1
|
Lopez-Espejo ME, Jimena I, Gil-Belmonte MJ, Rivero JLL, Peña-Amaro J. Influence of Physical Exercise on the Rehabilitation of Volumetric Muscle Loss Injury Reconstructed with Autologous Adipose Tissue. J Funct Morphol Kinesiol 2024; 9:188. [PMID: 39449482 PMCID: PMC11503405 DOI: 10.3390/jfmk9040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND In volumetric muscle loss (VML) injuries, spontaneous muscle regeneration capacity is limited. The implantation of autologous adipose tissue in the affected area is an option to treat these lesions; however, the effectiveness of this therapy alone is insufficient for a complete recovery of the damaged muscle. This study examined the influence of treadmill exercise on the rehabilitation of VML injuries reconstructed with autologous adipose tissue, as a strategy to counteract the limitations of spontaneous regeneration observed in these injuries. METHODS Forty adult male Wistar rats were divided into eight groups of five individuals each: normal control (NC), regenerative control (RC), VML control (VML), VML injury reconstructed with fresh autologous adipose tissue (FAT), exercise-rehabilitated control (RNC), exercise-rehabilitated regenerative control (RRC), exercise-rehabilitated VML injury (RVML), and exercise-rehabilitated VML injury reconstructed with fresh autologous adipose tissue (RFAT). Histological and histochemical staining techniques were used for the analysis of structural features and histomorphometric parameters of the tibialis anterior muscle. Grip strength tests were conducted to assess muscle force. RESULTS Exercise rehabilitation decreased the proportion of disoriented fibers in RFAT vs. FAT group. The percentage of fibrosis was significantly higher in FAT and RFAT groups versus NC and RNC groups but did not vary significantly between FAT and RFAT groups. Overall, muscle grip strength and fiber size increased significantly in the exercise-rehabilitated groups compared to control groups. CONCLUSIONS To conclude, rehabilitation with physical exercise tended to normalize the process of muscle repair in a model of VML injury reconstructed with fresh autologous adipose tissue, but it did not reduce the intense fibrosis associated with these injuries.
Collapse
Affiliation(s)
- Maria E. Lopez-Espejo
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Maimonides Institute for Biomedical Research IMIBIC, Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain; (M.E.L.-E.); (I.J.); (M.-J.G.-B.)
| | - Ignacio Jimena
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Maimonides Institute for Biomedical Research IMIBIC, Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain; (M.E.L.-E.); (I.J.); (M.-J.G.-B.)
| | - Maria-Jesus Gil-Belmonte
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Maimonides Institute for Biomedical Research IMIBIC, Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain; (M.E.L.-E.); (I.J.); (M.-J.G.-B.)
- Department of Pathology, Torrecardenas University Hospital, 04009 Almeria, Spain
| | - Jose-Luis L. Rivero
- Muscular Biopathology Laboratory, Department of Comparative Anatomy and Pathological Anatomy and Toxicology, Faculty of Veterinary Medicine, University of Cordoba, 14014 Cordoba, Spain;
| | - Jose Peña-Amaro
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Maimonides Institute for Biomedical Research IMIBIC, Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain; (M.E.L.-E.); (I.J.); (M.-J.G.-B.)
| |
Collapse
|
2
|
Slavin MB, Khemraj P, Hood DA. Exercise, mitochondrial dysfunction and inflammasomes in skeletal muscle. Biomed J 2024; 47:100636. [PMID: 37499756 PMCID: PMC10828562 DOI: 10.1016/j.bj.2023.100636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
In the broad field of inflammation, skeletal muscle is a tissue that is understudied. Yet it represents about 40% of body mass in non-obese individuals and is therefore of fundamental importance for whole body metabolism and health. This article provides an overview of the unique features of skeletal muscle tissue, as well as its adaptability to exercise. This ability to adapt, particularly with respect to mitochondrial content and function, confers a level of metabolic "protection" against energy consuming events, and adds a measure of quality control that determines the phenotypic response to stress. Thus, we describe the particular role of mitochondria in promoting inflammasome activation in skeletal muscle, contributing to muscle wasting and dysfunction in aging, disuse and metabolic disease. We will then discuss how exercise training can be anti-inflammatory, mitigating the chronic inflammation that is observed in these conditions, potentially through improvements in mitochondrial quality and function.
Collapse
Affiliation(s)
- Mikhaela B Slavin
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, M3J 1P3, Canada
| | - Priyanka Khemraj
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, M3J 1P3, Canada
| | - David A Hood
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
3
|
Beneficial Effects of Linseed Supplementation on Gut Mucosa-Associated Microbiota in a Physically Active Mouse Model of Crohn's Disease. Int J Mol Sci 2022; 23:ijms23115891. [PMID: 35682570 PMCID: PMC9180845 DOI: 10.3390/ijms23115891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023] Open
Abstract
The Western diet, rich in lipids and in n-6 polyunsaturated fatty acids (PUFAs), favors gut dysbiosis observed in Crohn's disease (CD). The aim of this study was to assess the effects of rebalancing the n-6/n-3 PUFA ratio in CEABAC10 transgenic mice that mimic CD. Mice in individual cages with running wheels were randomized in three diet groups for 12 weeks: high-fat diet (HFD), HFD + linseed oil (HFD-LS-O) and HFD + extruded linseed (HFD-LS-E). Then, they were orally challenged once with the Adherent-Invasive Escherichia coli (AIEC) LF82 pathobiont. After 12 weeks of diet, total energy intake, body composition, and intestinal permeability were not different between groups. After the AIEC-induced intestinal inflammation, fecal lipocalin-2 concentration was lower at day 6 in n-3 PUFAs supplementation groups (HFD-LS-O and HFD-LS-E) compared to HFD. Analysis of the mucosa-associated microbiota showed that the abundance of Prevotella, Paraprevotella, Ruminococcus, and Clostridiales was higher in the HFD-LS-E group. Butyrate levels were higher in the HFD-LS-E group and correlated with the Firmicutes/Proteobacteria ratio. This study demonstrates that extruded linseed supplementation had a beneficial health effect in a physically active mouse model of CD susceptibility. Additional studies are required to better decipher the matrix influence in the linseed supplementation effect.
Collapse
|
4
|
Liu X, Chu H, Ji Y, Bosnjak Z, Ao H, Li T. Which BMI for Diabetes Patients is Better? From the View of the Adipose Tissue Macrophage-Derived Exosome. Diabetes Metab Syndr Obes 2022; 15:141-153. [PMID: 35046685 PMCID: PMC8763208 DOI: 10.2147/dmso.s345890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Diabetes, as a group of metabolic diseases, can elevate blood glucose, thus leading to the development of life-threatening complications. It is difficult to define the outcome for diabetics with different BMI. This review will illustrate the adipose tissue macrophage-derived exosome in the diabetics with different BMI. PATIENTS AND METHODS Insulin resistance in peripheral tissues can cause diabetes. The peripheral tissues include liver, muscle, or the adipose depots. Communication between these organs is fatal to the maintenance of glucose homeostasis. This review will illustrate this communication. Obesity is closely linked with diabetes. There are different changes in fat distribution in diabetic patients. Adipose tissue macrophages can secrete various hormones, including adiponectin, leptin, resistin and other classical cytokines, such as TNF-α and IL-6. Studies illustrated that exosomes from the adipose tissue, can modulate inter-organ cross-talk by regulating gene expression in other tissues. RESULTS Adipose tissue macrophages exosomes links thin and fat individuals in the development of diabetes. CONCLUSION The molecular pathways initiated by exosomes such as miRNA in the situations of metabolic stress could help us gain a deeper knowledge of the pathophysiology of diabetes.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
- Departments of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Haichen Chu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Yuzhi Ji
- Obstetrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Zeljko Bosnjak
- Departments of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hushan Ao
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Correspondence: Hushan Ao Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, People’s Republic of ChinaTel/Fax +86-10-68006210 Email
| | - Tianjun Li
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
- Tianjun Li Department of Oncology, Affiliated Hospital of Qingdao University, No. 59 Haier Road, Laoshan District, Qingdao, Shandong Province, People’s Republic of ChinaTel/Fax +86-10-82913035 Email
| |
Collapse
|
5
|
Sousa AS, Sponton ACS, Delbin MA. Perivascular adipose tissue and microvascular endothelial dysfunction in obese mice: Beneficial effects of aerobic exercise in adiponectin receptor (AdipoR1) and peNOS Ser1177. Clin Exp Pharmacol Physiol 2021; 48:1430-1440. [PMID: 34260769 DOI: 10.1111/1440-1681.13550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022]
Abstract
In the present study, we aim to investigate the effects of aerobic physical training on perivascular adipose tissue (PVAT)-induced microvascular dysfunction of the femoral artery in obese mice. Microvascular reactivity was evaluated in control sedentary (c-SD), obese sedentary (o-SD) and obese trained (o-TR) male mice (C57BL6/JUnib), in the absence (PVAT-) or the presence (PVAT+) of femoral artery PVAT. We also analyzed protein expression, vascular nitric oxide (NO) production and reactive oxygen species (ROS) generation in PVAT. The blood glucose, triglycerides and total cholesterol levels were increased in the o-SD group, when compared with the c-SD group. The maximal responses and the potency to acetylcholine (ACh) were decreased in PVAT+ compared with PVAT- rings in the o-SD group, accompanied by a decrease in vascular protein expression of peNOSSer1177 , Cu/Zn-SOD, leptin receptor (Ob-R) and adiponectin receptor (AdipoR1). The protein expression of leptin increased and that of adiponectin decreased in PVAT. Additionally, vascular NO production was reduced and ROS generation was enhanced in PVAT in the o-SD group. Aerobic exercise training was effective for normalizing ACh relaxation response, vascular NO production and ROS generation in the o-TR group. It partially re-established the vascular protein expression of peNOSSer1177 and the PVAT leptin; normalized the vascular Cu/Zn-SOD and AdipoR1 protein expressions. In obese sedentary mice, the presence of PVAT is involved in the process of microvascular dysfunction of the femoral artery in a pathway associated with increased inflammation and ROS generation. The aerobic exercise training normalized the vascular response, the NO production and/or bioavailability and oxidative stress, with improved vascular expressions of Cu/Zn-SOD, peNOSser1177 , and AdipoR1.
Collapse
Affiliation(s)
- Andressa S Sousa
- Laboratory of Vascular Biology, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Amanda C S Sponton
- Laboratory of Vascular Biology, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria A Delbin
- Laboratory of Vascular Biology, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
6
|
Turner L, Santosa S. Putting ATM to BED: How Adipose Tissue Macrophages Are Affected by Bariatric Surgery, Exercise, and Dietary Fatty Acids. Adv Nutr 2021; 12:1893-1910. [PMID: 33979430 PMCID: PMC8483961 DOI: 10.1093/advances/nmab011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/17/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
With increasing adiposity in obesity, adipose tissue macrophages contribute to adipose tissue malfunction and increased circulating proinflammatory cytokines. The chronic low-grade inflammation that occurs in obesity ultimately gives rise to a state of metainflammation that increases the risk of metabolic disease. To date, only lifestyle and surgical interventions have been shown to be somewhat effective at reversing the negative consequences of obesity and restoring adipose tissue homeostasis. Exercise, dietary interventions, and bariatric surgery result in immunomodulation, and for some individuals their effects are significant with or without weight loss. Robust evidence suggests that these interventions reduce chronic inflammation, in part, by affecting macrophage infiltration and promoting a phenotypic switch from the M1- to M2-like macrophages. The purpose of this review is to discuss the impact of dietary fatty acids, exercise, and bariatric surgery on cellular characteristics affecting adipose tissue macrophage presence and phenotypes in obesity.
Collapse
Affiliation(s)
- Laurent Turner
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada,Metabolism, Obesity, and Nutrition Lab, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
7
|
Saxton SN, Toms LK, Aldous RG, Withers SB, Ohanian J, Heagerty AM. Restoring Perivascular Adipose Tissue Function in Obesity Using Exercise. Cardiovasc Drugs Ther 2021; 35:1291-1304. [PMID: 33687595 PMCID: PMC8578065 DOI: 10.1007/s10557-020-07136-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Purpose Perivascular adipose tissue (PVAT) exerts an anti-contractile effect which is vital in regulating vascular tone. This effect is mediated via sympathetic nervous stimulation of PVAT by a mechanism which involves noradrenaline uptake through organic cation transporter 3 (OCT3) and β3-adrenoceptor-mediated adiponectin release. In obesity, autonomic dysfunction occurs, which may result in a loss of PVAT function and subsequent vascular disease. Accordingly, we have investigated abnormalities in obese PVAT, and the potential for exercise in restoring function. Methods Vascular contractility to electrical field stimulation (EFS) was assessed ex vivo in the presence of pharmacological tools in ±PVAT vessels from obese and exercised obese mice. Immunohistochemistry was used to detect changes in expression of β3-adrenoceptors, OCT3 and tumour necrosis factor-α (TNFα) in PVAT. Results High fat feeding induced hypertension, hyperglycaemia, and hyperinsulinaemia, which was reversed using exercise, independent of weight loss. Obesity induced a loss of the PVAT anti-contractile effect, which could not be restored via β3-adrenoceptor activation. Moreover, adiponectin no longer exerts vasodilation. Additionally, exercise reversed PVAT dysfunction in obesity by reducing inflammation of PVAT and increasing β3-adrenoceptor and OCT3 expression, which were downregulated in obesity. Furthermore, the vasodilator effects of adiponectin were restored. Conclusion Loss of neutrally mediated PVAT anti-contractile function in obesity will contribute to the development of hypertension and type II diabetes. Exercise training will restore function and treat the vascular complications of obesity. Supplementary Information The online version contains supplementary material available at 10.1007/s10557-020-07136-0.
Collapse
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, UK
| | - Lauren K Toms
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | | | - Sarah B Withers
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, UK
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Jacqueline Ohanian
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
- The Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, UK.
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, Core Technology Facility (3rd floor), 46 Grafton Street, Manchester, M13 9NT, UK.
| |
Collapse
|
8
|
Effect of Exercise on Inflamed Psoas Muscle in Women with Obesity: A Pilot Prospective 18F-FDG PET/CT Study. Diagnostics (Basel) 2021; 11:diagnostics11020164. [PMID: 33498898 PMCID: PMC7912214 DOI: 10.3390/diagnostics11020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022] Open
Abstract
Obesity increases inflammation in skeletal muscle thereby promoting systemic inflammation which leads to increased risk of cardiometabolic disease. This prospective study aimed to evaluate whether the metabolic activity of psoas muscle (PM) was associated with systemic inflammation, and whether physical exercise could reduce the PM metabolic activity evaluated by 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in women with obesity. A total of 23 women with obesity who participated in a 3-month physical exercise program were enrolled. 18F-FDG PET/CT was performed before the start of the program (baseline) and after completion of the program. The maximum standardized uptake value of psoas muscle (PM SUVmax) was used for the PM metabolic activity. The SUVmax of spleen and bone marrow, and the high-sensitivity C-reactive protein were used to evaluate the systemic inflammation. At baseline, PM SUVmax was strongly correlated with the systemic inflammation. The exercise program significantly reduced the PM SUVmax, in addition to adiposity and systemic inflammation. Furthermore, we found that the association between PM SUVmax and the systemic inflammation disappeared after completion of the exercise program. In women with obesity, PM SUVmax, assessed by 18F-FDG PET/CT, was associated with obesity-induced systemic inflammation and exercise reduced the PM SUVmax and eliminated its association with systemic inflammation.
Collapse
|
9
|
Stevens S, Agten A, Timmermans A, Vandenabeele F. Unilateral changes of the multifidus in persons with lumbar disc herniation: a systematic review and meta-analysis. Spine J 2020; 20:1573-1585. [PMID: 32325246 DOI: 10.1016/j.spinee.2020.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Lumbar disc herniation (LDH) is one of the most often diagnosed degenerative pathologies within the lumbar spine. Paraspinal muscle involvement could be a possible mediator in the pathophysiology of disc herniation and influences the course of pain and disability after both surgical or nonsurgical treatment. To potentially improve treatment, it may be important to assess multifidus muscle morphology in patients diagnosed with a LDH. OBJECTIVE A systematic literature review and meta-analysis regarding the multifidus morphology in patients diagnosed with a LDH was conducted to assess the differences in multifidus muscle morphology between persons with LDH and healthy controls, and between the involved and the uninvolved side within subjects experiencing unilateral LDH. METHODS A systematic search was conducted of articles published up to and including November 2019 using the Pubmed, Web of Science, EMBASE, and MEDLINE Ovid search engines. The articles obtained from this search were screened based on title and abstract using the predetermined eligibility criteria. Included full text articles were assessed for their methodologic quality using the modified Downs and Black checklist. Heterogeneous data regarding multifidus muscle morphology was included in the descriptive analysis; data that was homogenous was included in the meta-analysis. RESULTS We identified 3,176 articles. Based on the screening for inclusion/exclusion criteria, 18 articles were included. Studies were either cross sectional or case-control studies assessing side-to-side differences or comparing patients diagnosed with a LDH to a healthy control group. Nine studies investigated whole muscle atrophy, six looked at muscle fat infiltration, seven studies assessed microscopic muscle properties including muscle fiber size, distribution, and muscle fibrosis. From the 18 articles, 10 were included in the meta-analysis. In the meta-analysis, a comparison was made between side-to-side differences for muscle fiber size, distribution, and whole muscle size. Descriptive analysis showed increased fat infiltration and atrophy (muscle and individual fiber) of the multifidus muscle when comparing side-to-side differences or comparing cases to controls. Meta-analysis showed a significant decrease in type I and II muscle fiber size (p=.002, .01, respectively) combined with a significant increase in the number of type I muscle fibers (p=.008) at the side of LDH. Regarding whole muscle size, no significant differences were found. CONCLUSIONS This study shows the presence of ipsilateral multifidus muscle changes in persons with unilateral LDH.
Collapse
Affiliation(s)
- Sjoerd Stevens
- Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Agoralaan building A, 3590 Diepenbeek, Belgium.
| | - Anouk Agten
- Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Agoralaan building A, 3590 Diepenbeek, Belgium
| | - Annick Timmermans
- Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Agoralaan building A, 3590 Diepenbeek, Belgium
| | - Frank Vandenabeele
- Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Agoralaan building A, 3590 Diepenbeek, Belgium
| |
Collapse
|
10
|
Physical Exercise as an Immunomodulator of Chronic Diseases in Aging. J Phys Act Health 2020; 17:662-672. [PMID: 32396868 DOI: 10.1123/jpah.2019-0237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 02/24/2020] [Accepted: 03/20/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND The progressive dysfunction of the immune system during aging appears to be involved in the pathogenesis of several age-related disorders. However, regular physical exercise can present "antiaging" effects on several physiological systems. METHODS A narrative review of studies investigating the chronic effects of exercise and physical activity on the immune system and its association with age-related chronic diseases was carried out according to the guidelines for writing a narrative review. RESULTS There is compelling evidence suggesting that age-related immune system alterations play a key role on the pathophysiology of atherosclerosis, hypertension, chronic heart failure, type 2 diabetes, obesity, arthritis, and chronic obstructive pulmonary disease. On the other hand, the regular practice of physical activity appears to improve most of the inflammatory/immunological processes involved in these diseases. CONCLUSION Epidemiological, experimental, and clinical studies permit us to affirm that regular physical activity improves immunomodulation and may play a key role in the prevention and treatment of several age-related chronic diseases. However, further studies are needed to better describe the prophylactic and therapeutic effects of physical exercise in specific organs of older individuals, as well as the mechanisms involved in such response.
Collapse
|
11
|
Abstract
Unhealthy diet, lack of exercise, psychosocial stress, and insufficient sleep are increasingly prevalent modifiable risk factors for cardiovascular disease. Accumulating evidence indicates that these risk factors may fuel chronic inflammatory processes that are active in atherosclerosis and lead to myocardial infarction and stroke. In concert with hyperlipidemia, maladaptive immune system activities can contribute to disease progression and increase the probability of adverse events. In this review, we discuss recent insight into how the above modifiable risk factors influence innate immunity. Specifically, we focus on pathways that raise systemic myeloid cell numbers and modulate immune cell phenotypes, reviewing hematopoiesis, leukocyte trafficking, and innate immune cell accumulation in cardiovascular organs. Often, relevant mechanisms that begin with lifestyle choices and lead to cardiovascular events span multiple organ systems, including the central nervous, endocrine, metabolic, hematopoietic, immune and, finally, the cardiovascular system. We argue that deciphering such pathways provides not only support for preventive interventions but also opportunities to develop biomimetic immunomodulatory therapeutics that mitigate cardiovascular inflammation.
Collapse
Affiliation(s)
- Maximilian J Schloss
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.).,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.N.).,Department of Internal Medicine I, University Hospital Wuerzburg, Germany (M.N.)
| |
Collapse
|
12
|
Silva G, Ferraresi C, de Almeida RT, Motta ML, Paixão T, Ottone VO, Fonseca IA, Oliveira MX, Rocha-Vieira E, Dias-Peixoto MF, Esteves EA, Coimbra CC, Amorim FT, Magalhães FDC. Insulin resistance is improved in high-fat fed mice by photobiomodulation therapy at 630 nm. JOURNAL OF BIOPHOTONICS 2020; 13:e201960140. [PMID: 31707768 DOI: 10.1002/jbio.201960140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/24/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Photobiomodulation therapy (PBMT) in the infrared spectrum exerts positive effects on glucose metabolism, but the use of PBMT at the red spectrum has not been assessed. Male Swiss albino mice were divided into low-fat control and high-fat diet (HFD) for 12 weeks and were treated with red (630 nm) PBMT or no treatment (Sham) during weeks 9 to 12. PBMT was delivered at 31.19 J/cm2 , 60 J total dose per day for 20 days. In HFD-fed mice, PBMT improved glucose tolerance, insulin resistance and fasting hyperinsulinemia. PBMT also reduced adiposity and inflammatory infiltrate in adipose tissue. Phosphorylation of Akt in epididymal adipose tissue and rectus femoralis muscle was improved by PBMT. In epididymal fat PBMT reversed the reduced phosphorylation of AS160 and the reduced Glut4 content. In addition, PBMT reversed the alterations caused by HFD in rectus femoralis muscle on proteins involved in mitochondrial dynamics and β-oxidation. In conclusion, PBMT at red spectrum improved insulin resistance and glucose metabolism in HFD-fed mice.
Collapse
Affiliation(s)
- Gabriela Silva
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Cleber Ferraresi
- Post-Graduation Program in Biomedical Engineering, Universidade Brasil, São Paulo, Brazil
| | - Rodrigo T de Almeida
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Mariana L Motta
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Thiago Paixão
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Vinicius O Ottone
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Ivana A Fonseca
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Murilo X Oliveira
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Physiotherapy Department, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Etel Rocha-Vieira
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Marco F Dias-Peixoto
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Elizabethe A Esteves
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Cândido C Coimbra
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Endocrinology Laboratory, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fabiano T Amorim
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Department of Heath, Exercise and Sports Science, University of New Mexico, Albuquerque, New Mexico
| | - Flávio de Castro Magalhães
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Department of Heath, Exercise and Sports Science, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
13
|
Kravchenko IV, Furalyov VA, Popov VO. Glycated albumin stimulates expression of inflammatory cytokines in muscle cells. Cytokine 2020; 128:154991. [PMID: 32000013 DOI: 10.1016/j.cyto.2020.154991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
The effects of glycated albumin on the expression of inflammatory cytokines in differentiated myotubes were investigated. Glycated albumin stimulates the expression of TNF α, IL-1β, IL-6 and CCL-2 both at the mRNA and protein levels via the receptor of AGEs. Various cytokines demonstrated different kinetics of stimulation by glycated albumin. At a high glucose concentration, the stimulation effect was more pronounced than at a low one. At physiological concentrations of albumin and fructosamine, the stimulation effect of glycated albumin on inflammatory cytokine expression in myotubes was also observed. The induction of expression of all studied cytokines was sensitive to the inhibitors of JNK, p38 MAPK, MEK1/2, Src family protein kinases and NF-κB. At the same time, the induction of TNFα and IL-1β was diminished by the Ca2+/calmodulin-dependent protein kinase inhibitor, whereas the induction of IL-6 and CCL-2 was reduced by the inhibitor of phosphoinositide 3-kinase. Possible implications of observed stimulation of cytokine expression by glycated albumin in the development of diabetes mellitus symptoms are discussed.
Collapse
Affiliation(s)
- Irina V Kravchenko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, bld. 2, Moscow 119071, Russia.
| | - Vladimir A Furalyov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, bld. 2, Moscow 119071, Russia
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, bld. 2, Moscow 119071, Russia
| |
Collapse
|
14
|
Rudrapatna S, Bhatt M, Wang KW, Bierbrier R, Wang PW, Banfield L, Elsheikh W, Sims ED, Peterson D, Thabane L, Tarnopolsky MA, Steinberg GR, Samaan MC. Obesity and muscle-macrophage crosstalk in humans and mice: A systematic review. Obes Rev 2019; 20:1572-1596. [PMID: 31410961 DOI: 10.1111/obr.12922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Obesity is associated with the production of inflammatory cytokines that are implicated in insulin resistance (IR), and if not addressed, can lead to type 2 diabetes (T2D). The role of the immune system in skeletal muscle (SM) inflammation and insulin sensitivity is not yet well characterized. As SM IR is an important determinant of glycaemia, it is critical that the muscle-immune phenotype is mapped to help design interventions to target T2D. This systematic review synthesized the evidence for SM macrophage content and phenotype in humans and murine models of obesity, and the association of muscle macrophage content and phenotype with IR. Results were synthesized narratively, as we were unable to conduct a meta-analysis. We included 28 studies (n=10 human, n=18 murine), and all studies detected macrophage markers in SM. Macrophage content was positively associated with IR. In humans and mice, there was variability in muscle macrophage content and phenotype in obesity. Overall certainty in the evidence was low due to heterogeneity in detection methods and incompleteness of data reporting. Macrophages are detected in human and murine SM in obesity and a positive association between macrophage content and IR is noted; however, the standardization of markers, detection methods, and reporting of study details is warranted to accurately characterize macrophages and improve the potential for creating specific and targeted immune-based therapies in obesity.
Collapse
Affiliation(s)
- Srikesh Rudrapatna
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Meha Bhatt
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Kuan-Wen Wang
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Rachel Bierbrier
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Pei-Wen Wang
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Laura Banfield
- Health Science Library, McMaster University, Hamilton, Ontario, Canada
| | - Wagdi Elsheikh
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - E Danielle Sims
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Devin Peterson
- Division of Orthopedics, Department of Pediatric Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Lehana Thabane
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada.,Centre for Evaluation of Medicines, Hamilton, Ontario, Canada.,Biostatistics Init, St Joseph's Healthcare-Hamilton, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - M Constantine Samaan
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM. Mechanistic Links Between Obesity, Diabetes, and Blood Pressure: Role of Perivascular Adipose Tissue. Physiol Rev 2019; 99:1701-1763. [PMID: 31339053 DOI: 10.1152/physrev.00034.2018] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Obesity is increasingly prevalent and is associated with substantial cardiovascular risk. Adipose tissue distribution and morphology play a key role in determining the degree of adverse effects, and a key factor in the disease process appears to be the inflammatory cell population in adipose tissue. Healthy adipose tissue secretes a number of vasoactive adipokines and anti-inflammatory cytokines, and changes to this secretory profile will contribute to pathogenesis in obesity. In this review, we discuss the links between adipokine dysregulation and the development of hypertension and diabetes and explore the potential for manipulating adipose tissue morphology and its immune cell population to improve cardiovascular health in obesity.
Collapse
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Ben J Clark
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Sarah B Withers
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Etto C Eringa
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
16
|
Sousa AS, Sponton ACS, Trifone CB, Delbin MA. Aerobic Exercise Training Prevents Perivascular Adipose Tissue-Induced Endothelial Dysfunction in Thoracic Aorta of Obese Mice. Front Physiol 2019; 10:1009. [PMID: 31474873 PMCID: PMC6706787 DOI: 10.3389/fphys.2019.01009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The mechanisms underlying the perivascular adipose tissue (PVAT) dysfunction in obesity are closely related to inflammation and oxidative stress. The present study aimed to investigate the effects of aerobic exercise training on PVAT-induced endothelial dysfunction of thoracic aorta of obese mice. Methods: Male mice C57BL6/JUnib (6-7 weeks) were divided into: sedentary (c-SD), trained (c-TR), obese sedentary (o-SD), and obese trained (o-TR). Obesity was induced by 16 weeks of high-fat diet and exercise training of moderate intensity started after 8 weeks of protocol and was performed on a treadmill, 5 days/week, for more 8 weeks, 60 min per session. The vascular responsiveness was performed in thoracic aorta in the absence (PVAT-) or in the presence (PVAT+) of PVAT. We analyzed circulatory parameters, protein expression, vascular nitric oxide (NO) production, and reactive oxygen species (ROS) in PVAT. Results: The maximal responses to acetylcholine (ACh) were reduced in PVAT+ compared with PVAT- rings in the o-SD group, accompanied by an increase in circulating glucose, insulin, resistin, leptin, and TNF-α. Additionally, the protein expression of iNOS and generation of ROS were increased in PVAT and production of vascular NO was reduced in the o-SD group compared with c-SD. In the o-TR group, the relaxation response to ACh was completely restored and the circulatory TNF-α, iNOS protein expression, and ROS were normalized with increased expression of Mn-SOD in PVAT, resulting in enhanced vascular NO production. Conclusion: The PVAT-induced endothelial dysfunction in thoracic aorta of obese mice, associated with circulatory inflammation and oxidative stress. Aerobic exercise training upregulated the anti-oxidant expression and decreased PVAT oxidative stress with beneficial impact on endothelium-dependent relaxation.
Collapse
Affiliation(s)
- Andressa S Sousa
- Laboratory of Vascular Biology, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Amanda C S Sponton
- Laboratory of Vascular Biology, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - César B Trifone
- Laboratory of Vascular Biology, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria A Delbin
- Laboratory of Vascular Biology, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
17
|
Abstract
Perivascular adipose tissue (PVAT) is no longer recognised as simply a structural support for the vasculature, and we now know that PVAT releases vasoactive factors which modulate vascular function. Since the discovery of this function in 1991, PVAT research is rapidly growing and the importance of PVAT function in disease is becoming increasingly clear. Obesity is associated with a plethora of vascular conditions; therefore, the study of adipocytes and their effects on the vasculature is vital. PVAT contains an adrenergic system including nerves, adrenoceptors and transporters. In obesity, the autonomic nervous system is dysfunctional; therefore, sympathetic innervation of PVAT may be the key mechanistic link between increased adiposity and vascular disease. In addition, not all obese people develop vascular disease, but a common feature amongst those that do appears to be the inflammatory cell population in PVAT. This review will discuss what is known about sympathetic innervation of PVAT, and the links between nerve activation and inflammation in obesity. In addition, we will examine the therapeutic potential of exercise in sympathetic stimulation of adipose tissue.
Collapse
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Core Technology Facility (3rd floor), 46 Grafton Street, M13 9NT, Manchester, UK.
| | - Sarah B Withers
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Core Technology Facility (3rd floor), 46 Grafton Street, M13 9NT, Manchester, UK
- School of Environment and Life Sciences, University of Salford, Manchester, UK
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Core Technology Facility (3rd floor), 46 Grafton Street, M13 9NT, Manchester, UK
| |
Collapse
|
18
|
Walton RG, Kosmac K, Mula J, Fry CS, Peck BD, Groshong JS, Finlin BS, Zhu B, Kern PA, Peterson CA. Human skeletal muscle macrophages increase following cycle training and are associated with adaptations that may facilitate growth. Sci Rep 2019; 9:969. [PMID: 30700754 PMCID: PMC6353900 DOI: 10.1038/s41598-018-37187-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/23/2018] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle macrophages participate in repair and regeneration following injury. However, their role in physiological adaptations to exercise is unexplored. We determined whether endurance exercise training (EET) alters macrophage content and characteristics in response to resistance exercise (RE), and whether macrophages are associated with other exercise adaptations. Subjects provided vastus lateralis biopsies before and after one bout of RE, after 12 weeks of EET (cycling), and after a final bout of RE. M2 macrophages (CD11b+/CD206+) did not increase with RE, but increased in response to EET (P < 0.01). Increases in M2 macrophages were positively correlated with fiber hypertrophy (r = 0.49) and satellite cells (r = 0.47). M2c macrophages (CD206+/CD163+) also increased following EET (P < 0.001), and were associated with fiber hypertrophy (r = 0.64). Gene expression was quantified using NanoString. Following EET, the change in M2 macrophages was positively associated with changes in HGF, IGF1, and extracellular matrix genes. EET decreased expression of IL6 (P < 0.05), C/EBPβ (P < 0.01), and MuRF (P < 0.05), and increased expression of IL-4 (P < 0.01), TNFα (P < 0.01) and the TWEAK receptor FN14 (P < 0.05). The change in FN14 gene expression was inversely associated with changes in C/EBPβ (r = -0.58) and MuRF (r = -0.46) following EET. In cultured human myotubes, siRNA inhibition of FN14 increased expression of C/EBPβ (P < 0.05) and MuRF (P < 0.05). Our data suggest that macrophages contribute to the muscle response to EET, potentially including modulation of TWEAK-FN14 signaling.
Collapse
Affiliation(s)
- R Grace Walton
- College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.
| | - Kate Kosmac
- College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Jyothi Mula
- College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Christopher S Fry
- Deptartment of Nutrition & Metabolism, School of Health Professions, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Bailey D Peck
- College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Jason S Groshong
- Department of Health Professions, University of Central Florida, Orlando, Florida, USA
| | - Brian S Finlin
- Department of Medicine, Division of Endocrinology, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky, USA
| | - Beibei Zhu
- Department of Medicine, Division of Endocrinology, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky, USA
| | - Philip A Kern
- Department of Medicine, Division of Endocrinology, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky, USA
| | - Charlotte A Peterson
- College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
19
|
Preventive Effect of Spontaneous Physical Activity on the Gut-Adipose Tissue in a Mouse Model That Mimics Crohn's Disease Susceptibility. Cells 2019; 8:cells8010033. [PMID: 30634469 PMCID: PMC6356941 DOI: 10.3390/cells8010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Crohn’s disease is characterized by abnormal ileal colonization by adherent-invasive E. coli (AIEC) and expansion of mesenteric adipose tissue. This study assessed the preventive effect of spontaneous physical activity (PA) on the gut-adipose tissue in a mouse model that mimics Crohn’s disease susceptibility. Thirty-five CEABAC10 male mice performed spontaneous PA (wheel group; n = 24) or not (controls; n = 11) for 12 weeks. At week 12, mice were orally challenged with the AIEC LF82 strain for 6 days. Body composition, glycaemic control, intestinal permeability, gut microbiota composition, and fecal short-chain fatty acids were assessed in both groups. Animals were fed a high fat/high sugar diet throughout the study. After exposure to AIEC, mesenteric adipose tissue weight was lower in the wheel group. Tight junction proteins expression increased with spontaneous PA, whereas systemic lipopolysaccharides were negatively correlated with the covered distance. Bifidobacterium and Lactobacillus decreased in controls, whereas Oscillospira and Ruminococcus increased in the wheel group. Fecal propionate and butyrate were also higher in the wheel group. In conclusion, spontaneous physical activity promotes healthy gut microbiota composition changes and increases short-chain fatty acids in CEABAC10 mice fed a Western diet and exposed to AIEC to mimic Crohn’s disease.
Collapse
|
20
|
Appari M, Channon KM, McNeill E. Metabolic Regulation of Adipose Tissue Macrophage Function in Obesity and Diabetes. Antioxid Redox Signal 2018; 29:297-312. [PMID: 28661198 PMCID: PMC6012981 DOI: 10.1089/ars.2017.7060] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Obesity and diabetes are associated with chronic activation of inflammatory pathways that are important mechanistic links between insulin resistance (IR), type 2 diabetes (T2D), and cardiovascular disease pathogenesis. The development of these metabolic diseases is associated with changes in both the number and phenotype of adipose tissue macrophages (ATMs). Emerging lines of evidence have shown that ATMs release proinflammatory cytokines similar to classically activated M1 macrophages, which directly contribute to IR or T2D. In contrast, adipose tissue (AT) from lean healthy individuals contains macrophages with a less inflammatory M2 phenotype. Recent Advances: Recent research has shown that macrophage phenotype is linked to profound changes in macrophage cellular metabolism. CRITICAL ISSUES This review focuses on the role of macrophages in AT inflammation and obesity, and the metabolic changes in macrophage function that occur with activation that underpin their role in the pathogenesis of IR and T2D. We highlight current targets for altering macrophage metabolism from both within the field of metabolic disease and AT biology and more widely within inflammatory biology. FUTURE DIRECTIONS As our knowledge of macrophage metabolic programming in AT builds, there will be increasing scope for targeting this aspect of macrophage biology as a therapeutic strategy in metabolic diseases. Antioxid. Redox Signal. 29, 297-312.
Collapse
Affiliation(s)
- Mahesh Appari
- 1 Division of Cardiovascular Medicine, British Heart Foundation Centre for Research Excellence, John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom .,2 Wellcome Trust Centre for Human Genetics, University of Oxford , Oxford, United Kingdom
| | - Keith M Channon
- 1 Division of Cardiovascular Medicine, British Heart Foundation Centre for Research Excellence, John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom .,2 Wellcome Trust Centre for Human Genetics, University of Oxford , Oxford, United Kingdom
| | - Eileen McNeill
- 1 Division of Cardiovascular Medicine, British Heart Foundation Centre for Research Excellence, John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom .,2 Wellcome Trust Centre for Human Genetics, University of Oxford , Oxford, United Kingdom
| |
Collapse
|
21
|
Little HC, Tan SY, Cali FM, Rodriguez S, Lei X, Wolfe A, Hug C, Wong GW. Multiplex Quantification Identifies Novel Exercise-regulated Myokines/Cytokines in Plasma and in Glycolytic and Oxidative Skeletal Muscle. Mol Cell Proteomics 2018; 17:1546-1563. [PMID: 29735541 DOI: 10.1074/mcp.ra118.000794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
Exercise is known to confer major health benefits, but the underlying mechanisms are not well understood. The systemic effects of exercise on multi-organ systems are thought to be partly because of myokines/cytokines secreted by skeletal muscle. The extent to which exercise alters cytokine expression and secretion in different muscle fiber types has not been systematically examined. Here, we assessed changes in 66 mouse cytokines in serum, and in glycolytic (plantaris) and oxidative (soleus) muscles, in response to sprint, endurance, or chronic wheel running. Both acute and short-term exercise significantly altered a large fraction of cytokines in both serum and muscle, twenty-three of which are considered novel exercise-regulated myokines. Most of the secreted cytokine receptors profiled were also altered by physical activity, suggesting an exercise-regulated mechanism that modulates the generation of soluble receptors found in circulation. A greater overlap in cytokine profile was seen between endurance and chronic wheel running. Between fiber types, both acute and chronic exercise induced significantly more cytokine changes in oxidative compared with glycolytic muscle. Further, changes in a subset of circulating cytokines were not matched by their changes in muscle, but instead reflected altered expression in liver and adipose tissues. Last, exercise-induced changes in cytokine mRNA and protein were only minimally correlated in soleus and plantaris. In sum, our results indicate that exercise regulates many cytokines whose pleiotropic actions may be linked to positive health outcomes. These data provide a framework to further understand potential crosstalk between skeletal muscle and other organ compartments.
Collapse
Affiliation(s)
- Hannah C Little
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Stefanie Y Tan
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Francesca M Cali
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Susana Rodriguez
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Xia Lei
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Andrew Wolfe
- ¶Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Christopher Hug
- ‖Division of Pulmonary Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - G William Wong
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; .,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
22
|
Perandini LA, Chimin P, Lutkemeyer DDS, Câmara NOS. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche? FEBS J 2018; 285:1973-1984. [PMID: 29473995 DOI: 10.1111/febs.14417] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/27/2018] [Accepted: 02/19/2018] [Indexed: 12/23/2022]
Abstract
Chronic inflammation impairs skeletal muscle regeneration. Although many cells are involved in chronic inflammation, macrophages seem to play an important role in impaired muscle regeneration since these cells are associated with skeletal muscle stem cell (namely, satellite cells) activation and fibro-adipogenic progenitor cell (FAP) survival. Specifically, an imbalance of M1 and M2 macrophages seems to lead to impaired satellite cell activation, and these are the main cells that function during skeletal muscle regeneration, after muscle damage. Additionally, this imbalance leads to the accumulation of FAPs in skeletal muscle, with aberrant production of pro-fibrotic factors (e.g., extracellular matrix components), impairing the niche for proper satellite cell activation and differentiation. Treatments aiming to block the inflammatory pro-fibrotic response are partially effective due to their side effects. Therefore, strategies reverting chronic inflammation into a pro-regenerative pattern are required. In this review, we first describe skeletal muscle resident macrophage ontogeny and homeostasis, and explain how macrophages are replenished after muscle injury. We next discuss the potential role of chronic physical activity and exercise in restoring the M1 and M2 macrophage balance and consequently, the satellite cell niche to improve skeletal muscle regeneration after injury.
Collapse
Affiliation(s)
- Luiz Augusto Perandini
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Patricia Chimin
- Department of Physical Education, Physical Education and Sports Center, Londrina State University, Brazil
| | - Diego da Silva Lutkemeyer
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.,Laboratory of Clinical and Experimental Immunology, Division of Nephrology, Department of Medicine, Federal University of Sao Paulo, Brazil
| |
Collapse
|
23
|
Lee S, Norheim F, Langleite TM, Noreng HJ, Storås TH, Afman LA, Frost G, Bell JD, Thomas EL, Kolnes KJ, Tangen DS, Stadheim HK, Gilfillan GD, Gulseth HL, Birkeland KI, Jensen J, Drevon CA, Holen T. Effect of energy restriction and physical exercise intervention on phenotypic flexibility as examined by transcriptomics analyses of mRNA from adipose tissue and whole body magnetic resonance imaging. Physiol Rep 2017; 4:4/21/e13019. [PMID: 27821717 PMCID: PMC5112497 DOI: 10.14814/phy2.13019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/09/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022] Open
Abstract
Overweight and obesity lead to changes in adipose tissue such as inflammation and reduced insulin sensitivity. The aim of this study was to assess how altered energy balance by reduced food intake or enhanced physical activity affect these processes. We studied sedentary subjects with overweight/obesity in two intervention studies, each lasting 12 weeks affecting energy balance either by energy restriction (~20% reduced intake of energy from food) in one group, or by enhanced energy expenditure due to physical exercise (combined endurance‐ and strength‐training) in the other group. We monitored mRNA expression by microarray and mRNA sequencing from adipose tissue biopsies. We also measured several plasma parameters as well as fat distribution with magnetic resonance imaging and spectroscopy. Comparison of microarray and mRNA sequencing showed strong correlations, which were also confirmed using RT‐PCR. In the energy restricted subjects (body weight reduced by 5% during a 12 weeks intervention), there were clear signs of enhanced lipolysis as monitored by mRNA in adipose tissue as well as plasma concentration of free‐fatty acids. This increase was strongly related to increased expression of markers for M1‐like macrophages in adipose tissue. In the exercising subjects (glucose infusion rate increased by 29% during a 12‐week intervention), there was a marked reduction in the expression of markers of M2‐like macrophages and T cells, suggesting that physical exercise was especially important for reducing inflammation in adipose tissue with insignificant reduction in total body weight. Our data indicate that energy restriction and physical exercise affect energy‐related pathways as well as inflammatory processes in different ways, probably related to macrophages in adipose tissue.
Collapse
Affiliation(s)
- Sindre Lee
- Department of Nutrition, Institute of Basic Medical Sciences Faculty of Medicine University of Oslo, Oslo, Norway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences Faculty of Medicine University of Oslo, Oslo, Norway.,Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Torgrim M Langleite
- Department of Nutrition, Institute of Basic Medical Sciences Faculty of Medicine University of Oslo, Oslo, Norway
| | - Hans J Noreng
- The Intervention Centre, Oslo University Hospital Oslo, Oslo, Norway
| | - Trygve H Storås
- The Intervention Centre, Oslo University Hospital Oslo, Oslo, Norway
| | - Lydia A Afman
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Gary Frost
- Division of Diabetes, Endocrinology and Metabolism, Dietetics, Imperial College Hammersmith Campus, London, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | - E Louise Thomas
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | - Kristoffer J Kolnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Daniel S Tangen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Hans K Stadheim
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | | - Hanne L Gulseth
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of medicine, University of Oslo, Oslo, Norway
| | - Kåre I Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of medicine, University of Oslo, Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences Faculty of Medicine University of Oslo, Oslo, Norway
| | - Torgeir Holen
- Department of Nutrition, Institute of Basic Medical Sciences Faculty of Medicine University of Oslo, Oslo, Norway
| | | |
Collapse
|
24
|
Bhatt M, Rudrapatna S, Banfield L, Bierbrier R, Wang PW, Wang KW, Thabane L, Samaan MC. Evaluating the evidence for macrophage presence in skeletal muscle and its relation to insulin resistance in obese mice and humans: a systematic review protocol. BMC Res Notes 2017; 10:374. [PMID: 28789665 PMCID: PMC5549391 DOI: 10.1186/s13104-017-2686-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/22/2017] [Indexed: 12/28/2022] Open
Abstract
Objectives The current global rates of obesity and type 2 diabetes are staggering. In order to implement effective management strategies, it is imperative to understand the mechanisms of obesity-induced insulin resistance and diabetes. Macrophage infiltration and inflammation of the adipose tissue in obesity is a well-established paradigm, yet the role of macrophages in muscle inflammation, insulin resistance and diabetes is not adequately studied. In this systematic review, we will examine the evidence for the presence of macrophages in skeletal muscle of obese humans and mice, and will assess the association between muscle macrophages and insulin resistance. We will identify published studies that address muscle macrophage content and phenotype, and its association with insulin resistance. We will search MEDLINE/PubMed, EMBASE, and Web of Science for eligible studies. Grey literature will be searched in ProQuest. Quality assessment will be conducted using the Systematic Review Centre for Laboratory Animal Experimentation risk of bias Tool for animal studies. Results The findings of this systematic review will shed light on immune-metabolic crosstalk in obesity, and allow the consideration of targeted therapies to modulate muscle macrophages in the treatment and prevention of diabetes. The review will be published in a peer-reviewed journal and presented at conferences. Electronic supplementary material The online version of this article (doi:10.1186/s13104-017-2686-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meha Bhatt
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Srikesh Rudrapatna
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada.,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Laura Banfield
- Health Sciences Library, McMaster University, Hamilton, ON, Canada
| | - Rachel Bierbrier
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Pei-Wen Wang
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Kuan-Wen Wang
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Anesthesia, McMaster University, Hamilton, ON, Canada.,Centre for Evaluation of Medicines, Hamilton, ON, Canada.,Biostatistics Unit, St Joseph's Healthcare-Hamilton, Hamilton, ON, Canada
| | - M Constantine Samaan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada. .,Department of Pediatrics, McMaster University, Hamilton, ON, Canada. .,Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada. .,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, ON, Canada.
| |
Collapse
|
25
|
Chan KL, Boroumand P, Milanski M, Pillon NJ, Bilan PJ, Klip A. Deconstructing metabolic inflammation using cellular systems. Am J Physiol Endocrinol Metab 2017; 312:E339-E347. [PMID: 28196858 DOI: 10.1152/ajpendo.00039.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 02/06/2023]
Abstract
Over the past years, we have embarked in a systematic analysis of the effect of obesity or fatty acids on circulating monocytes, microvascular endothelial cells, macrophages, and skeletal muscle cells. With the use of cell culture strategies, we have deconstructed complex physiological systems and then reconstructed "partial equations" to better understand cell-to-cell communication. Through these approaches, we identified that in high saturated fat environments, cell-autonomous proinflammatory pathways are activated in monocytes and endothelial cells, promoting monocyte adhesion and transmigration. We think of this as a paradigm of the conditions promoting immune cell infiltration into tissues during obesity. In concert, it is possible that muscle and adipose tissue secrete immune cell chemoattractants, and indeed, our tissue culture reconstructions reveal that myotubes treated with the saturated fatty acid palmitate, but not the unsaturated fatty acid palmitoleate, release nucleotides that attract monocytes and other compounds that promote proinflammatory classically activated "(M1)-like" polarization in macrophages. In addition, palmitate directly triggers an M1-like macrophage phenotype, and secretions from these activated macrophages confer insulin resistance to target muscle cells. Together, these studies suggest that in pathophysiological conditions of excess fat, the muscle, endothelial and immune cells engage in a synergistic crosstalk that exacerbates tissue inflammation, leukocyte infiltration, polarization, and consequent insulin resistance.
Collapse
Affiliation(s)
- Kenny L Chan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Ontario, Canada; and
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Ontario Canada
| | - Marciane Milanski
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicolas J Pillon
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada;
- Department of Physiology, University of Toronto, Ontario, Canada; and
- Department of Biochemistry, University of Toronto, Ontario Canada
| |
Collapse
|
26
|
Fernández-Verdejo R, Vanwynsberghe AM, Essaghir A, Demoulin JB, Hai T, Deldicque L, Francaux M. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training. FASEB J 2016; 31:840-851. [PMID: 27856557 DOI: 10.1096/fj.201600987r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/31/2016] [Indexed: 12/17/2022]
Abstract
Activating transcription factor (ATF)3 regulates the expression of inflammation-related genes in several tissues under pathological contexts. In skeletal muscle, atf3 expression increases after exercise, but its target genes remain unknown. We aimed to identify those genes and to determine the influence of ATF3 on muscle adaptation to training. Skeletal muscles of ATF3-knockout (ATF3-KO) and control mice were analyzed at rest, after exercise, and after training. In resting muscles, there was no difference between genotypes in enzymatic activities or fiber type. After exercise, a microarray analysis in quadriceps revealed ATF3 affects genes modulating chemotaxis and chemokine/cytokine activity. Quantitative PCR showed that the mRNA levels of chemokine C-C motif ligand (ccl)8 and chemokine C-X-C motif ligand (cxcl)13 were higher in quadriceps of ATF3-KO mice than in control mice. The same was observed for ccl9 and cxcl13 in soleus. Also in soleus, ccl2, interleukin (il)6, il1β, and cluster of differentiation (cd)68 mRNA levels increased after exercise only in ATF3-KO mice. Endurance training increased the basal mRNA level of hexokinase-2, hormone sensitive lipase, glutathione peroxidase-1, and myosin heavy chain IIa in quadriceps of control mice but not in ATF3-KO mice. In summary, ATF3 attenuates the expression of inflammation-related genes after exercise and thus facilitates molecular adaptation to training.-Fernández-Verdejo, R., Vanwynsberghe, A. M., Essaghir, A., Demoulin, J.-B., Hai, T., Deldicque, L., Francaux, M. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training.
Collapse
Affiliation(s)
| | - Aline M Vanwynsberghe
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Ahmed Essaghir
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium; and
| | | | - Tsonwin Hai
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio, USA
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marc Francaux
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium;
| |
Collapse
|
27
|
Samaan MC, Missiuna P, Peterson D, Thabane L. Understanding the role of the immune system in adolescent idiopathic scoliosis: Immunometabolic CONnections to Scoliosis (ICONS) study protocol. BMJ Open 2016; 6:e011812. [PMID: 27401365 PMCID: PMC4947809 DOI: 10.1136/bmjopen-2016-011812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Adolescent idiopathic scoliosis (AIS) affects up to 3% of children around the world. There is limited knowledge of AIS aetiopathogenesis, and this evidence is needed to develop new management strategies. Paraspinal muscle in AIS demonstrates evidence of differential fibrosis based on curve sidedness. Fibrosis is the hallmark of macrophage-driven inflammation and tissue remodelling, yet the mechanisms of fibrosis in paraspinal muscle in AIS are poorly understood. OBJECTIVES The primary objective of this study is to determine the influence of curve sidedness on paraspinal muscle inflammation. Secondary objectives include defining the mechanisms of macrophage homing to muscle, and determining muscle-macrophage crosstalk in muscle fibrosis in AIS. METHODS AND ANALYSIS This is a cross-sectional study conducted in a tertiary paediatric centre in Hamilton, Ontario, Canada. We will recruit boys and girls, 10-17 years of age, who are having surgery to correct AIS. We will exclude children who have an active infection or are on immunosuppressive therapies within 2 weeks of surgery, smokers and pregnant girls. Paraspinal muscle biopsies will be obtained at the start of surgery. Also, blood and urine samples will be collected from participants, who will fill questionnaires about their lifestyle. Anthropometric measures will also be collected including height, weight, waist and hip circumferences. ETHICS AND DISSEMINATION This study has received ethics authorisation by the institutional review board. This work will be published in peer-reviewed journals and will be presented in oral and poster formats at scientific meetings. DISCUSSION This study will explore the mechanisms of paraspinal muscle inflammation, remodelling and fibrosis in AIS. This will help identify pathways and molecules as potential therapeutic targets to treat and prevent AIS. It may also yield markers that predict scoliosis progression and response to treatment in these children.
Collapse
Affiliation(s)
- M Constantine Samaan
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada
- Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Paul Missiuna
- Division of Orthopedics, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Devin Peterson
- Division of Orthopedics, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Lehana Thabane
- Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Ontario, Canada
- Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
- Centre for Evaluation of Medicines, Hamilton, Ontario, Canada
- Biostatistics unit, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
28
|
Hespe GE, Kataru RP, Savetsky IL, García Nores GD, Torrisi JS, Nitti MD, Gardenier JC, Zhou J, Yu JZ, Jones LW, Mehrara BJ. Exercise training improves obesity-related lymphatic dysfunction. J Physiol 2016; 594:4267-82. [PMID: 26931178 PMCID: PMC4967732 DOI: 10.1113/jp271757] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/24/2016] [Indexed: 01/04/2023] Open
Abstract
Key points Obesity results in perilymphatic inflammation and lymphatic dysfunction. Lymphatic dysfunction in obesity is characterized by decreased lymphatic vessel density, decreased collecting lymphatic vessel pumping frequency, decreased lymphatic trafficking of immune cells, increased lymphatic vessel leakiness and changes in the gene expression patterns of lymphatic endothelial cells. Aerobic exercise, independent of weight loss, decreases perilymphatic inflammatory cell accumulation, improves lymphatic function and reverses pathological changes in gene expression in lymphatic endothelial cells.
Abstract Although previous studies have shown that obesity markedly decreases lymphatic function, the cellular mechanisms that regulate this response remain unknown. In addition, it is unclear whether the pathological effects of obesity on the lymphatic system are reversible with behavioural modifications. The purpose of this study, therefore, was to analyse lymphatic vascular changes in obese mice and to determine whether these pathological effects are reversible with aerobic exercise. We randomized obese mice to either aerobic exercise (treadmill running for 30 min per day, 5 days a week, for 6 weeks) or a sedentary group that was not exercised and analysed lymphatic function using a variety of outcomes. We found that sedentary obese mice had markedly decreased collecting lymphatic vessel pumping capacity, decreased lymphatic vessel density, decreased lymphatic migration of immune cells, increased lymphatic vessel leakiness and decreased expression of lymphatic specific markers compared with lean mice (all P < 0.01). Aerobic exercise did not cause weight loss but markedly improved lymphatic function compared with sedentary obese mice. Exercise had a significant anti‐inflammatory effect, resulting in decreased perilymphatic accumulation of inflammatory cells and inducible nitric oxide synthase expression. In addition, exercise normalized isolated lymphatic endothelial cell gene expression of lymphatic specific genes, including VEGFR‐3 and Prox1. Taken together, our findings suggest that obesity impairs lymphatic function via multiple mechanisms and that these pathological changes can be reversed, in part, with aerobic exercise, independent of weight loss. In addition, our study shows that obesity‐induced lymphatic endothelial cell gene expression changes are reversible with behavioural modifications. Obesity results in perilymphatic inflammation and lymphatic dysfunction. Lymphatic dysfunction in obesity is characterized by decreased lymphatic vessel density, decreased collecting lymphatic vessel pumping frequency, decreased lymphatic trafficking of immune cells, increased lymphatic vessel leakiness and changes in the gene expression patterns of lymphatic endothelial cells. Aerobic exercise, independent of weight loss, decreases perilymphatic inflammatory cell accumulation, improves lymphatic function and reverses pathological changes in gene expression in lymphatic endothelial cells.
Collapse
Affiliation(s)
- Geoffrey E Hespe
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raghu P Kataru
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ira L Savetsky
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriela D García Nores
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeremy S Torrisi
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D Nitti
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason C Gardenier
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jie Zhou
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessie Z Yu
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lee W Jones
- The Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Babak J Mehrara
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
29
|
Macedo AP, Shimano RC, Ferrari DT, Issa JPM, Jordão AA, Shimano AC. Influence of treadmill training on bone structure under osteometabolic alteration in rats subjected to high-fat diet. Scand J Med Sci Sports 2016; 27:167-176. [PMID: 26923426 DOI: 10.1111/sms.12650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 01/02/2023]
Abstract
Nutrition and physical training have important roles in the accumulation and maintenance of bone mass. The aim of this study was to evaluate, in ovariectomized rats (OVX), the effects of treadmill training (T) with high-fat diet (F) on weight gain and bone tissue properties with eight groups (n = 10) for 12 weeks: OVX SC (OVX, sedentary lifestyle, diet control); OVX SF; OVX TC; OVX TF; SH SC (SHAM, sedentary lifestyle, diet control); SH SF; SH TC; and SH TF. Weekly weight gain and final body composition were assessed. After euthanasia, tibiae were analyzed. The trained animals had higher body weight (P = 0.001), bone mineral density (P < 0.001), and trabecular bone (P < 0.001). The animals with a high-fat diet showed higher global fat (P < 0.001), percentage of global fat (P < 0.001) and deformation at impact (P = 0.031) and reduced tibial bone mineral content (P = 0.036). Physical training improves bone microarchitecture, without presenting an increase in impact resistance, and a high-fat diet increases body fat and impairs bone mineralization.
Collapse
Affiliation(s)
- A P Macedo
- Bioengineering Laboratory, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - R C Shimano
- Bioengineering Laboratory, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - D T Ferrari
- Bioengineering Laboratory, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - J P M Issa
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - A A Jordão
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - A C Shimano
- Bioengineering Laboratory, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Abstract
Diet, exercise, stress, and sleep are receiving attention as environmental modifiers of chronic inflammatory diseases, including atherosclerosis, the culprit condition of myocardial infarction and stroke. Accumulating data indicate that psychosocial stress and a high-fat, high-cholesterol diet aggravate cardiovascular disease, whereas regular physical activity and healthy sleeping habits help prevent it. Here, we raise the possibility that inflammation-associated leukocyte production plays a causal role in lifestyle effects on atherosclerosis progression. Specifically, we explore whether and how potent real-life disease modifiers influence hematopoiesis' molecular and cellular machinery. Lifestyle, we hypothesize, may rearrange hematopoietic topography, diverting production from the bone marrow to the periphery, thus propagating a quantitative and qualitative drift of the macrophage supply chain. These changes may involve progenitor-extrinsic and intrinsic communication nodes that connect organ systems along neuroimmune and immunometabolic axes, ultimately leading to an altered number and phenotype of lesional macrophages. We propose that, in conjunction with improved public health policy, future therapeutics could aim to modulate the quantitative and qualitative output, as well as the location, of the hematopoietic tree to decrease the risk of atherosclerosis complications.
Collapse
Affiliation(s)
- Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston.
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston.
| |
Collapse
|
31
|
Liu K, Wang F, Cui Z, Liu S, Han X. Inflammatory cytokine expression in the quadriceps of rats with posttraumatic knee stiffness: A preliminary study. Cytokine 2015; 73:258-64. [PMID: 25802194 DOI: 10.1016/j.cyto.2014.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 10/23/2022]
Abstract
The primary purpose of this study was to investigate cytokine expression in the quadriceps of rats with posttraumatic knee stiffness (PTKS) and to determine the effect of exercise training on these cytokines at different follow-up time points. The PTKS rats were randomly assigned into two even groups. The treatment group received exercise training, while the control group received no treatment. Quadriceps specimens were harvested randomly from each group at 8, 12, 16, and 20 weeks. RT-qPCR and immunohistochemical analyses were used to assess the protein and mRNA expression levels of the cytokines IL-1, IL-2, TNF-α, COX-1, and COX-2. TNF-α immunostaining did not differ between the treated and control group tissues, whereas weak immunostaining was observed for all other cytokines in the specimens from the treatment group compared with those from the control group at approximately 12 and 20 weeks. The cytokine levels decreased at approximately 8 weeks in the treatment group, whereas these levels remained elevated or plateaued in the control group. These differences were statistically significant (p<0.05). This study demonstrated that the expression of cytokines IL-1, IL-2, COX-1, and COX-2 increased in the quadriceps of rats with PTKS and that exercise training affected the observed profile trends of these cytokines.
Collapse
Affiliation(s)
- Kemin Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, People's Republic of China; Department of Orthopedics and Rehabilitation, Beijing Charity Hospital, Beijing 100068, People's Republic of China.
| | - Fei Wang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, People's Republic of China; Department of Orthopedics and Rehabilitation, Beijing Charity Hospital, Beijing 100068, People's Republic of China
| | - Zhigang Cui
- School of Rehabilitation Medicine, Capital Medical University, Beijing, People's Republic of China; Department of Orthopedics and Rehabilitation, Beijing Charity Hospital, Beijing 100068, People's Republic of China
| | - Sihai Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, People's Republic of China; Department of Orthopedics and Rehabilitation, Beijing Charity Hospital, Beijing 100068, People's Republic of China
| | - Xinzuo Han
- School of Rehabilitation Medicine, Capital Medical University, Beijing, People's Republic of China; Department of Orthopedics and Rehabilitation, Beijing Charity Hospital, Beijing 100068, People's Republic of China
| |
Collapse
|