1
|
Li C, Lian X, He J, Gao X, Liu X, Bao C, Li Z, Cui W, Yu L, Liu J. Association of computed tomography-derived pectoralis muscle area and density with disease severity and respiratory symptoms in patients with chronic obstructive pulmonary disease: A case-control study. Respir Med 2024; 233:107783. [PMID: 39209127 DOI: 10.1016/j.rmed.2024.107783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
RATIONALE AND OBJECTIVES Computed tomography (CT) is commonly used and offers an additional viewpoint for evaluating extrapulmonary symptoms, disease severity, and muscle atrophy. This study assessed whether the pectoralis muscle area (PMA) and pectoralis muscle density (PMD) are lower in patients with chronic obstructive pulmonary disease (COPD) than in healthy controls and elucidated their relationships with these variables. MATERIALS AND METHODS The participants were enrolled in the hospital outpatient clinic between October 2023 and May 2024. Information was obtained from questionnaires, lung function, and CT imaging findings. On full-inspiratory CT, the PMA and PMD were measured at the aortic arch level using predetermined attenuation ranges of -29 and 150 Hounsfield units. We observed lower PMA and PMD and evaluated their associations with lung function, respiratory symptoms, and CT imaging findings in patients with COPD. RESULTS Overall, 120 participants were enrolled at baseline (60 healthy controls and 60 patients with COPD). PMA and PMD were lower with progressive airflow limitation severity in those with COPD. The degree of emphysema and air trapping, as well as lung function, were correlated with PMA and PMD (P < 0.05), although not with the COPD Assessment Test or modified Medical Research Council scores (P > 0.05). CONCLUSION Participants with COPD had smaller PMA and PMD. These measurements were correlated with the severity of airflow limitation, lung function, emphysema, and air trapping, suggesting that these features of the pectoralis muscle obtained from CT are helpful in assessments of patients with COPD.
Collapse
Affiliation(s)
- Can Li
- The Fourth Central Clinical School, Tianjin Medical University, Tianjin, 300140, China
| | - Xinying Lian
- The Fourth Central Clinical School, Tianjin Medical University, Tianjin, 300140, China
| | - Jingchun He
- Department of Respiratory and Critical Care Medicine, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Xiao Gao
- Department of Radiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Xuehuan Liu
- Department of Radiology, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Cuiping Bao
- Department of Radiology, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Zuoxi Li
- The Fourth Central Clinical School, Tianjin Medical University, Tianjin, 300140, China
| | - Weiwei Cui
- The Fourth Central Clinical School, Tianjin Medical University, Tianjin, 300140, China
| | - Li Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun Liu
- The Fourth Central Clinical School, Tianjin Medical University, Tianjin, 300140, China.
| |
Collapse
|
2
|
Justel Enríquez A, Rabat-Restrepo JM, Vilchez-López FJ, Tenorio-Jiménez C, García-Almeida JM, Irles Rocamora JA, Pereira-Cunill JL, Martínez Ramírez MJ, Molina-Puerta MJ, Molina Soria JB, Rebollo-Pérez MI, Olveira G, García-Luna PP. Practical Guidelines by the Andalusian Group for Nutrition Reflection and Investigation (GARIN) on Nutritional Management of Patients with Chronic Obstructive Pulmonary Disease: A Review. Nutrients 2024; 16:3105. [PMID: 39339705 PMCID: PMC11434837 DOI: 10.3390/nu16183105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Malnutrition is common in chronic obstructive pulmonary disease (COPD) patients and is associated with worse lung function and greater severity. This review by the Andalusian Group for Nutrition Reflection and Investigation (GARIN) addresses the nutritional management of adult COPD patients, focusing on Morphofunctional Nutritional Assessment and intervention in clinical practice. A systematic literature search was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, followed by critical appraisal based on Scottish Intercollegiate Guidelines Network (SIGN) guidelines. Recommendations were graded according to the European Society for Clinical Nutrition and Metabolism (ESPEN) system. The results were discussed among GARIN members, with consensus determined using a Likert scale. A total of 24 recommendations were made: 2(A), 6(B), 2(O), and 14(GPP). Consensus exceeded 90% for 17 recommendations and was 75-90% for 7. The care of COPD patients is approached from a nutritional perspective, emphasizing nutritional screening, morphofunctional assessment, and food intake in early disease stages. Nutritional interventions include dietary advice, recommendations on food group intake, and the impact of specialized nutritional treatment, particularly oral nutritional supplements. Other critical aspects, such as physical activity and quality of life, are also analyzed. These recommendations provide practical guidance for managing COPD patients nutritionally in clinical practice.
Collapse
Affiliation(s)
- Alicia Justel Enríquez
- Servicio de Endocrinología y Nutrición, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Juana M. Rabat-Restrepo
- Servicio de Endocrinología y Nutrición, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain; (J.-A.I.R.); (P.P.G.-L.)
| | | | - Carmen Tenorio-Jiménez
- Endocrinology and Nutrition Clinical Management Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - José M. García-Almeida
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga/Plataforma Bionand, 29010 Málaga, Spain
| | - José-Antonio Irles Rocamora
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain; (J.-A.I.R.); (P.P.G.-L.)
- UGC Endocrinología y Nutrición, Hospital Universitario Valme, 41014 Sevilla, Spain
| | - José L. Pereira-Cunill
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain; (J.-A.I.R.); (P.P.G.-L.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
- Endocrine Diseases Research Group, Institute of Biomedicine of Seville (IBIS), 41007 Sevilla, Spain
| | - María J. Martínez Ramírez
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario de Jaén, 23007 Jaén, Spain
- Facultad de Medicina, Universidad de Jaén, 23071 Jaén, Spain
| | - María J. Molina-Puerta
- UGC Endocrinología y Nutrición, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | | | - María I. Rebollo-Pérez
- Servicio de Endocrinología y Nutrición, Hospital Juan Ramón Jiménez, 21005 Huelva, Spain
| | - Gabriel Olveira
- Instituto de Investigación Biomédica de Málaga/Plataforma Bionand, 29010 Málaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Medicina y Dermatología, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Pedro P. García-Luna
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain; (J.-A.I.R.); (P.P.G.-L.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
- Endocrine Diseases Research Group, Institute of Biomedicine of Seville (IBIS), 41007 Sevilla, Spain
| |
Collapse
|
3
|
Mey R, Calatayud J, Casaña J, Torres-Castro R, Cuenca-Martínez F, Suso-Martí L, Andersen LL, López-Bueno R. Handgrip strength and respiratory disease mortality: Longitudinal analyses from SHARE. Pulmonology 2024; 30:445-451. [PMID: 36274049 DOI: 10.1016/j.pulmoe.2022.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND While the association between handgrip strength and all-cause mortality is more deeply explored, no previous studies have been specifically focused on handgrip strength and respiratory disease mortality. The purpose of the study was to investigate the association between handgrip strength and respiratory disease mortality in a large representative sample. METHODS Individuals aged 50 or over from 27 European countries and Israel participated in this longitudinal study. Data on handgrip strength and all-cause and respiratory disease mortality were retrieved from the Survey of Health, Ageing and Retirement in Europe (SHARE) waves 1, 2, 4, 5, 6 and 7. We estimated the sub hazard ratios (SHRs) for respiratory disease mortality using a Fine-Gray sub-distribution method with both time-varying exposure and covariates and mortality due to other causes as competing risk. Furthermore, we assessed dose-response associations of handgrip strength (modelled as a continuous exposure) with respiratory disease mortality using restricted cubic splines and estimated hazard ratios (HRs). RESULTS We included 60,883 men and 74,904 women with a mean age of 63.6 (SD 9.7) years at study entry. During a median (interquartile range) of 7.4 years of follow-up 565 (0.4%) participants died due to respiratory diseases. The increase of 1 single kg of handgrip strength showed a 6% incidence reduction on respiratory disease mortality (SHR, 0.94; 95%CI, 0.92-0.96) after adjusting for potential confounders. Furthermore, each kg increase of handgrip strength reduced respiratory disease mortality risk in a dose-response fashion and a significant threshold for values of 41 kg (HR, 0.49; 95%CI, 0.26-0.92) and higher was identified. CONCLUSIONS Higher handgrip strength is associated with lower mortality due to respiratory disease. Intervention studies are needed to determine whether strength training in respiratory disease patients can prevent premature mortality.
Collapse
Affiliation(s)
- R Mey
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain; VUMC School of Medical Sciences, Amsterdam UMC, the Netherlands
| | - J Calatayud
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain; National Research Centre for the Working Environment, Copenhagen, Denmark.
| | - J Casaña
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - R Torres-Castro
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; International Physiotherapy Research Network (PhysioEvidence), Barcelona, Spain
| | - F Cuenca-Martínez
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - L Suso-Martí
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - L L Andersen
- National Research Centre for the Working Environment, Copenhagen, Denmark; Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - R López-Bueno
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain; National Research Centre for the Working Environment, Copenhagen, Denmark; Department of Physical Medicine and Nursing, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
Attaway AH, Mehra R, Zein JG, Hatipoğlu U, Grund M, Orsini E, Scheraga RG, Dasarathy S, Olman MA. Nocturnal Hypoxemia Is Associated with Sarcopenia in Patients with Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2024; 21:1316-1325. [PMID: 38843487 PMCID: PMC11376365 DOI: 10.1513/annalsats.202312-1062oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/06/2024] [Indexed: 08/31/2024] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. Our previous studies have identified that nocturnal hypoxemia causes skeletal muscle loss (i.e., sarcopenia) in in vitro models of COPD. Objectives: We aimed to extend our preclinical mechanistic findings by analyzing a large sleep registry to determine whether nocturnal hypoxemia is associated with sarcopenia in patients with COPD. Methods: Sleep studies from patients with COPD (n = 479) and control subjects without COPD (n = 275) were analyzed. Patients with obstructive sleep apnea, as defined by apnea-hypopnea index ⩾ 5, were excluded. Pectoralis muscle cross-sectional area (PMcsa) was quantified using computed tomography scans performed within 1 year of the sleep study. We defined sarcopenia as less than the lowest 20% residuals for PMcsa of control subjects, which was adjusted for age and body mass index (BMI) and stratified by sex. Youden's optimal cut-point criteria were used to predict sarcopenia based on mean oxygen saturation during sleep. Additional measures of nocturnal hypoxemia were analyzed. The pectoralis muscle index (PMI) was defined as PMcsa normalized to BMI. Results: On average, males with COPD had a 16.6% lower PMI than control males (1.41 ± 0.44 vs. 1.69 ± 0.56 cm2/BMI; P < 0.001), whereas females with COPD had a 9.4% lower PMI than control females (0.96 ± 0.27 vs. 1.06 ± 0.33 cm2/BMI; P < 0.001). Males with COPD with nocturnal hypoxemia had a 9.5% decrease in PMI versus COPD with normal O2 (1.33 ± 0.39 vs. 1.47 ± 0.46 cm2/BMI; P < 0.05) and a 23.6% decrease compared with control subjects (1.33 ± 0.39 vs. 1.74 ± 0.56 cm2/BMI; P < 0.001). Females with COPD with nocturnal hypoxemia had an 11.2% decrease versus COPD with normal O2 (0.87 ± 0.26 vs. 0.98 ± 0.28 cm2/BMI; P < 0.05) and a 17.9% decrease compared with control subjects (0.87 ± 0.26 vs. 1.06 ± 0.33 cm2/BMI; P < 0.001). These findings were largely replicated using multiple measures of nocturnal hypoxemia. Conclusions: We defined sarcopenia in the pectoralis muscle using residuals that take into account age, BMI, and sex. We found that patients with COPD have a lower PMI than patients without COPD and that nocturnal hypoxemia was associated with an additional decrease in the PMI of patients with COPD. Additional prospective analyses are needed to determine a protective threshold of oxygen saturation to prevent or reverse sarcopenia due to nocturnal hypoxemia in COPD.
Collapse
Affiliation(s)
| | - Reena Mehra
- Department of Pulmonary, University of Washington, Seattle, Washington; and
| | - Joe G Zein
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Umur Hatipoğlu
- Department of Pulmonary Medicine
- Department of Critical Care Medicine
| | - Megan Grund
- Department of Inflammation and Immunity, and
| | - Erica Orsini
- Department of Critical Care Medicine
- Department of Inflammation and Immunity, and
| | - Rachel G Scheraga
- Department of Critical Care Medicine
- Department of Inflammation and Immunity, and
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, and
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio
| | - Mitchell A Olman
- Department of Pulmonary Medicine
- Department of Inflammation and Immunity, and
| |
Collapse
|
5
|
Brath MSG, Kristensen SV, Sahakyan M, Mark EB, Rasmussen HH, Østergaard LR, Frøkjær JB, Weinreich UM. Influence of weight-adjusted contrast enhancement on computed tomography-derived skeletal muscle measures: a retrospective proof-of-concept comparative study between Danish females and males. Am J Clin Nutr 2024; 120:696-706. [PMID: 38936776 DOI: 10.1016/j.ajcnut.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Computed tomography (CT) has an underutilized potential for evaluating body composition in clinical settings. Often conducted with intravenous contrast (IVC), CT scans yield unused body composition data due to unclear effects on skeletal muscle area (SMA), skeletal muscle index (SMI), and muscle density (SMD). OBJECTIVES This study investigates whether weight-adjusted IVC influences SMA, SMI, and SMD differently in females and males compared with noncontrast abdominal CT. In addition, the study explores associations between contrast and noncontrast-assessed SMA, SMI, SMD, and demographic factors. METHODS A comparative observational retrospective study was conducted on Danish patients who underwent consecutive 4-phased contrast-enhanced abdominal CT scans (noncontrast, arterial, venous, and late venous phases). Muscle measures were evaluated using validated semiautomated threshold-based software by 3 independent raters. RESULTS The study included 72 patients (51 males and 21 females) with a mean age of 59 (55 and 62) y. Weight-adjusted IVC increased SMA by ≤3.28 cm2 (95% confidence interval [CI]: 2.58, 3.98) corresponding to 2.4% (1.8, 2.9) in the late venous phase compared with noncontrast CT. Analysis between sexes showed no difference in the effects of IVC on SMA and SMI between females and males. However, females exhibited a higher increase in SMD during the venous by a mean of 1.7 HU (0.9; 2.5) and late venous phases with a mean HU of 1.80 (1.0; 2.6) compared with males. Multivariate regression analysis indicated an association between the differences in SMD and sex during venous (-1.38, 95% CI: -2.48, -0.48) and late venous phases (-1.23, 95% CI: -2.27, -0.19). CONCLUSIONS Weight-adjusted IVC leads to increased SMA, SMI, and SMD. Although SMA and SMI differences were consistent across the sexes, females exhibited a significantly higher SMD increase than males in the venous and late venous phases. Further investigations are necessary to determine the applicability of SMD as a muscle quality proxy in IVC CT scans.
Collapse
Affiliation(s)
- Mia Solholt Godthaab Brath
- Department of Respiratory Medicine, Aalborg University Hospital, Aalborg, Denmark; Research Unit of Respiratory Diseases, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Sebastian Villesen Kristensen
- Institute of Regional Health Research, Southern Danish University, Odense, Denmark; Department of Radiology, Lillebaelt Hospital, University Hospitals of Southern Denmark, Kolding, Denmark
| | - Marina Sahakyan
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Esben Bolvig Mark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Højgaard Rasmussen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Danish Nutrition Science Center, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark; Center for Nutrition and Intestinal Failure, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark; The Dietitians and Nutritional Research Unit, EATEN, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Lasse Riis Østergaard
- Medical Informatics Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Ulla Møller Weinreich
- Department of Respiratory Medicine, Aalborg University Hospital, Aalborg, Denmark; Research Unit of Respiratory Diseases, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Balnis J, Tufts A, Jackson EL, Drake LA, Singer DV, Lacomis D, Lee CG, Elias JA, Doles JD, Maher LJ, Jen A, Coon JJ, Jourd’heuil D, Singer HA, Vincent CE, Jaitovich A. Succinate dehydrogenase-complex II regulates skeletal muscle cellular respiration and contractility but not muscle mass in genetically induced pulmonary emphysema. SCIENCE ADVANCES 2024; 10:eado8549. [PMID: 39167644 PMCID: PMC11338223 DOI: 10.1126/sciadv.ado8549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Reduced skeletal muscle mass and oxidative capacity coexist in patients with pulmonary emphysema and are independently associated with higher mortality. If reduced cellular respiration contributes to muscle atrophy in that setting remains unknown. Using a mouse with genetically induced pulmonary emphysema that recapitulates muscle dysfunction, we found that reduced activity of succinate dehydrogenase (SDH) is a hallmark of its myopathic changes. We generated an inducible, muscle-specific SDH knockout mouse that demonstrates lower mitochondrial oxygen consumption, myofiber contractility, and exercise endurance. Respirometry analyses show that in vitro complex I respiration is unaffected by loss of SDH subunit C in muscle mitochondria, which is consistent with the pulmonary emphysema animal data. SDH knockout initially causes succinate accumulation associated with a down-regulated transcriptome but modest proteome effects. Muscle mass, myofiber type composition, and overall body mass constituents remain unaltered in the transgenic mice. Thus, while SDH regulates myofiber respiration in experimental pulmonary emphysema, it does not control muscle mass or other body constituents.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Ankita Tufts
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Emily L. Jackson
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Lisa A. Drake
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Diane V. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - David Lacomis
- Departments of Pathology and Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Jack A. Elias
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Jason D. Doles
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - David Jourd’heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Harold A. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | | | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
7
|
Hayashi Y, Tanabe N, Shimizu K, Maetani T, Shiraishi Y, Oguma T, Sunadome H, Sakamoto R, Sato A, Sato S, Date H, Matsumoto H, Hirai T. Lower skeletal muscle density and airway structure on computed tomography in asthma. Ann Allergy Asthma Immunol 2024:S1081-1206(24)00527-1. [PMID: 39179101 DOI: 10.1016/j.anai.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Lower skeletal muscle density may reflect muscle adiposity and metabolic dysregulation that potentially impair disease control and lung function independent of high body mass index (BMI) in patients with asthma. OBJECTIVE To investigate whether the lower density of pectoralis muscles (PMs) and erector spinae muscles (ESMs) on chest computed tomography was associated with airway structural changes in patients with asthma. METHODS Consecutive patients with asthma and healthy controls undergoing chest computed tomography were retrospectively analyzed. The ESM and PM density, areas of subcutaneous adipose tissue near the PM and epicardial adipose tissue, wall area percent of the airways, and airway fractal dimension (AFD) were quantified on computed tomography. RESULTS The study included 179 patients with asthma (52% women) and 88 controls (47% women). All the controls were 60 years old or younger. The PM and ESM density in female patients with asthma who were 60 years old or younger were significantly lower than those in controls after adjustment for BMI. In female patients with asthma at all ages, lower PM and ESM density (but not subcutaneous or epicardial adipose tissue area) was associated with greater wall area percent of the airways and lower AFD after adjusting for age, height, BMI, smoking status, blood eosinophil count, and oral corticosteroid use. The only association between ESM density and AFD was found in male patients with asthma. CONCLUSION Lower skeletal muscle density may be associated with airway wall thickening and less complexity of the airway luminal tree in female patients with asthma.
Collapse
Affiliation(s)
- Yusuke Hayashi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoki Maetani
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Respiratory Medicine, Kyoto City Hospital, Kyoto, Japan
| | - Hironobu Sunadome
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University, Kyoto, Japan
| | - Hisako Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Respiratory Medicine and Allergology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Labaki WW, Agusti A, Bhatt SP, Bodduluri S, Criner GJ, Fabbri LM, Halpin DMG, Lynch DA, Mannino DM, Miravitlles M, Papi A, Sin DD, Washko GR, Kazerooni EA, Han MK. Leveraging Computed Tomography Imaging to Detect Chronic Obstructive Pulmonary Disease and Concomitant Chronic Diseases. Am J Respir Crit Care Med 2024; 210:281-287. [PMID: 38843079 PMCID: PMC11348973 DOI: 10.1164/rccm.202402-0407pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Affiliation(s)
| | - Alvar Agusti
- Cathedra Salut Respiratoria, University of Barcelona, Barcelona, Spain
- Pulmonary Service, Respiratory Institute, Clinic Barcelona, Barcelona, Spain
- Fundació Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
| | - Surya P. Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sandeep Bodduluri
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gerard J. Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | | | - David M. G. Halpin
- Respiratory Medicine, University of Exeter Medical School, Exeter, United Kingdom
| | - David A. Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado
| | - David M. Mannino
- Department of Medicine, University of Kentucky, Lexington, Kentucky
| | - Marc Miravitlles
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
- Neumología, Hospital Universitari Vall d’Hebron/Vall d’Hebron Institut de Recerca, Barcelona, Spain
| | - Alberto Papi
- Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Don D. Sin
- Centre for Heart Lung Innovation, St. Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
- Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - George R. Washko
- Division of Pulmonary and Critical Care Medicine and
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ella A. Kazerooni
- Division of Pulmonary and Critical Care Medicine and
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine and
| |
Collapse
|
9
|
Simargi Y, Turana Y, Icksan AG, Harahap AR, Siste K, Mansyur M, Damayanti T, Maryastuti M, Fazharyasti V, Dewi IP, Ramli Y, Prasetyo M, Rumende CM. A Multicenter Study of COPD and Cognitive Impairment: Unraveling the Interplay of Quantitative CT, Lung Function, HIF-1α, and Clinical Variables. Int J Chron Obstruct Pulmon Dis 2024; 19:1741-1753. [PMID: 39099608 PMCID: PMC11296506 DOI: 10.2147/copd.s466173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose The exact link between cognitive impairment (CI) and chronic obstructive pulmonary disease (COPD) is still limited. Thus, we aim to find the relationship and interaction of quantitative CT (QCT), lung function, HIF-1α, and clinical factors with the development of CI among COPD patients. Patients and Methods A cross-sectional multicentre study was conducted from January 2022 to December 2023. We collected clinical data, spirometry, CT images, and venous blood samples from 114 COPD participants. Cognitive impairment assessment using the Montreal Cognitive Assessment Indonesian version (MoCA-Ina) with a cutoff value 26. The QCT analysis consists of lung density, airway wall thickness, pulmonary artery-to-aorta ratio (PA:A), and pectoralis muscles using 3D Slicer software. Serum HIF-1α analysis was performed using ELISA. Results We found significant differences between %LAA-950, age, COPD duration, BMI, FEV1 pp, and FEV1/FVC among GOLD grades I-IV. Only education duration was found to correlate with CI (r = 0.40; p < 0.001). We found no significant difference in HIF-1α among GOLD grades (p = 0.149) and no correlation between HIF-1α and CI (p = 0.105). From multiple linear regression, we observed that the MoCA-Ina score was influenced mainly by %LAA-950 (p = 0.02) and education duration (p = 0.01). The path analysis model showed both %LAA and education duration directly and indirectly through FEV1 pp contributing to CI. Conclusion We conclude that the utilization of QCT parameters is beneficial as it can identify abnormalities and contribute to the development of CI, indicating its potential utility in clinical decision-making. The MoCA-Ina score in COPD is mainly affected by %LAA-950 and education duration. Contrary to expectations, this study concludes that HIF-1α does not affect CI among COPD patients.
Collapse
Affiliation(s)
- Yopi Simargi
- Doctoral Program in Medical Science, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Radiology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- Department of Radiology, Atma Jaya Hospital, Jakarta, Indonesia
| | - Yuda Turana
- Department of Neurology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | | | - Alida Roswita Harahap
- Doctoral Program in Medical Science, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Kristiana Siste
- Department of Psychiatry, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Psychiatry, Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Muchtaruddin Mansyur
- Department of Community, Occupational and Family Medicine, Faculty of Medicine, University of Indonesia, Depok, Indonesia
| | - Triya Damayanti
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Pulmonology and Respiratory Medicine, National Respiratory Center Persahabatan Hospital, Jakarta, Indonesia
| | - Maryastuti Maryastuti
- Department of Radiology, National Respiratory Center Persahabatan Hospital, Jakarta, Indonesia
| | | | - Indah Puspita Dewi
- Department of Radiology, Faculty of Medicine and Health, University of Muhammadiyah Jakarta, Jakarta, Indonesia
- Department of Radiology, Jakarta Islamic Hospital Cempaka Putih, Jakarta, Indonesia
| | - Yetty Ramli
- Department of Neurology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department Neurology, Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Marcel Prasetyo
- Department of Radiology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Radiology, Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Cleopas Martin Rumende
- Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Internal Medicine, Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| |
Collapse
|
10
|
Choi I, Choi J, Yong HS, Yang Z. Deep learning-based respiratory muscle segmentation as a potential imaging biomarker for respiratory function assessment. PLoS One 2024; 19:e0306789. [PMID: 39058719 PMCID: PMC11280157 DOI: 10.1371/journal.pone.0306789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Respiratory diseases significantly affect respiratory function, making them a considerable contributor to global mortality. The respiratory muscles play an important role in disease prognosis; as such, quantitative analysis of the respiratory muscles is crucial to assess the status of the respiratory system and the quality of life in patients. In this study, we aimed to develop an automated approach for the segmentation and classification of three types of respiratory muscles from computed tomography (CT) images using artificial intelligence. With a dataset of approximately 600,000 thoracic CT images from 3,200 individuals, we trained the model using the Attention U-Net architecture, optimized for detailed and focused segmentation. Subsequently, we calculated the volumes and densities from the muscle masks segmented by our model and performed correlation analysis with pulmonary function test (PFT) parameters. The segmentation models for muscle tissue and respiratory muscles obtained dice scores of 0.9823 and 0.9688, respectively. The classification model, achieving a generalized dice score of 0.9900, also demonstrated high accuracy in classifying thoracic region muscle types, as evidenced by its F1 scores: 0.9793 for the pectoralis muscle, 0.9975 for the erector spinae muscle, and 0.9839 for the intercostal muscle. In the correlation analysis, the volume of the respiratory muscles showed a strong correlation with PFT parameters, suggesting that respiratory muscle volume may serve as a potential novel biomarker for respiratory function. Although muscle density showed a weaker correlation with the PFT parameters, it has a potential significance in medical research.
Collapse
Affiliation(s)
- Insung Choi
- Department of Integrative Medicine, Major in Digital Healthcare, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Radiology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Juwhan Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Hwan Seok Yong
- Department of Radiology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Zepa Yang
- Department of Radiology, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
11
|
Xin H, Wei S, Zheng H, Qi Y, Xu S, Wang B, Jiang W, Deng N, Chen J. Comparison of a Supervised Home-Based Tele-Rehabilitation with Center-Based Pulmonary Rehabilitation: Protocol for a Randomized Non-Inferiority Multicenter Study in Ningxia. Int J Chron Obstruct Pulmon Dis 2024; 19:1707-1719. [PMID: 39081777 PMCID: PMC11287464 DOI: 10.2147/copd.s467945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024] Open
Abstract
Background Pulmonary rehabilitation (PR) is an effective intervention for people with chronic obstructive pulmonary disease (COPD). However, fewer than 5% of eligible individuals receive pulmonary rehabilitation, largely due to limited by the accessibility of rehabilitation and difficulties associated with travel and transport. Supervised home-based tele-rehabilitation (SHTR) is an alternative model to center-based pulmonary rehabilitation. We will determine whether supervised home-based tele-rehabilitation is non-inferior to center-based pulmonary rehabilitation. Methods The participants will undergo an 8-week rehabilitation program. Pulmonary rehabilitation comprises four main modules: exercise training, education, nutritional support, and psychological and behavioral interventions. We mainly focus on the module of exercise training and education. The education module includes information on exercise training, nutrition, and psychology, which are presented in an educational booklet provided to each participant. Blinded assessors will evaluate the outcomes at baseline, post-intervention, and 6 months after the intervention. The primary outcome is the change in the 6-minute walking distance. Secondary outcomes will assess changes in the patients' 1-minute sit-to-stand test, maximal inspiratory pressure (MIP), scales (CAT, mMRC, HAD), diaphragm ultrasound (TD, DE, DIF), changes in extrathoracic muscle volume and mass, completion rate of patient exercise prescriptions, occurrence of adverse events, as well as disease exacerbation and rehospitalization rates after rehabilitation and during the 6-month follow-up. Discussion In order to improve the accessibility of pulmonary rehabilitation and patient-related outcomes, it is necessary to propose an alternative model of pulmonary rehabilitation. This trial will establish whether a supervised home-based tele-rehabilitation is not inferior to traditional center-based pulmonary rehabilitation. Trial Registration Chinese Clinical Trial Registry ChiCTR2300076969. Registered on October 25, 2023.
Collapse
Affiliation(s)
- Hongxia Xin
- Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Shuoshuo Wei
- Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Affiliated Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, People’s Republic of China
| | - Hao Zheng
- Department of Pulmonary and Critical Care Medicine, Yanchi County People’s Hospital, Wuzhong, Ningxia, People’s Republic of China
| | - Yanchao Qi
- Department of Pulmonary and Critical Care Medicine, Second People’s Hospital of Shizuishan, Shizuishan, Ningxia, People’s Republic of China
| | - Shuping Xu
- Department of Pulmonary and Critical Care Medicine II, Wuzhong People’s Hospital, WuZhong, Ningxia, People’s Republic of China
| | - Bei Wang
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Wangshu Jiang
- Ministry of Education Key Laboratory of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ning Deng
- Ministry of Education Key Laboratory of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People’s Republic of China
| | - Juan Chen
- Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| |
Collapse
|
12
|
Soh S, Suh YJ, Lee S, Roh YH, Kwak YL, Kim YJ. Prognostic value of CT body composition analysis for 1-year mortality after transcatheter aortic valve replacement. Eur Radiol 2024:10.1007/s00330-024-10953-8. [PMID: 39023558 DOI: 10.1007/s00330-024-10953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVES To investigate the value of body composition indices derived from pre-procedural computed tomography (CT) in predicting 1-year mortality among patients who underwent transcatheter aortic valve replacement (TAVR). MATERIALS AND METHODS We assessed consecutive patients who underwent TAVR between June 2016 and December 2021 at a single academic medical center. Skeletal muscle and subcutaneous fat area at the T4, T12, and L3 levels on pre-procedural CT were measured. The association between body composition and 1-year mortality was evaluated using Cox proportional hazard regression analysis. RESULTS Finally, 408 patients were included (185 men and 223 women; mean age, 81.7 ± 5.1 years; range, 62-98 years). Post-procedural death occurred in 13.2% of patients. The muscle-height index and fat-height index at the L3 level were more strongly correlated with those at the T12 level (r = 0.765, p < 0.001 and r = 0.932, p < 0.001, respectively) than with those at the T4 level (r = 0.535, p < 0.001 and r = 0.895, p < 0.001, respectively). The cumulative 1-year mortality rate was highest for patients with both sarcopenia and adipopenia (26%), followed by those with adipopenia only (17%), those with sarcopenia only (12%), and those with neither sarcopenia nor adipopenia (8%, p = 0.002). Multivariable analysis revealed that body composition at the T12 level was an independent risk factor for 1-year mortality (hazard ratio: 4.09, 95% confidence interval: 2.01-8.35) in patients with both sarcopenia and adipopenia (p < 0.001). CONCLUSION Sarcopenia or adipopenia assessed with CT at the thoracic level may be valuable for stratifying 1-year all-cause mortality in patients who undergo TAVR. CLINICAL RELEVANCE STATEMENT Skeletal muscle and subcutaneous fat mass indices at the level of T12, measured on pre-procedural CT, have value for risk stratification of 1-year all-cause mortality in patients who undergo transcatheter aortic valve replacement. KEY POINTS Sarcopenia and adipopenia are associated with the prognosis of patients undergoing transcatheter aortic valve replacement. Body composition at the T12 level was an independent risk factor for 1-year all-cause mortality. Sarcopenia or adipopenia assessed at T12 with pre-procedural CT is valuable for risk stratification.
Collapse
Affiliation(s)
- Sarah Soh
- Anesthesia and Pain Research Institute, Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Suh
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suji Lee
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yun Ho Roh
- Department of Biomedical Systems Informatics, Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Lan Kwak
- Anesthesia and Pain Research Institute, Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Young Jin Kim
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Ibad HA, Hathaway QA, Bluemke DA, Kasaeian A, Klein JG, Budoff MJ, Barr RG, Allison M, Post WS, Lima JAC, Demehri S. CT-derived pectoralis composition and incident pneumonia hospitalization using fully automated deep-learning algorithm: multi-ethnic study of atherosclerosis. Eur Radiol 2024; 34:4163-4175. [PMID: 37951855 DOI: 10.1007/s00330-023-10372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Pneumonia-related hospitalization may be associated with advanced skeletal muscle loss due to aging (i.e., sarcopenia) or chronic illnesses (i.e., cachexia). Early detection of muscle loss may now be feasible using deep-learning algorithms applied on conventional chest CT. OBJECTIVES To implement a fully automated deep-learning algorithm for pectoralis muscle measures from conventional chest CT and investigate longitudinal associations between these measures and incident pneumonia hospitalization according to Chronic Obstructive Pulmonary Disease (COPD) status. MATERIALS AND METHODS This analysis from the Multi-Ethnic Study of Atherosclerosis included participants with available chest CT examinations between 2010 and 2012. We implemented pectoralis muscle composition measures from a fully automated deep-learning algorithm (Mask R-CNN, built on the Faster Region Proposal Network (R-) Convolutional Neural Network (CNN) with an extension for mask identification) for two-dimensional segmentation. Associations between CT-derived measures and incident pneumonia hospitalizations were evaluated using Cox proportional hazards models adjusted for multiple confounders which include but are not limited to age, sex, race, smoking, BMI, physical activity, and forced-expiratory-volume-at-1 s-to-functional-vital-capacity ratio. Stratification analyses were conducted based on baseline COPD status. RESULTS This study included 2595 participants (51% female; median age: 68 (IQR: 61, 76)) CT examinations for whom we implemented deep learning-derived measures for longitudinal analyses. Eighty-six incident pneumonia hospitalizations occurred during a median 6.67-year follow-up. Overall, pectoralis muscle composition measures did not predict incident pneumonia. However, in fully-adjusted models, only among participants with COPD (N = 507), CT measures like extramyocellular fat index (hazard ratio: 1.98, 95% CI: 1.22, 3.21, p value: 0.02), were independently associated with incident pneumonia. CONCLUSION Reliable deep learning-derived pectoralis muscle measures could predict incident pneumonia hospitalization only among participants with known COPD. CLINICAL RELEVANCE STATEMENT Pectoralis muscle measures obtainable at zero additional cost or radiation exposure from any chest CT may have independent predictive value for clinical outcomes in chronic obstructive pulmonary disease patients. KEY POINTS •Identification of independent and modifiable risk factors of pneumonia can have important clinical impact on patients with chronic obstructive pulmonary disease. •Opportunistic CT measures of adipose tissue within pectoralis muscles using deep-learning algorithms can be quickly obtainable at zero additional cost or radiation exposure. •Deep learning-derived pectoralis muscle measurements of intermuscular fat and its subcomponents are independently associated with subsequent incident pneumonia hospitalization.
Collapse
Affiliation(s)
- Hamza A Ibad
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Russell H. Morgan, Baltimore, MD, USA
| | - Quincy A Hathaway
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Russell H. Morgan, Baltimore, MD, USA
- West Virginia University School of Medicine, Heart and Vascular Institute, Morgantown, WV, USA
| | - David A Bluemke
- University of Wisconsin School of Medicine and Public Health, Department of Radiology, Madison, WI, USA
| | - Arta Kasaeian
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Russell H. Morgan, Baltimore, MD, USA
| | - Joshua G Klein
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Russell H. Morgan, Baltimore, MD, USA
| | - Matthew J Budoff
- Harbor-UCLA Medical Center, Division of Cardiology, Torrance, CA, USA
| | - R Graham Barr
- Columbia University, Division of General Medicine, New York, NY, USA
| | - Matthew Allison
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Wendy S Post
- Johns Hopkins University School of Medicine, Division of Cardiology, Baltimore, MD, USA
| | - João A C Lima
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Russell H. Morgan, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Division of Cardiology, Baltimore, MD, USA
| | - Shadpour Demehri
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Russell H. Morgan, Baltimore, MD, USA.
| |
Collapse
|
14
|
Cho Y, Kim EN, You JS, Han M, Park YS. Association between Muscle Mass Index and Neurological Outcomes of Patients with Out-of-Hospital Cardiac Arrest. Life (Basel) 2024; 14:680. [PMID: 38929664 PMCID: PMC11204909 DOI: 10.3390/life14060680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Muscle mass depletion is associated with unfavorable outcomes in many diseases. However, its relationship with cardiac arrest outcomes has not been explored. This retrospective single-center study determined the relationship between muscle mass depletion and the neurological outcomes of patients with out-of-hospital cardiac arrest (OHCA) by measuring muscle mass at various locations. Adult patients with OHCA, who were treated with target temperature management, and who underwent abdominal or chest computed tomography (CT) within 3 months of the cardiac arrest were included. Skeletal muscle index (SMI) was measured at the third lumbar vertebra (L3) level, psoas muscle, fourth thoracic vertebra (T4) level, and pectoralis muscle. The Youden index was used to determine a low SMI based on sex-specific cutoff values. The outcome variables were "good neurological outcome" and "survival" at hospital discharge. Multivariable analyses revealed that patients with low T4 SMI level were significantly associated with good neurological outcomes at hospital discharge (odds ratio = 0.26, 95% confidence interval: 0.07-0.88, p = 0.036). However, no significant differences were observed between good neurological outcomes and low SMI at the L3 level and psoas and pectoralis muscles; SMIs were not associated with survival at hospital discharge. T4 level SMI depletion was inversely associated with good neurological outcomes in patients with OHCA. Thoracic muscle depletion may be crucial for predicting the neurological outcomes in patients with OHCA and further investigation in larger prospective study is warranted.
Collapse
Affiliation(s)
- Yongtak Cho
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Emergency Medicine, Hanyang University Hospital, Seoul 04763, Republic of Korea
| | - Eung Nam Kim
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Je Sung You
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Minkyung Han
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yoo Seok Park
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Svenningsen S, Kirby M. A Novel Computed Tomography Score Reveals More about Air Trapping in Asthma. Am J Respir Crit Care Med 2024; 209:1175-1176. [PMID: 38335179 PMCID: PMC11146532 DOI: 10.1164/rccm.202312-2284ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/09/2024] [Indexed: 02/12/2024] Open
Affiliation(s)
- Sarah Svenningsen
- Department of Medicine McMaster University Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health St Joseph's Health Care Hamilton, Ontario, Canada
| | - Miranda Kirby
- Department of Physics Toronto Metropolitan University Toronto, Ontario, Canada
| |
Collapse
|
16
|
Har-Shai L, Franco E, Shteinberg M, Adir Y, Ad-El D, Lavi I, Stein N, Har-Shai Y, Metanes I. Immediate Unilateral Subpectoral Implant-Based Breast Reconstruction does not Impair Pulmonary Functions: A Preliminary Prospective Study. Aesthetic Plast Surg 2024:10.1007/s00266-024-04021-1. [PMID: 38671243 DOI: 10.1007/s00266-024-04021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Implant-based breast reconstruction is one of the most common procedures among women with breast cancer undergoing mastectomy. Prosthetic devices may be positioned either beneath or above the pectoralis major muscle, which is considered an accessory muscle of ventilation. This preliminary prospective study aimed to investigate whether subpectoral unilateral implant-based breast reconstruction has any effect on patients' pulmonary functions. METHODS A prospective study of fourteen women who underwent immediate unilateral implant-based subpectoral breast reconstruction by a single surgeon over 10 months was conducted. Spirometry and maximal voluntary ventilation tests were conducted 1 day prior to surgery, and 1- and 3 months following breast reconstruction. ANOVA or Friedman test were used to compare pulmonary function tests before and after surgery. RESULTS Fourteen patients completed the study protocol. No statistically significant differences were found when comparing spirometry parameters in the three time points. CONCLUSIONS Pectoralis muscle release does not impair pulmonary function among patients undergoing immediate unilateral implant-based breast reconstruction following mastectomy. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Lior Har-Shai
- The Department of Reconstructive Plastic Surgery & Burns, Rabin Medical Center, Beilinson Hospital, 39 Jabotinski St, 49100, Petah Tikva, Israel.
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| | - Eyal Franco
- The Unit of Plastic Surgery, Lady Davis Carmel Medical Center, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Lady Davis Carmel Medical Center, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yochai Adir
- Pulmonology Institute and CF Center, Lady Davis Carmel Medical Center, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Dean Ad-El
- The Department of Reconstructive Plastic Surgery & Burns, Rabin Medical Center, Beilinson Hospital, 39 Jabotinski St, 49100, Petah Tikva, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Idit Lavi
- The Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Nili Stein
- The Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yaron Har-Shai
- The Unit of Plastic Surgery, Lady Davis Carmel Medical Center, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Issa Metanes
- The Unit of Plastic Surgery, Lady Davis Carmel Medical Center, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
17
|
Chen M, Wang P, Li Y, Jin Z, An Y, Zhang Y, Yuan W. Prediction of hematologic toxicity in luminal type breast cancer patients receiving neoadjuvant chemotherapy using CT L1 level skeletal muscle index. Sci Rep 2024; 14:8604. [PMID: 38615057 PMCID: PMC11016056 DOI: 10.1038/s41598-024-58433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024] Open
Abstract
This study aims to explore the correlation between the CT-L1 and L3 body composition parameters and analyze the relationship between L1 body composition and hematologic toxicity in luminal-type breast cancer patients undergoing neoadjuvant chemotherapy. Data from 140 luminal-type breast cancer patients who underwent surgical treatment after neoadjuvant chemotherapy were analyzed retrospectively. Spearman analysis was used to assess the correlation between CT-L1 and CT-L3 body composition parameters pre-neoadjuvant chemotherapy. Additionally, univariate and multivariate logistic regression analyses were performed to identify factors influencing hematologic toxicity. CT-L1 body composition parameters were positively correlated with CT-L3 body composition parameters in 34 patients. Severe hematological toxicity occurred in 46 cases among the patient cohort. A skeletal muscle index (SMI) of < 32.91 cm2/m2, initial tumor size ≥ 3.335 cm, and a glucose-to-neutrophil ratio (GLR) ≥ 2.88 were identified as independent risk factors for severe hematologic toxicity during neoadjuvant chemotherapy in luminal-type breast cancer patients. The sample size in this study is small, and the predictive capacity of GLR in hematologic toxicity requires further research for comprehensive validation. CT-L1 analysis represents a viable alternative to CT-L3 analysis for body composition assessment. Patients with a low skeletal muscle index were more prone to experiencing severe hematologic toxicity during neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Min Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Pinxiu Wang
- Department of Oncology, Shucheng People's Hospital, Lu'an, 231300, China
| | - Yanting Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Zhuanmei Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Yu An
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Yanan Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Wenzhen Yuan
- The Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
18
|
Wang K, Wu F, He H, Hu C, Chen X, Chen J, Cao W, Liu J, Zhao J, Zhao Z, Zhao Z. Association between computed tomography-quantified respiratory muscles and chronic obstructive pulmonary disease: a retrospective study. BMC Pulm Med 2024; 24:150. [PMID: 38515154 PMCID: PMC10956391 DOI: 10.1186/s12890-024-02955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND This study examined the association between chest muscles and chronic obstructive pulmonary disease (COPD) and the relationship between chest muscle areas and acute exacerbations of COPD (AECOPD). METHODS There were 168 subjects in the non-COPD group and 101 patients in the COPD group. The respiratory and accessory respiratory muscle areas were obtained using 3D Slicer software to analysis the imaging of computed tomography (CT). Univariate and multivariate Poisson regressions were used to analyze the number of AECOPD cases during the preceding year. The cutoff value was obtained using a receiver operating characteristic (ROC) curve. RESULTS We scanned 6342 subjects records, 269 of which were included in this study. We then measured the following muscle areas (non-COPD group vs. COPD group): pectoralis major (19.06 ± 5.36 cm2 vs. 13.25 ± 3.71 cm2, P < 0.001), pectoralis minor (6.81 ± 2.03 cm2 vs. 5.95 ± 1.81 cm2, P = 0.001), diaphragmatic dome (1.39 ± 0.97 cm2 vs. 0.85 ± 0.72 cm2, P = 0.011), musculus serratus anterior (28.03 ± 14.95 cm2 vs.16.76 ± 12.69 cm2, P < 0.001), intercostal muscle (12.36 ± 6.64 cm2 vs. 7.15 ± 5.6 cm2, P < 0.001), pectoralis subcutaneous fat (25.91 ± 13.23 cm2 vs. 18.79 ± 10.81 cm2, P < 0.001), paravertebral muscle (14.8 ± 4.35 cm2 vs. 13.33 ± 4.27 cm2, P = 0.007), and paravertebral subcutaneous fat (12.57 ± 5.09 cm2 vs. 10.14 ± 6.94 cm2, P = 0.001). The areas under the ROC curve for the pectoralis major, intercostal, and the musculus serratus anterior muscle areas were 81.56%, 73.28%, and 71.56%, respectively. Pectoralis major area was negatively associated with the number of AECOPD during the preceding year after adjustment (relative risk, 0.936; 95% confidence interval, 0.879-0.996; P = 0.037). CONCLUSION The pectoralis major muscle area was negative associated with COPD. Moreover, there was a negative correlation between the number of AECOPD during the preceding year and the pectoralis major area.
Collapse
Affiliation(s)
- Ke Wang
- Department of Infectious Diseases, Respiratory and Critical Care Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
- Guangzhou Chest Hospital, Guangzhou, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou, China
| | - Hua He
- Department of Infectious Diseases, Respiratory and Critical Care Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Chengyi Hu
- Department of Infectious Diseases, Respiratory and Critical Care Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Xiaobang Chen
- Department of Infectious Diseases, Respiratory and Critical Care Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Jinglong Chen
- Department of Geriatrics, National Clinical Key Specialty, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Weitao Cao
- Department of Infectious Diseases, Respiratory and Critical Care Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Jun Liu
- Department of Infectious Diseases, Respiratory and Critical Care Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | | | - Ziwen Zhao
- Department of Infectious Diseases, Respiratory and Critical Care Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Zhuxiang Zhao
- Department of Infectious Diseases, Respiratory and Critical Care Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
| |
Collapse
|
19
|
Seo H, Cha SI, Park J, Lim JK, Lee WK, Park JE, Choi SH, Lee YH, Yoo SS, Lee SY, Lee J, Kim CH, Park JY. Pectoralis Muscle Area as a Predictor of Mortality in Patients Hospitalized with Bronchiectasis Exacerbation. Respiration 2024; 103:257-267. [PMID: 38499001 DOI: 10.1159/000538091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
INTRODUCTION Data on factors related to mortality in patients with bronchiectasis exacerbation are insufficient. Computed tomography (CT) can measure the pectoralis muscle area (PMA) and is a useful tool to diagnose sarcopenia. This study aimed to evaluate whether PMA can predict mortality in patients with bronchiectasis exacerbation. METHODS Patients hospitalized due to bronchiectasis exacerbation at a single center were retrospectively divided into survivors and non-survivors based on 1-year mortality. Thereafter, a comparison of the clinical and radiologic characteristics was conducted between the two groups. RESULTS A total of 66 (14%) patients died at 1 year. In the multivariate analysis, age, BMI <18.4 kg/m2, sex-specific PMA quartile, ≥3 exacerbations in the previous year, serum albumin <3.5 g/dL, cystic bronchiectasis, tuberculosis-destroyed lung, and diabetes mellitus were independent predictors for the 1-year mortality in patients hospitalized with bronchiectasis exacerbation. A lower PMA was associated with a lower overall survival rate in the survival analysis according to sex-specific quartiles of PMA. PMA had the highest area under the curve during assessment of prognostic performance in predicting the 1-year mortality. The lowest sex-specific PMA quartile group exhibited higher disease severity than the highest quartile group. CONCLUSIONS CT-derived PMA was an independent predictor of 1-year mortality in patients hospitalized with bronchiectasis exacerbation. Patients with lower PMA exhibited higher disease severity. These findings suggest that PMA might be a useful marker for providing additional information regarding prognosis of patients with bronchiectasis exacerbation.
Collapse
Affiliation(s)
- Hyewon Seo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jongmin Park
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Kwang Lim
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won Kee Lee
- Biostatistics, Medical Research Collaboration Center, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Eun Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Ha Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Hoon Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shin-Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang-Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
20
|
Brath MSG, Alsted SD, Sahakyan M, Mark EB, Frøkjær JB, Rasmussen HH, Østergaard LR, Christensen RB, Weinreich UM. Association between the Static and Dynamic Lung Function and CT-Derived Thoracic Skeletal Muscle Measurements-A Retrospective Analysis of a 12-Month Observational Follow-Up Pilot Study. Adv Respir Med 2024; 92:123-144. [PMID: 38525774 PMCID: PMC10961694 DOI: 10.3390/arm92020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Patients with chronic obstructive pulmonary disease (COPD) with low skeletal muscle mass and severe airway obstruction have higher mortality risks. However, the relationship between dynamic/static lung function (LF) and thoracic skeletal muscle measurements (SMM) remains unclear. This study explored patient characteristics (weight, BMI, exacerbations, dynamic/static LF, sex differences in LF and SMM, and the link between LF and SMM changes. METHODS A retrospective analysis of a 12-month prospective follow-up study patients with stable COPD undergoing standardized treatment, covering mild to severe stages, was conducted. The baseline and follow-up assessments included computed tomography and body plethysmography. RESULTS This study included 35 patients (17 females and 18 males). This study revealed that females had more stable LF but tended to have greater declines in SMM areas and indices than males (-5.4% vs. -1.9%, respectively), despite the fact that females were younger and had higher LF and less exacerbation than males. A multivariate linear regression showed a negative association between the inspiratory capacity/total lung capacity ratio (IC/TLC) and muscle fat area. CONCLUSIONS The findings suggest distinct LF and BC progression patterns between male and female patients with COPD. A low IC/TLC ratio may predict increased muscle fat. Further studies are necessary to understand these relationships better.
Collapse
Affiliation(s)
- Mia Solholt Godthaab Brath
- Respiratory Research Aalborg (Reaal), Aalborg University Hospital, 9000 Aalborg, Denmark;
- Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark; (E.B.M.); (J.B.F.); (H.H.R.)
- Department of Respiratory Diseases, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Sisse Dyrman Alsted
- Department of General Medicine, North Region Hospital–Hjørring, 9800 Hjørring, Denmark;
| | - Marina Sahakyan
- Department of Radiology, Aalborg University Hospital, 9000 Aalborg, Denmark; (M.S.); (R.B.C.)
| | - Esben Bolvig Mark
- Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark; (E.B.M.); (J.B.F.); (H.H.R.)
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark; (E.B.M.); (J.B.F.); (H.H.R.)
- Department of Radiology, Aalborg University Hospital, 9000 Aalborg, Denmark; (M.S.); (R.B.C.)
| | - Henrik Højgaard Rasmussen
- Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark; (E.B.M.); (J.B.F.); (H.H.R.)
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, 9000 Aalborg, Denmark
- Danish Nutrition Science Center, Aalborg University Hospital, 9000 Aalborg, Denmark
- Center for Nutrition and Intestinal Failure, Aalborg University Hospital, 9000 Aalborg, Denmark
- Department of Dietetic and Nutritional Research, Copenhagen University Hospitals, Herlev and Gentofte Hospitals, 2730 Herlev, Denmark
| | - Lasse Riis Østergaard
- Medical Informatics Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
| | | | - Ulla Møller Weinreich
- Respiratory Research Aalborg (Reaal), Aalborg University Hospital, 9000 Aalborg, Denmark;
- Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark; (E.B.M.); (J.B.F.); (H.H.R.)
- Department of Respiratory Diseases, Aalborg University Hospital, 9000 Aalborg, Denmark
| |
Collapse
|
21
|
Nakagawara K, Shiraishi Y, Chubachi S, Tanabe N, Maetani T, Asakura T, Namkoong H, Tanaka H, Shimada T, Azekawa S, Otake S, Fukushima T, Watase M, Terai H, Sasaki M, Ueda S, Kato Y, Harada N, Suzuki S, Yoshida S, Tateno H, Yamada Y, Jinzaki M, Hirai T, Okada Y, Koike R, Ishii M, Kimura A, Imoto S, Miyano S, Ogawa S, Kanai T, Fukunaga K. Integrated assessment of computed tomography density in pectoralis and erector spinae muscles as a prognostic biomarker for coronavirus disease 2019. Clin Nutr 2024; 43:815-824. [PMID: 38350289 DOI: 10.1016/j.clnu.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND & AIMS: Muscle quantification using chest computed tomography (CT) is a useful prognostic biomarker for coronavirus disease 2019 (COVID-19). However, no studies have evaluated the clinical course through comprehensive assessment of the pectoralis and erector spinae muscles. Therefore, we compared the impact of the areas and densities of these muscles on COVID-19 infection outcome. METHODS This multicenter retrospective cohort study was conducted by the COVID-19 Task Force. A total of 1410 patients with COVID-19 were included, and data on the area and density of the pectoralis and erector spinae muscles on chest CT were collected. The impact of each muscle parameter on the clinical outcome of COVID-19 was stratified according to sex. The primary outcome was the percentage of patients with severe disease, including those requiring oxygen supplementation and those who died. Additionally, 167 patients were followed up for changes in muscle parameters at three months and for the clinical characteristics in case of reduced CT density. RESULTS For both muscles, low density rather than muscle area was associated with COVID-19 severity. Regardless of sex, lower erector spinae muscle density was associated with more severe disease than pectoralis muscle density. The muscles were divided into two groups using the receiver operating characteristic curve of CT density, and the population was classified into four (Group A: high CT density for both muscles, Group B: low CT density for pectoralis and high for erector spinae muscle. Group C: high CT density for pectoralis and low for erector spinae muscle, Group D: low CT density for both muscles). In univariate analysis, Group D patients exhibited worse outcomes than Group A (OR: 2.96, 95% CI: 2.03-4.34 in men; OR: 3.02, 95% CI: 2.66-10.4 in women). Multivariate analysis revealed that men in Group D had a significantly more severe prognosis than those in Group A (OR: 1.82, 95% CI: 1.16-2.87). Moreover, Group D patients tended to have the highest incidence of other complications due to secondary infections and acute kidney injury during the clinical course. Longitudinal analysis of both muscle densities over three months revealed that patients with decreased muscle density over time were more likely to have severe cases than those who did not. CONCLUSIONS Muscle density, rather than muscle area, predicts the clinical outcomes of COVID-19. Integrated assessment of pectoralis and erector spinae muscle densities demonstrated higher accuracy in predicting the clinical course of COVID-19 than individual assessments.
Collapse
Affiliation(s)
- Kensuke Nakagawara
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Tomoki Maetani
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Department of Clinical Medicine (Laboratory of Bioregulatory Medicine), Kitasato University School of Pharmacy, Tokyo, Japan; Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Shimada
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shuhei Azekawa
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shiro Otake
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Fukushima
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mayuko Watase
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hideki Terai
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Sasaki
- Internal Medicine, JCHO (Japan Community Health Care Organization) Saitama Medical Center, Saitama, Japan
| | - Soichiro Ueda
- Internal Medicine, JCHO (Japan Community Health Care Organization) Saitama Medical Center, Saitama, Japan
| | - Yukari Kato
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Shoji Suzuki
- Department of Respiratory Medicine, Saitama City Hospital, Saitama, Japan
| | - Shuichi Yoshida
- Department of Respiratory Medicine, Saitama City Hospital, Saitama, Japan
| | - Hiroki Tateno
- Department of Respiratory Medicine, Saitama City Hospital, Saitama, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Ryuji Koike
- Medical Innovation Promotion Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akinori Kimura
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Kutaiba N, Dobson J, Finnis M, Bellomo R. The identification of an optimal body size parameter to adjust skeletal muscle area on chest CT in COVID-19 patients. J Frailty Sarcopenia Falls 2024; 9:16-24. [PMID: 38444548 PMCID: PMC10910254 DOI: 10.22540/jfsf-09-016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 03/07/2024] Open
Abstract
Objectives The most efficient way to adjust skeletal muscle area (SMA) derived from chest CT to body size remains unclear. We hypothesized that vertebral body area (VBA) measurement would allow such efficient adjustment. Methods We conducted a retrospective observational study of chest CT imaging in a cohort of critically ill COVID-19 patients. We measured paravertebral SMA at T5 level and T5 vertebral body anteroposterior length, width, and area. We used linear regression and multivariable modelling to assess the association of VBA with SMA. Results In 48 COVID-19 patients in ICU, T5 VBA could be easily derived from simple width and anteroposterior length linear measurements. T5 VBA (measured manually or estimated from width and length) performed similarly to height (R2 of 0.22) as an adjustment variable for SMA, with R2 of 0.23 and 0.22, respectively. Gender had the strongest correlation with SMA (R2 = 0.28). Adding height or age to a model using gender and VBA did not improve correlation. Conclusions Gender and estimated VBA from simple linear measurements at T5 level on CT images can be utilized for adjustment of SMA without the need for height. Validation of these findings in larger cohorts of critically ill patients is now needed.
Collapse
Affiliation(s)
- Numan Kutaiba
- Department of Radiology, Austin Health, Heidelberg, Victoria, Australia
- Department of Radiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Julie Dobson
- Department of Radiology, Austin Health, Heidelberg, Victoria, Australia
| | - Mark Finnis
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Rinaldo Bellomo
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Critical Care, The University of Melbourne, Parkville, Victoria, Australia
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
- Data Analytics Research and Evaluation Centre, Austin Hospital, Melbourne, Australia
- Department of Critical Care, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
23
|
Bunk SA, Ipema J, Sidorenkov G, Bennink E, Vliegenthart R, de Jong PA, Pompe E, Charbonnier JP, Luijk BH, Aerts J, Groen HJ, Mohamed Hoesein FA. The relationship of fat and muscle measurements with emphysema and bronchial wall thickening in smokers. ERJ Open Res 2024; 10:00749-2023. [PMID: 38444665 PMCID: PMC10910310 DOI: 10.1183/23120541.00749-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/17/2023] [Indexed: 03/07/2024] Open
Abstract
Introduction Differences in body composition in patients with COPD may have important prognostic value and may provide opportunities for patient-specific management. We investigated the relation of thoracic fat and muscle with computed tomography (CT)-measured emphysema and bronchial wall thickening. Methods Low-dose baseline chest CT scans from 1031 male lung cancer screening participants from one site were quantified for emphysema, bronchial wall thickening, subcutaneous fat, visceral fat and skeletal muscle. Body composition measurements were performed by segmenting the first slice above the aortic arch using Hounsfield unit thresholds with region growing and manual corrections. COPD presence and severity were evaluated with pre-bronchodilator spirometry testing. Results Participants had a median age of 61.5 years (58.6-65.6, 25th-75th percentile) and median number of 38.0 pack-years (28.0-49.5); 549 (53.2%) were current smokers. Overall, 396 (38.4%) had COPD (256 Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1, 140 GOLD 2-3). Participants with COPD had less subcutaneous fat, visceral fat and skeletal muscle (p<0.001 for all). With increasing GOLD stages, subcutaneous (p=0.005) and visceral fat values (p=0.004) were higher, and skeletal muscle was lower (p=0.004). With increasing severity of CT-derived emphysema, subcutaneous fat, visceral fat and skeletal muscle values were lower (p<0.001 for all). With increasing CT-derived bronchial wall thickness, subcutaneous and visceral fat values were higher (p<0.001 for both), without difference in skeletal muscle. All statistical relationships remained when adjusted for age, pack-years and smoking status. Conclusion COPD presence and emphysema severity are associated with smaller amounts of thoracic fat and muscle, whereas bronchial wall thickening is associated with fat accumulation.
Collapse
Affiliation(s)
- Stijn A.O. Bunk
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jetty Ipema
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Grigory Sidorenkov
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Edwin Bennink
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rozemarijn Vliegenthart
- University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Groningen, The Netherlands
| | - Pim A. de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Esther Pompe
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Bart H.D. Luijk
- Department of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joachim Aerts
- Department of Respiratory Medicine, ErasmusMC, Rotterdam, The Netherlands
| | - Harry J.M. Groen
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
24
|
Nakamura H, Hirai T, Kurosawa H, Hamada K, Matsunaga K, Shimizu K, Konno S, Muro S, Fukunaga K, Nakano Y, Kuwahira I, Hanaoka M. Current advances in pulmonary functional imaging. Respir Investig 2024; 62:49-65. [PMID: 37948969 DOI: 10.1016/j.resinv.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/26/2023] [Accepted: 09/07/2023] [Indexed: 11/12/2023]
Abstract
Recent advances in imaging analysis have enabled evaluation of ventilation and perfusion in specific regions by chest computed tomography (CT) and magnetic resonance imaging (MRI), in addition to modalities including dynamic chest radiography, scintigraphy, positron emission tomography (PET), ultrasound, and electrical impedance tomography (EIT). In this review, an overview of current functional imaging techniques is provided for each modality. Advances in chest CT have allowed for the analysis of local volume changes and small airway disease in addition to emphysema, using the Jacobian determinant and parametric response mapping with inspiratory and expiratory images. Airway analysis can reveal characteristics of airway lesions in chronic obstructive pulmonary disease (COPD) and bronchial asthma, and the contribution of dysanapsis to obstructive diseases. Chest CT is also employed to measure pulmonary blood vessels, interstitial lung abnormalities, and mediastinal and chest wall components including skeletal muscle and bone. Dynamic CT can visualize lung deformation in respective portions. Pulmonary MRI has been developed for the estimation of lung ventilation and perfusion, mainly using hyperpolarized 129Xe. Oxygen-enhanced and proton-based MRI, without a polarizer, has potential clinical applications. Dynamic chest radiography is gaining traction in Japan for ventilation and perfusion analysis. Single photon emission CT can be used to assess ventilation-perfusion (V˙/Q˙) mismatch in pulmonary vascular diseases and COPD. PET/CT V˙/Q˙ imaging has also been demonstrated using "Galligas". Both ultrasound and EIT can detect pulmonary edema caused by acute respiratory distress syndrome. Familiarity with these functional imaging techniques will enable clinicians to utilize these systems in clinical practice.
Collapse
Affiliation(s)
- Hidetoshi Nakamura
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hajime Kurosawa
- Center for Environmental Conservation and Research Safety and Department of Occupational Health, Tohoku University School of Medicine, Sendai, Japan
| | - Kazuki Hamada
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, Nara, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Ichiro Kuwahira
- Division of Pulmonary Medicine, Department of Medicine, Tokai University Tokyo Hospital, Tokyo, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
25
|
Yogi S, Shirahata T, Sato H, Nishida Y, Inoue K, Niitsu M, Akagami T, Masaki K, Nagata M, Tanaka S, Katsukawa F, Nakamura H. Non-exercise Activity Thermogenesis Correlated With Clinical Parameters in Patients With or At-Risk for Chronic Obstructive Pulmonary Disease (COPD): A Pilot Study. Cureus 2024; 16:e53019. [PMID: 38410298 PMCID: PMC10895206 DOI: 10.7759/cureus.53019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Attention to physical activity has grown in patients with chronic obstructive pulmonary disease (COPD), as it serves as a robust indicator for mortality associated with COPD. Non-exercise activity thermogenesis (NEAT) is the energy expenditure due to physical activities besides active sports-like exercises and resistance training in daily life, and decreased NEAT may be related to physical inactivity in patients with COPD. We examined whether NEAT assessed using a questionnaire reflects clinical parameters in patients with or at risk for COPD. METHODS The study participants consisted of 36 male patients (COPD=28; stage1=6, stage2=14, stage3/4=8, and at-risk for COPD=8) older than 50 years of age. The participants underwent anthropometric measurements, lung function testing, a six-minute walk test, muscle strength testing, and questionnaires, e.g., the COPD assessment test (CAT), modified Medical Research Council (mMRC) dyspnea scale, and Hospital Anxiety and Depression Scale. Image analysis with chest computed tomography (CT) included the number of trunk muscles, bronchial wall thickening, and emphysema (percentage of the lung field occupied by low attenuation area <-950 HU). We evaluated the relationship between these clinical parameters and NEAT questionnaire scores using Pearson correlation analysis and the Tukey-Kramer test. RESULTS The NEAT score was correlated with the severity of airflow limitation and airway wall thickness measured by chest CT, symptoms evaluated by the mMRC dyspnea scale and CAT, and inspiratory muscle strength and pectoralis muscle area assessed by CT. CONCLUSION Our study revealed the significance of NEAT as a valuable indicator in assessing the health status of patients with or at risk for COPD. The NEAT score was correlated with various clinical traits, suggesting that incorporating NEAT assessments using a questionnaire can contribute to a comprehensive understanding of the clinical condition in these patients. Further large-scale studies are warranted to validate and generalize these findings across diverse COPD populations.
Collapse
Affiliation(s)
- Sanehiro Yogi
- Respiratory Medicine, Saitama Medical University Hospital, Saitama, JPN
| | - Toru Shirahata
- Respiratory Medicine, Saitama Medical University Hospital, Saitama, JPN
| | - Hideaki Sato
- Respiratory Medicine, Saitama Medical University Hospital, Saitama, JPN
| | - Yuki Nishida
- Biostatistics, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, JPN
- Sports Medicine Research Center, Keio University, Yokohama, JPN
| | - Kaiji Inoue
- Radiology, Saitama Medical University Hospital, Saitama, JPN
| | - Mamoru Niitsu
- Radiology, Saitama Medical University Hospital, Saitama, JPN
| | - Tomoe Akagami
- Respiratory Medicine, Saitama Medical University Hospital, Saitama, JPN
| | - Kenji Masaki
- Respiratory Medicine, Saitama Medical University Hospital, Saitama, JPN
| | - Makoto Nagata
- Respiratory Medicine, Saitama Medical University Hospital, Saitama, JPN
| | - Shigeho Tanaka
- Faculty of Nutrition, Kagawa Nutrition University, Saitama, JPN
| | | | | |
Collapse
|
26
|
Genkin D, Jenkins AR, van Noord N, Makimoto K, Collins S, Stickland MK, Tan WC, Bourbeau J, Jensen D, Kirby M. A fully automated pipeline for the extraction of pectoralis muscle area from chest computed tomography scans. ERJ Open Res 2024; 10:00485-2023. [PMID: 38259805 PMCID: PMC10801752 DOI: 10.1183/23120541.00485-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/09/2023] [Indexed: 01/24/2024] Open
Abstract
Background Computed tomography (CT)-derived pectoralis muscle area (PMA) measurements are prognostic in people with or at-risk of COPD, but fully automated PMA extraction has yet to be developed. Our objective was to develop and validate a PMA extraction pipeline that can automatically: 1) identify the aortic arch slice; and 2) perform pectoralis segmentation at that slice. Methods CT images from the Canadian Cohort of Obstructive Lung Disease (CanCOLD) study were used for pipeline development. Aorta atlases were used to automatically identify the slice containing the aortic arch by group-based registration. A deep learning model was trained to segment the PMA. The pipeline was evaluated in comparison to manual segmentation. An external dataset was used to evaluate generalisability. Model performance was assessed using the Dice-Sorensen coefficient (DSC) and PMA error. Results In total 90 participants were used for training (age 67.0±9.9 years; forced expiratory volume in 1 s (FEV1) 93±21% predicted; FEV1/forced vital capacity (FVC) 0.69±0.10; 47 men), and 32 for external testing (age 68.6±7.4 years; FEV1 65±17% predicted; FEV1/FVC 0.50±0.09; 16 men). Compared with manual segmentation, the deep learning model achieved a DSC of 0.94±0.02, 0.94±0.01 and 0.90±0.04 on the true aortic arch slice in the train, validation and external test sets, respectively. Automated aortic arch slice detection obtained distance errors of 1.2±1.3 mm and 1.6±1.5 mm on the train and test data, respectively. Fully automated PMA measurements were not different from manual segmentation (p>0.05). PMA measurements were different between people with and without COPD (p=0.01) and correlated with FEV1 % predicted (p<0.05). Conclusion A fully automated CT PMA extraction pipeline was developed and validated for use in research and clinical practice.
Collapse
Affiliation(s)
- Daniel Genkin
- Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, Canada
| | - Alex R. Jenkins
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Nikki van Noord
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Kalysta Makimoto
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Sophie Collins
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | - Wan C. Tan
- Center for Heart, Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Jean Bourbeau
- Montreal Chest Institute of the Royal Victoria Hospital, McGill University Health Centre, Montreal, Canada
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, Montreal, Canada
| | - Dennis Jensen
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
- Montreal Chest Institute of the Royal Victoria Hospital, McGill University Health Centre, Montreal, Canada
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, Montreal, Canada
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| |
Collapse
|
27
|
Lim WH, Jeong S, Park CM. Cigarette smoking and disproportionate changes of thoracic skeletal muscles in low-dose chest computed tomography. Sci Rep 2023; 13:20110. [PMID: 37978301 PMCID: PMC10656498 DOI: 10.1038/s41598-023-46360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Association between smoking intensity and the quantity and quality of thoracic skeletal muscles (TSMs) remains unexplored. Skeletal muscle index (SMI; skeletal muscle area/height2) and percentage of normal attenuation muscle area (NAMA%) were measured to represent the quantity and quality of the skeletal muscles, respectively, and quantification was performed in pectoralis muscle at aortic arch (AA-PM), TSM at carina (C-TSM), erector spinae muscle at T12 (T12-ESM), and skeletal muscle at L1 (L1-SM). Among the 258 men (median age, 62 years [IQR: 58-69]), 183 were current smokers (median smoking intensity, 40 pack-years [IQR: 30-46]). SMI and NAMA% of AA-PM significantly decreased with pack-year (β = - 0.028 and - 0.076; P < 0.001 and P = 0.021, respectively). Smoking intensity was inversely associated with NAMA% of C-TSM (β = - 0.063; P = 0.001), whereas smoking intensity showed a borderline association with SMI of C-TSM (β = - 0.023; P = 0.057). Smoking intensity was associated with the change in NAMA% of L1-SM (β = - 0.040; P = 0.027), but was not associated with SMI of L1-SM (P > 0.05). Neither NAMA% nor SMI of T12-ESM was affected by smoking intensity (P > 0.05). In conclusion, smoking intensity was associated with the change of TSMs. Its association varied according to the location of TSMs, with the most associated parts being the upper (AA-PM) and middle TSMs (C-TSM).
Collapse
Affiliation(s)
- Woo Hyeon Lim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Suhyun Jeong
- Department of Radiology, Namwon Medical Center, 365 Chungjeong-no, Namwon, Jeollabuk-do, 55726, Republic of Korea
| | - Chang Min Park
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Saha PK, Nadeem SA, Comellas AP. A Survey on Artificial Intelligence in Pulmonary Imaging. WILEY INTERDISCIPLINARY REVIEWS. DATA MINING AND KNOWLEDGE DISCOVERY 2023; 13:e1510. [PMID: 38249785 PMCID: PMC10796150 DOI: 10.1002/widm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/21/2023] [Indexed: 01/23/2024]
Abstract
Over the last decade, deep learning (DL) has contributed a paradigm shift in computer vision and image recognition creating widespread opportunities of using artificial intelligence in research as well as industrial applications. DL has been extensively studied in medical imaging applications, including those related to pulmonary diseases. Chronic obstructive pulmonary disease, asthma, lung cancer, pneumonia, and, more recently, COVID-19 are common lung diseases affecting nearly 7.4% of world population. Pulmonary imaging has been widely investigated toward improving our understanding of disease etiologies and early diagnosis and assessment of disease progression and clinical outcomes. DL has been broadly applied to solve various pulmonary image processing challenges including classification, recognition, registration, and segmentation. This paper presents a survey of pulmonary diseases, roles of imaging in translational and clinical pulmonary research, and applications of different DL architectures and methods in pulmonary imaging with emphasis on DL-based segmentation of major pulmonary anatomies such as lung volumes, lung lobes, pulmonary vessels, and airways as well as thoracic musculoskeletal anatomies related to pulmonary diseases.
Collapse
Affiliation(s)
- Punam K Saha
- Departments of Radiology and Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52242
| | | | | |
Collapse
|
29
|
Dai Q, Zhu X, Zhang J, Dong Z, Pompeo E, Zheng J, Shi J. The utility of quantitative computed tomography in cohort studies of chronic obstructive pulmonary disease: a narrative review. J Thorac Dis 2023; 15:5784-5800. [PMID: 37969311 PMCID: PMC10636446 DOI: 10.21037/jtd-23-1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 11/17/2023]
Abstract
Background and Objective Chronic obstructive pulmonary disease (COPD) is a significant contributor to global morbidity and mortality. Quantitative computed tomography (QCT), a non-invasive imaging modality, offers the potential to assess lung structure and function in COPD patients. Amidst the coronavirus disease 2019 (COVID-19) pandemic, chest computed tomography (CT) scans have emerged as a viable alternative for assessing pulmonary function (e.g., spirometry), minimizing the risk of aerosolized virus transmission. However, the clinical application of QCT measurements is not yet widespread enough, necessitating broader validation to determine its usefulness in COPD management. Methods We conducted a search in the PubMed database in English from January 1, 2013 to April 20, 2023, using keywords and controlled vocabulary related to QCT, COPD, and cohort studies. Key Content and Findings Existing studies have demonstrated the potential of QCT in providing valuable information on lung volume, airway geometry, airway wall thickness, emphysema, and lung tissue density in COPD patients. Moreover, QCT values have shown robust correlations with pulmonary function tests, and can predict exacerbation risk and mortality in patients with COPD. QCT can even discern COPD subtypes based on phenotypic characteristics such as emphysema predominance, supporting targeted management and interventions. Conclusions QCT has shown promise in cohort studies related to COPD, since it can provide critical insights into the pathogenesis and progression of the disease. Further research is necessary to determine the clinical significance of QCT measurements for COPD management.
Collapse
Affiliation(s)
- Qi Dai
- School of Medicine, Tongji University, Shanghai, China
- Department of Radiology, Ningbo No.2 Hospitall, Ningbo, China
| | - Xiaoxiao Zhu
- Department of Respiratory and Critical Care Medicine, Ningbo No.2 Hospital, Ningbo, China
| | - Jingfeng Zhang
- Department of Radiology, Ningbo No.2 Hospitall, Ningbo, China
| | - Zhaoxing Dong
- Department of Respiratory and Critical Care Medicine, Ningbo No.2 Hospital, Ningbo, China
| | - Eugenio Pompeo
- Department of Thoracic Surgery, Policlinico Tor Vergata University, Rome, Italy
| | - Jianjun Zheng
- Department of Radiology, Ningbo No.2 Hospitall, Ningbo, China
| | - Jingyun Shi
- School of Medicine, Tongji University, Shanghai, China
- Department of Radiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
30
|
Kaltenhauser S, Niessen C, Zeman F, Stroszczynski C, Zorger N, Grosse J, Großer C, Hofmann HS, Robold T. Diagnosis of sarcopenia on thoracic computed tomography and its association with postoperative survival after anatomic lung cancer resection. Sci Rep 2023; 13:18450. [PMID: 37891259 PMCID: PMC10611729 DOI: 10.1038/s41598-023-45583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Computer tomography-derived skeletal muscle index normalized for height in conjunction with muscle density enables single modality-based sarcopenia assessment that accounts for all diagnostic criteria and cutoff recommendations as per the widely accepted European consensus. Yet, the standard approach to quantify skeletal musculature at the third lumbar vertebra is limited for certain patient groups, such as lung cancer patients who receive chest CT for tumor staging that does not encompass this lumbar level. As an alternative, this retrospective study assessed sarcopenia in lung cancer patients treated with curative intent at the tenth thoracic vertebral level using appropriate cutoffs. We showed that skeletal muscle index and radiation attenuation at level T10 correlate well with those at level L3 (Pearson's R = 0.82 and 0.66, p < 0.001). During a median follow-up period of 55.7 months, sarcopenia was independently associated with worse overall (hazard ratio (HR) = 2.11, 95%-confidence interval (95%-CI) = 1.38-3.23, p < 0.001) and cancer-specific survival (HR = 2.00, 95%-CI = 1.19-3.36, p = 0.009) of lung cancer patients following anatomic resection. This study highlights feasibility to diagnose sarcopenia solely by thoracic CT in accordance with the European consensus recommendations. The straightforward methodology offers easy translation into routine clinical care and potential to improve preoperative risk stratification of lung cancer patients scheduled for surgery.
Collapse
Affiliation(s)
- Simone Kaltenhauser
- Department of Thoracic Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Christoph Niessen
- Department of Radiology, Caritas-Krankenhaus St Josef, Regensburg, Germany
| | - Florian Zeman
- Center of Clinical Studies, University Hospital Regensburg, Regensburg, Germany
| | | | - Niels Zorger
- Department of Radiology, Hospital Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Jirka Grosse
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Christian Großer
- Department of Thoracic Surgery, Hospital Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Hans-Stefan Hofmann
- Department of Thoracic Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Department of Thoracic Surgery, Hospital Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Tobias Robold
- Department of Thoracic Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| |
Collapse
|
31
|
Meggyesy AM, Wilshire CL, Chang SC, Gorden JA, Gilbert CR. Muscle mass cross-sectional area is associated with survival outcomes in malignant pleural disease related to lung cancer. Respir Med 2023; 217:107371. [PMID: 37516273 DOI: 10.1016/j.rmed.2023.107371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/04/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
INTRODUCTION Malignant pleural effusions are common in advanced malignancy and associated with overall poor survival. The presence of sarcopenia (decreased muscle mass) is associated with poor outcomes in numerous disease states, however, its relationship to malignant pleural disease has not been defined. We sought to understand if there was an association between decreased survival and decreased muscle mass in patients with malignant pleural effusion. METHODS Patients with malignant pleural disease undergoing indwelling tunneled pleural catheter placement were retrospectively reviewed. Computed tomography was reviewed and cross-sectional area of pectoralis and paraspinous muscle areas were calculated. Overall survival and associations with muscle mass were calculated. RESULTS A total of 309 patients were available for analysis, with a median age of 67 years and the majority female (58%). The median survival was 129 days from initial pleural drainage to death. Regression analysis and Kaplan-Meier survival analysis did not reveal an association with survival and muscle mass for the entire population. However, Kaplan-Meier survival analysis of the lung cancer subgroup revealed the presence of decreased muscle mass and decreased survival time. CONCLUSION The presence of decreased muscle mass within a lung cancer population that has malignant pleural effusions are associated with decreased survival. However, the presence of decreased muscle mass within a heterogenous population of malignant pleural disease was not associated with decreased overall survival time. Further study of the role that sarcopenia may play in malignant pleural disease is warranted.
Collapse
Affiliation(s)
- Austin M Meggyesy
- Division of Thoracic Surgery and Interventional Pulmonology, Swedish Cancer Institute, Seattle, WA, USA; The Center for Lung Research in Honor of Wayne Gittinger, Seattle, WA, USA
| | - Candice L Wilshire
- Division of Thoracic Surgery and Interventional Pulmonology, Swedish Cancer Institute, Seattle, WA, USA; The Center for Lung Research in Honor of Wayne Gittinger, Seattle, WA, USA
| | - Shu-Ching Chang
- Section of Biostatistics, Providence-St. Vincent Medical Center, Portland, OR, USA
| | - Jed A Gorden
- Division of Thoracic Surgery and Interventional Pulmonology, Swedish Cancer Institute, Seattle, WA, USA; The Center for Lung Research in Honor of Wayne Gittinger, Seattle, WA, USA
| | - Christopher R Gilbert
- The Center for Lung Research in Honor of Wayne Gittinger, Seattle, WA, USA; Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
32
|
Akturk Y, Ozbal Gunes S, Soyer Guldogan E, Sencan I, Hekimoğlu B. Acute muscle loss and early effects of COVID-19 on skeletal muscle in adult patients: A retrospective cohort study. RADIOLOGIA 2023; 65 Suppl 2:S50-S58. [PMID: 37858353 DOI: 10.1016/j.rxeng.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/23/2022] [Indexed: 10/21/2023]
Abstract
OBJECTIVES It is known that COVID-19 has multisystemic effects. However, its early effects on muscle tissue have not been clearly elucidated. The aim of this study is to investigate early changes in the pectoral muscle in patients with COVID-19 infection. MATERIALS AND METHODS The pectoral muscle areas (PMA) and pectoral muscle index (PMI) of 139 patients diagnosed with COVID-19 were measured from chest CTs taken at the time of the first diagnosis and within 6 months after the diagnosis. The effect of the infection on the muscle area was investigated by evaluating whether there was a change between the two measurements. Lung involvement of the infection in the first CT was scored with the CT severity score (CT-SS). In addition, the effects of patients' clinics, CT-SS, length of hospital stay, and intubation history on changes in the muscle area were investigated. RESULTS When the PMA and PMI values were compared, there was a statistically significant decrease in the values in the control CT group compared to the first diagnosis CT group. The difference was found higher in intubated patients. CT-SS was associated with a decrease in PMI. CONCLUSION COVID-19 is one of the causes of acute sarcopenia. Pectoralis muscle is part of the skeletal muscle, and there may be a decrease in the muscle area in the early period of the disease.
Collapse
Affiliation(s)
- Y Akturk
- Servicio de Radiología, Facultad de Medicina, Hospital de Formación e Investigación Diskapi Yildirim Beyazit, Diskapi, Ankara, Turkey.
| | - S Ozbal Gunes
- Servicio de Radiología, Facultad de Medicina, Hospital de Formación e Investigación Diskapi Yildirim Beyazit, Diskapi, Ankara, Turkey
| | - E Soyer Guldogan
- Servicio de Radiología, Facultad de Medicina, Hospital de Formación e Investigación Diskapi Yildirim Beyazit, Diskapi, Ankara, Turkey
| | - I Sencan
- Servicio de Enfermedades Infecciosas y Microbiología Clínica, Facultad de Medicina, Hospital de Formación e Investigación Diskapi Yildirim Beyazit, Diskapi, Ankara, Turkey
| | - B Hekimoğlu
- Servicio de Radiología, Facultad de Medicina, Hospital de Formación e Investigación Diskapi Yildirim Beyazit, Diskapi, Ankara, Turkey
| |
Collapse
|
33
|
Zou RH, Nouraie SM, Karoleski C, Zhang Y, Sciurba FC, Forman DE, Bon J. Incident low muscle mass is associated with greater lung disease and lower circulating leptin in a tobacco-exposed longitudinal cohort. Respir Res 2023; 24:224. [PMID: 37737171 PMCID: PMC10515430 DOI: 10.1186/s12931-023-02521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Muscle loss is prevalent in chronic obstructive pulmonary disease (COPD). Prior studies evaluating musculoskeletal dysfunction in COPD have focused on individuals with baseline low muscle mass. Currently, there is limited data evaluating clinical characteristics and outcomes associated with progression to incident low muscle mass in a tobacco-exposed cohort of individuals with baseline normal muscle mass. METHODS We evaluated 246 participants from a single-center longitudinal tobacco-exposed cohort with serial spirometry, thoracic imaging, dual energy x-ray absorptiometry (DXA) measurements, walk testing, and plasma adipokine measurements. DXA-derived fat free mass index (FFMI) and appendicular skeletal mass index (ASMI) were used as surrogates for muscle mass. Participants with incident low muscle mass (LM) at follow-up were characterized by FFMI < 18.4 kg/m2 in males and < 15.4 kg/m2 in females and/or ASMI < 7.25 kg/m2 in males and < 5.67 kg/m2 in females. RESULTS Twenty-five (10%) participants progressed to incident low muscle mass at follow-up. At baseline, the LM subgroup had greater active smoking prevalence (60% v. 38%, p = 0.04), lower FFMI (17.8 ± 1.7 kg/m2 v. 19.7 ± 2.9 kg/m2, p = 0.002), lower ASMI (7.3 ± 0.9 kg/m2 v. 8.2 ± 1.2 kg/m2, p = 0.0003), and lower plasma leptin (14.9 ± 10.1 ng/mL v. 24.0 ± 20.9 ng/mL, p = 0.04). At follow-up, the LM subgroup had higher COPD prevalence (68% v. 43%, p = 0.02), lower FEV1/FVC (0.63 ± 0.12 v. 0.69 ± 0.12, p = 0.02), lower %DLco (66.5 ± 15.9% v. 73.9 ± 16.8%, p = 0.03), and higher annual rate of FFMI decline (-0.17 kg/m2/year v. -0.04 kg/m2/year, p = 0.006). There were no differences in age, gender distribution, pack years smoking history, or walk distance. CONCLUSIONS We identified a subgroup of tobacco-exposed individuals with normal baseline muscle mass who progressed to incident DXA-derived low muscle mass. This subgroup demonstrated synchronous lung disease and persistently low circulating leptin levels. Our study suggests the importance of assessing for muscle loss in conjunction with lung function decline when evaluating individuals with tobacco exposure.
Collapse
Affiliation(s)
- Richard H Zou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Emphysema COPD Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - S Mehdi Nouraie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Emphysema COPD Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chad Karoleski
- Emphysema COPD Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Emphysema COPD Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank C Sciurba
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Emphysema COPD Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel E Forman
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Geriatrics, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jessica Bon
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Emphysema COPD Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
- UPMC Montefiore Hospital, NW628 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
34
|
Yang Z, Choi I, Choi J, Jung J, Ryu M, Yong HS. Deep learning-based pectoralis muscle volume segmentation method from chest computed tomography image using sagittal range detection and axial slice-based segmentation. PLoS One 2023; 18:e0290950. [PMID: 37669295 PMCID: PMC10479911 DOI: 10.1371/journal.pone.0290950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/19/2023] [Indexed: 09/07/2023] Open
Abstract
The pectoralis muscle is an important indicator of respiratory muscle function and has been linked to various parenchymal biomarkers, such as airflow limitation severity and diffusing capacity for carbon monoxide, which are widely used in diagnosing parenchymal diseases, including asthma and chronic obstructive pulmonary disease. Pectoralis muscle segmentation is a method for measuring muscle volume and mass for various applications. The segmentation method is based on deep-learning techniques that combine a muscle area detection model and a segmentation model. The training dataset for the detection model comprised multichannel images of patients, whereas the segmentation model was trained on 7,796 cases of the computed tomography (CT) image dataset of 1,841 patients. The dataset was expanded incrementally through an active learning process. The performance of the model was evaluated by comparing the segmentation results with manual annotations by radiologists and the volumetric differences between the CT image datasets of the same patients. The results indicated that the machine learning model is promising in segmenting the pectoralis major muscle, with good agreement between the automatic segmentation and manual annotations by radiologists. The training accuracy and loss values of the validation set were 0.9954 and 0.0725, respectively, and for segmentation, the loss value was 0.0579. This study shows the potential clinical usefulness of the machine learning model for pectoralis major muscle segmentation as a quantitative biomarker for various parenchymal and muscular diseases.
Collapse
Affiliation(s)
- Zepa Yang
- Department of Radiology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Insung Choi
- Department of Radiology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Juwhan Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jongha Jung
- Department of Radiology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Minyeong Ryu
- Department of Radiology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Hwan Seok Yong
- Department of Radiology, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
35
|
Song JE, Bak SH, Lim MN, Lee EJ, Cha YK, Yoon HJ, Kim WJ. CT-Derived Deep Learning-Based Quantification of Body Composition Associated with Disease Severity in Chronic Obstructive Pulmonary Disease. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2023; 84:1123-1133. [PMID: 37869106 PMCID: PMC10585079 DOI: 10.3348/jksr.2022.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/24/2023] [Accepted: 05/16/2023] [Indexed: 10/24/2023]
Abstract
Purpose Our study aimed to evaluate the association between automated quantified body composition on CT and pulmonary function or quantitative lung features in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods A total of 290 patients with COPD were enrolled in this study. The volume of muscle and subcutaneous fat, area of muscle and subcutaneous fat at T12, and bone attenuation at T12 were obtained from chest CT using a deep learning-based body segmentation algorithm. Parametric response mapping-derived emphysema (PRMemph), PRM-derived functional small airway disease (PRMfSAD), and airway wall thickness (AWT)-Pi10 were quantitatively assessed. The association between body composition and outcomes was evaluated using Pearson's correlation analysis. Results The volume and area of muscle and subcutaneous fat were negatively associated with PRMemph and PRMfSAD (p < 0.05). Bone density at T12 was negatively associated with PRMemph (r = -0.1828, p = 0.002). The volume and area of subcutaneous fat and bone density at T12 were positively correlated with AWT-Pi10 (r = 0.1287, p = 0.030; r = 0.1668, p = 0.005; r = 0.1279, p = 0.031). However, muscle volume was negatively correlated with the AWT-Pi10 (r = -0.1966, p = 0.001). Muscle volume was significantly associated with pulmonary function (p < 0.001). Conclusion Body composition, automatically assessed using chest CT, is associated with the phenotype and severity of COPD.
Collapse
|
36
|
Chen D, Yuan Z, Guo Y, Mo W, Liu W, Liang D, Chen A, Zhang Y, Zhang N, Wei X. Prognostic Impact of Quantifying Sarcopenia and Adipopenia by Chest CT in Severe Aplastic Anemia Patients Treated With Allogeneic Hematopoietic Stem Cell Transplantation. Acad Radiol 2023; 30:1936-1945. [PMID: 36379814 DOI: 10.1016/j.acra.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/24/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022]
Abstract
RATIONALE AND OBJECTIVES To investigate the prognostic role of chest CT-defined sarcopenia and adipopenia in severe aplastic anemia (SAA) patients treated with hematopoietic stem cell transplantation (HSCT). MATERIALS AND METHODS This was a retrospective study of 123 consecutive SAA patients treated with HSCT. CT imaging was performed to quantify the pectoralis muscle (including major and minor) index (PMI) and the corresponding subcutaneous adipose tissue index (SAI). Sarcopenia and adipopenia were defined as PMI and SAI lower than the respective sex-specific medians. Correlations of the PMI and SAI with anthropometric indexes were calculated. Transplant-related outcomes were compared between the sarcopenia and adipopenia groups. Prognostic factors for overall survival (OS) and fail-free survival (FFS) were identified by Cox regression and were used to create a nomogram. The accuracy of the nomogram was evaluated by ROC curves. RESULTS PMI showed good correlation with BMI and fat-free mass index (p < 0.001). SAI correlated with BMI and fat mass index (p < 0.001). The sarcopenia group (47.2%) had a significantly worse 3-year OS (90.8% vs. 77.6%, p = 0.045) and 3-year FFS (89.2% vs. 74.1%, p = 0.035) than the nonsarcopenia group. Sarcopenia status and diagnostic category were used to construct the nomogram of OS, as these were independent prognostic factors in the multivariate analysis for OS and FFS (p < 0.05). The area under the curve of the nomogram at one year and three years was 0.801 and 0.721, respectively. CONCLUSION Sarcopenia indicates a poor prognosis in SAA patients undergoing HSCT. Intensive supportive care is suggested for SAA patients with sarcopenia before transplantation.
Collapse
Affiliation(s)
- Dandan Chen
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1 Panfu Rd, Yuexiu District, Guangzhou, 510180, Guangdong, China; First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Zhaohu Yuan
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yuan Guo
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1 Panfu Rd, Yuexiu District, Guangzhou, 510180, Guangdong, China
| | - Wenjian Mo
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weifeng Liu
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Dan Liang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1 Panfu Rd, Yuexiu District, Guangzhou, 510180, Guangdong, China
| | - Amei Chen
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1 Panfu Rd, Yuexiu District, Guangzhou, 510180, Guangdong, China
| | - Yan Zhang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1 Panfu Rd, Yuexiu District, Guangzhou, 510180, Guangdong, China
| | - Nianru Zhang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1 Panfu Rd, Yuexiu District, Guangzhou, 510180, Guangdong, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1 Panfu Rd, Yuexiu District, Guangzhou, 510180, Guangdong, China; First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
37
|
Xu K, Li T, Khan MS, Gao R, Antic SL, Huo Y, Sandler KL, Maldonado F, Landman BA. Body composition assessment with limited field-of-view computed tomography: A semantic image extension perspective. Med Image Anal 2023; 88:102852. [PMID: 37276799 PMCID: PMC10527087 DOI: 10.1016/j.media.2023.102852] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/30/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Field-of-view (FOV) tissue truncation beyond the lungs is common in routine lung screening computed tomography (CT). This poses limitations for opportunistic CT-based body composition (BC) assessment as key anatomical structures are missing. Traditionally, extending the FOV of CT is considered as a CT reconstruction problem using limited data. However, this approach relies on the projection domain data which might not be available in application. In this work, we formulate the problem from the semantic image extension perspective which only requires image data as inputs. The proposed two-stage method identifies a new FOV border based on the estimated extent of the complete body and imputes missing tissues in the truncated region. The training samples are simulated using CT slices with complete body in FOV, making the model development self-supervised. We evaluate the validity of the proposed method in automatic BC assessment using lung screening CT with limited FOV. The proposed method effectively restores the missing tissues and reduces BC assessment error introduced by FOV tissue truncation. In the BC assessment for large-scale lung screening CT datasets, this correction improves both the intra-subject consistency and the correlation with anthropometric approximations. The developed method is available at https://github.com/MASILab/S-EFOV.
Collapse
Affiliation(s)
- Kaiwen Xu
- Vanderbilt University, 2301 Vanderbilt Place, Nashville, 37235, United States.
| | - Thomas Li
- Vanderbilt University, 2301 Vanderbilt Place, Nashville, 37235, United States
| | - Mirza S Khan
- Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, 37232, United States
| | - Riqiang Gao
- Vanderbilt University, 2301 Vanderbilt Place, Nashville, 37235, United States
| | - Sanja L Antic
- Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, 37232, United States
| | - Yuankai Huo
- Vanderbilt University, 2301 Vanderbilt Place, Nashville, 37235, United States
| | - Kim L Sandler
- Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, 37232, United States
| | - Fabien Maldonado
- Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, 37232, United States
| | - Bennett A Landman
- Vanderbilt University, 2301 Vanderbilt Place, Nashville, 37235, United States; Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, 37232, United States
| |
Collapse
|
38
|
Raoof S, Shah M, Make B, Allaqaband H, Bowler R, Fernando S, Greenberg H, Han MK, Hogg J, Humphries S, Lee KS, Lynch D, Machnicki S, Mehta A, Mina B, Naidich D, Naidich J, Naqvi Z, Ohno Y, Regan E, Travis WD, Washko G, Braman S. Lung Imaging in COPD Part 1: Clinical Usefulness. Chest 2023; 164:69-84. [PMID: 36907372 PMCID: PMC10403625 DOI: 10.1016/j.chest.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/23/2023] [Accepted: 03/04/2023] [Indexed: 03/13/2023] Open
Abstract
COPD is a condition characterized by chronic airflow obstruction resulting from chronic bronchitis, emphysema, or both. The clinical picture is usually progressive with respiratory symptoms such as exertional dyspnea and chronic cough. For many years, spirometry was used to establish a diagnosis of COPD. Recent advancements in imaging techniques allow quantitative and qualitative analysis of the lung parenchyma as well as related airways and vascular and extrapulmonary manifestations of COPD. These imaging methods may allow prognostication of disease and shed light on the efficacy of pharmacologic and nonpharmacologic interventions. This is the first of a two-part series of articles on the usefulness of imaging methods in COPD, and it highlights useful information that clinicians can obtain from these imaging studies to make more accurate diagnosis and therapeutic decisions.
Collapse
Affiliation(s)
- Suhail Raoof
- Northwell Health, Lenox Hill Hospital, New York, NY.
| | - Manav Shah
- Northwell Health, Lenox Hill Hospital, New York, NY
| | | | | | | | | | | | | | - James Hogg
- University of British Columbia, Vancouver, BC, Canada
| | | | - Kyung Soo Lee
- Sungkyunkwan University School of Medicine, Samsung ChangWon Hospital, ChangWon, South Korea
| | | | | | | | - Bushra Mina
- Northwell Health, Lenox Hill Hospital, New York, NY
| | | | | | - Zarnab Naqvi
- Northwell Health, Lenox Hill Hospital, New York, NY
| | | | | | | | | | - Sidney Braman
- Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
39
|
Beijers RJHCG, Steiner MC, Schols AMWJ. The role of diet and nutrition in the management of COPD. Eur Respir Rev 2023; 32:32/168/230003. [PMID: 37286221 DOI: 10.1183/16000617.0003-2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/27/2023] [Indexed: 06/09/2023] Open
Abstract
In 2014, the European Respiratory Society published a statement on nutritional assessment and therapy in COPD. Since then, increasing research has been performed on the role of diet and nutrition in the prevention and management of COPD. Here, we provide an overview of recent scientific advances and clinical implications. Evidence for a potential role of diet and nutrition as a risk factor in the development of COPD has been accumulating and is reflected in the dietary patterns of patients with COPD. Consuming a healthy diet should, therefore, be promoted in patients with COPD. Distinct COPD phenotypes have been identified incorporating nutritional status, ranging from cachexia and frailty to obesity. The importance of body composition assessment and the need for tailored nutritional screening instruments is further highlighted. Dietary interventions and targeted single or multi-nutrient supplementation can be beneficial when optimal timing is considered. The therapeutic window of opportunity for nutritional interventions during and recovering from an acute exacerbation and hospitalisation is underexplored.
Collapse
Affiliation(s)
- Rosanne J H C G Beijers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Michael C Steiner
- Leicester NIHR Biomedical Research Centre - Respiratory, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
40
|
Kızılarslanoğlu MC, Eryılmaz MA, Yortanlı BÇ, Ünal İR, Ünal BC, Baran N, Altunkeser A, Aksoy N. Pectoralis muscle index might be a factor associated with frailty in older women with breast cancer. Turk J Med Sci 2023; 53:824-834. [PMID: 37476895 PMCID: PMC10388027 DOI: 10.55730/1300-0144.5645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/04/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND To investigate the possible relationship between pectoralis muscle (PM) measurement and frailty in older women with breast cancer (BC) (preoperatively defined as stage 1, 2, and 3 diseases). METHODS This retrospective, observational study was conducted at Konya Training and Research Hospital between June and December 2020. A total of 102 patients [median age 62.5 years, median follow-up period two years] were included in the study. PM measurements were obtained from thorax computerized tomography (CT). Pectoralis muscle index (PMI) was calculated by dividing the PM area by the height square of the patients (cm2/m2). Pectoralis muscle density (PMD) was evaluated using CT findings, including their Hounsfield Units (HU). Frailty status and sarcopenia-risk assessments were done by a telephone interview in September 2020 using the FRAIL index (categorized as robust or nonrobust) and SARC-F questionnaire (classified as no sarcopenia-risk or risk of sarcopenia), respectively. PM measurements were compared between robust and nonrobust patients and between patients with a risk of sarcopenia and no sarcopenia risk. RESULTS The nonrobust patients had lower pectoralis major muscle index (PMaMI) (p = 0.041) and pectoralis major muscle density(PMaD) (p = 0.020) levels than robust patients in the whole study sample. PMI (p = 0.017) and PMaMI (p = 0.010) levels were significantly lower in the nonrobust patients than in robust patients with early-stage BC. Frailty status was positively correlated with age (rho: 0.621; p < 0.001), BC stage (rho: 0.220; p = 0.026), and SARC-F score (rho: 0.747; p < 0.001), and negatively correlated with PMaMI (rho: -0.197; p = 0.047) and PMaD (rho: -0.237; p = 0.016). There were significant associations between PMaMI (OR: 0.467, 95% Confidence Interval (CI): 0.226-0.962 p = 0.039) and PMI (OR: 0.543, 95% CI: 0.299-0.986 p = 0.045) levels with frailty status (being nonrobust) in regression models. DISCUSSION In the study, it has been shown that pectoralis muscle assessment might be a related parameter to frailty in older women with breast cancer.
Collapse
Affiliation(s)
- Muhammet Cemal Kızılarslanoğlu
- Division of Geriatrics, Department of Internal Medicine, Konya City Hospital, University of Health Sciences, Konya, Turkey
| | - M Ali Eryılmaz
- Department of General Surgery, Konya City Hospital, University of Health Sciences, Konya, Turkey
| | - Betül Çiğdem Yortanlı
- Department of Internal Medicine, Konya City Hospital, University of Health Sciences, Konya, Turkey
| | - İlknur Rahime Ünal
- Department of Internal Medicine, Konya City Hospital, University of Health Sciences, Konya, Turkey
| | - Barış Can Ünal
- Department of Internal Medicine, Konya City Hospital, University of Health Sciences, Konya, Turkey
| | - Nahide Baran
- Department of Radiology, Cihanbeyli State Hospital, Konya, Turkey
| | - Ayşegül Altunkeser
- Department of Radiology, Konya City Hospital, University of Health Sciences, Konya, Turkey
| | - Nergis Aksoy
- Department of General Surgery, Konya City Hospital, University of Health Sciences, Konya, Turkey
| |
Collapse
|
41
|
Brath MSG, Sahakyan M, Mark EB, Frøkjær JB, Rasmussen HH, Østergaard LR, Weinreich UM. Association between thoracic and third lumbar CT-derived muscle mass and density in Caucasian patients without chronic disease: a proof-of-concept study. Eur Radiol Exp 2023; 7:26. [PMID: 37246199 DOI: 10.1186/s41747-023-00340-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/24/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Computed tomography (CT) is increasingly used in the clinical workup, and existing scan contains unused body composition data, potentially useful in a clinical setting. However, there is no healthy reference for contrast-enhanced thoracic CT-derived muscle measures. Therefore, we aimed at investigating whether there is a correlation between each of the thoracic and third lumbar vertebra level (L3) skeletal muscle area (SMA), skeletal muscle index (SMI), and skeletal muscle density (SMD) at contrast-enhanced CT in patients without chronic disease. METHODS A proof-of-concept retrospective observational study was based on Caucasian patients without chronic disease, who received CT for trauma between 2012 and 2014. Muscle measures were assessed using a semiautomated threshold-based software by two raters independently. Pearson's correlation between each thoracic level and third lumbar and intraclass correlation between two raters and test-retest with SMA as proxy parameters were used. RESULTS Twenty-one patients (11 males, 10 females; median age 29 years) were included. The second thoracic vertebra (T2) had the highest median of cumulated SMA (males 314.7 cm2, females 118.5 cm2) and SMI (97.8 cm2/m2 and 70.4 cm2/m2, respectively). The strongest SMA correlation was observed between T5 and L3 (r = 0.970), the SMI between T11 and L3 (r = 0.938), and the SMD between the T10 and L3 (r = 0.890). CONCLUSIONS This study suggests that any of the thoracic levels can be valid to assess skeletal muscle mass. However, the T5 may be most favourable for measuring SMA, the T11 for SMI, and T10 for SMD when using contrast-enhanced thoracic CT. RELEVANCE STATEMENT In COPD patients, a CT-derived thoracic muscle mass assessment may help identify who would benefit from focused pulmonary rehabilitation: thoracic contrast-enhanced CT conducted as part of the standard clinical workup can be used for this evaluation. KEY POINTS • Any thoracic level can be used to assess thoracic muscle mass. • Thoracic level 5 is strongly associated with the 3rd lumbar muscle area. • A strong correlation between the thoracic level 11 and the 3rd lumbar muscle index. • Thoracic level 10 is strongly associated with the 3rd lumbar muscle density.
Collapse
Affiliation(s)
- Mia Solholt Godthaab Brath
- Research Unit of Respiratory Diseases, Aalborg University Hospital, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
- Department of Respiratory Diseases, Aalborg University Hospital, Aalborg, 9000, Denmark.
| | - Marina Sahakyan
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Esben Bolvig Mark
- Department of Gastroenterology and Hepatology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Højgaard Rasmussen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology & Hepatology, Danish Nutrition Science Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Gastroenterology & Hepatology, Center of Nutritional and Intestinal Failure, Aalborg University Hospital, Aalborg, Denmark
| | - Lasse Riis Østergaard
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Medical Informatics Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ulla Møller Weinreich
- Research Unit of Respiratory Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Respiratory Diseases, Aalborg University Hospital, Aalborg, 9000, Denmark
| |
Collapse
|
42
|
Ito Y, Anan K, Awano N, Kataoka Y, Johkoh T, Fujimoto K, Ichikado K, Tobino K, Tachikawa R, Ito H, Nakamura T, Kishaba T, Yamamoto Y, Inomata M, Izumo T. Skeletal muscle atrophy and short-term mortality in patients with acute exacerbation of idiopathic pulmonary fibrosis: an observational cohort study. Respir Investig 2023; 61:371-378. [PMID: 37079942 DOI: 10.1016/j.resinv.2023.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Skeletal muscle atrophy, a common complication of idiopathic pulmonary fibrosis (IPF), and its presence upon diagnosis can indicate a poor prognosis. Patients with IPF frequently experience acute exacerbations (AE), which is associated with a high mortality rate. However, the association between skeletal muscle atrophy and short-term mortality remains unknown. METHODS We performed a retrospective, multicenter cohort study of patients admitted for AE-IPF in Japan. The cross-sectional areas of the erector spinae muscle (ESMCSA) and the pectoralis muscle (PMCSA) were analyzed via single-slice computed tomography (CT). The primary outcome was 90-day mortality. Survival probability was estimated using the Kaplan-Meier method, and the log-rank test was used between the low and high groups of ESMCSA and PMCSA. We used multivariable Cox proportional-hazards models to evaluate the association between ESMCSA and PMCSA and prognosis. RESULTS Of the 212 patients included, 94 (44%) died during the observation period. The low ESMCSA group (<25.6 cm2) had a significantly worse prognosis than that of the high ESMCSA group (≥25.6 cm2) (hazard ratio (HR) [95% confidence interval (CI)]: 1.52 [1.00-2.33], P = 0.049). Multivariable analyses showed that all-cause mortality was associated with low ESMCSA (model 1, adjusted HR [95% CI]: 1.59 [0.98-2.60]; model 2, 1.55 [0.95-2.56], and model 3, 1.67 [1.00-2.78], respectively). The adjusted HR of low PMCSA (<20.4 cm2) vs. high PMCSA (≥20.4 cm2) was 1.39 (95% CI: 0.88-2.20). CONCLUSIONS Low ESMCSA on CT images is associated with a high 90-day mortality rate in patients with AE-IPF.
Collapse
Affiliation(s)
- Yu Ito
- Department of Respiratory Medicine, Japanese Red Cross Medical Center, Japan
| | - Keisuke Anan
- Department of Healthcare Epidemiology, Kyoto University, Graduate School of Medicine, Kyoto, Japan; Division of Respiratory Medicine, Saiseikai Kumamoto Hospital, Kumamoto, Japan; Systematic Review Workshop Peer Support Group (SRWS-PSG), Osaka, Japan
| | - Nobuyasu Awano
- Department of Respiratory Medicine, Japanese Red Cross Medical Center, Japan.
| | - Yuki Kataoka
- Department of Healthcare Epidemiology, Kyoto University, Graduate School of Medicine, Kyoto, Japan; Systematic Review Workshop Peer Support Group (SRWS-PSG), Osaka, Japan; Department of Internal Medicine, Kyoto Min-Iren Asukai Hospital, Kyoto, Japan; Section of Clinical Epidemiology, Department of Community Medicine, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takeshi Johkoh
- Department of Radiology, Kansai Rosai Hospital, Hyogo, Japan
| | - Kiminori Fujimoto
- Department of Radiology, Kurume University School of Medicine, Fukuoka, Japan
| | - Kazuya Ichikado
- Division of Respiratory Medicine, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Kazunori Tobino
- Department of Respiratory Medicine, Iizuka Hospital, Fukuoka, Japan
| | - Ryo Tachikawa
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Hiroyuki Ito
- Department of Pulmonology, Kameda Medical Center, Chiba, Japan
| | - Takahito Nakamura
- Department of General Internal Medicine, Nara Prefecture Seiwa Medical Center, Nara, Japan
| | - Tomoo Kishaba
- Department of Respiratory Medicine, Okinawa Chubu Hospital, Okinawa, Japan
| | - Yosuke Yamamoto
- Department of Healthcare Epidemiology, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Minoru Inomata
- Department of Respiratory Medicine, Japanese Red Cross Medical Center, Japan
| | - Takehiro Izumo
- Department of Respiratory Medicine, Japanese Red Cross Medical Center, Japan
| |
Collapse
|
43
|
Smith KL, Gordon EB, Gunsaulus ME, Christopher A, Olivieri LJ, Tadros SS, Harris T, Saraf AP, Kreutzer J, Feingold B, Alsaied T. Surrogates of Muscle Mass on Cardiac MRI Correlate with Exercise Capacity in Patients with Fontan Circulation. J Clin Med 2023; 12:2689. [PMID: 37048773 PMCID: PMC10095035 DOI: 10.3390/jcm12072689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Sarcopenia is an increasingly recognized marker of frailty in cardiac patients. Patients with a history of congenital heart disease and Fontan procedure have a higher risk of developing progressive muscle wasting. Our objective was to determine if we could use routine cardiac MRI (CMR) for the surveillance of muscle wasting. METHODS A retrospective study of all Fontan patients (n = 75) was conducted at our institution, with CMR performed from 2010 to 2022 and exercise stress testing performed within 12 months (4.3 ± 4.2 months). The skeletal muscle area (SMA) for the posterior paraspinal and anterior thoracic muscles were traced and indexed for body surface area (BSA). Patients were stratified by percentile into the upper and lower quartiles, and the two groups were compared. Multivariable regression was performed to control for sex and age. RESULTS There was a significant positive association of both anterior (r = 0.34, p = 0.039) and paraspinal (r = 0.43, p = 0.007) SMA to peak VO2. Similarly, paraspinal but not anterior SMA was negatively associated with the VE/VCO2 (r = -0.45, p = 0.006). The upper quartile group had significantly more males (18/19 vs. 8/20; p = 0.0003) and demonstrated a significantly higher peak VO2 (32.2 ± 8.5 vs. 23.8 ± 4.7, p = 0.009), a higher peak RER (1.2 ± 0.1 vs. 1.1 ± 0.04, p = 0.007), and a significantly lower VE/VCO2 (32.9 ± 3.6 vs. 40.2 ± 6.2, p = 0.006) compared to the lowest quartile. The association of SMA to VO2 peak and VE/VCO2 was redemonstrated after controlling for sex and age. CONCLUSION Thoracic skeletal muscle area may be an effective surrogate of muscle mass and is correlated to several measures of cardiorespiratory fitness post-Fontan. CMR would be an effective tool for the surveillance of sarcopenia in post-Fontan patients given its accessibility and routine use in these patients.
Collapse
Affiliation(s)
- Kevin L. Smith
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Emile B. Gordon
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Megan E. Gunsaulus
- Department of Pediatric Cardiology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Adam Christopher
- Department of Pediatric Cardiology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Laura J. Olivieri
- Department of Pediatric Cardiology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Sameh S. Tadros
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Tyler Harris
- Department of Pediatric Cardiology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Anita P. Saraf
- Department of Pediatric Cardiology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jacqueline Kreutzer
- Department of Pediatric Cardiology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Brian Feingold
- Department of Pediatric Cardiology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Tarek Alsaied
- Department of Pediatric Cardiology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
44
|
O'Brien ME, Zou RH, Hyre N, Leader JK, Fuhrman CR, Sciurba FC, Nouraie M, Bon J. CT pectoralis muscle area is associated with DXA lean mass and correlates with emphysema progression in a tobacco-exposed cohort. Thorax 2023; 78:394-401. [PMID: 34853157 PMCID: PMC9156725 DOI: 10.1136/thoraxjnl-2021-217710] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/04/2021] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Muscle loss is an important extrapulmonary manifestation of COPD. Dual energy X-ray absorptiometry (DXA) is the method of choice for body composition measurement but is not widely used for muscle mass evaluation. The pectoralis muscle area (PMA) is quantifiable by CT and predicts cross-sectional COPD-related morbidity. There are no studies that compare PMA with DXA measures or that evaluate longitudinal relationships between PMA and lung disease progression. METHODS Participants from our longitudinal tobacco-exposed cohort had baseline and 6-year chest CT (n=259) and DXA (n=164) data. Emphysema was quantified by CT density histogram parenchymal scoring using the 15th percentile technique. Fat-free mass index (FFMI) and appendicular skeletal mass index (ASMI) were calculated from DXA measurements. Linear regression model relationships were reported using standardised coefficient (β) with 95% CI. RESULTS PMA was more strongly associated with DXA measures than with body mass index (BMI) in both cross-sectional (FFMI: β=0.76 (95% CI 0.65 to 0.86), p<0.001; ASMI: β=0.76 (95% CI 0.66 to 0.86), p<0.001; BMI: β=0.36 (95% CI 0.25 to 0.47), p<0.001) and longitudinal (ΔFFMI: β=0.43 (95% CI 0.28 to 0.57), p<0.001; ΔASMI: β=0.42 (95% CI 0.27 to 0.57), p<0.001; ΔBMI: β=0.34 (95% CI 0.22 to 0.46), p<0.001) models. Six-year change in PMA was associated with 6-year change in emphysema (β=0.39 (95% CI 0.23 to 0.56), p<0.001) but not with 6-year change in airflow obstruction. CONCLUSIONS PMA is an accessible measure of muscle mass and may serve as a useful clinical surrogate for assessing skeletal muscle loss in smokers. Decreased PMA correlated with emphysema progression but not lung function decline, suggesting a difference in the pathophysiology driving emphysema, airflow obstruction and comorbidity risk.
Collapse
Affiliation(s)
- Michael Emmet O'Brien
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Richard H Zou
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Nathan Hyre
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joseph K Leader
- Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Carl R Fuhrman
- Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Frank C Sciurba
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mehdi Nouraie
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jessica Bon
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
45
|
Zhou K, Wu F, Zhao N, Zheng Y, Deng Z, Yang H, Wen X, Xiao S, Yang C, Chen S, Zhou Y, Ran P. Association of pectoralis muscle area on computed tomography with airflow limitation severity and respiratory outcomes in COPD: A population-based prospective cohort study. Pulmonology 2023:S2531-0437(23)00039-9. [PMID: 36907812 DOI: 10.1016/j.pulmoe.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Previous studies have shown that patients with chronic obstructive pulmonary disease (COPD) of severe or very severe airflow limitation have a reduced pectoralis muscle area (PMA), which is associated with mortality. However, whether patients with COPD of mild or moderate airflow limitation also have a reduced PMA remains unclear. Additionally, limited evidence is available regarding the associations between PMA and respiratory symptoms, lung function, computed tomography (CT) imaging, lung function decline, and exacerbations. Therefore, we conducted this study to evaluate the presence of PMA reduction in COPD and to clarify its associations with the referred variables. METHODS This study was based on the subjects enrolled from July 2019 to December 2020 in the Early Chronic Obstructive Pulmonary Disease (ECOPD) study. Data including questionnaire, lung function, and CT imaging were collected. The PMA was quantified on full-inspiratory CT at the aortic arch level using predefined -50 and 90 Hounsfield unit attenuation ranges. Multivariate linear regression analyses were performed to assess the association between the PMA and airflow limitation severity, respiratory symptoms, lung function, emphysema, air trapping, and the annual decline in lung function. Cox proportional hazards analysis and Poisson regression analysis were used to evaluate the PMA and exacerbations after adjustment. RESULTS We included 1352 subjects at baseline (667 with normal spirometry, 685 with spirometry-defined COPD). The PMA was monotonically lower with progressive airflow limitation severity of COPD after adjusting for confounders (vs. normal spirometry; Global Initiative for Chronic Obstructive Lung Disease [GOLD] 1: β=-1.27, P=0.028; GOLD 2: β=-2.29, P<0.001; GOLD 3: β=-4.88, P<0.001; GOLD 4: β=-6.47, P=0.014). The PMA was negatively associated with the modified British Medical Research Council dyspnea scale (β=-0.005, P=0.026), COPD Assessment Test score (β=-0.06, P=0.001), emphysema (β=-0.07, P<0.001), and air trapping (β=-0.24, P<0.001) after adjustment. The PMA was positively associated with lung function (all P<0.05). Similar associations were discovered for the pectoralis major muscle area and pectoralis minor muscle area. After the 1-year follow-up, the PMA was associated with the annual decline in the post-bronchodilator forced expiratory volume in 1 s percent of predicted value (β=0.022, P=0.002) but not with the annual rate of exacerbations or the time to first exacerbation. CONCLUSION Patients with mild or moderate airflow limitation exhibit a reduced PMA. The PMA is associated with airflow limitation severity, respiratory symptoms, lung function, emphysema, and air trapping, suggesting that PMA measurement can assist with COPD assessment.
Collapse
Affiliation(s)
- K Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - F Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, Bio-island, Guangzhou, China
| | - N Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Y Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Z Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - H Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - X Wen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - S Xiao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - C Yang
- Department of Pulmonary and Critical Care Medicine, Wengyuan County People's Hospital, Shaoguan, China
| | - S Chen
- Medical Imaging Center, Wengyuan County People's Hospital, Shaoguan, China
| | - Y Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, Bio-island, Guangzhou, China.
| | - P Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, Bio-island, Guangzhou, China.
| |
Collapse
|
46
|
Park H, Yun J, Lee SM, Hwang HJ, Seo JB, Jung YJ, Hwang J, Lee SH, Lee SW, Kim N. Deep Learning-based Approach to Predict Pulmonary Function at Chest CT. Radiology 2023; 307:e221488. [PMID: 36786699 DOI: 10.1148/radiol.221488] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Background Low-dose chest CT screening is recommended for smokers with the potential for lung function abnormality, but its role in predicting lung function remains unclear. Purpose To develop a deep learning algorithm to predict pulmonary function with low-dose CT images in participants using health screening services. Materials and Methods In this retrospective study, participants underwent health screening with same-day low-dose CT and pulmonary function testing with spirometry at a university affiliated tertiary referral general hospital between January 2015 and December 2018. The data set was split into a development set (model training, validation, and internal test sets) and temporally independent test set according to first visit year. A convolutional neural network was trained to predict the forced expiratory volume in the first second of expiration (FEV1) and forced vital capacity (FVC) from low-dose CT. The mean absolute error and concordance correlation coefficient (CCC) were used to evaluate agreement between spirometry as the reference standard and deep-learning prediction as the index test. FVC and FEV1 percent predicted (hereafter, FVC% and FEV1%) values less than 80% and percent of FVC exhaled in first second (hereafter, FEV1/FVC) less than 70% were used to classify participants at high risk. Results A total of 16 148 participants were included (mean age, 55 years ± 10 [SD]; 10 981 men) and divided into a development set (n = 13 428) and temporally independent test set (n = 2720). In the temporally independent test set, the mean absolute error and CCC were 0.22 L and 0.94, respectively, for FVC and 0.22 L and 0.91 for FEV1. For the prediction of the respiratory high-risk group, FVC%, FEV1%, and FEV1/FVC had respective accuracies of 89.6% (2436 of 2720 participants; 95% CI: 88.4, 90.7), 85.9% (2337 of 2720 participants; 95% CI: 84.6, 87.2), and 90.2% (2453 of 2720 participants; 95% CI: 89.1, 91.3) in the same testing data set. The sensitivities were 61.6% (242 of 393 participants; 95% CI: 59.7, 63.4), 46.9% (226 of 482 participants; 95% CI: 45.0, 48.8), and 36.1% (91 of 252 participants; 95% CI: 34.3, 37.9), respectively. Conclusion A deep learning model applied to volumetric chest CT predicted pulmonary function with relatively good performance. © RSNA, 2023 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Hyunjung Park
- From the Department of Medical Science and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (H.P., N.K.), Department of Radiology and Research Institute of Radiology (J.Y., S.M.L., H.J.H., J.B.S., N.K.), Department of Pulmonology and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases (S.W.L.), and Health Screening and Promotion Center (Y.J.J.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea (J.H.); Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, Republic of Korea (J.H.); and Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (S.H.L.)
| | - Jihye Yun
- From the Department of Medical Science and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (H.P., N.K.), Department of Radiology and Research Institute of Radiology (J.Y., S.M.L., H.J.H., J.B.S., N.K.), Department of Pulmonology and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases (S.W.L.), and Health Screening and Promotion Center (Y.J.J.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea (J.H.); Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, Republic of Korea (J.H.); and Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (S.H.L.)
| | - Sang Min Lee
- From the Department of Medical Science and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (H.P., N.K.), Department of Radiology and Research Institute of Radiology (J.Y., S.M.L., H.J.H., J.B.S., N.K.), Department of Pulmonology and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases (S.W.L.), and Health Screening and Promotion Center (Y.J.J.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea (J.H.); Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, Republic of Korea (J.H.); and Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (S.H.L.)
| | - Hye Jeon Hwang
- From the Department of Medical Science and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (H.P., N.K.), Department of Radiology and Research Institute of Radiology (J.Y., S.M.L., H.J.H., J.B.S., N.K.), Department of Pulmonology and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases (S.W.L.), and Health Screening and Promotion Center (Y.J.J.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea (J.H.); Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, Republic of Korea (J.H.); and Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (S.H.L.)
| | - Joon Beom Seo
- From the Department of Medical Science and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (H.P., N.K.), Department of Radiology and Research Institute of Radiology (J.Y., S.M.L., H.J.H., J.B.S., N.K.), Department of Pulmonology and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases (S.W.L.), and Health Screening and Promotion Center (Y.J.J.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea (J.H.); Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, Republic of Korea (J.H.); and Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (S.H.L.)
| | - Young Ju Jung
- From the Department of Medical Science and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (H.P., N.K.), Department of Radiology and Research Institute of Radiology (J.Y., S.M.L., H.J.H., J.B.S., N.K.), Department of Pulmonology and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases (S.W.L.), and Health Screening and Promotion Center (Y.J.J.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea (J.H.); Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, Republic of Korea (J.H.); and Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (S.H.L.)
| | - Jeongeun Hwang
- From the Department of Medical Science and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (H.P., N.K.), Department of Radiology and Research Institute of Radiology (J.Y., S.M.L., H.J.H., J.B.S., N.K.), Department of Pulmonology and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases (S.W.L.), and Health Screening and Promotion Center (Y.J.J.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea (J.H.); Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, Republic of Korea (J.H.); and Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (S.H.L.)
| | - Se Hee Lee
- From the Department of Medical Science and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (H.P., N.K.), Department of Radiology and Research Institute of Radiology (J.Y., S.M.L., H.J.H., J.B.S., N.K.), Department of Pulmonology and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases (S.W.L.), and Health Screening and Promotion Center (Y.J.J.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea (J.H.); Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, Republic of Korea (J.H.); and Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (S.H.L.)
| | - Sei Won Lee
- From the Department of Medical Science and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (H.P., N.K.), Department of Radiology and Research Institute of Radiology (J.Y., S.M.L., H.J.H., J.B.S., N.K.), Department of Pulmonology and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases (S.W.L.), and Health Screening and Promotion Center (Y.J.J.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea (J.H.); Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, Republic of Korea (J.H.); and Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (S.H.L.)
| | - Namkug Kim
- From the Department of Medical Science and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (H.P., N.K.), Department of Radiology and Research Institute of Radiology (J.Y., S.M.L., H.J.H., J.B.S., N.K.), Department of Pulmonology and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases (S.W.L.), and Health Screening and Promotion Center (Y.J.J.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea (J.H.); Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, Republic of Korea (J.H.); and Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (S.H.L.)
| |
Collapse
|
47
|
Akturk Y, Gunes SO, Guldogan ES, Sencan I, Hekimoğlu B. [Acute muscle loss and early effects of COVID-19 on skeletal muscle in adult patients: a retrospective cohort study]. RADIOLOGIA 2023; 65:S0033-8338(23)00026-7. [PMID: 36744157 PMCID: PMC9889253 DOI: 10.1016/j.rx.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/23/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVES It is known that COVID-19 has multisystemic effects. However, its early effects on muscle tissue have not been clearly elucidated. The aim of this study is to investigate early changes in the pectoral muscle in patients with COVID-19 infection. MATERIALS AND METHODS The pectoral muscle areas (PMA) and pectoral muscle index (PMI) of 139 patients diagnosed with COVID-19 were measured from chest CTs taken at the time of the first diagnosis and within 6 months after the diagnosis. The effect of the infection on the muscle area was investigated by evaluating whether there was a change between the two measurements. Lung involvement of the infection in the first CT was scored with the CT severity score (CT-SS). In addition, the effects of patients' clinics, CT-SS, length of hospital stay, and intubation history on changes in the muscle area were investigated. RESULTS When the PMA and PMI values were compared, there was a statistically significant decrease in the values in the control CT group compared to the first diagnosis CT group. The difference was found higher in intubated patients. CT-SS was associated with a decrease in PMI.COVID-19 is one of the causes of acute sarcopenia. Pectoralis muscle is part of the skeletal muscle, and there may be a decrease in the muscle area in the early period of the disease.
Collapse
Affiliation(s)
- Yeliz Akturk
- Facultad de Medicina, Hospital de formación e investigación Diskapi Yildirim Beyazit, Servicio de Radiología, calle Sehit Omerhalisdemir, Diskapi, Ankara, Turquía
| | - Serra Ozbal Gunes
- Facultad de Medicina, Hospital de formación e investigación Diskapi Yildirim Beyazit, Servicio de Radiología, calle Sehit Omerhalisdemir, Diskapi, Ankara, Turquía
| | - Esra Soyer Guldogan
- Facultad de Medicina, Hospital de formación e investigación Diskapi Yildirim Beyazit, Servicio de Radiología, calle Sehit Omerhalisdemir, Diskapi, Ankara, Turquía
| | - Irfan Sencan
- Facultad de Medicina, Hospital de formación e investigación Diskapi Yildirim Beyazit, Servicio de enfermedades infecciosas y microbiología clínica, Sehit Omerhalisdemir Street, Diskapi, Ankara, Turquía
| | - Baki Hekimoğlu
- Facultad de Medicina, Hospital de formación e investigación Diskapi Yildirim Beyazit, Servicio de Radiología, calle Sehit Omerhalisdemir, Diskapi, Ankara, Turquía
| |
Collapse
|
48
|
Sato S, Miyazaki S, Tamaki A, Yoshimura Y, Arai H, Fujiwara D, Katsura H, Kawagoshi A, Kozu R, Maeda K, Ogawa S, Ueki J, Wakabayashi H. Respiratory sarcopenia: A position paper by four professional organizations. Geriatr Gerontol Int 2023; 23:5-15. [PMID: 36479799 PMCID: PMC11503586 DOI: 10.1111/ggi.14519] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022]
Abstract
We defined respiratory sarcopenia as a coexistence of respiratory muscle weakness and decreased respiratory muscle mass. Although respiratory muscle function is indispensable for life support, its evaluation has not been included in the regular assessment of respiratory function or adequately evaluated in clinical practice. Considering this situation, we prepared a position paper outlining basic knowledge, diagnostic and assessment methods, mechanisms, involvement in respiratory diseases, intervention and treatment methods, and future perspectives on respiratory sarcopenia, and summarized the current consensus on respiratory sarcopenia. Respiratory sarcopenia is diagnosed when respiratory muscle weakness and decreased respiratory muscle mass are observed. If respiratory muscle mass is difficult to measure, we can use appendicular skeletal muscle mass as a surrogate. Probable respiratory sarcopenia is defined when respiratory muscle weakness and decreased appendicular skeletal muscle mass are observed. If only respiratory muscle strength is decreased without a decrease in respiratory function, the patient is diagnosed with possible respiratory sarcopenia. Respiratory muscle strength is assessed using maximum inspiratory pressure and maximum expiratory pressure. Ultrasonography and computed tomography are commonly used to assess respiratory muscle mass; however, there are insufficient data to propose the cutoff values for defining decreased respiratory muscle mass. It was jointly prepared by the representative authors and authorized by the Japanese Society for Respiratory Care and Rehabilitation, Japanese Association on Sarcopenia and Frailty, Japanese Society of Respiratory Physical Therapy and Japanese Association of Rehabilitation Nutrition. Geriatr Gerontol Int 2023; 23: 5-15.
Collapse
Affiliation(s)
- Susumu Sato
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | | | - Akira Tamaki
- Department of Physical Therapy, School of RehabilitationHyogo Medical UniversityKobeJapan
| | - Yoshihiro Yoshimura
- Center for Sarcopenia and Malnutrition ResearchKumamoto Rehabilitation HospitalKumamotoJapan
| | - Hidenori Arai
- National Center for Geriatrics and GerontologyObuJapan
| | - Dai Fujiwara
- Department of Rehabilitation MedicineSaka General HospitalMiyagiJapan
| | - Hideki Katsura
- Department of Respiratory MedicineTokyo Women's Medical UniversityTokyoJapan
| | | | - Ryo Kozu
- Department of Physical Therapy Science, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Keisuke Maeda
- Department of Geriatric MedicineHospital, National Center for Geriatrics and GerontologyObuJapan
| | - Sumito Ogawa
- Department of Geriatric Medicine, Graduate School of MedicineUniversity of TokyoTokyoJapan
| | - Jun Ueki
- Clinical Research Unit of Respiratory Pathophysiology, Graduate School of Health Care and NursingJuntendo UniversityChibaJapan
| | - Hidetaka Wakabayashi
- Department of Rehabilitation MedicineTokyo Women's Medical University HospitalTokyoJapan
| |
Collapse
|
49
|
Wilson AC, Bon JM, Mason S, Diaz AA, Lutz SM, Estepar RSJ, Kinney GL, Hokanson JE, Rennard SI, Casaburi R, Bhatt SP, Irvin MR, Hersh CP, Dransfield MT, Washko GR, Regan EA, McDonald ML. Increased chest CT derived bone and muscle measures capture markers of improved morbidity and mortality in COPD. Respir Res 2022; 23:311. [PMID: 36376854 PMCID: PMC9664607 DOI: 10.1186/s12931-022-02237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a disease of accelerated aging and is associated with comorbid conditions including osteoporosis and sarcopenia. These extrapulmonary conditions are highly prevalent yet frequently underdiagnosed and overlooked by pulmonologists in COPD treatment and management. There is evidence supporting a role for bone-muscle crosstalk which may compound osteoporosis and sarcopenia risk in COPD. Chest CT is commonly utilized in COPD management, and we evaluated its utility to identify low bone mineral density (BMD) and reduced pectoralis muscle area (PMA) as surrogates for osteoporosis and sarcopenia. We then tested whether BMD and PMA were associated with morbidity and mortality in COPD. METHODS BMD and PMA were analyzed from chest CT scans of 8468 COPDGene participants with COPD and controls (smoking and non-smoking). Multivariable regression models tested the relationship of BMD and PMA with measures of function (6-min walk distance (6MWD), handgrip strength) and disease severity (percent emphysema and lung function). Multivariable Cox proportional hazards models were used to evaluate the relationship between sex-specific quartiles of BMD and/or PMA derived from non-smoking controls with all-cause mortality. RESULTS COPD subjects had significantly lower BMD and PMA compared with controls. Higher BMD and PMA were associated with increased physical function and less disease severity. Participants with the highest BMD and PMA quartiles had a significantly reduced mortality risk (36% and 46%) compared to the lowest quartiles. CONCLUSIONS These findings highlight the potential for CT-derived BMD and PMA to characterize osteoporosis and sarcopenia using equipment available in the pulmonary setting.
Collapse
Affiliation(s)
- Ava C Wilson
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, 701, 19th Street S., LHRB 440, Birmingham, AL, 35233, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica M Bon
- Division of Pulmonary, Allergy and Critical Medicine, University of Pittsburgh Health System, Pittsburgh, PA, USA
- VA Pittsburgh Health System, Pittsburgh, PA, USA
| | - Stephanie Mason
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alejandro A Diaz
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sharon M Lutz
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Raul San Jose Estepar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory L Kinney
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John E Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Richard Casaburi
- Rehabilitation Clinical Trials Center, Lundquist Institute for Biomedical Innovation at Harbor Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Surya P Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, 701, 19th Street S., LHRB 440, Birmingham, AL, 35233, USA
| | - Craig P Hersh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mark T Dransfield
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Merry-Lynn McDonald
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, 701, 19th Street S., LHRB 440, Birmingham, AL, 35233, USA.
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
50
|
Fujikawa T, Kondo S, Saito T, Inoue T, Otake K, Misu S, Sakai H, Ono R, Tomioka H. Impact of sarcopenia defined by carina-level skeletal muscle mass on the long-term prognosis of patients with idiopathic pulmonary fibrosis. Respir Med Res 2022; 82:100965. [DOI: 10.1016/j.resmer.2022.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022]
|