1
|
Yu Y, Zhou M, Sadiq FA, Hu P, Gao F, Wang J, Liu A, Liu Y, Wu H, Zhang G. Comparison of the effects of three sourdough postbiotics on high-fat diet-induced intestinal damage. Food Funct 2024; 15:9053-9069. [PMID: 39162079 DOI: 10.1039/d4fo02948h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
There is significant interest in using postbiotics as an intervention strategy to address obesity. This study assesses the efficacy of postbiotics derived from different sourdough strains (Lactiplantibacillus plantarum LP1, LP25, and Pediococcus pentosaceus PP18) in mitigating intestinal injury in zebrafish fed on a high-fat diet. We screened postbiotics for their anti-colon cancer cell effects and compared various preparation methods applied to live bacterial strains, including heat-killing at different temperatures, pH adjustments, and ultraviolet radiation exposure. Heat-killing at 120 °C proved to be the most effective preparation method. A marked variation in health effects was observed in the heat-killed microbial cells, as evidenced by their hydrophobicity and self-aggregation ability. A five-week high-fat dietary intervention study in zebrafish demonstrated that diets supplemented with 108 CFU g-1 K-LP25 significantly attenuated weight gain and body fat, along with reductions in FASN, Leptin, and SREBF1 mRNA expression. However, diets supplemented with 107 CFU g-1 K-PP18 only reduced Leptin and SREBF1 mRNA expression. K-PP18 was more effective at mitigating gut barrier damage, promoting colonic Occludin, ZO-1, and Claudin-1 levels. Additionally, K-LP25 supplementation markedly downregulated the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β, reducing intestinal inflammation. Supplementation with K-LP1 and K-PP18 increased the abundance of Acinetobacter spp., whereas K-LP25 increased the abundance of Cetobacterium and Plesiomonas. Collectively, these findings suggest that inactivated strains confer protective effects against high-fat diet-induced intestinal damage in zebrafish, with variation observed across different species. Studying the effects of sourdough-derived postbiotics on gut health may open new avenues for dietary interventions to manage gut-related diseases.
Collapse
Affiliation(s)
- Yujuan Yu
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Min Zhou
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Faizan Ahmed Sadiq
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK
| | - Pengli Hu
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Feng Gao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Juanxia Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Aowen Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Yue Liu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Guohua Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
2
|
Lu J, Pan T, Gao J, Cai X, Zhang H, Sha W, Lei T. Reduced Branched-Chain Amino Acid Intake Improved High-Fat Diet-Induced Nonalcoholic Fatty Pancreas Disease in Mice. Pancreas 2024; 53:e157-e163. [PMID: 38227616 DOI: 10.1097/mpa.0000000000002281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
OBJECTIVE To explore the effects of branched-chain amino acids (BCAAs) on nonalcoholic fatty pancreas disease (NAFPD) and its possible mechanism in high-fat diet (HFD) induced mice. MATERIALS AND METHODS Pancreatic morphology and lipid infiltration was assessed by hematoxylin-eosin staining and immunohistochemistry, and lipid levels in the pancreas were determined using colorimetric enzymatic method. Relevant mechanism was investigated using western blotting and biochemical test. RESULTS In HFD-fed mice, dietary BCAAs restriction could attenuate body weight increase, improve glucose metabolism, and reduce excessive lipid accumulation in the pancreas. Furthermore, expression of AMPKα and downstream uncoupling protein 1 were upregulated, while genes related to mammalian target of rapamycin complex 1 (mTORC1) signal pathway and lipid de novo synthesis were suppressed in HFD-BCAA restriction group compared with HFD and HFD-high BCAAs fed mice. In addition, BCAA restriction upregulated expression of BCAAs related metabolic enzymes including PPM1K and BCKDHA, and decreased the levels of BCAAs and branched chain keto acid in the pancreas. However, there was no difference in levels of lipid content in the pancreas and gene expression of AMPKα and mTORC1 between HFD and HFD-high BCAAs groups. CONCLUSIONS Branched-chain amino acid restriction ameliorated HFD-induced NAFPD in mice by activation of AMPKα pathway and suppression of mTORC1 pathway.
Collapse
Affiliation(s)
| | - Ting Pan
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu
| | - Jie Gao
- From the Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai
| | - Xinghua Cai
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Anhui; and §School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Wenjun Sha
- From the Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai
| | - Tao Lei
- From the Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai
| |
Collapse
|
3
|
Moriki D, Koumpagioti D, Francino MP, Rufián-Henares JÁ, Kalogiannis M, Priftis KN, Douros K. How Different Are the Influences of Mediterranean and Japanese Diets on the Gut Microbiome? Endocr Metab Immune Disord Drug Targets 2024; 24:1733-1745. [PMID: 38243975 DOI: 10.2174/0118715303261069231124092259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 01/22/2024]
Abstract
The gut microbiome is a complex ecosystem, mainly composed of bacteria, that performs essential functions for the host. Its composition is determined by many factors; however, diet has emerged as a key regulator. Both the Mediterranean (MD) and Japanese (JD) diets have been associated with significant health benefits and are therefore considered healthy dietary patterns. Both are plant-based diets and although they have much in common, they also have important differences mainly related to total calorie intake and the consumption of specific foods and beverages. Thus, it has been hypothesized that they exert their beneficial properties through different nutrients and bioactive compounds that interact with gut microbes and induce specific changes on gut metabolic pathways. In this review, we present current data on the effects of the MD and JD on the gut microbiome. Furthermore, we aim to examine whether there are differences or shared effects on the gut microbiome of people who adhere to these dietary patterns.
Collapse
Affiliation(s)
- Dafni Moriki
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Despoina Koumpagioti
- Department of Nursing, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Pilar Francino
- Department of Genomics and Health, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valencia (FISABIO), 46020 Valencia, Spain
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - Michalis Kalogiannis
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Kostas N Priftis
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Douros
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
4
|
Nagao M, Asai A, Eliasson L, Oikawa S. Selectively bred rodent models for studying the etiology of type 2 diabetes: Goto-Kakizaki rats and Oikawa-Nagao mice. Endocr J 2023; 70:19-30. [PMID: 36477370 DOI: 10.1507/endocrj.ej22-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is a polygenic disease and studies to understand the etiology of the disease have required selectively bred animal models with polygenic background. In this review, we present two models; the Goto-Kakizaki (GK) rat and the Oikawa-Nagao Diabetes-Prone (ON-DP) and Diabetes-Resistant (ON-DR) mouse. The GK rat was developed by continuous selective breeding for glucose tolerance from the outbred Wistar rat around 50 years ago. The main cause of spontaneous hyperglycemia in this model is insulin secretion deficiency from pancreatic β-cells and mild insulin resistance in insulin target organs. A disadvantage of the GK rat is that environmental factors have not been considered in the selective breeding. Hence, the GK rat may not be suitable for elucidating predisposition to diabetes under certain environmental conditions, such as a high-fat diet. Therefore, we recently established two mouse lines with different susceptibilities to diet-induced diabetes, which are prone and resistant to the development of diabetes, designated as the ON-DP and ON-DR mouse, respectively. The two ON mouse lines were established by continuous selective breeding for inferior and superior glucose tolerance after high-fat diet feeding in hybrid mice of three inbred strains. Studies of phenotypic differences between ON-DP and ON-DR mice and their underlying molecular mechanisms will shed light on predisposing factors for the development of T2D in the modern obesogenic environment. This review summarizes the background and the phenotypic differences and similarities of GK rats and ON mice and highlights the advantages of using selectively bred rodent models in diabetes research.
Collapse
Affiliation(s)
- Mototsugu Nagao
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö 214 28, Sweden
- Clincal Research Centre (CRC), Skåne University Hospital(SUS), Malmö 214 28, Sweden
| | - Akira Asai
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö 214 28, Sweden
- Clincal Research Centre (CRC), Skåne University Hospital(SUS), Malmö 214 28, Sweden
| | - Shinichi Oikawa
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| |
Collapse
|
5
|
Si-Wu Water Extracts Protect against Colonic Mucus Barrier Damage by Regulating Muc2 Mucin Expression in Mice Fed a High-Fat Diet. Foods 2022; 11:foods11162499. [PMID: 36010498 PMCID: PMC9407452 DOI: 10.3390/foods11162499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
A high-fat diet (HFD) could cause gut barrier damage. The herbs in si-wu (SW) include dang gui (Angelica sinensis (Oliv.) Diels), shu di huang (the processed root of Rehmannia glutinosa Libosch.), chuan xiong (rhizome of Ligusticum chuanxiong Hort.), and bai shao (the root of Paeonia lactiflora f. pilosella (Nakai) Kitag.). Si-wu water extracts (SWE) have been used to treat blood deficiency. Components of one herb from SW have been reported to have anti-inflammatory and anti-obesity activities. However, there have been no reports about the effects of SWE on gut barrier damage. Therefore, the aim of the study was to explore the effect of SWE on gut barrier damage. In this study, we found that SWE effectively controlled body weight, liver weight, and feed efficiency, as well as decreased the serum TC level in HFD-fed mice. Moreover, SWE and rosiglitazone (Ros, positive control) increased the colonic alkaline phosphatase (ALP) level, down-regulated serum pro-inflammatory cytokine levels, and reduced intestinal permeability. In addition, SWE increased goblet cell numbers and mucus layer thickness to strengthen the mucus barrier. After supplementation with SWE and rosiglitazone, the protein expression of CHOP and GRP78 displayed a decrease, which improved the endoplasmic reticulum (ER) stress condition. Meanwhile, the increase in Cosmc and C1GALT1 improved the O-glycosylation process for correct protein folding. These results collectively demonstrated that SWE improved the mucus barrier, focusing on Muc2 mucin expression, in a prolonged high-fat diet, and provides evidence for the potential of SWE in the treatment of intestinal disease-associated mucus barrier damage.
Collapse
|
6
|
Faraj M, Napoli N. The Impact of Diet on Bone and Fracture Risk in Diabetes. Curr Osteoporos Rep 2022; 20:26-42. [PMID: 35201556 DOI: 10.1007/s11914-022-00725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the recently published scientific evidence on the effects of diet on diabetes and skeletal health. RECENT FINDINGS The impact of diet on overall health has been a growing topic of interest among researchers. An inappropriate eating habit is a relatively modified risk factor for diabetes in adults. Parallel with the significant increase in the incidence of diabetes mellitus worldwide, many studies have shown the benefits of lifestyle modifications, including diet and exercise for people with, or at risk of developing, diabetes. In the last years, accumulating evidence suggests that diabetes is a risk factor for bone fragility. As lifestyle intervention represents an effective option for diabetes management and treatment, there is potential for an effect on bone health. Healthy lifestyle is critical to prevent bone fragility. However, more studies are needed to fully understand the impact of diet and weight loss on fracture risk in diabetics.
Collapse
Affiliation(s)
- M Faraj
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128, Rome, Italy
| | - N Napoli
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128, Rome, Italy.
- Division of Bone and Mineral Diseases, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
7
|
Tavassoli H, Heidarianpour A, Hedayati M. The effects of resistance exercise training followed by de-training on irisin and some metabolic parameters in type 2 diabetic rat model. Arch Physiol Biochem 2022; 128:240-247. [PMID: 31588806 DOI: 10.1080/13813455.2019.1673432] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND We investigated the effects of high-fat diet (HFD) consumption combined with diabetes induction, resistance exercise training (RET) and a de-training period on circulating irisin levels and selective metabolic parameters. MATERIAL AND METHODS Rats were assigned to four groups (n = 8): healthy non-diabetic rats (NDC), non-diabetic rats that performed RET (NDR), sedentary HFD-fed/STZ-treated rats (HFD/STZ) and HFD-fed/STZ-treated rats that performed RET (HFD/STZ + RE). RESULTS HFD consumption reduced irisin level and Quicki (p < .01). After the 12-week period, levels of TC, TG, HOMA1-IR, HOMA2-IR and irisin were also lower in the HFD/STZ + RE group compared to the HFD/STZ group. Body weight and HOMA1-IR showed a positive (r = 0.558 and r = 0.538) whereas TC and LDL-C had a negative correlation (r = -0.461 and r = -0.630) with irisin level (p < .05). CONCLUSIONS Irisin level increased along with the progress of obesity and T2DM. It seems that RET can attenuate the increase of irisin in those conditions by improvement of glucose/lipid metabolic disorders.
Collapse
Affiliation(s)
- Hassan Tavassoli
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Heidarianpour
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Sun S, Cao C, Li J, Meng Q, Cheng B, Shi B, Shan A. Lycopene Modulates Placental Health and Fetal Development Under High-Fat Diet During Pregnancy of Rats. Mol Nutr Food Res 2021; 65:e2001148. [PMID: 34018317 DOI: 10.1002/mnfr.202001148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/09/2021] [Indexed: 01/07/2023]
Abstract
Lycopene plays an important role in improving immunity, promoting antioxidant capacity, and regulating fat metabolism. The placenta, an important organ for nutrients exchange between mother and child during pregnancy, directly affects fetal development. This study aims to characterize effects of lycopene on placental health and fetal development under a high-fat diet, and utilize RNA sequencing (RNA-seq) to investigate and integrate the differences of molecular pathways and biological processes in placenta. For placental health, high-fat diet during pregnancy increases placental oxidative stress, inflammation, and fat deposition. However, lycopene reduces the negative effects of high-fat diet on placenta to some extent, and further promotes fetal development. Under high-fat diet, lycopene reduces the levels of Interleukin 17 (IL-17), Interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) in placenta (p < 0.05) through the IL-17 pathway. Furthermore, lycopene supplementation in high-fat diet increases Glutaredoxin (Glrx) gene and protein expression in the placenta (p < 0.05), increases Glutathione peroxidase (GSH-Px) and Total antioxidant capacity (T-AOC) levels (p < 0.05), decreases reactive oxygen species (ROS) (p < 0.01) and Hydrogen peroxide (H2 O2 ) levels (p < 0.05) in placenta. In addition, lycopene supplementation in high fat diet increases the expression of Lep gene and protein in placenta and increases the level of leptin (p < 0.05). In terms of fetal development, the average fetal weight and fetal litter weight are increased by lycopene compared to high-diet treatment.
Collapse
Affiliation(s)
- Shishuai Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Chunyu Cao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jibo Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Qingwei Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Baojing Cheng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
9
|
Martinon P, Fraticelli L, Giboreau A, Dussart C, Bourgeois D, Carrouel F. Nutrition as a Key Modifiable Factor for Periodontitis and Main Chronic Diseases. J Clin Med 2021; 10:jcm10020197. [PMID: 33430519 PMCID: PMC7827391 DOI: 10.3390/jcm10020197] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Nutrition is recognized as an essential component in the prevention of a number of chronic diseases, including periodontal disease. Based on these considerations, a better understanding is required regarding how the diet, and more particularly the intake of macronutrients and micronutrients, could impact the potential relationship between nutrition and periodontal diseases, periodontal diseases and chronic diseases, nutrition and chronic diseases. To overcome this complexity, an up-to-date literature review on the nutriments related to periodontal and chronic diseases was performed. High-sugar, high-saturated fat, low-polyols, low-fiber and low-polyunsaturated-fat intake causes an increased risk of periodontal diseases. This pattern of nutrients is classically found in the Western diet, which is considered as an ‘unhealthy’ diet that causes cardiovascular diseases, diabetes and cancers. Conversely, low-sugar, high-fiber and high-omega-6-to-omega-3 fatty acid ratio intake reduces the risk of periodontal diseases. The Mediterranean, DASH, vegetarian and Okinawa diets that correspond to these nutritional intakes are considered as ‘healthy’ diets, reducing this risk of cardiovascular diseases, diabetes and cancers. The role of micronutrients, such as vitamin D, E, K and magnesium, remains unclear, while others, such as vitamin A, B, C, calcium, zinc and polyphenols have been shown to prevent PDs. Some evidence suggests that probiotics and prebiotics could promote periodontal health. Periodontal and chronic diseases share, with a time delay, nutrition as a risk factor. Thus, any change in periodontal health should be considered as a warning signal to control the dietary quality of patients and thus reduce the risk of developing chronic diseases later on.
Collapse
Affiliation(s)
- Prescilla Martinon
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
| | - Laurie Fraticelli
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
| | - Agnes Giboreau
- Institute Paul Bocuse Research Center, 69130 Ecully, France;
| | - Claude Dussart
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
| | - Denis Bourgeois
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
| | - Florence Carrouel
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
- Correspondence: ; Tel.: +33-4-78-78-57-44
| |
Collapse
|
10
|
Zhang Y, Chen L, Hu M, Kim JJ, Lin R, Xu J, Fan L, Qi Y, Wang L, Liu W, Deng Y, Si J, Chen S. Dietary type 2 resistant starch improves systemic inflammation and intestinal permeability by modulating microbiota and metabolites in aged mice on high-fat diet. Aging (Albany NY) 2020; 12:9173-9187. [PMID: 32452830 PMCID: PMC7288951 DOI: 10.18632/aging.103187] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/17/2020] [Indexed: 12/13/2022]
Abstract
Type 2 resistant starch (RS2) is a fermentable dietary fiber conferring health benefits. We investigated the effects of RS2 on host, gut microbiota, and metabolites in aged mice on high-fat diet. In eighteen-month old mice randomly assigned to control, high-fat (HF), or high-fat+20% RS2 (HFRS) diet for 16 weeks, RS2 reversed the weight gain and hepatic steatosis induced by high-fat diet. Serum and fecal LPS, colonic IL-2 and hepatic IL-4 mRNA expressions decreased while colonic mucin 2 mRNA and protein expressions increased in the HFRS compared to the HF and the control group. 16s rRNA sequencing of fecal microbial DNA demonstrated that RS2 decreased the abundance of pathogen taxa associated with obesity, inflammation, and aging including Desulfovibrio (Proteobacteria phylum), Ruminiclostridium 9, Lachnoclostridium, Helicobacteria, Oscillibacter, Alistipes, Peptococcus, and Rikenella. Additionally, RS2 increased the colonic butyric acid by 2.6-fold while decreasing the isobutyric and isovaleric acid levels by half compared to the HF group. Functional analyses based on Clusters of Orthologous Groups showed that RS2 increased carbohydrate while decreasing amino acid metabolism. These findings demonstrate that RS2 can reverse weight gain, hepatic steatosis, inflammation, and increased intestinal permeability in aged mice on high-fat diet mediated by changes in gut microbiome and metabolites.
Collapse
Affiliation(s)
- Yawen Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Luyi Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Mengjia Hu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - John J Kim
- Division of Gastroenterology, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Renbin Lin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jilei Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Lina Fan
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Weili Liu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yanyong Deng
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
11
|
Xie Y, Ding F, Di W, Lv Y, Xia F, Sheng Y, Yu J, Ding G. Impact of a high‑fat diet on intestinal stem cells and epithelial barrier function in middle‑aged female mice. Mol Med Rep 2020; 21:1133-1144. [PMID: 32016468 PMCID: PMC7003032 DOI: 10.3892/mmr.2020.10932] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/06/2019] [Indexed: 12/25/2022] Open
Abstract
A high-fat diet (HFD) or obesity-promoting diet is closely associated with metabolic diseases and intestinal tumors, particularly in middle-aged individuals (typically 45–64 years old). The intestinal epithelium constitutes a barrier that separates the host from the food and microbiota in the gut, and thus, a dysfunctional epithelium is associated with a number of diseases. However, the changes caused to the function of intestinal epithelium in response to an HFD have not been well-studied to date. In the present study, middle-aged female mice (12 months old) fed an HFD for a period of 14 weeks were used to determine the effects of HFD on the intestine. Characteristics including the body weight, fat deposition, glucose metabolism, inflammatory state and intestinal morphology were assessed, while the intestinal stem cell (ISC) counts and the ability of isolated intestinal crypts to form organoid bodies in 3D culture were examined. Intestinal epithelial barrier function, including secretory defense, tight junctions and cell apoptosis, were also studied. Morphologically, the HFD resulted in a mild reduction in the length of villi of the small intestine, the colon length and the depth of colon crypts. In addition, the ISC counts were increased in the small intestine and colon in HFD-fed mice. The ability of crypts to grow into organoids (mini-guts) was also increased in crypts obtained from mice fed an HFD, while HFD compromised the epithelial barrier function of the colon. These results demonstrated how an HFD affects the intestinal epithelium and highlighted the need to carefully consider dietary patterns.
Collapse
Affiliation(s)
- Yu Xie
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Fei Ding
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenjuan Di
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yifan Lv
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Fan Xia
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yunlu Sheng
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jing Yu
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guoxian Ding
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
12
|
Nagao M, Esguerra JLS, Wendt A, Asai A, Sugihara H, Oikawa S, Eliasson L. Selectively Bred Diabetes Models: GK Rats, NSY Mice, and ON Mice. Methods Mol Biol 2020; 2128:25-54. [PMID: 32180184 DOI: 10.1007/978-1-0716-0385-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The polygenic background of selectively bred diabetes models mimics the etiology of type 2 diabetes. So far, three different rodent models (Goto-Kakizaki rats, Nagoya-Shibata-Yasuda mice, and Oikawa-Nagao mice) have been established in the diabetes research field by continuous selective breeding for glucose tolerance from outbred rodent stocks. The origin of hyperglycemia in these rodents is mainly insulin secretion deficiency from the pancreatic β-cells and mild insulin resistance in insulin target organs. In this chapter, we summarize backgrounds and phenotypes of these rodent models to highlight their importance in diabetes research. Then, we introduce experimental methodologies to evaluate β-cell exocytosis as a putative common defect observed in these rodent models.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Exocytosis
- Gene Expression Profiling/methods
- Glucose Intolerance
- Insulin Resistance/physiology
- Insulin Secretion/physiology
- Insulin-Secreting Cells/chemistry
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/physiology
- Mice
- Mice, Inbred C3H
- Patch-Clamp Techniques/methods
- Phenotype
- Rats
- Rats, Wistar
- Selective Breeding/genetics
Collapse
Affiliation(s)
- Mototsugu Nagao
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
- Clinical Research Centre, Skåne University Hospital, Lund and Malmö, Sweden.
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Jonathan Lou S Esguerra
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Clinical Research Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Anna Wendt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Clinical Research Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Akira Asai
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hitoshi Sugihara
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shinichi Oikawa
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Diabetes and Lifestyle-related Disease Center, Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, Japan
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
- Clinical Research Centre, Skåne University Hospital, Lund and Malmö, Sweden.
| |
Collapse
|
13
|
Kuang H, Wei CH, Wang T, Eastep J, Li Y, Chen G. Vitamin A status affects weight gain and hepatic glucose metabolism in rats fed a high-fat diet. Biochem Cell Biol 2019; 97:545-553. [PMID: 30802138 DOI: 10.1139/bcb-2018-0284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Whether vitamin A (VA) has a role in the development of metabolic abnormalities associated with intake of a high-fat diet (HFD) is unclear. Sprague-Dawley rats after weaning were fed an isocaloric VA sufficient HFD (VAS-HFD) or a VA deficient HFD (VAD-HFD) for 8 weeks. Body mass, food intake, liver and adipose tissue mass, and the hepatic expression levels of key proteins for metabolism were determined. VAD-HFD rats had lower body, liver, and epididymal fat mass than VAS-HFD rats. VAD-HFD rats had lower hepatic protein expression levels of cytochrome P450 26A1, glucokinase, and phosphoenolpyruvate carboxykinase than VAS-HFD rats. VAD-HFD rats had higher protein levels of glycogen synthase kinase (GSK)-3α and lower levels of GSK-3β, but not glycogen synthase, than VAS-HFD rats. VAD-HFD rats had higher hepatic levels of insulin receptor substrate-1 (IRS-1), insulin receptor β-subunit, mitogen-activated protein kinase proteins, and peroxisome proliferator-activated receptor-gamma coactivator 1α mRNA, and lower level of IRS-2 protein than VAS-HFD rats. These results indicate that in a HFD setting, VA deficiency attenuated HFD-induced obesity, and VA status altered the expression levels of proteins required for glucose metabolism and insulin signaling. We conclude that VA status contributes to the regulation of hepatic glucose and lipid metabolism in a HFD setting, and may regulate hepatic carbohydrate metabolism.
Collapse
Affiliation(s)
- Heqian Kuang
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Cheng-Hsin Wei
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Tiannan Wang
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Jennifer Eastep
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Yang Li
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Guoxun Chen
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
14
|
Dietary Approaches to Stop Hypertension (DASH): potential mechanisms of action against risk factors of the metabolic syndrome. Nutr Res Rev 2019; 33:1-18. [PMID: 31358075 DOI: 10.1017/s0954422419000155] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The metabolic syndrome is a cluster of disorders dominated by abdominal obesity, hypertriacylglycerolaemia, low HDL-cholesterol, high blood pressure and high fasting glucose. Diet modification is a safe and effective way to treat the metabolic syndrome. Dietary Approaches to Stop Hypertension (DASH) is a dietary pattern rich in fruits, vegetables and low-fat dairy products, and low in meats and sweets. DASH provides good amounts of fibre, K, Ca and Mg, and limited quantities of total fat, saturated fat, cholesterol and Na. Although DASH was initially designed for the prevention or control of hypertension, using a DASH diet has other metabolic benefits. In the present review, the effect of each dietary component of DASH on the risk factors of the metabolic syndrome is discussed. Due to limited fat and high fibre and Ca content, individuals on the DASH diet are less prone to overweight and obesity and possess lower concentrations of total and LDL-cholesterol although changes in TAG and HDL-cholesterol have been less significant and available evidence in this regard is still inconclusive. Moreover, high amounts of fruit and vegetables in DASH provide great quantities of K, Mg and fibre, all of which have been shown to reduce blood pressure. K, Mg, fibre and antioxidants have also been effective in correcting glucose and insulin abnormalities. Evidence is provided from cross-sectional investigations, cohort studies and randomised controlled trials, and, where available, from published meta-analyses. Mechanisms are described according to human studies and, in the case of a lack of evidence, from animal and cell culture investigations.
Collapse
|
15
|
Park J, Park SK, Choi YH. Environmental pyrethroid exposure and diabetes in U.S. adults. ENVIRONMENTAL RESEARCH 2019; 172:399-407. [PMID: 30825691 DOI: 10.1016/j.envres.2018.12.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 05/12/2023]
Abstract
Pyrethroid insecticides have been used widely as replacements for organophosphate insecticides over the past decades. While several animal studies suggest that exposure to pyrethroids can alter glucose homeostasis, there is only limited evidence of the association between environmental pyrethroid exposure and diabetes risk in human populations. Therefore, we examined the National Health and Nutrition Examination Survey (NHANES) 2007-2010 data to determine the association between environmental pyrethroid exposure and the prevalence of diabetes in the general U.S. population. Using data on 2796 participants aged 20-79 years from NHANES 2007-2010, we estimated odds ratios (ORs) and 95% confidence intervals (CI) of the association between diabetes and urinary metabolite concentration of pyrethroids using logistic regression. The weighted prevalence of diabetes was 10.3%. The weighted geometric means and detection rate of 3-phenoxybenzoic acid (3-PBA), the most common nonspecific pyrethroid metabolite, were 0.41 μg/L (95% CI: 0.38, 0.45) and 72.0%, respectively. After adjusting for sociodemographic, behavioral, and metabolic factors, we found a significant dose-response relationship between urinary 3-PBA as quartile and prevalent diabetes (p-trend=0.007). Compared to the lowest quartile of 3-PBA, the highest quartile had OR of 2.18 (95% CI: 1.18, 4.03) for diabetes. Our finding suggests pyrethroid insecticides as a potential risk factor for diabetes. Further studies should be conducted to confirm our finding and to determine if this association is causal.
Collapse
Affiliation(s)
- Jeehea Park
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Sung Kyun Park
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Yoon-Hyeong Choi
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Republic of Korea; Gachon Advanced Institute for Health Sciences and Technology, Incheon, Republic of Korea.
| |
Collapse
|
16
|
Dietary patterns and cardiometabolic risk factors among adolescents: systematic review and meta-analysis. Br J Nutr 2018; 119:859-879. [DOI: 10.1017/s0007114518000533] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AbstractThis study systematised and synthesised the results of observational studies that were aimed at supporting the association between dietary patterns and cardiometabolic risk (CMR) factors among adolescents. Relevant scientific articles were searched in PUBMED, EMBASE, SCIENCE DIRECT, LILACS, WEB OF SCIENCE and SCOPUS. Observational studies that included the measurement of any CMR factor in healthy adolescents and dietary patterns were included. The search strategy retained nineteen articles for qualitative analysis. Among retained articles, the effects of dietary pattern on the means of BMI (n 18), waist circumference (WC) (n 9), systolic blood pressure (n 7), diastolic blood pressure (n 6), blood glucose (n 5) and lipid profile (n 5) were examined. Systematised evidence showed that an unhealthy dietary pattern appears to be associated with poor mean values of CMR factors among adolescents. However, evidence of a protective effect of healthier dietary patterns in this group remains unclear. Considering the number of studies with available information, a meta-analysis of anthropometric measures showed that dietary patterns characterised by the highest intake of unhealthy foods resulted in a higher mean BMI (0·57 kg/m²; 95 % CI 0·51, 0·63) and WC (0·57 cm; 95 % CI 0·47, 0·67) compared with low intake of unhealthy foods. Controversially, patterns characterised by a low intake of healthy foods were associated with a lower mean BMI (−0·41 kg/m²; 95 % CI −0·46,−0·36) and WC (−0·43 cm; 95 % CI −0·52,−0·33). An unhealthy dietary pattern may influence markers of CMR among adolescents, but considering the small number and limitations of the studies included, further studies are warranted to strengthen the evidence of this relation.
Collapse
|
17
|
Early changes in tissue amino acid metabolism and nutrient routing in rats fed a high-fat diet: evidence from natural isotope abundances of nitrogen and carbon in tissue proteins. Br J Nutr 2018; 119:981-991. [PMID: 29502540 DOI: 10.1017/s0007114518000326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Little is known about how diet-induced obesity and insulin resistance affect protein and amino acid (AA) metabolism in tissues. The natural relative abundances of the heavy stable isotopes of C (δ 13C) and N (δ 15N) in tissue proteins offer novel and promising biomarkers of AA metabolism. They, respectively, reflect the use of dietary macronutrients for tissue AA synthesis and the relative metabolic use of tissue AA for oxidation v. protein synthesis. In this study, δ 13C and δ 15N were measured in the proteins of various tissues in young adult rats exposed perinatally and/or fed after weaning with a normal- or a high-fat (HF) diet, the aim being to characterise HF-induced tissue-specific changes in AA metabolism. HF feeding was shown to increase the routing of dietary fat to all tissue proteins via non-indispensable AA synthesis, but did not affect AA allocation between catabolic and anabolic processes in most tissues. However, the proportion of AA directed towards oxidation rather than protein synthesis was increased in the small intestine and decreased in the tibialis anterior muscle and adipose tissue. In adipose tissue, the AA reallocation was observed in the case of perinatal or post-weaning exposure to HF, whereas in the small intestine and tibialis anterior muscle the AA reallocation was only observed after HF exposure that covered both the perinatal and post-weaning periods. In conclusion, HF exposure induced an early reorganisation of AA metabolism involving tissue-specific effects, and in particular a decrease in the relative allocation of AA to oxidation in several peripheral tissues.
Collapse
|
18
|
Gordon CJ, Phillips PM, Johnstone AFM, Beasley TE, Ledbetter AD, Schladweiler MC, Snow SJ, Kodavanti UP. Effect of high-fructose and high-fat diets on pulmonary sensitivity, motor activity, and body composition of brown Norway rats exposed to ozone. Inhal Toxicol 2016; 28:203-15. [DOI: 10.3109/08958378.2015.1134730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- C. J. Gordon
- Toxicity Assessment Division, Durham, NC, USA and
| | | | | | | | - A. D. Ledbetter
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - M. C. Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - S. J. Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - U. P. Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| |
Collapse
|
19
|
Glucose Uptake Activities of Bis (2, 3-Dibromo-4, 5-Dihydroxybenzyl) Ether, a Novel Marine Natural Product from Red Alga Odonthaliacorymbifera with Protein Tyrosine Phosphatase 1B Inhibition, In Vitro and In Vivo. PLoS One 2016; 11:e0147748. [PMID: 26808535 PMCID: PMC4726511 DOI: 10.1371/journal.pone.0147748] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/07/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIMS Protein tyrosine phosphatase 1B (PTP1B) is a novel therapeutic target for type-2 diabetes, which negatively regulates the insulin signaling transduction. Bis (2, 3-dibromo-4, 5-dihydroxybenzyl) ether (BDDE), a novel bromophenol isolated from the Red Alga, is a novel PTP1B inhibitor. But the anti-diabetic effects are not clear. In the present study, we evaluated the in vitro and in vivo antidiabetic effects of BDDE. METHODS The insulin-resistant HepG2 cells were used to evaluate the in vitro antidiabetic effects of BDDE. MTT assay was used to determine the safety concentrations in HepG2 cells. Glucose assay kit was used to check glucose uptake after treated with BDDE. Western blotting assay was used to explore the potent mechanisms. The db/db mice were used to evaluate the in vivo antidiabetic effects of BDDE. Body weight, blood glucose, Glycated hemoglobin (HbA1c), lipid profile, and insulin level were checked at the respective time points. Gastrocnemii were dissected and used to analyze the PTP1B and insulin receptor β (IRβ) expression. RESULTS BDDE increased the insulin-resisted glucose uptake in HepG2 cells. BDDE also decreased the expression of PTP1B and activated the substrates and downstream signals in insulin signal pathway, such as IRβ, insulin receptor substrate-1/2 (IRS1/2), phosphoinositide 3-kinase (PI3K), and protein kinase B (PKB/Akt). In the db/db mice model, BDDE significantly decreased the blood glucose, HbA1c and triglyceride (TG) levels. BDDE also decreased the expression of PTP1B and activated the phosphorylation of IRβ in gastrocnemii. Moreover, BDDE at high doses downregulated the body weight without affecting food and water intake. CONCLUSION Our results suggest that BDDE as a new PTP1B inhibitor improves glucose metabolism by stimulating the insulin signaling and could be used in the treatment of type-2 diabetes mellitus.
Collapse
|
20
|
A 70% Ethanol Extract of Mistletoe Rich in Betulin, Betulinic Acid, and Oleanolic Acid Potentiated β-Cell Function and Mass and Enhanced Hepatic Insulin Sensitivity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7836823. [PMID: 26884795 PMCID: PMC4738752 DOI: 10.1155/2016/7836823] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/06/2015] [Indexed: 12/24/2022]
Abstract
We investigated that the long-term consumption of the water (KME-W) and 70% ethanol (KME-E) mistletoe extracts had antidiabetic activities in partial pancreatectomized (Px) rats. Px rats were provided with a high-fat diet containing 0.6% KME-E, 0.6% KME-W, and 0.6% dextrin (control) for 8 weeks. As normal-control, Sham-operated rats were provided with 0.6% dextrin. In cell-based studies, the effects of its main terpenoids (betulin, betulinic acid, and oleanolic acid) on glucose metabolism were measured. Both KME-W and KME-E decreased epididymal fat mass by increasing fat oxidation in diabetic rats. KME-E but not KME-W exhibited greater potentiation of first-phase insulin secretion than the Px-control in a hyperglycemic clamp. KME-E also made β-cell mass greater than the control by increasing β-cell proliferation and decreasing its apoptosis. In a euglycemic-hyperinsulinemic clamp, whole-body glucose infusion rate and hepatic glucose output increased with potentiating hepatic insulin signaling in the following order: Px-control, KME-W, KME-E, and normal-control. Betulin potentiated insulin-stimulated glucose uptake via increased PPAR-γ activity and insulin signaling in 3T3-L1 adipocytes, whereas oleanolic acid enhanced glucose-stimulated insulin secretion and cell proliferation in insulinoma cells. In conclusion, KME-E prevented the deterioration of glucose metabolism in diabetic rats more effectively than KME-W and KME-E can be a better therapeutic agent for type 2 diabetes than KME-W.
Collapse
|
21
|
Asao T, Oki K, Yoneda M, Tanaka J, Kohno N. Hypothalamic-pituitary-adrenal axis activity is associated with the prevalence of chronic kidney disease in diabetic patients. Endocr J 2016; 63:119-26. [PMID: 26537094 DOI: 10.1507/endocrj.ej15-0360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Progression of chronic kidney disease (CKD) in diabetic patients can occur through enhanced hypothalamic-pituitary-adrenal (HPA) axis activity. The purpose of our study was to determine whether HPA axis activity influences the prevalence of CKD in patients with type 2 diabetes mellitus. Seventy-seven diabetic patients (mean age, 60 years) were enrolled. CKD was defined by K/DOQI criteria, and serum cortisol level was measured after the 1 mg overnight dexamethasone suppression test (F-DST). F-DST values were significantly negatively correlated with estimated glomerular filtration rate (eGFR), and significantly positively correlated with cystatin C level and spot urine albumin to creatinine ratio in simple and multiple regression analyses. The subjects were divided into 3 groups (low, middle, and high) according to the F-DST, and the odds for CKD were 8.7-fold (95% confidence interval 2.56 to 29.6, P=0.01) and 12.5-fold (95% confidence interval 3.3 to 47.9, P<0.001) higher in subjects in the middle and high groups than those in the low group, respectively. In multivariate regression analysis, subjects in the middle group and high group (compared to those in the low group) had 13.0-fold (95% confidence interval, 2.9 to 58.8 and P=0.001) and 14.7-fold (95% confidence interval, 2.8 to 78.5 and P=0.002), respectively, higher risk for CKD. In conclusion, F-DST values have a relationship with decreased eGFR and increased cystatin C or albumin excretion involved in CKD, and enhanced HPA axis activity may be an independent risk factor for CKD in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Takako Asao
- Department of Epidemiology, Infectious Disease Control and Prevention, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|