebral artery occlusion rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
27
|
Zang M, Zhao Y, Gao L, Zhong F, Qin Z, Tong R, Ai L, Petersen L, Yan Y, Gao Y, Zhu C, Pu J. The circadian nuclear receptor RORα negatively regulates cerebral ischemia-reperfusion injury and mediates the neuroprotective effects of melatonin. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165890. [PMID: 32599143 DOI: 10.1016/j.bbadis.2020.165890] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022]
Abstract
Disruptions of the circadian rhythm and reduced circulating levels of the circadian hormone melatonin predispose to ischemic stroke. Although the nuclear receptor RORα is considered as a circadian rhythm regulator and a mediator of certain melatonin effects, its potential role in cerebral ischemia-reperfusion (CI/R) injury and in the neuroprotective effects of melatonin remain undefined. Here, we observed that CI/R injury in RORα-deficient mice was associated with greater cerebral infarct size, brain edema, and cerebral apoptosis compared with wild-type model. In contrast, transgenic mice with brain-specific overexpression of RORα versus non-transgenic controls exerted significantly reduced infarct volume, brain edema and apoptotic response induced by CI/R. Mechanistically, RORα deficiency was found to exacerbate apoptosis pathways mediated by endoplasmic-reticulum stress and mitochondria and aggravate oxidative/nitrative stress after CI/R. Further studies revealed that RORα deficiency intensified the activation of nuclear factor-κB signaling induced by CI/R. Given the emerging evidence of RORα as an essential melatonin activity mediator, we further investigated the RORα roles in melatonin-exerted neuroprotection against acute ischemic stroke. Melatonin treatment significantly decreased infarct volume and cerebral apoptosis; mitigated endoplasmic reticulum stress and mitochondrial dysfunction; and inhibited CI/R injury-induced oxidative/nitrative stress and nuclear factor-κB activation, which was eradicated in RORα-deficient mice. Collectively, current findings suggest that RORα is a novel endogenous neuroprotective receptor, and a pivotal mediator of melatonin's suppressive effects against CI/R injury.
Collapse
Affiliation(s)
- Minhua Zang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Yichao Zhao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Lingchen Gao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Fangyuan Zhong
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Zihan Qin
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Renyang Tong
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Lulu Ai
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lauren Petersen
- Department of Anesthesiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Yang Yan
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Yu Gao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Cansheng Zhu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China.
| |
Collapse
|
28
|
Yu S, Zhai J, Yu J, Yang Q, Yang J. Downregulation of BACH1 Protects AGAINST Cerebral Ischemia/Reperfusion Injury through the Functions of HO-1 and NQO1. Neuroscience 2020; 436:154-166. [DOI: 10.1016/j.neuroscience.2020.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/04/2023]
|
29
|
Zeng Q, Lian W, Wang G, Qiu M, Lin L, Zeng R. Pterostilbene induces Nrf2/HO-1 and potentially regulates NF-κB and JNK-Akt/mTOR signaling in ischemic brain injury in neonatal rats. 3 Biotech 2020; 10:192. [PMID: 32269897 DOI: 10.1007/s13205-020-02167-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/15/2020] [Indexed: 01/02/2023] Open
Abstract
Hypoxic-ischemic (HI) brain injury has a high occurrence rate of 1-4 per 1000 live births and is the leading cause of neurological disabilities. Despite the improvement in neonatal care, the effectiveness of current therapeutic strategies is limited, and thus, additional therapies with better results are of much needed. Pterostilbene is a stilbenoid possessing numerous preventive and therapeutic properties. The current study aimed to assess whether pterostilbene exerted protective effects in neonatal rats against experimentally induced ischemic brain injury. Pterostilbene was administered via oral gavage from postnatal day 3 to day 8. Rat pups that were seven-day-old were exposed to hypoxic-ischemic insult via ligation of the common carotid artery and hypoxic environment exposure. Pterostilbene treatment reduced neuronal loss and infarct volume. Pterostilbene administration regulated the NF-κB pathway, and the levels of inflammatory mediators (Nitric oxide, TNF-α, IL-1β, and IL-6) were reduced. HI-induced oxidative stress was significantly reduced by pterostilbene, as presented by decreased production of malondialdehyde and reactive oxygen species. Levels of glutathione were enhanced by pterostilbene. Pterostilbene regulated Nrf2/HO-1 and JNK expression and activated the PI3K/Akt-mTOR signals. These findings suggest that pterostilbene is a candidate compound for the treatment of neonatal HI.
Collapse
Affiliation(s)
- Qinghuang Zeng
- 1Department of Paediatrics, The Affiliated Hospital (Group) of Putian University, Putian, 351100 Fujian China
- Department of Pediatric Neurological Rehabilitation, Putian Children's Hospital, Putian, 351100 Fujian China
| | - Wenchang Lian
- 1Department of Paediatrics, The Affiliated Hospital (Group) of Putian University, Putian, 351100 Fujian China
- Department of Pediatric Neurological Rehabilitation, Putian Children's Hospital, Putian, 351100 Fujian China
| | - Guizhi Wang
- 1Department of Paediatrics, The Affiliated Hospital (Group) of Putian University, Putian, 351100 Fujian China
- Department of Pediatric Neurological Rehabilitation, Putian Children's Hospital, Putian, 351100 Fujian China
| | - Manping Qiu
- 1Department of Paediatrics, The Affiliated Hospital (Group) of Putian University, Putian, 351100 Fujian China
- Department of Pediatric Neurological Rehabilitation, Putian Children's Hospital, Putian, 351100 Fujian China
| | - Lingmu Lin
- 1Department of Paediatrics, The Affiliated Hospital (Group) of Putian University, Putian, 351100 Fujian China
- Department of Pediatric Neurological Rehabilitation, Putian Children's Hospital, Putian, 351100 Fujian China
| | - Renhe Zeng
- 1Department of Paediatrics, The Affiliated Hospital (Group) of Putian University, Putian, 351100 Fujian China
- Department of Pediatric Neurological Rehabilitation, Putian Children's Hospital, Putian, 351100 Fujian China
| |
Collapse
|
30
|
Oh J, Kim SM, Lee EH, Kim M, Lee Y, Ko SH, Jeong JH, Park CH, Lee M. Messenger RNA/polymeric carrier nanoparticles for delivery of heme oxygenase-1 gene in the post-ischemic brain. Biomater Sci 2020; 8:3063-3071. [PMID: 32348398 DOI: 10.1039/d0bm00076k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ischemic stroke is a cerebrovascular disease caused by narrowed cerebral arteries. Thrombolytic agents such as tissue-plasminogen activators have been used for recanalization of the blood supply into the ischemic region. However, ischemia-reperfusion damage continues to increase the infarction volume. In this study, heme oxygenase-1 (HO1)-mRNA was delivered into the brain, using a non-viral carrier. Various non-viral carriers such as polyethylenimine (25 kDa, PEI25k), lipofectamine, dexamethasone-conjugated PEI2k (Dexa-PEI2k), deoxycholic acid-conjugated PEI2k (DA-PEI2k), and R3V6 peptides were evaluated as carriers of mRNA into the brain. Gene delivery assays showed that DA-PEI2k and lipofectamine had a higher mRNA delivery efficiency than the other carriers in Neuro2A cells in vitro and a rat brain in vivo. Cytotoxicity assays showed that lipofectamine had higher toxicity than DA-PEI2k. Therefore, DA-PEI2k was used for delivery of HO1-mRNA. Unlike plasmid DNA (pDNA), mRNA is expressed in the cytosol without nuclear translocation. This suggests that mRNA may have higher gene expression than pDNA, since the nuclear location of pDNA is an inefficient step. Indeed, in in vitro transfection assays, HO1-mRNA/DA-PEI2k had higher gene expression than HO1-pDNA/DA-PEI2k without induction of a pro-inflammatory cytokine. The therapeutic effects of HO1-mRNA delivery using DA-PEI2k were evaluated in the middle cerebral artery occlusion animal model after local injection. HO1-mRNA delivery had higher gene expression than HO1-pDNA delivery 24 h after the local injection. In addition, HO1-mRNA delivery reduced the infarct size more efficiently than HO1-pDNA delivery. The results suggest that the delivery of mRNA using DA-PEI2k may be useful for gene therapy of ischemic stroke.
Collapse
Affiliation(s)
- Jungju Oh
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Laminarin Pretreatment Provides Neuroprotection against Forebrain Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Neuroinflammation in Aged Gerbils. Mar Drugs 2020; 18:md18040213. [PMID: 32326571 PMCID: PMC7230782 DOI: 10.3390/md18040213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Laminarin is a polysaccharide isolated from brown algae that has various biological and pharmacological activities, such as antioxidant and anti-inflammatory properties. We recently reported that pretreated laminarin exerted neuroprotection against transient forebrain ischemia/reperfusion (IR) injury when we pretreated with 50 mg/kg of laminarin once a day for seven days in adult gerbils. However, there have been no studies regarding a neuroprotective effect of pretreated laminarin against IR injury in aged animals and its related mechanisms. Therefore, in this study, we intraperitoneally inject laminarin (50 mg/kg) once a day to aged gerbils for seven days before IR (5-min transient ischemia) surgery and examine the neuroprotective effect of laminarin treatment and the mechanisms in the gerbil hippocampus. IR injury in vehicle-treated gerbils causes loss (death) of pyramidal neurons in the hippocampal CA1 field at five days post-IR. Pretreatment with laminarin effectively protects the CA1 pyramidal neurons from IR injury. Regarding the laminarin-treated gerbils, production of superoxide anions, 4-hydroxy-2-nonenal expression and pro-inflammatory cytokines [interleukin(IL)-1β and tumor necrosis factor-α] expressions are significantly decreased in the CA1 pyramidal neurons after IR. Additionally, laminarin treatment significantly increases expressions of superoxide dismutase and anti-inflammatory cytokines (IL-4 and IL-13) in the CA1 pyramidal neurons before and after IR. Taken together, these findings indicate that laminarin can protect neurons from ischemic brain injury in an aged population by attenuating IR-induced oxidative stress and neuroinflammation.
Collapse
|
32
|
Zhang J, Zhou R, Xiang C, Fan F, Gao J, Zhang Y, Tang S, Xu H, Yang H. Enhanced thioredoxin, glutathione and Nrf2 antioxidant systems by safflower extract and aceglutamide attenuate cerebral ischaemia/reperfusion injury. J Cell Mol Med 2020; 24:4967-4980. [PMID: 32266795 PMCID: PMC7205826 DOI: 10.1111/jcmm.15099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/02/2020] [Accepted: 02/08/2020] [Indexed: 12/22/2022] Open
Abstract
A large number of reactive oxygen species (ROS) aggravate cerebral damage after ischaemia/reperfusion (I/R). Glutathione (GSH), thioredoxin (Trx) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) represent three major antioxidant systems and play vital roles in affecting each other in eliminating ROS. Identification of drugs targeting triple antioxidant systems simultaneously is vital for inhibiting oxidative damage after cerebral I/R. This study investigated the protective effect of safflower extract and aceglutamide (SAAG) against cerebral I/R injury through modulating multiple antioxidant systems of GSH, Trx and Nrf2 and identified each role of its component acegluatminde (AG) and safflower extract (SA) on these systems. Safflower extract and aceglutamide and its two components decreased neurological deficit scores, infarction rate, apoptosis and oxidative damage after cerebral I/R while enhanced cell viability, decreased reactive oxygen species and nitric oxide level in H2 O2 -induced PC12 cell model. Importantly, compared to its two components, SAAG demonstrated more effective enhancement of GSH, Nrf2 and Trx systems and a better protection against cerebral I/R injury. The enhanced antioxidant systems prevented ASK1 activation and suppressed subsequent p38 and JNK cascade-mediated apoptosis. Moreover, inhibition of Trx and Nrf2 systems by auranofin and ML385 abolished SAAG-mediated protection, respectively. Thus, enhanced triple systems by SAAG played a better protective role than those by SA or AG via inhibition of ASK1 cascades. This research provided evidence for the necessity of combination drugs from the perspective of multiple antioxidant systems. Furthermore, it also offers references for the study of combination drugs and inspires novel treatments for ischaemic stroke.
Collapse
Affiliation(s)
- Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changpei Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fangfang Fan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinhuan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Park CW, Ahn JH, Lee TK, Park YE, Kim B, Lee JC, Kim DW, Shin MC, Park Y, Cho JH, Ryoo S, Kim YM, Won MH, Park JH. Post-treatment with oxcarbazepine confers potent neuroprotection against transient global cerebral ischemic injury by activating Nrf2 defense pathway. Biomed Pharmacother 2020; 124:109850. [PMID: 31981945 DOI: 10.1016/j.biopha.2020.109850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/12/2020] [Indexed: 01/27/2023] Open
Abstract
Oxcarbazepine (OXC), a voltage-gated sodium channel blocker, is an antiepileptic medication and used for the bipolar disorders treatment. Some voltage-gated sodium channel blockers have been demonstrated to display strong neuroprotective properties in models of cerebral ischemia. However, neuroprotective effects and mechanisms of OXC have not yet been reported. Here, we investigated the protective effect of OXC and its mechanisms in the cornu ammonis 1 subfield (CA1) of gerbils subjected to 5 min of transient global cerebral ischemia (tGCI). tGCI led to death of most pyramidal neurons in CA1 at 5 days after ischemia. OXC (100 and 200 mg/kg) was intraperitoneally administered once at 30 min after tGCI. Treatment with 200 mg/kg, not 100 mg/kg OXC, significantly protected CA1 pyramidal neurons from tGCI-induced injury. OXC treatment significantly decreased superoxide anion production, 4-hydroxy-2-nonenal and 8-hydroxyguanine levels in ischemic CA1 pyramidal neurons. In addition, the treatment restored levels of superoxide dismutases, catalase, and glutathione peroxidase. Furthermore, the treatment distinctly inhibited tGCI-induced microglia activation and significantly reduced levels of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). In particular, OXC treatment significantly enhanced expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream protein heme oxygenase-1 in ischemic CA1. The neuroprotective effects of OXC were abolished by brusatol (an inhibitor of Nrf2). Taken together, these results indicate that post-treatment of OXC can display neuroprotection against brain injuries following ischemic insults. This neuroprotection may be displayed by attenuation of oxidative stress and neuroinflammation, which can be mediated by activation of Nrf2 pathway.
Collapse
Affiliation(s)
- Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yoonsoo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sungwoo Ryoo
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea.
| |
Collapse
|
34
|
The protective effect of cordyceps sinensis extract on cerebral ischemic injury via modulating the mitochondrial respiratory chain and inhibiting the mitochondrial apoptotic pathway. Biomed Pharmacother 2020; 124:109834. [PMID: 31978767 DOI: 10.1016/j.biopha.2020.109834] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/15/2019] [Accepted: 12/23/2019] [Indexed: 11/22/2022] Open
Abstract
Cerebral ischemia is a common refractory brain disease, resulting from a reduction in the blood flow to the brain. Mitochondrial dysfunction leads to ischemic stroke and brain injury. Cordyceps sinensis (CS) is an important traditional Chinese medicine, which has been linked to neuroprotection in recent studies. In this study, we investigated the role of the mitochondrial respiratory chain and the mitochondrial apoptotic pathway on the protective effect of Cordyceps sinensis extract (CSE) against cerebral ischemia injury both in vivo and in vitro. In a murine middle cerebral artery occlusion (MCAO) model, administration of CSE relieved neuronal morphological damage and attenuated the neuronal apoptosis. CSE also reduced neurobehavioral scores and oxygen free radical (OFR), while improving the levels of ATP, cytochrome c oxidase (COX), and mitochondrial complexes I-IV. Furthermore, the mRNA expression of Bax, cytochrome c (Cyt c) and caspase-3 were down-regulated. In brain microvascular endothelial cells (BMECs) exposed to oxygen and glucose deprivation (OGD), CSE prevented OGD-induced cellular apoptosis, and recovered the reduction of mitochondrial membrane potential (MMP). Moreover, CSE treatment induced an increase of Bcl-2 protein expression and a decrease of Bax, Cyt c and caspase-3 protein expression. Meanwhile, the caspase-3, -8, and -9 activities were also inhibited. The results indicate that CSE can relieve cerebral ischemia injury and exhibit protective effects via modulating the mitochondrial respiratory chain and inhibiting the mitochondrial apoptotic pathway.
Collapse
|
35
|
Nan L, Xie Q, Chen Z, Zhang Y, Chen Y, Li H, Lai W, Chen Y, Huang M. Involvement of PARP-1/AIF Signaling Pathway in Protective Effects of Gualou Guizhi Decoction Against Ischemia-Reperfusion Injury-Induced Apoptosis. Neurochem Res 2019; 45:278-294. [PMID: 31792665 DOI: 10.1007/s11064-019-02912-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/08/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
Abstract
Cerebral ischemia-reperfusion injury is a complex pathophysiological process. Poly(ADP-ribose) (PAR) polymerase-1 (PARP-1)/apoptosis-inducing factor (AIF) signaling pathway-mediated apoptosis is one of the non-caspase-dependent cell death programs that are widely present in neurological diseases such as stroke. In our study, we aimed to conduct further research on the effects of Gualou Guizhi decoction (GLGZD) on the PARP-1/AIF signaling pathway in cell apoptosis after ischemia-reperfusion injury caused by middle cerebral artery occlusion (MCAO). The results showed that GLGZD administration for 7 days significantly ameliorated MCAO-induced neurological damage, limb paralysis and the pathological state of the ischemic cortex. GLGZD exerted its effects by significantly reducing the volume of ischemic cerebral infarction, increasing the number of Nissl-positive cells, and reducing neuronal apoptosis. Furthermore, Western blot analysis showed that GLGZD significantly inhibited the total protein expression of PARP-1, PAR, AIF and endonuclease G (Endo G) in the ischemic cortex and significantly increased the total protein expression of heat-shock protein 70 (Hsp70). On the one hand, the expression of PARP-1, AIF and Endo G protein in the nucleus significantly decreased while the expression of PAR nucleoprotein significantly upregulated. On the other hand, compared with the MCAO model group, the GLGZD-treated group showed a significantly reduced protein expression of PAR in mitochondria and significantly increased protein expression of mitochondrial AIF and Endo G. It was concluded that GLGZD had good therapeutic effects in MCAO model rats. These effects were closely related to GLGZD-mediated inhibition of ischemia-induced neuronal apoptosis by regulation of protein expression and translocation in the PARP-1/AIF signaling pathway.
Collapse
Affiliation(s)
- Lihong Nan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Qingqing Xie
- Hangzhou Simo Co., Ltd., Nanjing, 210001, Jiangsu, China
| | - Zheming Chen
- Pharmaceutical Preparation Section, Quanzhou First Hospital, Quanzhou, 362000, Fujian, China
| | - Yuqin Zhang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yaping Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Huang Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Wenfang Lai
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yan Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Mei Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
36
|
Sathya S, Shanmuganathan B, Balasubramaniam B, Balamurugan K, Devi KP. Phytol loaded PLGA nanoparticles regulate the expression of Alzheimer's related genes and neuronal apoptosis against amyloid-β induced toxicity in Neuro-2a cells and transgenic Caenorhabditis elegans. Food Chem Toxicol 2019; 136:110962. [PMID: 31734340 DOI: 10.1016/j.fct.2019.110962] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
Abstract
Amyloid β (Aβ) induced neurotoxicity has been postulated to initiate synaptic loss and subsequent neuronal degeneration in Alzheimer's disease (AD). The nanoparticles based drug carrier system is considered as a promising therapeutic strategy to combat this incurable disease. It was also found to inhibit cholinesterase activity and apoptosis mediated cell death in Neuro-2a cells. The in vivo study further revealed that the Phytol and Phytol-PLGA NPs (Poly Lactic-co-Glycolic Acid Nanoparticles) was found to increase the lifespan, chemotaxis behavior and decrease Aβ deposition & ROS (Reactive oxygen species) production in transgenic Caenorhabditis elegans models of AD (CL2006, CL4176). Phytol and Phytol-PLGA NPs treatment downregulated the expression of AD associated genes viz Aβ, ace-1 and hsp-4 and upregulated the gene involved in the longevity to nematodes (dnj-14) and it also reduced the expression of Aβ peptide at the protein level. Our results of in vitro and in vivo studies suggest that Phytol and Phytol-PLGA NPs hold promising neuroprotective efficacy and targets multiple neurotoxic mechanisms involved in the AD progression.
Collapse
Affiliation(s)
- Sethuraman Sathya
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, 630003, Tamil Nadu, India
| | | | - Boopathi Balasubramaniam
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, 630003, Tamil Nadu, India
| | - Krishnaswamy Balamurugan
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, 630003, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, 630003, Tamil Nadu, India.
| |
Collapse
|
37
|
Protective effects of hederagenic acid on PC12 cells against the OGD/R-induced apoptosis via activating Nrf2/ARE signaling pathway. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02464-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Beyrent E, Gomez G. Oxidative stress differentially induces tau dissociation from neuronal microtubules in neurites of neurons cultured from different regions of the embryonic Gallus domesticus brain. J Neurosci Res 2019; 98:734-747. [PMID: 31621106 DOI: 10.1002/jnr.24541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022]
Abstract
Abnormal phosphorylation of microtubule-associated proteins such as tau has been shown to play a role in neurodegenerative disorders. It is hypothesized that oxidative stress-induced aggregates of hyperphosphorylated tau could lead to the microtubule network degradation commonly associated with neurodegeneration. We investigated whether oxidative stress induced tau hyperphosphorylation and focused on neurite degradation using cultured neurons isolated from the embryonic chick brain as a model system. Cells were isolated from the cerebrum, cerebellum, and tectum of 14-day-old chicks, grown separately in culture, and treated with tert-Butyl hydroperoxide (to simulate oxidative stress) for 48 hr. Relative expression and localization of tau or phospho-tau and β-tubulin III in neurites were determined using quantitative immunocytochemistry and confocal microscopy. In untreated cells, tau was tightly colocalized with β-tubulin III. Increasing levels of oxidative stress induced an increase in overall tau expression in neurites of cerebral and tectal but not the cerebellar neurons, coupled with a decrease in phospho-tau expression in tectal but not the cerebral or cerebellar neurons. In addition, oxidative stress induced the degeneration of the distal ends of the neurites and redistribution of phospho-tau toward the neuronal soma in the cerebral but not the tectal and cerebellar neurons. These results suggest that oxidative stress induces changes in tau protein that precede cytoskeletal degradation and neurite retraction. Additionally, there is a differential susceptibility of neuronal subpopulations to oxidative stress, which may offer potential avenues for investigation of the cellular mechanisms underlying the differential manifestations of neurodegenerative disorders in different regions of the brain.
Collapse
Affiliation(s)
- Erika Beyrent
- Biology Department, University of Scranton, Scranton, PA, USA
| | - George Gomez
- Biology Department, University of Scranton, Scranton, PA, USA
| |
Collapse
|
39
|
Li Y, Shi J, Sun X, Li Y, Duan Y, Yao H. Theaflavic acid from black tea protects PC12 cells against ROS-mediated mitochondrial apoptosis induced by OGD/R via activating Nrf2/ARE signaling pathway. J Nat Med 2019; 74:238-246. [PMID: 31227974 DOI: 10.1007/s11418-019-01333-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/13/2019] [Indexed: 11/26/2022]
Abstract
Cerebral ischemic stroke is a severe disease afflicting people worldwide. Phytochemicals play a pivotal role in the discovery of novel therapeutic approaches for the prevention of ischemic stroke. In our continual search for bioactive natural products for the treatment of ischemic stroke, we have evaluated the protective effects of theaflavic acid (TFA) from black tea using PC12 cells injured by oxygen and glucose deprivation/restoration (OGD/R), and investigated the possible mechanisms. The results showed that TFA can protect PC12 cells against OGD/R through increasing cell viability and decreasing intracellular lactate dehydrogenase (LDH) release. Further investigations found that TFA could inhibit the overproduction of intracellular reactive oxygen species (ROS), reduce malondialdehyde content, and elevate superoxide dismutase activity, which implied that TFA suppresses oxidative stress in PC12 cells induced by OGD/R. In addition, overload of intracellular calcium and collapse of the mitochondrial membrane potential were improved in the presence of TFA, and the activity of caspase-3 was significantly reduced by TFA. Western blot analysis showed that the expression of Bcl-2 was up-regulated while Bax was down-regulated. Therefore, it can be concluded that TFA can inhibit mitochondria-dependent apoptosis of PC12 cells induced by OGD/R. In addition, activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response elements (ARE) signaling pathway was explored to elucidate the mechanism by which TFA inhibits ROS-mediated apoptosis in PC12 cells. The results revealed that TFA promoted the translocation of Nrf2 into nuclei, enhanced the transcriptional activity of ARE, and up-regulated expression of downstream HO-1, which indicates that the Nrf2/ARE signaling pathway is involved in the protection by TFA of PC12 cells injured by OGD/R.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jing Shi
- School of Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xinting Sun
- China Rehabilitation Center, Beijing Key Laboratory of Neural Injury and Rehabitilation, School of Rehabilitation Medicine, Capital Medical University, Beijing, 100077, China
| | - Yafeng Li
- School of Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Department of Pharmacy, Fengxian People's Hospital, Xuzhou, 221700, Jiangsu, China
| | - Yinyin Duan
- School of Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Huankai Yao
- School of Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
40
|
Park DJ, Kang JB, Shah MA, Koh PO. Quercetin alleviates the injury-induced decrease of protein phosphatase 2A subunit B in cerebral ischemic animal model and glutamate-exposed HT22 cells. J Vet Med Sci 2019; 81:1047-1054. [PMID: 31092742 PMCID: PMC6656806 DOI: 10.1292/jvms.19-0094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Quercetin is a plant flavonoid that has anti-oxidant, anti-inflammatory, anti-cancer, and anti-ischemic properties. Moreover, quercetin exerts neuroprotective effects against focal cerebral
ischemia. Protein phosphatase 2A (PP2A) is a form of serine/threonine phosphatase that modulates various biological functions. Among PP2A subunit types, subunit B exists abundantly in brain
tissue and plays an essential function in nervous system. We previously reported the decrease of PP2A subunit B in focal cerebral animal model. This study explored the change of PP2A subunit
B expression by quercetin treatment in cerebral ischemic animal model and glutamate-treated hippocampal-derived (HT22) cell culture. Quercetin (10 mg/kg) or vehicle was injected
intraperitoneally into male rats before 30 min of middle cerebral artery occlusion (MCAO), and cerebral cortices were isolated 24 hr after MCAO. MCAO induced the neurological behavioral
deficit and increased infarct volume. However, quercetin treatment attenuated the increase of neurological deficit and infarction. We detected the alleviation of MCAO-induced the decrease in
PP2A subunit B by quercetin treatment using a proteomic approach. Reverse-transcription PCR and Western blot analyses confirmed lower PP2A subunit B expression levels in MCAO group with
vehicle. However, quercetin treatment attenuated MCAO-induced this reduction. We also observed the neuroprotective effect of quercetin and the change of PP2A subunit B expression in
glutamate-exposed HT22 cells. Glutamate exposure dramatically reduced cell viability and PP2A subunit B expression, and quercetin treatment significantly improved these decreases. We clearly
showed that quercetin performs a neuroprotective function and modulates down-regulation of PP2A subunit B against MCAO injury and glutamate toxicity. Thus, our finding suggests that the
regulation of PP2A subunit B by quercetin contributes to neuroprotective function in ischemic brain injury.
Collapse
Affiliation(s)
- Dong-Ju Park
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Murad-Ali Shah
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| |
Collapse
|
41
|
Echinacoside Alleviates Hypoxic-Ischemic Brain Injury in Neonatal Rat by Enhancing Antioxidant Capacity and Inhibiting Apoptosis. Neurochem Res 2019; 44:1582-1592. [PMID: 30911982 DOI: 10.1007/s11064-019-02782-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
Hypoxic-ischemic brain damage (HIBD) is a leading cause of death and disability in neonatal or perinatal all over the world, seriously affecting children, families and society. Unfortunately, only few satisfactory therapeutic strategies have been developed. It has been demonstrated that Echinacoside (ECH), the major active component of Cistanches Herba, exerts many beneficial effects, including antioxidative, anti-apoptosis, and neuroprotective in the traditional medical practice in China. Previous research has demonstrated that ECH plays a protective effect on ischemic brain injury. This study aimed to investigate whether ECH provides neuroprotection against HIBD in neonatal rats. We subjected 120 seven-day-old Sprague-Dawley rats to cerebral hypoxia-ischemia (HI) and randomly divided into the following groups: sham group, HI group and ECH (40, 80 and 160 mg/kg, intraperitoneal) post-administration group. After 48 h of HI, 2,3,5-Triphenyltetrazolium chloride, Hematoxylin-Eosin and Nissl staining were conducted to evaluate the extent of brain damage. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities, total antioxidant capacity (T-AOC), and malondialdehyde (MDA) production were assessed to determine the antioxidant capacity of ECH. TUNEL staining and Western blot analysis was performed to respectively estimate the extent of brain cell apoptosis and the expression level of the apoptosis-related proteins caspase-3, Bax, and Bcl-2. Results showed that ECH remarkably reduced the brain infarct volume and ameliorated the histopathological damage to neurons. ECH post-administration helped recovering the antioxidant enzyme activities and decreasing the MDA production. Furthermore, ECH treatment suppressed neuronal apoptosis in the rats with HIBD was by reduced TUNEL-positive neurons, the caspase-3 levels and increased the Bcl-2/Bax ratio. These results suggested that ECH treatment was beneficial to reducing neuronal damage by attenuating oxidative stress and apoptosis in the brain under HIBD.
Collapse
|
42
|
Antioxidant Properties of Fucoidan Alleviate Acceleration and Exacerbation of Hippocampal Neuronal Death Following Transient Global Cerebral Ischemia in High-Fat Diet-Induced Obese Gerbils. Int J Mol Sci 2019; 20:ijms20030554. [PMID: 30696078 PMCID: PMC6387260 DOI: 10.3390/ijms20030554] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/18/2019] [Accepted: 01/27/2019] [Indexed: 01/01/2023] Open
Abstract
Fucoidan, a natural sulfated polysaccharide, displays various biological activities including antioxidant properties. We examined the neuroprotective effect of fucoidan against transient global cerebral ischemia (tGCI) in high-fat diet (HFD)-induced obese gerbils and its related mechanisms. Gerbils received HFD for 12 weeks and fucoidan (50 mg/kg) daily for the last 5 days during HFD exposure, and they were subjected to 5-min tGCI. Pyramidal cell death was observed only in the CA 1 area (CA1) of the hippocampus in non-obese gerbils 5 days after tGCI. However, in obese gerbils, pyramidal cell death in the CA1 and CA2/3 occurred at 2 days and 5 days, respectively, after tGCI. In the obese gerbils, oxidative stress indicators (dihydroethidium, 8-hydroxyguanine and 4-hydroxy-2-nonenal) were significantly enhanced and antioxidant enzymes (SOD1 and SOD2) were significantly reduced in pre- and post-ischemic phases compared to the non-obese gerbils. Fucoidan treatment attenuated acceleration and exacerbation of tGCI-induced neuronal death in the CA1–3, showing that oxidative stress was significantly reduced, and antioxidant enzymes were significantly increased in pre- and post-ischemic phases. These findings indicate that pretreated fucoidan can relieve the acceleration and exacerbation of ischemic brain injury in an obese state via the attenuation of obesity-induced severe oxidative damage.
Collapse
|
43
|
Luo Y, Tang H, Li H, Zhao R, Huang Q, Liu J. Recent advances in the development of neuroprotective agents and therapeutic targets in the treatment of cerebral ischemia. Eur J Med Chem 2019; 162:132-146. [DOI: 10.1016/j.ejmech.2018.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 11/25/2022]
|
44
|
Guo X, Zhang L, Chen J, Cao Y, Zhang Z, Li L, Han Z. Protective effects of 2-(2-benzonfuranyl)-2-imidazoline combined with tissue plasminogen activator after embolic stroke in rats. Brain Res 2018; 1699:142-149. [PMID: 30170015 DOI: 10.1016/j.brainres.2018.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 10/28/2022]
Abstract
Stroke is the third leading cause of death and disability in developing countries. The effective therapy for acute ischemic stroke is thrombolysis with recombinant tissue plasminogen activator (rt-PA) within 4.5 h of stroke onset. An effective post-ischemic neuroprotectant would extend the advantages of rt-PA, and protect against complications of thrombolysis. We previously reported that 2-(2-benzofuranyl)-2-imidazoline (2-BFI), a newly discovered ligand for high-affinity type 2 imidazoline receptor (I2R), provides neuroprotection against ischemic stroke in rats. Here we investigated the protective effects of 2-BFI in combination with delayed intravenous rt-PA after stroke induced by embolic middle cerebral artery occlusion (eMCAO) in rats. Infarct size was determined using 2,3,5-triphenyltrazolium chloride staining, while neurological deficit was assessed based on neurological score. Numbers of apoptotic cells in vivo were estimated using TUNEL stain, and expression of the pro-apoptotic protein BAX and anti-apoptotic protein BCL-2 were quantified by Western blotting. The results showed that 2-BFI (3 mg/kg) administered at 0.5 h after embolic MCAO combined with rt-PA (10 mg/kg) administered at 6 h reduced brain infarct size, mitigated neurological deficit, decreased the number of TUNEL-positive cells, down-regulated BAX expression, and up-regulated BCL-2 expression. These findings suggest that 2-BFI may extend the therapeutic window of rt-PA to 6 h after embolic stroke onset in rats.
Collapse
Affiliation(s)
- Xiaoling Guo
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linlei Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaou Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yungang Cao
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zheng Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhao Han
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
45
|
Wu X, Liu X, Huang H, Li Z, Xiong T, Xiang W, Liu L, Tao Z. Effects of major ozonated autoheamotherapy on functional recovery, ischemic brain tissue apoptosis and oxygen free radical damage in the rat model of cerebral ischemia. J Cell Biochem 2018; 120:6772-6780. [PMID: 30390335 DOI: 10.1002/jcb.27978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
Abstract
Stroke is the second leading cause of death and disability in the world, with a heavy burden on patients, their families, and society. At present, a major focus of cerebrovascular disease research is to find a safe and effective new method to promote early functional recovery in the acute phase of cerebral infarction. Major ozonated autohemotherapy (MOAH) can maintain ATP and energy metabolism in cerebral ischemia and hypoxia, and reduce cell apoptosis. In the current study, the model of middle cerebral artery occlusion in the Sprague Dawley rat was established and evaluated by the clinical functional score, Hoechst staining, immunohistochemistry, Western blot analysis, and biochemical detection. Then, the effects of MOAH on neurological function, apoptosis, and oxygen free radical damage after acute ischemia in middle cerebral artery were evaluated. Moreover, the potential two mechanisms have been illustrated for MOAH effects. This study would lay a theoretical foundation for the application of MOAH and find an effective and early treatment method for the cerebral infarction.
Collapse
Affiliation(s)
- Xiaona Wu
- Department of Neurology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, P.R., China
| | - Xiaoyan Liu
- Department of Neurosurgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, P.R., China
| | - Huai Huang
- Second Department of Neurorehabilitation, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, P.R., China
| | - ZhenSheng Li
- Department of Neurology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, P.R., China
| | - TieGen Xiong
- Second Department of Neurorehabilitation, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, P.R., China
| | - Wei Xiang
- Department of Neurology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, P.R., China
| | - Liu Liu
- Department of Neurology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, P.R., China
| | - Zhang Tao
- Department of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, P.R., China
| |
Collapse
|
46
|
Li M, Wen Y, Zhang R, Xie F, Zhang G, Qin X. Adenoviral vector-induced silencing of RGMa attenuates blood-brain barrier dysfunction in a rat model of MCAO/reperfusion. Brain Res Bull 2018; 142:54-62. [PMID: 29935233 DOI: 10.1016/j.brainresbull.2018.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Repulsive guidance molecule A (RGMa) is implicated in focal cerebral ischemia-reperfusion (I/R) injury, but its mechanisms are still largely unknown. This work focused on the effects of RGMa on the blood-brain barrier (BBB) after focal cerebral I/R injury. METHODS Sprague-Dawley (SD) rats were randomly divided into four groups: sham, middle cerebral artery occlusion (MCAO)/reperfusion (I/R), MCAO/reperfusion administered recombinant adenovirus expressing sh-con (I/R + sh-con) and MCAO/reperfusion administered recombinant adenovirus expressing sh-RGMa (I/R + sh-RGMa) groups. Infarct volume, brain edema and neurological scores were evaluated at 3 day after reperfusion. Evens blue leakage and transmission electron microscopy was performed. And the expression level of claudin-5 and ZO-1, CDC-42 and PAK-1, RGMa were detected by western blot. RESULTS Compared with I/R or I/R + sh-con groups, I/R + sh-RGMa group showed smaller infarction volume, attenuated brain edema, improved neurological scores and better BBB integrity, such as reduced Evans blue leakage and ultra-structural change. We also observed improved BBB function followed by down-regulation of MMP-9 and up-regulation of claudin-5 and ZO-1 in the I/R + sh-RGMa group. In addition, up-regulation of the CDC-42 and PAK-1 in the I/R + sh-RGMa group was obtained. CONCLUSIONS RGMa may be involved in I/R injury associated with BBB dysfunction via the CDC-42/PAK-1 signal pathway and may be a promising therapeutic target for I/R injury.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Inner Mongolia People's Hospital, Hohhot, China
| | - Yuetao Wen
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fei Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
47
|
Wang C, Liu C, Wang M, Ma Q, Li Y, Wang T, Zhao B. UPLC-HRMS-Based Plasma Metabolomic Profiling of Novel Biomarkers by Treatment with KDZI in Cerebral Ischemia Reperfusion Rats. Molecules 2018; 23:molecules23061315. [PMID: 29849010 PMCID: PMC6099697 DOI: 10.3390/molecules23061315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Kudiezi injection (KDZI), also known as Diemailing injection, is a traditional Chinese medicine injection of the composite plant Ixeris sonchifolia Hance (also known as Kudiezi), and has been widely used to treat coronary heart disease, angina pectoris, and cerebral infarction, but its pharmacological mechanisms remain unclear. This study is designed to explore the effects of KDZI on middle cerebral artery occlusion and reperfusion (MCAO/R) rats, and to identify metabolic features of cerebral ischemia reperfusion by using a nontargeted metabolic profiling method based on ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). In this process, 32 potential biomarkers were found in plasma. KDZI significantly upregulated the levels of taurochenodesoxycholic acid, leucine, l-phenylalanine, l-tryptophan, arachidonic acid (ARA), and phosphatidyl ethanolamines (PE), phosphatidyl cholines (PC) and downregulated the levels of l-valine and 5-hydroxyindole-3-acetic acid (5-HIAA) in plasma. The results indicated that the mechanisms of KDZI on MCAO/R were related to the mechanisms of amino acid and lipid metabolism.
Collapse
Affiliation(s)
- Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chenyue Liu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Min Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Quantao Ma
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yaqi Li
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
48
|
Zhou J, Li M, Jin WF, Li XH, Zhang YY. Role of NF-κB on Neurons after Cerebral Ischemia Reperfusion. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.451.459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
49
|
Neuroprotective effects of valproic acid on brain ischemia are related to its HDAC and GSK3 inhibitions. Pharmacol Biochem Behav 2018; 167:17-28. [DOI: 10.1016/j.pbb.2018.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 11/22/2022]
|
50
|
Li X, Liu L, Pischetsrieder M. Pomegranate ( Punica granatum L.) wine polyphenols affect Nrf2 activation and antioxidant enzyme expression in human neuroblastoma cells (SH-SY5Y). J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|