1
|
Berge HT, Togka K, Pan X, Borges M, Martelo FP, Guedes F, Cabral D, Teixeira E, Fernandes G, Ferreira L, Figueiredo S, Sousa R, Barradas L, Estevinho F, Araújo A, Hespanhol V, Medeiros R. Cost-effectiveness of lung cancer screening with volume computed tomography in Portugal. J Comp Eff Res 2024; 13:e240102. [PMID: 39329332 PMCID: PMC11542083 DOI: 10.57264/cer-2024-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Aim: Lung cancer is the most common cause of cancer death in Portugal. The Dutch-Belgian lung cancer screening (LCS) study (NELSON), the biggest European LCS study, showed a lung cancer mortality reduction in a high-risk population when being screened. In this study, the cost-effectiveness of LCS, based on the NELSON study protocol and outcomes, was evaluated compared with no screening in Portugal. Methods: The present study modified an established decision tree by incorporating a state-transition Markov model to evaluate the health-related advantages and economic implications of low-dose computed tomography (LDCT) LCS from the healthcare standpoint in Portugal. The analysis compared screening versus no screening for a high-risk population aged 50-75 with a smoking history. Various metrics, including clinical outcomes, costs, quality-adjusted life years (QALYs), life-years (LYs) and the incremental cost-effectiveness ratio (ICER), were calculated to measure the impact of LDCT LCS. Furthermore, scenario and sensitivity analyses were executed to assess the robustness of the obtained results. Results: Annual LCS with volume-based LDCT resulted in €558 million additional costs and 86,678 additional QALYs resulting in an ICER of €6440 per QALY for one screening group and a lifetime horizon. In total, 13,217 premature lung cancer deaths could be averted, leading to 1.41 additional QALYs gained per individual diagnosed with lung cancer. Results are robust based on the sensitivity analyses. Conclusion: This study showed that annual LDCT LCS for a high-risk population could be cost-effective in Portugal based on a willingness to pay a threshold of one-time the GDP (€19,290 per QALY gained).
Collapse
Affiliation(s)
- Hilde ten Berge
- Institute for Diagnostic Accuracy, Groningen, The Netherlands
| | - Katerina Togka
- Institute for Diagnostic Accuracy, Groningen, The Netherlands
| | - Xuanqi Pan
- Institute for Diagnostic Accuracy, Groningen, The Netherlands
- Unit of Global Health, Faculty of Medical Sciences, University of Groningen, Groningen, The Netherlands
| | - Marina Borges
- IPO Porto, Comprehensive Cancer Center (Porto.CCC), RISE@CI-IPOP (Health Research Network), Porto, Portugal
| | | | - Fernando Guedes
- Pulmonology Department, Centre Hospitalier du Nord, Luxembourg
- ICBAS School of Medicine & Biomedical Sciences, University of Porto (UP), Porto, Portugal
| | - Daniel Cabral
- Thoracic Surgery, Hospital Pulido Valente-CHULN, Lisboa, Portugal
| | - Encarnação Teixeira
- Pulmonology Department, Centro Hospitalar Universitário de Lisboa Norte & Hospital CUF Tejo, Lisboa, Portugal
| | - Gabriela Fernandes
- Pulmonology Department, Centro Hospitalar e Universitário de São João, EPE, Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| | | | | | - Rita Sousa
- Market Access department, AstraZeneca, Portugal
| | - Lourdes Barradas
- Pulmonology Department, Instituto Português de Oncologia de Coimbra, Coimbra, Portugal
| | - Fernanda Estevinho
- Medical Oncology, Hospital Pedro Hispano, Unidade Local de Saúde de Matosinhos, Matosinhos, Portugal
| | - António Araújo
- ICBAS School of Medicine & Biomedical Sciences, University of Porto (UP), Porto, Portugal
- Department of Medical Oncology, Centro Hospitalar Universitário de Santo António, Portugal
| | - Venceslau Hespanhol
- Pulmonology Department, Centro Hospitalar e Universitário de São João, EPE, Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| | - Rui Medeiros
- ICBAS School of Medicine & Biomedical Sciences, University of Porto (UP), Porto, Portugal
- Molecular Oncology & Viral Pathology GRP, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University (UFP), Porto, Portugal
- Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto, Portugal
| |
Collapse
|
2
|
Guerra-Tort C, López-Vizcaíno E, Santiago-Pérez MI, Rey-Brandariz J, Candal-Pedreira C, Ruano-Ravina A, Pérez-Ríos M. Time Dependence Between Tobacco Consumption and Lung Cancer Mortality in Spain. Arch Bronconeumol 2024; 60 Suppl 2:S31-S37. [PMID: 38876916 DOI: 10.1016/j.arbres.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVES Lung cancer is the leading cause of cancer death and the second most common cancer in both sexes worldwide, with tobacco being its main risk factor. The aim of this study is to establish the temporal relationship between smoking prevalence and lung cancer mortality in Spain. METHODS To model the time dependence between smoking prevalence and lung cancer mortality, a distributed lag non-linear model was applied adjusting for sex, age, year of mortality and population at risk. Smoking prevalence data from 1991-2020 were used. Considering a maximum lag of 25 years, mortality data from 2016-2020 were included. The effect of prevalence on mortality for each lag is presented in terms of relative risk (RR). To identify the lag at which smoking prevalence has the greatest effect on mortality, the RR of the different lags were compared. RESULTS The optimal lag observed between smoking prevalence and lung cancer mortality in Spain was 15 years. The maximum RR was 2.9 (95%CI: 2.0-4.3) for a prevalence of 71% and a 15-year lag. The RR was 1.8 for a prevalence of 33%, an approximate median value between 1991-2020, and a 15-year lag. CONCLUSIONS In Spain, lung cancer mortality is affected by smoking prevalence 15 years prior. Knowing the evolution of the smoking prevalence series in a country and establishing a lag time is essential to predict how lung cancer incidence and mortality will evolve.
Collapse
Affiliation(s)
- Carla Guerra-Tort
- Department of Preventive Medicine and Public Health, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Esther López-Vizcaíno
- Diffusion and Information Service, Galician Institute of Statistics, Santiago de Compostela, Spain
| | - María Isolina Santiago-Pérez
- Epidemiology Department, Directorate-General of Public Health, Galician Regional Health Authority, Santiago de Compostela, Spain.
| | - Julia Rey-Brandariz
- Department of Preventive Medicine and Public Health, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristina Candal-Pedreira
- Department of Preventive Medicine and Public Health, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alberto Ruano-Ravina
- Department of Preventive Medicine and Public Health, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Mónica Pérez-Ríos
- Department of Preventive Medicine and Public Health, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| |
Collapse
|
3
|
Shusted CS, Barta JA, Nguyen A, Wen KY, Juon HS, Zeigler-Johnson C. Characterizing Lung Cancer Burden Among Asian-American Communities in Philadelphia. J Racial Ethn Health Disparities 2024; 11:2583-2595. [PMID: 37540304 DOI: 10.1007/s40615-023-01723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer death among Asian-Americans. However, there are differences in LC incidence and mortality among Asian racial subgroups. The objective of this study was to describe LC burden and disparities among race/ethnic groups (White, Black, Asian, and Hispanic) across US census tracts (CT) in Philadelphia using the Pennsylvania Cancer Registry dataset (N=11,865). ArcGIS Pro was used to geocode patient addresses to the CT level for linkage to US Census data. Despite being diagnosed more frequently with advanced-stage lung cancer compared with other race and ethnic groups in Philadelphia, Asian patients were most likely to be alive at the time of data receipt. Among Asian subgroups, Korean patients were the oldest (median age 75, p=0.024). Although not statistically different, distant stage disease was the most prevalent among Asian Indian (77.8%) and Korean (73.7%) and the least prevalent among Chinese patients (49.5%). LC was the cause of death for 77.8% of Asian Indian, 63.2% of Korean, 52.9% of other Asian, 48.5% of Chinese, and 47.5% of Vietnamese patients. CTs where Asian individuals were concentrated had lower socioeconomic status and greater tobacco retailer density compared to the entire city. Compared to all of Philadelphia, heavily Asian CTs experienced a greater age-standardized LC incidence (1.48 vs. 1.42) but lower age-standardized LC mortality (1.13 vs. 1.22). Our study suggests that LC disparities exist among Asian subgroups, with Asian Indian and Korean Philadelphians most likely to present with advanced disease. Additional studies are needed to investigate LC among high-risk racial and ethnic groups, including Asian subgroups.
Collapse
Affiliation(s)
- Christine S Shusted
- Division of Pulmonary and Critical Care Medicine, The Jane and Leonard Korman Respiratory Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Julie A Barta
- Division of Pulmonary and Critical Care Medicine, The Jane and Leonard Korman Respiratory Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Anh Nguyen
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kuang-Yi Wen
- Division of Population Science, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hee-Soon Juon
- Division of Population Science, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Charnita Zeigler-Johnson
- Fox Chase Cancer Center, Cancer Prevention and Control, 4141 Young Pavilion, 333 Cottman Avenue, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Reina C, Šabanović B, Lazzari C, Gregorc V, Heeschen C. Unlocking the future of cancer diagnosis - promises and challenges of ctDNA-based liquid biopsies in non-small cell lung cancer. Transl Res 2024; 272:41-53. [PMID: 38838851 DOI: 10.1016/j.trsl.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The advent of liquid biopsies has brought significant changes to the diagnosis and monitoring of non-small cell lung cancer (NSCLC), presenting both promise and challenges. Molecularly targeted drugs, capable of enhancing survival rates, are now available to around a quarter of NSCLC patients. However, to ensure their effectiveness, precision diagnosis is essential. Circulating tumor DNA (ctDNA) analysis as the most advanced liquid biopsy modality to date offers a non-invasive method for tracking genomic changes in NSCLC. The potential of ctDNA is particularly rooted in its ability to furnish comprehensive (epi-)genetic insights into the tumor, thereby aiding personalized treatment strategies. One of the key advantages of ctDNA-based liquid biopsies in NSCLC is their ability to capture tumor heterogeneity. This capability ensures a more precise depiction of the tumor's (epi-)genomic landscape compared to conventional tissue biopsies. Consequently, it facilitates the identification of (epi-)genetic alterations, enabling informed treatment decisions, disease progression monitoring, and early detection of resistance-causing mutations for timely therapeutic interventions. Here we review the current state-of-the-art in ctDNA-based liquid biopsy technologies for NSCLC, exploring their potential to revolutionize clinical practice. Key advancements in ctDNA detection methods, including PCR-based assays, next-generation sequencing (NGS), and digital PCR (dPCR), are discussed, along with their respective strengths and limitations. Additionally, the clinical utility of ctDNA analysis in guiding treatment decisions, monitoring treatment response, detecting minimal residual disease, and identifying emerging resistance mechanisms is examined. Liquid biopsy analysis bears the potential of transforming NSCLC management by enabling non-invasive monitoring of Minimal Residual Disease and providing early indicators for response to targeted treatments including immunotherapy. Furthermore, considerations regarding sample collection, processing, and data interpretation are highlighted as crucial factors influencing the reliability and reproducibility of ctDNA-based assays. Addressing these challenges will be essential for the widespread adoption of ctDNA-based liquid biopsies in routine clinical practice, ultimately paving the way toward personalized medicine and improved outcomes for patients with NSCLC.
Collapse
Affiliation(s)
- Chiara Reina
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Berina Šabanović
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Chiara Lazzari
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Vanesa Gregorc
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Christopher Heeschen
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy;.
| |
Collapse
|
5
|
Lim WH, Lee JH, Park H, Park CM, Yoon SH. Effect of smoking on the diagnostic results and complication rates of percutaneous transthoracic needle biopsy. Eur Radiol 2024; 34:6514-6526. [PMID: 38528137 PMCID: PMC11399209 DOI: 10.1007/s00330-024-10705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/25/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVE To investigate the association of smoking with the outcomes of percutaneous transthoracic needle biopsy (PTNB). METHODS In total, 4668 PTNBs for pulmonary lesions were retrospectively identified. The associations of smoking status (never, former, current smokers) and smoking intensity (≤ 20, 21-40, > 40 pack-years) with diagnostic results (malignancy, non-diagnostic pathologies, and false-negative results in non-diagnostic pathologies) and complications (pneumothorax and hemoptysis) were assessed using multivariable logistic regression analysis. RESULTS Among the 4668 PTNBs (median age of the patients, 66 years [interquartile range, 58-74]; 2715 men), malignancies, non-diagnostic pathologies, and specific benign pathologies were identified in 3054 (65.4%), 1282 (27.5%), and 332 PTNBs (7.1%), respectively. False-negative results for malignancy occurred in 20.5% (236/1153) of non-diagnostic pathologies with decidable reference standards. Current smoking was associated with malignancy (adjusted odds ratio [OR], 1.31; 95% confidence interval [CI]: 1.02-1.69; p = 0.03) and false-negative results (OR, 2.64; 95% CI: 1.32-5.28; p = 0.006), while heavy smoking (> 40 pack-years) was associated with non-diagnostic pathologies (OR, 1.69; 95% CI: 1.19-2.40; p = 0.003) and false-negative results (OR, 2.12; 95% CI: 1.17-3.92; p = 0.02). Pneumothorax and hemoptysis occurred in 21.8% (1018/4668) and 10.6% (495/4668) of PTNBs, respectively. Heavy smoking was associated with pneumothorax (OR, 1.33; 95% CI: 1.01-1.74; p = 0.04), while heavy smoking (OR, 0.64; 95% CI: 0.40-0.99; p = 0.048) and current smoking (OR, 0.64; 95% CI: 0.42-0.96; p = 0.04) were inversely associated with hemoptysis. CONCLUSION Smoking history was associated with the outcomes of PTNBs. Current and heavy smoking increased false-negative results and changed the complication rates of PTNBs. CLINICAL RELEVANCE STATEMENT Smoking status and intensity were independently associated with the outcomes of PTNBs. Non-diagnostic pathologies should be interpreted cautiously in current or heavy smokers. A patient's smoking history should be ascertained before PTNB to predict and manage complications. KEY POINTS • Smoking status and intensity might independently contribute to the diagnostic results and complications of PTNBs. • Current and heavy smoking (> 40 pack-years) were independently associated with the outcomes of PTNBs. • Operators need to recognize the association between smoking history and the outcomes of PTNBs.
Collapse
Affiliation(s)
- Woo Hyeon Lim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jong Hyuk Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Hyungin Park
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chang Min Park
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Soon Ho Yoon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
6
|
Dickerson H, Diab A, Al Musaimi O. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Cancer: Current Use and Future Prospects. Int J Mol Sci 2024; 25:10008. [PMID: 39337496 PMCID: PMC11432255 DOI: 10.3390/ijms251810008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have emerged as a leading targeted cancer therapy, reducing the side effects often seen with non-targeted treatments, especially the damage to healthy cells. To tackle resistance, typically caused by epidermal growth factor receptor (EGFR) mutations, four generations of TKIs have been developed. Each generation has shown improved effectiveness and fewer side effects, resulting in better patient outcomes. For example, patients on gefitinib, a first-generation TKI, experienced a progression-free survival (PFS) of 10 months compared to 5 months with conventional chemotherapy. Second-generation TKI afatinib outperformed erlotinib and extended PFS to 11.1 months compared to 6.9 months with cisplatin. Third-generation TKIs further increased survival to 38.6 months, compared to 31.8 months with first-generation TKIs. This progress demonstrates the ability of newer TKIs to overcome resistance, particularly the T790M mutation, while reducing adverse effects. Ongoing research focuses on overcoming resistance from newer mutations like C797S to further improve patient survival. These developments highlight the significant progress in TKI therapy and the continued effort to refine cancer treatment. Recent research in South Korea shows that third-generation TKIs are ineffective against non-small cell lung cancer (NSCLC) with the C797S mutation. Several trials have started showing promising in vitro and in vivo results, but more trials are needed before clinical approval. This review underscores notable advancements in the field of EGFR TKIs, offering a comprehensive analysis of their mechanisms of action and the progression of various TKI generations in response to resistance.
Collapse
Affiliation(s)
- Henry Dickerson
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Ahmad Diab
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Othman Al Musaimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
7
|
Pogu SV, Yadav DN, Sankaranarayanan SA, Rengan AK. Barium Sulfate Nanocomposites for Bioimaging and Chemo-photothermal Therapy of Physiologically Aggravated Lung Adenocarcinoma Cells. ACS APPLIED BIO MATERIALS 2024; 7:6213-6228. [PMID: 39135378 DOI: 10.1021/acsabm.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Cancer is a complex disease that displays physiomorphological transformation in different surrounding microenvironments. Therefore, the single treatment modalities are relatively less effective, and their efficiency varies with tumor cell physiology, leading to the development of tumor resistance. Combinatorial therapeutic approaches, such as chemo-photothermal therapy, are promising for efficiently mitigating tumor progression irrespective of cancer physiology. Nanotechnology has played a significant role in this regard. Therefore, the present study reports the synthesis of poly(acrylic acid)-tetraethylene glycol (PAA-TEG)-coated BaSO4 nanoparticles (NPs) with enhanced solubility, dispersibility, and X-ray attenuation. Next, nanocomposites (NCs) are synthesized by loading BaSO4 NPs with the therapeutic drug triiodobenzoic acid (Tiba) and the photosensitizer IR780 using a lipid coating. These fabricated NCs are analyzed for dual-modal imaging (fluorescence and X-ray-based imaging) properties and chemo-phototherapeutic ability against two-dimensional (2D) and three-dimensional (3D) cultures of A549 cells. Furthermore, A549 cells are morphologically and physiologically aggravated into potent malignant cells using tobacco leaf extract (TE), and the variation in the therapeutic effect of NCs compared to cisplatin is determined. The synthesized NCs display enhanced encapsulation and excellent synergistic anticancer activity through the generation of reactive oxygen species (ROS), mitochondrial damage, and genotoxicity. Also, the NCs are more potent in inhibiting cancer cell growth than cisplatin, and their impact is unaltered in the presence or absence of TE pretreatment of A549 cells. The present study holds significant potential for various theranostic applications, which are highly desired for laparoscopic image-guided lung cancer therapy.
Collapse
Affiliation(s)
- Sunil Venkanna Pogu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| |
Collapse
|
8
|
Zhang X, Zhang J, Wang Z. The causal and mediation effect of chronic obstructive pulmonary disease on lung cancer subtypes: a two-sample mendelian randomization study. Cancer Causes Control 2024:10.1007/s10552-024-01916-x. [PMID: 39276304 DOI: 10.1007/s10552-024-01916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024]
Abstract
PURPOSE This study aims to determine the causal effect of chronic obstructive pulmonary disease (COPD) on different subtypes of lung cancer and to investigate the mediation effects of COPD between smoking and the subtypes of lung cancer. METHODS The study utilized summary level data from genome-wide association studies. It extracted independent single nucleotide polymorphisms (SNP) to serve as instrumental variables (IV). We conducted two-sample MR analyses primarily using inverse-variance weighting, as well as MR-Egger and MR-PRESSO to establish and validate the causal impact of COPD on lung cancer subtypes. Additionally, multivariable MR analysis was employed to ascertain the mediating role of COPD between smoking and lung cancers. RESULTS The two-sample MR analysis demonstrated that COPD is linked to an elevated risk of lung adenocarcinoma (OR: 1.48, 95% CI 1.35-1.61, p = 0.009) and squamous cell carcinoma (OR: 1.78, 95% CI 1.62-1.93, p = 0.001). Further, using multivariable MR, it was established that COPD mediates the causal effects of smoking on lung adenocarcinoma by 56.52% (95% CI 17.51-95.52%) and 63.61% (95% CI 38.31-88.92%) in lung squamous cell carcinoma. CONCLUSION Our study found that COPD was a risk factor for developing both lung adenocarcinoma and squamous cell carcinoma. COPD also played a crucial role in mediating the causal effects of smoking on these two subtypes of lung cancer.
Collapse
Affiliation(s)
- Xue Zhang
- Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinze Zhang
- Thoracic Surgery, The Fourth Hospital of Hebei Medical University, 12 Jiankang Rd, Shijiazhuang, 050000, China
| | - Zhe Wang
- Thoracic Surgery, The Fourth Hospital of Hebei Medical University, 12 Jiankang Rd, Shijiazhuang, 050000, China.
| |
Collapse
|
9
|
Moghaddam SJ, Savai R, Salehi-Rad R, Sengupta S, Kammer MN, Massion P, Beane JE, Ostrin EJ, Priolo C, Tennis MA, Stabile LP, Bauer AK, Sears CR, Szabo E, Rivera MP, Powell CA, Kadara H, Jenkins BJ, Dubinett SM, Houghton AM, Kim CF, Keith RL. Premalignant Progression in the Lung: Knowledge Gaps and Novel Opportunities for Interception of Non-Small Cell Lung Cancer. An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2024; 210:548-571. [PMID: 39115548 PMCID: PMC11389570 DOI: 10.1164/rccm.202406-1168st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Indexed: 08/13/2024] Open
Abstract
Rationale: Despite significant advances in precision treatments and immunotherapy, lung cancer is the most common cause of cancer death worldwide. To reduce incidence and improve survival rates, a deeper understanding of lung premalignancy and the multistep process of tumorigenesis is essential, allowing timely and effective intervention before cancer development. Objectives: To summarize existing information, identify knowledge gaps, formulate research questions, prioritize potential research topics, and propose strategies for future investigations into the premalignant progression in the lung. Methods: An international multidisciplinary team of basic, translational, and clinical scientists reviewed available data to develop and refine research questions pertaining to the transformation of premalignant lung lesions to advanced lung cancer. Results: This research statement identifies significant gaps in knowledge and proposes potential research questions aimed at expanding our understanding of the mechanisms underlying the progression of premalignant lung lesions to lung cancer in an effort to explore potential innovative modalities to intercept lung cancer at its nascent stages. Conclusions: The identified gaps in knowledge about the biological mechanisms of premalignant progression in the lung, together with ongoing challenges in screening, detection, and early intervention, highlight the critical need to prioritize research in this domain. Such focused investigations are essential to devise effective preventive strategies that may ultimately decrease lung cancer incidence and improve patient outcomes.
Collapse
|
10
|
Han Q, Fernandez J, Rajczewski AT, Kono TJY, Weirath NA, Rahim A, Lee AS, Seabloom D, Tretyakova NY. A Multi-Omics Study of Epigenetic Changes in Type II Alveolar Cells of A/J Mice Exposed to Environmental Tobacco Smoke. Int J Mol Sci 2024; 25:9365. [PMID: 39273313 PMCID: PMC11394788 DOI: 10.3390/ijms25179365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Lung cancer remains a major contributor to cancer fatalities, with cigarette smoking known to be responsible for up to 80% of cases. Based on the ability of cigarette smoke to induce inflammation in the lungs and increased lung cancer incidence in smokers with inflammatory conditions such as COPD, we hypothesized that inflammation plays an important role in the carcinogenicity of cigarette smoke. To test this hypothesis, we performed multi-omic analyses of Type II pneumocytes of A/J mice exposed to cigarette smoke for various time periods. We found that cigarette smoke exposure resulted in significant changes in DNA methylation and hydroxymethylation, gene expression patterns, and protein abundance that were partially reversible and contributed to an inflammatory and potentially oncogenic phenotype.
Collapse
Affiliation(s)
- Qiyuan Han
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (Q.H.); (A.T.R.)
| | - Jenna Fernandez
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (J.F.); (N.A.W.); (A.R.)
| | - Andrew T. Rajczewski
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (Q.H.); (A.T.R.)
| | - Thomas J. Y. Kono
- Minnesota Supercomputing Institute, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA;
| | - Nicholas A. Weirath
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (J.F.); (N.A.W.); (A.R.)
| | - Abdur Rahim
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (J.F.); (N.A.W.); (A.R.)
| | - Alexander S. Lee
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL 60611, USA;
| | - Donna Seabloom
- AeroCore Testing Services, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA;
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (J.F.); (N.A.W.); (A.R.)
| |
Collapse
|
11
|
Arrieta O, Caballé-Pérez E, Hernández-Pedro N, Romero-Nuñez E, Lucio-Lozada J, Castillo-Ruiz C, Acevedo-Castillo K, María Álvarez-Gómez R, Molina-Garay C, Jiménez-Olivares M, Carrillo-Sánchez K, Cristina Mendoza-Caamal E, Cardona AF, Remon J, Alaez-Verson C. Prevalence of pathogenic or likely pathogenic germline variants in cancer predisposition genes among selected patients with lung adenocarcinoma: The GERMLUNG study. Lung Cancer 2024; 194:107864. [PMID: 38945003 DOI: 10.1016/j.lungcan.2024.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Pathogenic or likely pathogenic germline variants (PGVs) in cancer predisposition genes may play a role in lung cancer (LC) susceptibility. However, determining an eligible population for genetic testing remains uncertain. This study aimed to assess the prevalence of PGVs in a selected cohort of individuals with lung adenocarcinoma. METHODS A cross-sectional cohort study was conducted to assess the PGVs rate in lung adenocarcinoma patients with a family history of LC, young-onset presentation, history of never/light smoking, or actionable genomic alterations (AGAs). Sequencing was performed using Sophia Hereditary Cancer Solution panel F, including 144 cancer predisposition genes. Variants classified as pathogenic or likely pathogenic were included for further analysis. RESULTS Of 201 patients, 43 (21.4 %) exhibited PGVs, among which 64.5 % were DNA damage repair genes, and 86.1 % were clinically actionable. The main PGVs were in ATM (9.3 %), TP53 (6.9 %), BRCA2 (6.9 %), and CHEK2 (6.9 %) genes. PGVs were associated with male sex (adjusted odds ratio [aOR] 2.46, 95 % CI 1.15-5.32, p = 0.021), along with a trend toward association with AGAs (aOR 6.04, 95 % CI 0.77-49.74, p = 0.094). CONCLUSIONS In this study, a high PGVs prevalence was identified based on our selection criteria, which represents an effective strategy to identify candidates for germline genomic testing, potential screening strategies in close relatives, and personalized therapeutic modalities. Our results warrant further exploration in other populations to confirm them.
Collapse
Affiliation(s)
- Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico; Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Enrique Caballé-Pérez
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Norma Hernández-Pedro
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Eunice Romero-Nuñez
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - José Lucio-Lozada
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Cesar Castillo-Ruiz
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Karla Acevedo-Castillo
- Genomic Diagnosis Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| | - Rosa María Álvarez-Gómez
- Hereditary Cancer Clinic, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Carolina Molina-Garay
- Genomic Diagnosis Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| | - Marco Jiménez-Olivares
- Genomic Diagnosis Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| | - Karol Carrillo-Sánchez
- Genomic Diagnosis Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| | | | - Andrés F Cardona
- Thoracic Oncology Unit and Direction of Research, Science and Education, Luis Carlos Sarmiento Angulo, Cancer Treatment and Research Center (CTIC), Bogotá, Colombia.
| | - Jordi Remon
- Gustave Roussy Cancer Campus, Medical Oncology Department, 114 Rue Edouard Vaillant, 94805 Villejuif, France.
| | - Carmen Alaez-Verson
- Genomic Diagnosis Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| |
Collapse
|
12
|
Ng HS, Meng R, Marin TS, Damarell RA, Buckley E, Selvanayagam JB, Koczwara B. Cardiovascular mortality in people with cancer compared to the general population: A systematic review and meta-analysis. Cancer Med 2024; 13:e70057. [PMID: 39096123 PMCID: PMC11297437 DOI: 10.1002/cam4.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of non-cancer death in cancer survivors, but the risk of CVD varies between cancers. OBJECTIVES To synthesise available evidence on patterns and magnitude of CVD mortality risk. METHODS A systematic search of Medline (OVID), CINAHL and Scopus databases from 01-January-2000 to 16-July-2023 of studies of people with cancer, reporting CVD mortality in cancer population compared with a reference population (e.g. general population) as standardised mortality ratios (SMR). Meta-analysis of SMRs across cancer and CVD types were pooled using a random-effects model to allow for heterogeneity of the true effect size across studies. RESULTS We identified 136 studies from 16 countries. Sample sizes ranged from 157 to 7,529,481. The majority (n = 98; 72%) were conducted in the United States, followed by Europe (n = 22; 16%). The most common cancers studied were gastrointestinal (n = 34 studies), haematological (n = 31) and breast (n = 29). A total of 876 CVD SMRs were extracted across diverse CVD conditions. Of those, the majority (535; 61%) indicated an increased risk of CVD death (SMR >1), 109 (12%) a lower risk of CVD death (SMR <1) and 232 (27%) an equivalent risk (95% CI of SMR included 1) compared to the general population. The meta-analysis of all reported SMRs showed an increased risk of CVD death (SMR = 1.55, 95% CI = 1.40-1.72) in cancer survivors compared with the general population. The SMR varied between CVD conditions and ranged from 1.36 (95% CI = 1.29-1.44) for heart diseases to 1.56 (95% CI = 1.39-1.76) for cerebrovascular diseases. SMR varied across cancer types, ranging from 1.14 (95% CI = 1.04-1.25) for testicular/germ cell tumours to 2.82 (95% CI = 2.20-3.63) for brain/central nervous system tumours. CONCLUSIONS Cancer survivors are at increased risk of premature CVD mortality compared to the general population, but the risk varies by cancer type and CVD. Future research should focus on understanding mechanisms behind the increased CVD risk to develop appropriate interventions.
Collapse
Affiliation(s)
- Huah Shin Ng
- Flinders Health and Medical Research Institute, College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
- SA Pharmacy, SA HealthAdelaideSouth AustraliaAustralia
| | - Rosie Meng
- Flinders Health and Medical Research Institute, College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Tania S. Marin
- Flinders Health and Medical Research Institute, College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Raechel A. Damarell
- Research Centre for Palliative Care, Death and Dying, College of Nursing and Health SciencesFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Elizabeth Buckley
- Flinders Health and Medical Research Institute, College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Joseph B. Selvanayagam
- Flinders Health and Medical Research Institute, College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
- Department of Cardiovascular MedicineFlinders Medical CentreAdelaideSouth AustraliaAustralia
| | - Bogda Koczwara
- Flinders Health and Medical Research Institute, College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
- Department of Medical OncologyFlinders Medical CentreAdelaideSouth AustraliaAustralia
| |
Collapse
|
13
|
Annareddy S, Ghewade B, Jadhav U, Wagh P, Sarkar S. Unveiling the Long-Term Lung Consequences of Smoking and Tobacco Consumption: A Narrative Review. Cureus 2024; 16:e66415. [PMID: 39246889 PMCID: PMC11380067 DOI: 10.7759/cureus.66415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Smoking and tobacco use present significant public health challenges due to their association with high morbidity and mortality rates worldwide. Despite reductions in smoking rates in many developed countries, global tobacco consumption remains high, especially in developing regions. This review examines the chronic effects of smoking on the respiratory system, detailing the pathological changes in the lungs and the resultant respiratory illnesses such as chronic obstructive pulmonary disease and lung cancer. Additionally, the review explores the impact of smoking on other body systems, including cardiovascular, immune, gastrointestinal, nervous, and reproductive systems. The extensive health implications of smoking emphasize the need for comprehensive public health interventions to reduce tobacco use and mitigate its adverse effects on health.
Collapse
Affiliation(s)
- Srinivasulareddy Annareddy
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Babaji Ghewade
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ulhas Jadhav
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pankaj Wagh
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Souvik Sarkar
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
14
|
Silva AC, Costa MP, Zacaron TM, Ferreira KCB, Braz WR, Fabri RL, Frézard FJG, Pittella F, Tavares GD. The Role of Inhaled Chitosan-Based Nanoparticles in Lung Cancer Therapy. Pharmaceutics 2024; 16:969. [PMID: 39204314 PMCID: PMC11359377 DOI: 10.3390/pharmaceutics16080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, largely due to the limited efficacy of anticancer drugs, which is primarily attributed to insufficient doses reaching the lungs. Additionally, patients undergoing treatment experience severe systemic adverse effects due to the distribution of anticancer drugs to non-targeted sites. In light of these challenges, there has been a growing interest in pulmonary administration of drugs for the treatment of lung cancer. This route allows drugs to be delivered directly to the lungs, resulting in high local concentrations that can enhance antitumor efficacy while mitigating systemic toxic effects. However, pulmonary administration poses the challenge of overcoming the mechanical, chemical, and immunological defenses of the respiratory tract that prevent the inhaled drug from properly penetrating the lungs. To overcome these drawbacks, the use of nanoparticles in inhaler formulations may be a promising strategy. Nanoparticles can assist in minimizing drug clearance, increasing penetration into the lung epithelium, and enhancing cellular uptake. They can also facilitate increased drug stability, promote controlled drug release, and delivery to target sites, such as the tumor environment. Among them, chitosan-based nanoparticles demonstrate advantages over other polymeric nanocarriers due to their unique biological properties, including antitumor activity and mucoadhesive capacity. These properties have the potential to enhance the efficacy of the drug when administered via the pulmonary route. In view of the above, this paper provides an overview of the research conducted on the delivery of anticancer drug-loaded chitosan-based nanoparticles incorporated into inhaled drug delivery devices for the treatment of lung cancer. Furthermore, the article addresses the use of emerging technologies, such as siRNA (small interfering RNA), in the context of lung cancer therapy. Particularly, recent studies employing chitosan-based nanoparticles for siRNA delivery via the pulmonary route are described.
Collapse
Affiliation(s)
- Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Kézia Cristine Barbosa Ferreira
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Wilson Rodrigues Braz
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Frédéric Jean Georges Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| |
Collapse
|
15
|
ten Berge H, Ramaker D, Piazza G, Pan X, Lamprecht B, Valipour A, Prosch H. Shall We Screen Lung Cancer with Volume Computed Tomography in Austria? A Cost-Effectiveness Modelling Study. Cancers (Basel) 2024; 16:2623. [PMID: 39123350 PMCID: PMC11310943 DOI: 10.3390/cancers16152623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
This study assessed the cost-effectiveness of a lung cancer screening (LCS) program using low-dose computed tomography (LDCT) in Austria. An existing decision tree with an integrated Markov model was used to analyze the cost-effectiveness of LCS versus no screening from a healthcare payer perspective over a lifetime horizon. A simulation was conducted to model annual LCS for an asymptomatic high-risk population cohort aged 50-74 with a smoking history using the Dutch-Belgian Lung Cancer Screening Study (NEderlands-Leuvens Longkanker ScreeningsONderzoek, NELSON) screening outcomes. The principal measure utilized to assess cost-effectiveness was the incremental cost-effectiveness ratio (ICER). Sensitivity and scenario analyses were employed to determine uncertainties surrounding the key model inputs. At an uptake rate of 50%, 300,277 eligible individuals would participate in the LCS program, yielding 56,122 incremental quality-adjusted life years (QALYs) and 84,049 life years gained compared to no screening, with an ICER of EUR 24,627 per QALY gained or EUR 16,444 per life-year saved. Additionally, LCS led to the detection of 25,893 additional early-stage lung cancers and averted 11,906 premature lung cancer deaths. It was estimated that LCS would incur EUR 945 million additional screening costs and EUR 386 million additional treatment costs. These estimates were robust in sensitivity analyses. Implementation of annual LCS with LDCT for a high-risk population, using the NELSON screening outcomes, is cost-effective in Austria, at a threshold of EUR 50,000 per QALY.
Collapse
Affiliation(s)
- Hilde ten Berge
- Institute for Diagnostic Accuracy, 9713 GH Groningen, The Netherlands
| | - Dianne Ramaker
- Institute for Diagnostic Accuracy, 9713 GH Groningen, The Netherlands
| | - Greta Piazza
- Institute for Diagnostic Accuracy, 9713 GH Groningen, The Netherlands
| | - Xuanqi Pan
- Institute for Diagnostic Accuracy, 9713 GH Groningen, The Netherlands
- Unit of Global Health, Faculty of Medical Sciences, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Bernd Lamprecht
- Department of Pulmonary Medicine, Kepler University Hospital, 4020 Linz, Austria
- Medical Faculty, Johannes Kepler University, 4040 Linz, Austria
| | - Arschang Valipour
- Karl-Landsteiner-Institute for Lung Research and Pulmonary Oncology, Klinik Floridsdorf, 1210 Vienna, Austria
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria
| |
Collapse
|
16
|
Bittoni MA, Carbone DP, Harris RE. Vaping, Smoking and Lung Cancer Risk. JOURNAL OF ONCOLOGY RESEARCH AND THERAPY 2024; 9:10229. [PMID: 39210964 PMCID: PMC11361252 DOI: 10.29011/2574-710x.10229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nicotine exposure through the use of electronic delivery systems (vaping) has been found to elevate the risk of certain conditions of the lungs, e.g., vaping associated lung injury, EVALI). However, the potential impact of vaping on lung cancer risk remains unexplored. We, therefore, examined the association of vaping and cigarette smoking with lung cancer risk in a case control study conducted in central Ohio. The study design compared 4,975 individuals with recently diagnosed pathologically confirmed carcinoma of the lung to 27,294 controls without cancer that were group matched at a 5:1 ratio to the cases by age, gender, race and location of residence. Odds ratios (OR) adjusted for gender, age and race revealed a fourfold higher risk of lung cancer among individuals who vaped in combination with chronic smoking (OR=58.9, 95% CI=47.3-70.5) versus individuals who only smoked cigarettes (OR=13.9, 95% CI=12.7-15.3, P<0.001). Further adjustment for prevalent comorbidities, chronic obstructive pulmonary disease and coronary artery disease, reduced the magnitude of the OR, but the risk for vaping and smoking (OR=38.7, 95% CI =31.5-47.6) remained fourfold higher than for smoking alone (OR=9.6, 95% CI=8.7-10.6, P<0.001). This finding was consistent for men and women, with adjustment for pack-years of smoking, and for the main histological cell types of lung cancer. Our results suggest that the addition of vaping to smoking accelerates the risk of developing lung cancer.
Collapse
Affiliation(s)
- MA Bittoni
- Colleges of Medicine & Public Health, and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - DP Carbone
- Colleges of Medicine & Public Health, and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - RE Harris
- Colleges of Medicine & Public Health, and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
17
|
Go S, Yang JW, Lee WJ, Jeong EJ, Park S, Lee G. Lipocalin-2 as a prognostic biomarker and its association with systemic inflammation in small cell lung cancer. Thorac Cancer 2024; 15:1646-1655. [PMID: 38886905 PMCID: PMC11260553 DOI: 10.1111/1759-7714.15389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Systemic inflammation is believed to contribute to small cell lung cancer (SCLC) progression, but the underlying relationship remains unclear. Lipocalin-2, a potential biomarker of inflammation, has been implicated in various cancers but its prognostic value in SCLC is underexplored. METHODS We retrospectively analyzed 191 patients with SCLC (72 with limited-stage [LD] and 119 with extensive-stage) treated using platinum-based chemotherapy. Lipocalin-2 expression was evaluated using immunohistochemistry. Optimal cutoff values for lipocalin-2 and neutrophil-to-lymphocyte ratio (NLR) were determined using time-dependent receiver operating characteristic curve analysis. The pectoralis muscle index was used to assess sarcopenia. RESULTS In LD-SCLC, high lipocalin-2 expression was associated with worse progression-free survival (PFS; median: 7.0 vs. 15.9 months, p = 0.015) and overall survival (OS; median: 12.9 vs. 30.3 months, p = 0.035) compared with low lipocalin-2 expression. Patients were stratified into three prognostic groups by combining lipocalin-2 with NLR: low lipocalin-2/low NLR, high lipocalin-2/low NLR or low lipocalin-2/high NLR, and high lipocalin-2/high NLR (median PFS: 17.3 vs. 11.0 vs. 6.3 months, p = 0.004; median OS: 30.5 vs. 17.3 vs. 8.6 months, p = 0.002). Similar trends were observed when combining lipocalin-2 with the pectoralis muscle index. High lipocalin-2 expression was also associated with lower complete response rates (18.9% vs. 34.3%, p = 0.035). No significant prognostic implications were found for lipocalin-2 in extensive-stage SCLC. CONCLUSIONS High lipocalin-2 expression is potentially associated with poorer survival in LD-SCLC. Combining lipocalin-2 with other inflammation-related markers could improve prognostic stratification.
Collapse
Affiliation(s)
- Se‐Il Go
- Department of Internal MedicineGyeongsang National University Changwon HospitalChangwonKorea
- Department of Internal MedicineGyeongsang National University College of MedicineJinjuKorea
- Institute of Medical Science, Gyeongsang National UniversityJinjuKorea
| | - Jung Wook Yang
- Institute of Medical Science, Gyeongsang National UniversityJinjuKorea
- Department of PathologyGyeongsang National University HospitalJinjuKorea
- Department of PathologyGyeongsang National University College of MedicineJinjuKorea
| | - Woo Je Lee
- Division of Hematology and Oncology, Department of Internal MedicineGyeongsang National University HospitalJinjuKorea
| | - Eun Jeong Jeong
- Division of Hematology and Oncology, Department of Internal MedicineGyeongsang National University HospitalJinjuKorea
| | - Sungwoo Park
- Department of Internal MedicineGyeongsang National University College of MedicineJinjuKorea
- Institute of Medical Science, Gyeongsang National UniversityJinjuKorea
- Division of Hematology and Oncology, Department of Internal MedicineGyeongsang National University HospitalJinjuKorea
| | - Gyeong‐Won Lee
- Department of Internal MedicineGyeongsang National University College of MedicineJinjuKorea
- Institute of Medical Science, Gyeongsang National UniversityJinjuKorea
- Division of Hematology and Oncology, Department of Internal MedicineGyeongsang National University HospitalJinjuKorea
| |
Collapse
|
18
|
Alanazi M, Weng T, McLeod L, Gearing LJ, Smith JA, Kumar B, Saad MI, Jenkins BJ. Cytosolic DNA sensor AIM2 promotes KRAS-driven lung cancer independent of inflammasomes. Cancer Sci 2024; 115:1834-1850. [PMID: 38594840 PMCID: PMC11145135 DOI: 10.1111/cas.16171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/10/2024] [Accepted: 03/23/2024] [Indexed: 04/11/2024] Open
Abstract
Constitutively active KRAS mutations are among the major drivers of lung cancer, yet the identity of molecular co-operators of oncogenic KRAS in the lung remains ill-defined. The innate immune cytosolic DNA sensor and pattern recognition receptor (PRR) Absent-in-melanoma 2 (AIM2) is best known for its assembly of multiprotein inflammasome complexes and promoting an inflammatory response. Here, we define a role for AIM2, independent of inflammasomes, in KRAS-addicted lung adenocarcinoma (LAC). In genetically defined and experimentally induced (nicotine-derived nitrosamine ketone; NNK) LAC mouse models harboring the KrasG12D driver mutation, AIM2 was highly upregulated compared with other cytosolic DNA sensors and inflammasome-associated PRRs. Genetic ablation of AIM2 in KrasG12D and NNK-induced LAC mouse models significantly reduced tumor growth, coincident with reduced cellular proliferation in the lung. Bone marrow chimeras suggest a requirement for AIM2 in KrasG12D-driven LAC in both hematopoietic (immune) and non-hematopoietic (epithelial) cellular compartments, which is supported by upregulated AIM2 expression in immune and epithelial cells of mutant KRAS lung tissues. Notably, protection against LAC in AIM2-deficient mice is associated with unaltered protein levels of mature Caspase-1 and IL-1β inflammasome effectors. Moreover, genetic ablation of the key inflammasome adapter, ASC, did not suppress KrasG12D-driven LAC. In support of these in vivo findings, AIM2, but not mature Caspase-1, was upregulated in human LAC patient tumor biopsies. Collectively, our findings reveal that endogenous AIM2 plays a tumor-promoting role, independent of inflammasomes, in mutant KRAS-addicted LAC, and suggest innate immune DNA sensing may provide an avenue to explore new therapeutic strategies in lung cancer.
Collapse
Affiliation(s)
- Mohammad Alanazi
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Teresa Weng
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Linden J. Gearing
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Julian A. Smith
- Department of Surgery, School of Clinical Sciences/Monash HealthMonash UniversityClaytonVictoriaAustralia
| | - Beena Kumar
- Department of Anatomical PathologyMonash HealthClaytonVictoriaAustralia
| | - Mohamed I. Saad
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
- South Australian immunoGENomics Cancer Institute (SAiGENCI)The University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
19
|
Hutchings HE, Grady SC, Zhang Q, Schwarze E, Popoff A, Khanipov K, Okereke IC. Regional trends in diagnosis of advanced lung cancer in Michigan over 33 years. J Thorac Dis 2024; 16:2936-2947. [PMID: 38883653 PMCID: PMC11170384 DOI: 10.21037/jtd-24-205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/29/2024] [Indexed: 06/18/2024]
Abstract
Background Lung cancer is the most common cancer killer worldwide. Nearly 80 percent of lung cancers are diagnosed at advanced stages. Lack of access to medical care and undwerutilized lung cancer screening are key reasons for advanced diagnoses. We sought to understand the regional differences in presentation of lung cancer across Michigan. Utilizing a comprehensive cancer registry over 33 years, our goal was to examine associations between sociodemographic patient factors and diagnoses at advanced stages. Methods The Michigan Cancer Registry was queried from 1985 to 2018 to include all new diagnoses of non-small cell lung cancer (NSCLC) using International Classification of Diseases for Oncology (ICD-O) version 3 codes. NSCLC was categorized as early, regional and distant disease. Advanced disease was considered to be any disease that was regional or distant. NSCLC rates were calculated and mapped at the zip code level using the 2010 population as the denominator and spatial empirical Bayes methodology. Regional hospital service areas were constructed using travel time to treatment from the patient's zip code centroid. Logistic regression models were estimated to investigate the significance of rural vs. urban and travel time on level of disease at presentation. Kaplan-Meier and multivariate survival analysis was performed to evaluate the association between distance from the nearest medical center and length of survival controlling for known risk factors for lung cancer. Results From 1985 to 2018, there were 141,977 patients in Michigan diagnosed with NSCLC. In 1985, men were 2.2 times more likely than women to be diagnosed but by 2018 women and men developed disease at equal rates. Mean age was 67.8 years. Among all patients with known stage of disease, 72.5% of patients were diagnosed with advanced disease. Regional and distant NSCLC rates were both higher in the northern parts of the state. Longer drive times in rural regions also significantly increased the likelihood of advanced NSCLC diagnoses, in particular regional lung cancer. Patients with longer drive times also experienced overall worse survival after controlling for other factors. Conclusions Regional disparities exist in Michigan for diagnoses of NSCLC at advanced stages. Factors such as lack of screening in urban regions and distances to treating institutions in rural areas likely contribute to the increased likelihood of advanced NSCLC. Future interventions should target the specific needs of residents to detect disease at earlier stages and improve overall outcomes.
Collapse
Affiliation(s)
| | - Sue C Grady
- Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, MI, USA
| | - Qiong Zhang
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI, USA
| | - Erik Schwarze
- Department of Surgery, Henry Ford Health System, Detroit, MI, USA
| | - Andrew Popoff
- Department of Surgery, Henry Ford Health System, Detroit, MI, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ikenna C Okereke
- Department of Surgery, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
20
|
Kopeć M, Beton-Mysur K, Abramczyk H. Biochemical changes in lipid and protein metabolism caused by mannose-Raman spectroscopy studies. Analyst 2024; 149:2942-2955. [PMID: 38597575 DOI: 10.1039/d4an00128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Biochemical analysis of human normal bronchial cells (BEpiC) and human cancer lung cells (A549) has been performed by using Raman spectroscopy and Raman imaging. Our approach provides a biochemical compositional mapping of the main cell components: nucleus, mitochondria, lipid droplets, endoplasmic reticulum, cytoplasm and cell membrane. We proved that Raman spectroscopy and Raman imaging can distinguish successfully BEpiC and A549 cells. In this study, we have focused on the role of mannose in cancer development. It has been shown that changes in the concentration of mannose can regulate some metabolic processes in cells. Presented results suggest lipids and proteins can be considered as Raman biomarkers during lung cancer progression. Analysis obtained for bands 1444 cm-1, and 2854 cm-1 characteristic for lipids and derivatives proved that the addition of mannose reduced levels of these compounds. Results obtained for protein compounds based on bands 858 cm-1, 1004 cm-1 and 1584 cm-1 proved that the addition of mannose increases the values of protein in BEpiC cells and blocks protein glycolisation in A549 cells. Noticing Raman spectral changes in BEpiC and A549 cells supplemented with mannose can help to understand the mechanism of sugar metabolism during cancer development and could play in the future an important role in clinical treatment.
Collapse
Affiliation(s)
- Monika Kopeć
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Karolina Beton-Mysur
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Halina Abramczyk
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
21
|
Lee MR, Kao MH, Hsieh YC, Sun M, Tang KT, Wang JY, Ho CC, Shih JY, Yu CJ. Cross-site validation of lung cancer diagnosis by electronic nose with deep learning: a multicenter prospective study. Respir Res 2024; 25:203. [PMID: 38730430 PMCID: PMC11084132 DOI: 10.1186/s12931-024-02840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Although electronic nose (eNose) has been intensively investigated for diagnosing lung cancer, cross-site validation remains a major obstacle to be overcome and no studies have yet been performed. METHODS Patients with lung cancer, as well as healthy control and diseased control groups, were prospectively recruited from two referral centers between 2019 and 2022. Deep learning models for detecting lung cancer with eNose breathprint were developed using training cohort from one site and then tested on cohort from the other site. Semi-Supervised Domain-Generalized (Semi-DG) Augmentation (SDA) and Noise-Shift Augmentation (NSA) methods with or without fine-tuning was applied to improve performance. RESULTS In this study, 231 participants were enrolled, comprising a training/validation cohort of 168 individuals (90 with lung cancer, 16 healthy controls, and 62 diseased controls) and a test cohort of 63 individuals (28 with lung cancer, 10 healthy controls, and 25 diseased controls). The model has satisfactory results in the validation cohort from the same hospital while directly applying the trained model to the test cohort yielded suboptimal results (AUC, 0.61, 95% CI: 0.47─0.76). The performance improved after applying data augmentation methods in the training cohort (SDA, AUC: 0.89 [0.81─0.97]; NSA, AUC:0.90 [0.89─1.00]). Additionally, after applying fine-tuning methods, the performance further improved (SDA plus fine-tuning, AUC:0.95 [0.89─1.00]; NSA plus fine-tuning, AUC:0.95 [0.90─1.00]). CONCLUSION Our study revealed that deep learning models developed for eNose breathprint can achieve cross-site validation with data augmentation and fine-tuning. Accordingly, eNose breathprints emerge as a convenient, non-invasive, and potentially generalizable solution for lung cancer detection. CLINICAL TRIAL REGISTRATION This study is not a clinical trial and was therefore not registered.
Collapse
Affiliation(s)
- Meng-Rui Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Mu-Hsiang Kao
- Department. of Electrical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Ya-Chu Hsieh
- Department. of Electrical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Min Sun
- Department. of Electrical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| | - Kea-Tiong Tang
- Department. of Electrical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| |
Collapse
|
22
|
Seo J, Gaddis NC, Patchen BK, Xu J, Barr RG, O'Connor G, Manichaikul AW, Gharib SA, Dupuis J, North KE, Cassano PA, Hancock DB. Exploiting meta-analysis of genome-wide interaction with serum 25-hydroxyvitamin D to identify novel genetic loci associated with pulmonary function. Am J Clin Nutr 2024; 119:1227-1237. [PMID: 38484975 PMCID: PMC11130669 DOI: 10.1016/j.ajcnut.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/12/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Higher 25-hydroxyvitamin D (25(OH)D) concentrations in serum has a positive association with pulmonary function. Investigating genome-wide interactions with 25(OH)D may reveal new biological insights into pulmonary function. OBJECTIVES We aimed to identify novel genetic variants associated with pulmonary function by accounting for 25(OH)D interactions. METHODS We included 211,264 participants from the observational United Kingdom Biobank study with pulmonary function tests (PFTs), genome-wide genotypes, and 25(OH)D concentrations from 4 ancestral backgrounds-European, African, East Asian, and South Asian. Among PFTs, we focused on forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) because both were previously associated with 25(OH)D. We performed genome-wide association study (GWAS) analyses that accounted for variant×25(OH)D interaction using the joint 2 degree-of-freedom (2df) method, stratified by participants' smoking history and ancestry, and meta-analyzed results. We evaluated interaction effects to determine how variant-PFT associations were modified by 25(OH)D concentrations and conducted pathway enrichment analysis to examine the biological relevance of our findings. RESULTS Our GWAS meta-analyses, accounting for interaction with 25(OH)D, revealed 30 genetic variants significantly associated with FEV1 or FVC (P2df <5.00×10-8) that were not previously reported for PFT-related traits. These novel variant signals were enriched in lung function-relevant pathways, including the p38 MAPK pathway. Among variants with genome-wide-significant 2df results, smoking-stratified meta-analyses identified 5 variants with 25(OH)D interactions that influenced FEV1 in both smoking groups (never smokers P1df interaction<2.65×10-4; ever smokers P1df interaction<1.71×10-5); rs3130553, rs2894186, rs79277477, and rs3130929 associations were only evident in never smokers, and the rs4678408 association was only found in ever smokers. CONCLUSION Genetic variant associations with lung function can be modified by 25(OH)D, and smoking history can further modify variant×25(OH)D interactions. These results expand the known genetic architecture of pulmonary function and add evidence that gene-environment interactions, including with 25(OH)D and smoking, influence lung function.
Collapse
Affiliation(s)
- Jungkyun Seo
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States
| | - Nathan C Gaddis
- RTI International, Research Triangle Park, NC, United States
| | - Bonnie K Patchen
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Jiayi Xu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - R Graham Barr
- Divisions of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York, NY, United States
| | - George O'Connor
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Sina A Gharib
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Computational Medicine Core, Center for Lung Biology, University of Washington, Seattle, WA, United States
| | - Josée Dupuis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States
| | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States; Division of Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, NY, United States
| | - Dana B Hancock
- RTI International, Research Triangle Park, NC, United States.
| |
Collapse
|
23
|
Abdelraouf MM, Abdalla RA, Mohamed DM, Ahmed AK, Abuzaid MA, Issak MA, Eljack IA, Saeed E, Abdelaziz MO. Prevalence of smoking and its associated factors among students of the University of Dongola, Northern State, Sudan: a cross-sectional study. Ann Med Surg (Lond) 2024; 86:2543-2548. [PMID: 38694294 PMCID: PMC11060252 DOI: 10.1097/ms9.0000000000001862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/14/2024] [Indexed: 05/04/2024] Open
Abstract
Background Smoking is one of the leading causes of morbidity and mortality worldwide, and its prevalence has increased globally, particularly among university students. Objective The study aimed to assess the smoking prevalence and its associated factors among students at University of Dongola, Northern State, Sudan. Methods A multi-centred cross-sectional study was conducted among students of University of Dongola. Data was collected via an online Google form questionnaire. Descriptive and comparative analyses were performed using SPSS, version 26. Statistical significance was considered at p less than or equal to 0.05. Results A total of 642 students participated in the study, of which 51.9% were females. Most of the students (73.6%) were aged 20-25 years and came from health & medical faculties (60.7%). The overall prevalence of smoking was 11.7%. The determined risk factors for smoking included male gender (P≤0.001), older age (P≤0.001), non-health and non-medical faculties (P≤0.001), uneducated fathers (P=0.032), and low socio-economic status (P=0.001). The most common reason for smoking was stress (36%), with cigarettes being the most commonly used type (88%). Personal savings were the main source of smoking expenses (73.3%). Most smokers (88%) were aware of the harmful effects of smoking. Conclusion The overall smoking prevalence was relatively low among students at University of Dongola. Male gender, older age, non-health and non-medical faculties, uneducated fathers, and low socio-economic status were significant risk factors for smoking. The majority of smokers were aware of the harmful effects of smoking.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ibrahim A. Eljack
- Department of Community Medicine, University of Bisha College of Medicine, Bisha
| | - Elshazaly Saeed
- Prince Abdullah bin Khaled Coeliac Disease Research Chair, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed O. Abdelaziz
- Department of Medicine, Faculty of Medicine & Health Science, University of Dongola, Northern State
| |
Collapse
|
24
|
De Rubis G, Paudel KR, Yeung S, Mohamad S, Sudhakar S, Singh SK, Gupta G, Hansbro PM, Chellappan DK, Oliver BGG, Dua K. 18-β-glycyrrhetinic acid-loaded polymeric nanoparticles attenuate cigarette smoke-induced markers of impaired antiviral response in vitro. Pathol Res Pract 2024; 257:155295. [PMID: 38603841 DOI: 10.1016/j.prp.2024.155295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Tobacco smoking is a leading cause of preventable mortality, and it is the major contributor to diseases such as COPD and lung cancer. Cigarette smoke compromises the pulmonary antiviral immune response, increasing susceptibility to viral infections. There is currently no therapy that specifically addresses the problem of impaired antiviral response in cigarette smokers and COPD patients, highlighting the necessity to develop novel treatment strategies. 18-β-glycyrrhetinic acid (18-β-gly) is a phytoceutical derived from licorice with promising anti-inflammatory, antioxidant, and antiviral activities whose clinical application is hampered by poor solubility. This study explores the therapeutic potential of an advanced drug delivery system encapsulating 18-β-gly in poly lactic-co-glycolic acid (PLGA) nanoparticles in addressing the impaired antiviral immunity observed in smokers and COPD patients. Exposure of BCi-NS1.1 human bronchial epithelial cells to cigarette smoke extract (CSE) resulted in reduced expression of critical antiviral chemokines (IP-10, I-TAC, MIP-1α/1β), mimicking what happens in smokers and COPD patients. Treatment with 18-β-gly-PLGA nanoparticles partially restored the expression of these chemokines, demonstrating promising therapeutic impact. The nanoparticles increased IP-10, I-TAC, and MIP-1α/1β levels, exhibiting potential in attenuating the negative effects of cigarette smoke on the antiviral response. This study provides a novel approach to address the impaired antiviral immune response in vulnerable populations, offering a foundation for further investigations and potential therapeutic interventions. Further studies, including a comprehensive in vitro characterization and in vivo testing, are warranted to validate the therapeutic efficacy of 18-β-gly-PLGA nanoparticles in respiratory disorders associated with compromised antiviral immunity.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Siddiq Mohamad
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Swathi Sudhakar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai, Tamil Nadu 600036, India
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Brian Gregory George Oliver
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
25
|
Le TTT, Méndez D, Warner KE. New Estimates of Smoking-Attributable Mortality in the U.S. From 2020 Through 2035. Am J Prev Med 2024; 66:877-882. [PMID: 38143046 DOI: 10.1016/j.amepre.2023.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION The often-cited Centers for Disease Control and Prevention (CDC) estimate of 480,000 annual U.S. smoking-attributable deaths (SADs), including 439,000 first-hand smoke deaths, derives from 2005 to 2009 data. Since then, adult smoking prevalence has decreased by 40%, while the population has grown and the smoking population aged. An updated estimate is presented to determine whether the CDC figure remains accurate or has changed substantially. In addition, the likely annual smoking-related mortality toll is projected through 2035. METHODS A well-established model of smoking prevalence and health effects is employed to estimate annual SADs among individuals exposed to first-hand smoke in the U.S. for two distinct periods: 2005-2009 and 2020-2035. The estimate for 2005-2009 serves as a benchmark to evaluate the reliability of the model's estimate in comparison to CDC's. The projections for 2020-2035 provide up-to-date figures for SADs, predicting how annual SADs are likely to change in the coming years. Data were collected between 2005 and 2020. The analysis was conducted in 2023. RESULTS This study's estimate of 420,000 first-hand smoke deaths over 2005-2009 is 95.7% of CDC's estimate during the same period. The model projections indicate that SADs among individuals who currently smoke or formerly smoked have increased modestly since 2005-2009. Beginning in 2020, annual SADs will remain relatively stable at approximately 450,000 before starting to decline around 2030. CONCLUSIONS These findings suggest that the CDC estimate of the annual mortality burden of smoking remains valid. Despite U.S. population growth and the aging of the smoking population, substantial reductions in smoking will finally produce a steady, if gradual, decline in SADs beginning around 2030.
Collapse
Affiliation(s)
- Thuy T T Le
- Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor, Michigan.
| | - David Méndez
- Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Kenneth E Warner
- Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor, Michigan
| |
Collapse
|
26
|
Zidan MH, Shaarawy HM, Gharraf HS, Helal SF, Hassan M, Rizk R. Burden of obstructive sleep apnea in patients with lung cancer and its effect on performance status. J Sleep Res 2024:e14212. [PMID: 38638081 DOI: 10.1111/jsr.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
The association between lung cancer and obstructive sleep apnea has remained a matter of debate for years. Obstructive sleep apnea is thought to increase the incidence of lung cancer due to intermittent hypoxaemia and sleep fragmentation. The aim of this study is to assess the prevalence of obstructive sleep apnea in patients with lung cancer and its effect on those patients' performance status. This is a prevalence study that was conducted at Chest Diseases Department, Alexandria Main University Hospitals. We enrolled 153 patients with lung cancer. All patients underwent cardiorespiratory monitoring using a home sleep-testing device. Performance status was assessed using Karnofsky performance status scale. The study included 120 (78.4%) males and 33 (21.6%) females newly diagnosed with lung cancer. The mean age was 59.98 ± 11.11 years. Obstructive sleep apnea (apnea-hypopnea index ≥ 5) was present in 134 (87.6%) patients. Eighty-five (63.4%) patients had mild obstructive sleep apnea, 39 (29.1%) patients had moderate obstructive sleep apnea, and 10 (7.46%) patients had severe obstructive sleep apnea. Prolonged nocturnal oxygen desaturation as demonstrated by time of oxygen saturation spent below 90% (T90%) during total sleep time > 30% was present in 25 (16.3%) patients. There was a significant difference in the median value of Karnofsky performance status scale between patients with lung cancer and associated obstructive sleep apnea and those without obstructive sleep apnea. In conclusion, obstructive sleep apnea is highly prevalent among patients with lung cancer. Performance status is worse among patients with lung cancer in the presence of obstructive sleep apnea. Screening patients with lung cancer for obstructive sleep apnea is important regardless of the presence of classical symptoms of obstructive sleep apnea.
Collapse
Affiliation(s)
- Mohamed H Zidan
- The Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hany M Shaarawy
- The Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Heba S Gharraf
- The Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Suzan F Helal
- The Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maged Hassan
- The Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rana Rizk
- The Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
27
|
Li Y, Xiao X, Li J, Han Y, Cheng C, Fernandes GF, Slewitzke SE, Rosenberg SM, Zhu M, Byun J, Bossé Y, McKay JD, Albanes D, Lam S, Tardon A, Chen C, Bojesen SE, Landi MT, Johansson M, Risch A, Bickeböller H, Wichmann HE, Christiani DC, Rennert G, Arnold SM, Goodman GE, Field JK, Davies MP, Shete S, Marchand LL, Liu G, Hung RJ, Andrew AS, Kiemeney LA, Sun R, Zienolddiny S, Grankvist K, Johansson M, Caporaso NE, Cox A, Hong YC, Lazarus P, Schabath MB, Aldrich MC, Schwartz AG, Gorlov I, Purrington KS, Yang P, Liu Y, Bailey-Wilson JE, Pinney SM, Mandal D, Willey JC, Gaba C, Brennan P, Xia J, Shen H, Amos CI. Lung Cancer in Ever- and Never-Smokers: Findings from Multi-Population GWAS Studies. Cancer Epidemiol Biomarkers Prev 2024; 33:389-399. [PMID: 38180474 PMCID: PMC10905670 DOI: 10.1158/1055-9965.epi-23-0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/03/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Clinical, molecular, and genetic epidemiology studies displayed remarkable differences between ever- and never-smoking lung cancer. METHODS We conducted a stratified multi-population (European, East Asian, and African descent) association study on 44,823 ever-smokers and 20,074 never-smokers to identify novel variants that were missed in the non-stratified analysis. Functional analysis including expression quantitative trait loci (eQTL) colocalization and DNA damage assays, and annotation studies were conducted to evaluate the functional roles of the variants. We further evaluated the impact of smoking quantity on lung cancer risk for the variants associated with ever-smoking lung cancer. RESULTS Five novel independent loci, GABRA4, intergenic region 12q24.33, LRRC4C, LINC01088, and LCNL1 were identified with the association at two or three populations (P < 5 × 10-8). Further functional analysis provided multiple lines of evidence suggesting the variants affect lung cancer risk through excessive DNA damage (GABRA4) or cis-regulation of gene expression (LCNL1). The risk of variants from 12 independent regions, including the well-known CHRNA5, associated with ever-smoking lung cancer was evaluated for never-smokers, light-smokers (packyear ≤ 20), and moderate-to-heavy-smokers (packyear > 20). Different risk patterns were observed for the variants among the different groups by smoking behavior. CONCLUSIONS We identified novel variants associated with lung cancer in only ever- or never-smoking groups that were missed by prior main-effect association studies. IMPACT Our study highlights the genetic heterogeneity between ever- and never-smoking lung cancer and provides etiologic insights into the complicated genetic architecture of this deadly cancer.
Collapse
Affiliation(s)
- Yafang Li
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Xiangjun Xiao
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| | - Jianrong Li
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Chao Cheng
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Gail F. Fernandes
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Shannon E. Slewitzke
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, Canada
| | - James D. McKay
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Demetrios Albanes
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Stephen Lam
- Department of Integrative Oncology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adonina Tardon
- Public Health Department, University of Oviedo, ISPA and CIBERESP, Asturias, Spain
| | - Chu Chen
- Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Stig E. Bojesen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria T. Landi
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Mattias Johansson
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Angela Risch
- Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- University of Salzburg and Cancer Cluster Salzburg, Salzburg, Austria
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | | | - David C. Christiani
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Gad Rennert
- Clalit National Cancer Control Center at Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | | | | | - John K. Field
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael P.A. Davies
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Sanjay Shete
- Department of Biostatistics, The University of Texas, MD Anderson Cancer Center, Houston, Texas
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Geoffrey Liu
- University Health Network- The Princess Margaret Cancer Centre, Toronto, California
| | - Rayjean J. Hung
- Luenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Canada
| | - Angeline S. Andrew
- Departments of Epidemiology and Community and Family Medicine, Dartmouth College, Hanover, New Hampshire
| | | | - Ryan Sun
- Department of Biostatistics, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Angela Cox
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of South Korea
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Matthew B. Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Melinda C. Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ann G. Schwartz
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
- Karmanos Cancer Institute, Detroit, Michigan
| | - Ivan Gorlov
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Kristen S. Purrington
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
- Karmanos Cancer Institute, Detroit, Michigan
| | - Ping Yang
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Yanhong Liu
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | | | - Susan M. Pinney
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Diptasri Mandal
- Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - James C. Willey
- College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
| | - Colette Gaba
- The University of Toledo College of Medicine, Toledo, Ohio
| | - Paul Brennan
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, Canada
| | - Jun Xia
- Creighton University School of Medicine, Omaha, Nebraska
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Christopher I. Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
28
|
Lee T, George CD, Jiang C, Asgari MM, Nijsten T, Pardo LM, Choquet H. Association between lifetime smoking and cutaneous squamous cell carcinoma: A 2-sample Mendelian randomization study. JAAD Int 2024; 14:69-76. [PMID: 38274396 PMCID: PMC10808986 DOI: 10.1016/j.jdin.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 01/27/2024] Open
Abstract
Background/Purpose Cutaneous squamous cell carcinoma (cSCC) is one of the most common malignancies worldwide. While several environmental risk factors for cSCC are well established, there is conflicting evidence on cigarette smoking (and its potential causal effect) and cSCC risk. Furthermore, it is unclear if these potential associations represent causal, modifiable risk factors for cSCC development. This study aims to assess the nature of the associations between cigarette smoking traits (smoking initiation, amount smoked, and lifetime smoking exposure) and cSCC risk using two-sample Mendelian randomization analyses. Methods Genetic instruments, based on common genetic variants associated with cigarette smoking traits (P < 5 × 10-8), were derived from published genome-wide association studies (GWASs). For cSCC, we used GWAS summary statistics from the Kaiser Permanente GERA cohort (7701 cSCC cases and 60,167 controls; all non-Hispanic Whites). Results We found modest evidence that genetically determined lifetime smoking was associated with cSCC (inverse-variance weighted method: OR[95% CI] = 1.47[1.09-1.98]; P = .012), suggesting it may be a causal risk factor for cSCC. We did not detect any evidence of association between genetically determined smoking initiation or amount smoked and cSCC risk. Conclusion Study findings highlight the importance of smoking prevention and may support risk-stratified cSCC screening strategies based on carcinogen exposure and other genetic and clinical information.
Collapse
Affiliation(s)
| | - Christopher D. George
- Department of Dermatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Chen Jiang
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Maryam M. Asgari
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tamar Nijsten
- Department of Dermatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Luba M. Pardo
- Department of Dermatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| |
Collapse
|
29
|
Otavova M, Masquelier B, Faes C, van den Borre L, Vandeninden B, de Clercq E, Devleesschauwer B. Trends in socioeconomic inequalities in cause-specific premature mortality in Belgium, 1998-2019. BMC Public Health 2024; 24:470. [PMID: 38355531 PMCID: PMC10868013 DOI: 10.1186/s12889-024-17933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Higher levels of socioeconomic deprivation have been consistently associated with increased risk of premature mortality, but a detailed analysis by causes of death is lacking in Belgium. We aim to investigate the association between area deprivation and all-cause and cause-specific premature mortality in Belgium over the period 1998-2019. METHODS We used the 2001 and 2011 Belgian Indices of Multiple Deprivation to assign statistical sectors, the smallest geographical units in the country, into deprivation deciles. All-cause and cause-specific premature mortality rates, population attributable fraction, and potential years of life lost due to inequality were estimated by period, sex, and deprivation deciles. RESULTS Men and women living in the most deprived areas were 1.96 and 1.78 times more likely to die prematurely compared to those living in the least deprived areas over the period under study (1998-2019). About 28% of all premature deaths could be attributed to socioeconomic inequality and about 30% of potential years of life lost would be averted if the whole population of Belgium faced the premature mortality rates of the least deprived areas. CONCLUSION Premature mortality rates have declined over time, but inequality has increased due to a faster pace of decrease in the least deprived areas compared to the most deprived areas. As the causes of death related to poor lifestyle choices contribute the most to the inequality gap, more effective, country-level interventions should be put in place to target segments of the population living in the most deprived areas as they are facing disproportionately high risks of dying.
Collapse
Affiliation(s)
- Martina Otavova
- Center for Demographic Research, UCLouvain, Louvain-la-Neuve, Belgium.
- Data Science Institute, I-BioStat, Hasselt University, Hasselt, Belgium.
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium.
| | - Bruno Masquelier
- Center for Demographic Research, UCLouvain, Louvain-la-Neuve, Belgium
| | - Christel Faes
- Data Science Institute, I-BioStat, Hasselt University, Hasselt, Belgium
| | - Laura van den Borre
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
- Interface Demography, Department of Sociology, Vrije Universiteit Brussels, Brussels, Belgium
| | - Bram Vandeninden
- Data Science Institute, I-BioStat, Hasselt University, Hasselt, Belgium
- Research Centre on Environmental and Occupational Health, School of Public Health, Université Libre de Bruxelles, Brussels, Belgium
- Department of Risk and Health Impact Assessment, Sciensano, Brussels, Belgium
| | - Eva de Clercq
- Department of Risk and Health Impact Assessment, Sciensano, Brussels, Belgium
| | - Brecht Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| |
Collapse
|
30
|
Eguchi H, Yu Y, Matsunaga T, Yoshino Y, Ikari A. Acrolein suppresses anticancer drug-induced toxicity mediated by activating claudin-1 and Nrf2 axis in a spheroid model of human lung squamous cell carcinoma cells. Toxicol Lett 2024; 392:46-55. [PMID: 38142011 DOI: 10.1016/j.toxlet.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Tobacco smoke contains various carcinogenic ingredients such as nicotine, acrolein, and benzopyrene; however, their effects on cancer treatment are not fully understood. Claudin-1 (CLDN1), a component of tight junctions, is involved in the increased resistance to anticancer drugs. In this study, we found that acrolein increases the mRNA and protein levels of CLDN1 in RERF-LC-AI cells derived from human lung squamous cell carcinoma (SCC). Acrolein increased the p-extracellular signal-regulated kinase (ERK) 1/2 levels without affecting the p-Akt level. The acrolein-induced elevation of CLDN1 expression was attenuated by U0126, a mitogen-activated protein kinase kinas (MEK) inhibitor. These results indicate that the activation of MEK/ERK pathway is involved in the acrolein-induced elevation of CLDN1 expression. In a spheroid model, acrolein suppressed the accumulation and toxicity of doxorubicin (DXR), which were rescued by CLDN1 silencing. The acrolein-induced effects were also observed in lung SCC-derived EBC-1 and LK-2 cells. Acrolein also increased the expression level of nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that regulates antioxidant and detoxifying genes, which were inhibited by CLDN1 silencing. In spheroid cells, the levels of reactive oxygen species were enhanced by acrolein, which was inhibited by CLDN1 silencing. Taken together, acrolein may reduce the anticancer drug-induced toxicity in human lung SCC cells mediated by high CLDN1 expression followed by the upregulation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yaqing Yu
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| |
Collapse
|
31
|
Marcovici I, Vlad D, Buzatu R, Popovici RA, Cosoroaba RM, Chioibas R, Geamantan A, Dehelean C. Rutin Linoleate Triggers Oxidative Stress-Mediated Cytoplasmic Vacuolation in Non-Small Cell Lung Cancer Cells. Life (Basel) 2024; 14:215. [PMID: 38398724 PMCID: PMC10890525 DOI: 10.3390/life14020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Lung cancer (LC) represents one of the most prevalent health issues globally and is a leading cause of tumor-related mortality. Despite being one the most attractive compounds of plant origin due to its numerous biological properties, the therapeutic applications of rutin (RUT) are limited by its disadvantageous pharmacokinetics. Thus, the present study aimed to evaluate in vitro the application of two RUT fatty acids bioconjugates, rutin oleate (RUT-O) and rutin linoleate (RUT-L), as potential improved RUT-based chemotherapeutics in non-small cell lung cancer (NSCLC) treatment. The results indicate that both compounds lacked cytotoxic potential in EpiAirway™ tissues at concentrations up to 125 µM. However, only RUT-L exerted anti-tumorigenic activity in NCI-H23 NSCLC cells after 24 h of treatment by reducing cell viability (up to 47%), proliferation, and neutral red uptake, causing cell membrane damage and lactate dehydrogenase (LDH) leakage, affecting cytoskeletal distribution, inducing cytoplasmic vacuolation, and increasing oxidative stress. The cytopathic effects triggered by RUT-L at 100 and 125 µM are indicators of a non-apoptotic cell death pathway that resembles the characteristics of paraptosis. The novel findings of this study stand as a basis for further investigations on the anti-cancer properties of RUT-L and their underlying mechanisms.
Collapse
Affiliation(s)
- Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Daliborca Vlad
- Discipline of Pharmacology, Department of Pharmacology and Biochemistry, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Roxana Buzatu
- Department of Dentofacial Aesthetics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania
| | - Ramona Amina Popovici
- Department of Management, Legislation and Communication in Dentistry, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Raluca Mioara Cosoroaba
- Department of Management, Legislation and Communication in Dentistry, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Raul Chioibas
- Department of Surgery I, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Andreea Geamantan
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
32
|
Riano I, Velazquez AI, Viola L, Abuali I, Jimenez K, Abioye O, Florez N. State of Cancer Control in South America: Challenges and Advancement Strategies. Hematol Oncol Clin North Am 2024; 38:55-76. [PMID: 37353378 DOI: 10.1016/j.hoc.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
Cancer is a major public health problem in South America. The cancer mortality burden is increasing in the region due to its presentation at later stages, which is related to limited access to cancer care. This results in a noticeable inequity in provisions of cancer care including specialized screening programs, as well as cancer-related treatments such as personalized medicine, radiation therapy, palliative care, and survivorship services. Consequently, South America faces many challenges for cancer control, most of them deriving from a lack of funding and unequal distribution of resources and cancer services, affecting mostly the underserved populations in the region.
Collapse
Affiliation(s)
- Ivy Riano
- Division of Hematology and Oncology, Dartmouth Cancer Center, Geisel School of Medicine Dartmouth, One Medical Drive, Lebanon, NH 03766, USA.
| | - Ana I Velazquez
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA. https://twitter.com/AnaVManana
| | - Lucia Viola
- Fundación Neumológica Colombiana, Centro de Tratamiento e Investigación Sobre Cáncer Luis Carlos Sarmiento Angulo (CTIC), Cra. 13b #161 - 85, Bogotá, Colombia. https://twitter.com/LuciaViola9
| | - Inas Abuali
- Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA. https://twitter.com/Inas_md
| | - Kathya Jimenez
- Universidad Evangelica de El Salvador, El Salvador. https://twitter.com/KathyaJimenezMD
| | - Oyepeju Abioye
- University of the Witwatersrand, School of Public Health, Johannesburg, South Africa. https://twitter.com/AbioyeOyepeju
| | - Narjust Florez
- Dana Farber Cancer Institute, Harvard School of Medicine, 450 Brookline Avenue - DA1230, Boston, MA 02215, USA. https://twitter.com/NarjustFlorezMD
| |
Collapse
|
33
|
Tajbakhsh A, Yousefi F, Farahani N, Savardashtaki A, Reiner Ž, Jamialahmadi T, Sahebkar A. Molecular Mechanisms and Therapeutic Potential of Resolvins in Cancer - Current Status and Perspectives. Curr Med Chem 2024; 31:5898-5917. [PMID: 37497711 DOI: 10.2174/0929867331666230727100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
Resolvins are specialized pro-resolving mediators derived from omega-3 fatty acids that can suppress several cancer-related molecular pathways, including important activation of transcription parameters in the tumor cells and their microenvironment, inflammatory cell infiltration, cytokines as well as chemokines. Recently, an association between resolvins and an important anti-inflammatory process in apoptotic tumor cell clearance (efferocytosis) was shown. The inflammation status or the oncogene activation increases the risk of cancer development via triggering the transcriptional agents, including nuclear factor kappa-light-chain-enhancer of activated B cells by generating the pro-inflammatory lipid molecules and infiltrating the tumor cells along with the high level of pro-inflammatory signaling. These events can cause an inflammatory microenvironment. Resolvins might decrease the leukocyte influx into the inflamed tissues. It is widely accepted that resolvins prohibit the development of debris-triggered cancer via increasing the clearance of debris, especially by macrophage phagocytosis in tumors without any side effects. Resolvins D2, D1, and E1 might suppress tumor-growing inflammation by activation of macrophages clearance of cell debris in the tumor. Resolvin D5 can assist patients with pain during treatment. However, the effects of resolvins as anti-inflammatory mediators in cancers are not completely explained. Thus, based on the most recent studies, we tried to summarize the most recent knowledge on resolvins in cancers.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
- Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Ten Berge H, Willems B, Pan X, Dvortsin E, Aerts J, Postma MJ, Prokop M, van den Heuvel MM. Cost-effectiveness analysis of a lung cancer screening program in the netherlands: a simulation based on NELSON and NLST study outcomes. J Med Econ 2024; 27:1197-1211. [PMID: 39291295 DOI: 10.1080/13696998.2024.2404359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND In the Netherlands, lung cancer is the leading cause of cancer-related death, accounting for more than 10,000 annual deaths. Lung cancer screening (LCS) studies using low-dose computed tomography (LDCT) have demonstrated that early detection reduces lung cancer mortality. However, no LCS program has been implemented yet in the Netherlands. A national LCS program has the potential to enhance the health outcomes for lung cancer patients in the Netherlands. OBJECTIVE AND METHODS This study evaluates the cost-effectiveness of LCS compared to no-screening in the Netherlands, by simulating the screening outcomes based on data from NEderlands-Leuvens Longkanker Screenings ONderzoek (NELSON) and National Lung Screening Trial (NLST). We simulated annual screening up to 74 years of age, using inclusion criteria from the respective studies. A decision tree and Markov model was used to predict the incremental costs, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratio (ICERs) for the screening population. The analysis used a lifetime horizon and a societal perspective. RESULTS Compared to no-screening, LCS resulted in an ICER of €5,169 per QALY for the NELSON simulation, and an ICER of €17,119 per QALY for the NLST simulation. The screening costs were highly impactful for the cost-effectiveness. The most influential parameter was the CT scan cost. Cost reduction for CT from €201 to €101 per scan would reduce the ICER to €2,335 using NELSON criteria. Additionally, LCS could prevent 15,115 and 12,611 premature lung cancer deaths, accompanied by 1.66 and 1.31 QALYs gained per lung cancer case for the NELSON and NLST simulations, respectively. CONCLUSION LCS was estimated to be cost-effective in the Netherlands for both simulations at a willingness-to-pay threshold of €20,000 per QALY. Using the NELSON criteria, less than €5,500 per QALY had to be spent. Lowering the cost per CT exam would lead to a further reduction of this amount.
Collapse
Affiliation(s)
- Hilde Ten Berge
- Institute for Diagnostic Accuracy, Groningen, The Netherlands
| | - Bo Willems
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- AstraZeneca, Oncology Business Unit, The Netherlands
| | - Xuanqi Pan
- Institute for Diagnostic Accuracy, Groningen, The Netherlands
- Unit of Global Health, Faculty of Medical Sciences, University of Groningen, Groningen, The Netherlands
| | - Evgeni Dvortsin
- Institute for Diagnostic Accuracy, Groningen, The Netherlands
| | - Joachim Aerts
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maarten J Postma
- Unit of Global Health, Faculty of Medical Sciences, University of Groningen, Groningen, The Netherlands
- Department of Economics, Econometrics & Finance, Faculty of Economics & Business, University of Groningen, Groningen, The Netherlands
| | - Mathias Prokop
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michel M van den Heuvel
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Robinson-Oghogho JN, Alcaraz KI, Thorpe RJ. Structural Racism as a Contributor to Lung Cancer Incidence and Mortality Rates Among Black Populations in the United States. Cancer Control 2024; 31:10732748241248363. [PMID: 38698674 PMCID: PMC11067682 DOI: 10.1177/10732748241248363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/15/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Although racial disparities in lung cancer incidence and mortality have diminished in recent years, lung cancer remains the second most diagnosed cancer among US Black populations. Many factors contributing to disparities in lung cancer are rooted in structural racism. To quantify this relationship, we examined associations between a multidimensional measure of county-level structural racism and county lung cancer incidence and mortality rates among Black populations, while accounting for county levels of environmental quality. METHODS We merged 2016-2020 data from the United States Cancer Statistics Data Visualization Tool, a pre-existing county-level structural racism index, the Environmental Protection Agency's 2006-2010 Environmental Quality Index (EQI), 2023 County Health Rankings, and the 2021 United States Census American Community Survey. We conducted multivariable linear regressions to examine associations between county-level structural racism and county-level lung cancer incidence and mortality rates. RESULTS Among Black males and females, each standard deviation increase in county-level structural racism score was associated with an increase in county-level lung cancer incidence of 6.4 (95% CI: 4.4, 8.5) cases per 100,000 and an increase of 3.3 (95% CI: 2.0, 4.6) lung cancer deaths per 100,000. When examining these associations stratified by sex, larger associations between structural racism and lung cancer rates were observed among Black male populations than among Black females. CONCLUSION Structural racism contributes to both the number of new lung cancer cases and the number of deaths caused by lung cancer among Black populations. Those aiming to reduce lung cancer cases and deaths should consider addressing racism as a root-cause.
Collapse
Affiliation(s)
- Joelle N. Robinson-Oghogho
- Department of Health Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kassandra I. Alcaraz
- Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Roland J. Thorpe
- Department of Health Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
36
|
Kumar M, Keady J, Aryal SP, Hessing M, Richards CI, Turner JR. The Role of Microglia in Sex- and Region-Specific Blood-Brain Barrier Integrity During Nicotine Withdrawal. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:182-193. [PMID: 38298802 PMCID: PMC10829673 DOI: 10.1016/j.bpsgos.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 02/02/2024] Open
Abstract
Background Smoking is the largest preventable cause of death and disease in the United States, with <5% of quit attempts being successful. Microglia activation and proinflammatory neuroimmune signaling in reward neurocircuitry are implicated in nicotine withdrawal symptomology. Microglia are integral regulators of blood-brain barrier (BBB) functionality as well; however, whether the effects of nicotine withdrawal on microglia function impact BBB integrity is unknown. Methods Mice were treated with chronic nicotine (12 mg/kg/day) and subjected to 48 hours nicotine withdrawal. Regional BBB permeability, together with messenger RNA and protein expression of tight junction proteins, were assessed. PLX5622 chow was used to deplete microglia to evaluate the role of microglia in regulating BBB integrity and nicotine withdrawal symptomology. Results Female mice had higher baseline BBB permeability in the prefrontal cortex and hippocampus than males. Nicotine withdrawal further exacerbated the BBB permeability selectively in the prefrontal cortex of females. These effects were concurrent with prefrontal cortex alterations in a subset of tight junction proteins with increased proinflammatory responses following nicotine withdrawal in females. Depletion of microglia via PLX5622 treatment prevented all these molecular effects and attenuated withdrawal-induced anxiety-like behavior in female mice. Conclusions These results are the first to show sex differences in regional BBB permeability during nicotine withdrawal. This represents a possible link to both the reduced smoking cessation success seen in women and women's increased risk for smoking-related neurovascular disorders. Furthermore, these findings open an avenue for sex-specific therapeutics that target microglia and BBB dysfunction during nicotine withdrawal in women.
Collapse
Affiliation(s)
- Mohit Kumar
- University of Kentucky, College of Pharmacy, Lexington, Kentucky
- Food & Nutrition Biotechnology Division, Centre for Excellence in Functional Foods, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Jack Keady
- University of Kentucky, College of Pharmacy, Lexington, Kentucky
| | - Surya P. Aryal
- Department of Chemistry, University of Kentucky, Lexington, Kentucky
| | - Marissa Hessing
- University of Kentucky, College of Pharmacy, Lexington, Kentucky
| | | | - Jill R. Turner
- University of Kentucky, College of Pharmacy, Lexington, Kentucky
| |
Collapse
|
37
|
Paul B, Jean Simon D, Kondo Tokpovi VC, Kiragu A, Balthazard-Accou K, Emmanuel E. Tobacco use in Haiti: findings from demographic and health survey. BMC Public Health 2023; 23:2504. [PMID: 38097954 PMCID: PMC10720190 DOI: 10.1186/s12889-023-17409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
INTRODUCTION Although tobacco has harmful effects on the physical and mental health of individuals, its use remains significant, according to the World Health Organization. To understand this phenomenon, studies have been carried out in many countries around the world, while in Haiti where more than 5,000 people die each year due to tobacco use, little is known about the use of this substance. The aim of this study was to examine the prevalence and the factors associated with tobacco use in Haiti. METHODS We used data from the 2016/17 Haitian Demographic Health Survey. Both descriptive and multivariate analyses were conducted using STATA 16.0 software to assess the prevalence and identify factors associated with tobacco use. Results were reported as adjusted odds ratios with 95% confidence intervals. Statistical significance was declared at p < 0.05. RESULTS The prevalence of tobacco use was estimated at 9.8% (95% CI: 9.2-10.4) among men and 1.7% (95% CI: 1.5-1.9) among women. Although the prevalence of tobacco use was low among young people, it increased with age. Respondents aged 35 and above, with no formal education, non-Christians, divorced/separated/widowed, from poorest households, rural areas, "Aire Métropolitaine de Port-au-Prince" region, with high media exposure had a higher likelihood of tobacco use. CONCLUSION The low prevalence of tobacco use among Haitian women and youth represents a public policy opportunity to prevent these vulnerable groups from starting smoking. Adult male smokers should also be targeted by appropriate policy to reduce the different health burdens associated with tobacco, both for the smokers and other people they may expose to passive smoking. Government and health sector stakeholders, along with community leaders, should create and enforce awareness strategies and rules to control advertisements that encourage irresponsible and health-risky consumption behaviors.
Collapse
Affiliation(s)
- Bénédique Paul
- Department of Agro-socio-economics, Chibas, Université Quisqueya, Port-au-Prince, Haiti.
- Groupe d'Etude sur les Sciences de la Durabilité, Université Quisqueya, Port-au-Prince, Haiti.
| | - David Jean Simon
- Bureau d'Etudes et de Recherche en Statistiques Appliquées, Suivi et Evaluation (BERSA-SE), Port-au-Prince, Haiti
| | | | - Ann Kiragu
- Department of Law and Political and Social Sciences, University of Sorbonne Paris Nord, Paris, France
| | - Ketty Balthazard-Accou
- Groupe d'Etude sur les Sciences de la Durabilité, Université Quisqueya, Port-au-Prince, Haiti
- Espace universitaire One Health, Université Quisqueya, Port-au-Prince, Haiti
| | - Evens Emmanuel
- Espace universitaire One Health, Université Quisqueya, Port-au-Prince, Haiti
| |
Collapse
|
38
|
Kopec M, Beton-Mysur K, Abramczyk H. Raman imaging and chemometric methods in human normal bronchial and cancer lung cells: Raman biomarkers of lipid reprogramming. Chem Phys Lipids 2023; 257:105339. [PMID: 37748746 DOI: 10.1016/j.chemphyslip.2023.105339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
This paper presents an approach to study biochemical changes in human normal bronchial cells (BEpiC) and human cancer lung cells (A549) by Raman spectroscopy and Raman imaging combined with chemometric methods. Based on Raman spectra and Raman imaging combined with chemometric methods we have proved that peaks at 845 cm-1, 2845 cm-1, 2936 cm-1, 1444 cm-1, 750 cm-1, 1126 cm-1, 1584 cm-1, can be treated as Raman biomarkers probing phosphorylation, lipid reprogramming, oxidative phosphorylation and changes in cholesterol and cytochrome in normal and cancer cells. Raman analysis of the bands at 845 cm-1, 2845 cm-1, 1444 cm-1, and 1126 cm-1 in human cancer lung cells and human normal bronchial cells demonstrate enhanced phosphorylation and triglycerides de novo synthesis, reduced levels of cholesterol and cytochrome c in cancer cells. The sensitivity is equal to 100% (nucleus), 87.5% (mitochondria), 100% (endoplasmic reticulum), 87.5% (lipid droplets), 87.5% (cytoplasm), 87.5% (cell membrane) for A549 cell line and 83.3% (nucleus), 100% (mitochondria), 83.3% (endoplasmic reticulum), 100% (lipid droplets), 100% (cytoplasm), 83.3% (cell membrane) for BEpiC. The values of specificity for cross-validation equal 93.4% (nucleus), 85.5% (mitochondria), 89.5% (endoplasmic reticulum), 90.8% (lipid droplets), 61.8% (cytoplasm), 94.7% (cell membrane) for A549 cell line and 88.5% (nucleus), 85.9% (mitochondria), 85.9% (endoplasmic reticulum), 97.4% (lipid droplets), 75.6% (cytoplasm), 92.3% (cell membrane) for BEpiC. We have confirmed that Raman spectroscopy methods combined with PLS-DA are useful tools to monitor changes in human cancer lung cells and human normal bronchial cells.
Collapse
Affiliation(s)
- Monika Kopec
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, Lodz 93-590, Poland.
| | - Karolina Beton-Mysur
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, Lodz 93-590, Poland
| | - Halina Abramczyk
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, Lodz 93-590, Poland
| |
Collapse
|
39
|
Al-Zahrani MH, Almutairi NM. Genetic Polymorphisms of GSTM1 and GPX1 Genes and Smoking Susceptibility in the Saudi Population. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:180-189. [PMID: 38235052 PMCID: PMC10790742 DOI: 10.4103/jpbs.jpbs_365_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 01/19/2024] Open
Abstract
Background/Objective/Methods Glutathione-S-transferase Mu1 (GSTM1) and glutathione peroxidase 1 (GPX1) are known antioxidant enzymes that help protect cells from the oxidative damage that occurs from smoking. This study explored the correlation between GSTM1 and GPX1 levels between a group of smokers with the GSTM1 and GPX1 genes in the Saudi population and a control group and investigated the genetic risk factors in the group of smokers. Results The control and smokers' group (n = 50; aged 22.3 ± 3.1 years; BMI 24.6 ± 5.9 kg/m2) were genotyped using quantitative polymerase chain reaction (qPCR). In comparison with the control group, the smokers' group displayed a different genotype disruption of GSTM1 and GPX1. Carriers of the homozygous (TT) genotype of GSTM1 had more than a twofold (OR = 2.71, 95% CI = 0.10-70.79, P = 1.000) smoking risk than the carriers of the heterozygous (CT) genotype. Those with the GPX1 gene showed no risk in the control and smokers' groups. Smokers with the TT/GG combination (homozygous for GPX1 and normal for GPX1) were identified as high risk (OR = 2.58, 95% CI = 0.096-69.341). Conclusion The main outcomes showed no significant association between genetic polymorphism of the GSTM1 and GPX1 genes and cigarette smoking in the Saudi Arabian population. However, the results showed a slight decrease in the number of GSTM1 and GPX1 gene modifications among smokers.
Collapse
Affiliation(s)
- Maryam Hassan Al-Zahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nawal Marzoog Almutairi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
40
|
Albano D, Dhamija A, Liao Y, Mclarty A, Talavera H, Kim EK, Ashamalla M. Lung cancer in nonsmokers- A risk factor analysis. Cancer Epidemiol 2023; 86:102439. [PMID: 37598649 DOI: 10.1016/j.canep.2023.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
INSTITUTIONS STONY BROOK MEDICAL CENTERRATIONALE: Lung Cancer screening for the high-risk smoking population has been proven to save lives. However, in 2022, 20% of newly diagnosed lung cancers (47,300) were in nonsmokers. These patients were found to be diagnosed at later stages. This may be at least partly due to not meeting criteria for and participating in current lung cancer screening. This study aims to describe characteristics of a never smoker patient population to help identify common risk factors which might merit inclusion in lung cancer screening and thus improve patient outcomes. METHODS This retrospective single center study included never-smoker patients diagnosed with lung nodules and never-smoker patients diagnosed with lung cancer from 2016 to 2022. Data was obtained from the Stony Brook Medical Center electronic medical record. 16,056 patients were identified as never-smokers who were asked by the medical assistant if they ever smoked in their lifetime. Patients were eliminated if they had any smoking history up to first diagnosis date. Demographics, radiology, histology, diagnosis dates, comorbidities, smoking status, and exposures collected through ICD10 codes and not self-reported, were investigated. RESULTS Of 16,056 never-smoking patients, 9315 (58.02%) were females diagnosed with lung nodules and 6741 (41.98%) were males diagnosed with lung nodules. The univariate analysis showed significant differences between gender, age at nodule diagnosis, and patients with and without comorbidities including chronic obstructive pulmonary disease (COPD), hypertension (HTN), and family history (FHX) of lung cancer. The percentage of lung cancer patients among females was significantly higher than among males. Patients having lung cancer were older. The percentages of lung cancer patients with these comorbidities were significantly higher than those without. However, there was no significant difference found between patients with and without diabetes mellitus (DM). The multivariable logistic regression suggested that age at nodule diagnosis and comorbidities including COPD (which included asthma, emphysema and chronic bronchitis) and family history of lung cancer were significantly associated with lung cancer. Older patients and patients with those comorbidities had a higher risk of developing cancer than those who were younger or without those comorbidities. The study excluded HTN and included age at nodule diagnosis in the logistic regression model as HTN was found to be protective against lung cancer due to age at lung nodule diagnosis. Please refer to the appendix for further details. CONCLUSION Never-smoker patients who were older and with COPD and Family History of lung cancer had higher risk of developing lung cancer than younger patients without these comorbidities. In this study, gender had no impact on outcome.
Collapse
Affiliation(s)
- Denise Albano
- Department of Surgery, Stony Brook University Hospital, USA.
| | - Ankit Dhamija
- Department of Surgery, Stony Brook University Hospital, USA
| | - Yunhan Liao
- Biostatistician, Biostatistics Shared Resource, USA
| | | | | | - Esther K Kim
- Department of Surgery, Stony Brook University Hospital, USA
| | - Mark Ashamalla
- Department of Radiation Oncology, Stony Brook University Hospital, USA
| |
Collapse
|
41
|
Chi Z, Teng Y, Liu Y, Gao L, Yang J, Zhang Z. Association between klotho and non-alcoholic fatty liver disease and liver fibrosis based on the NHANES 2007-2016. Ann Hepatol 2023; 28:101125. [PMID: 37286168 DOI: 10.1016/j.aohep.2023.101125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION AND OBJECTIVES This study aims to explore the association between Klotho and Non-Alcoholic Fatty Liver Disease (NAFLD), a condition affecting millions worldwide. Klotho may have a protective effect against NAFLD mechanisms like inflammation, oxidative stress, and fibrosis. The study will use FLI and FIB-4 score to diagnose NAFLD in a large population for investigating the link between Klotho and NAFLD. MATERIALS AND METHODS The study aimed to explore the association between Klotho and NAFLD by measuring the α-Klotho protein levels in the participants' blood using ELISA. Patients with underlying chronic liver diseases were excluded. The severity of NAFLD was evaluated using FLI and FIB-4, and logistic regression models were used to analyze the data obtained from NHANES. Subgroup analyses were conducted to study Klotho's effect on hepatic steatosis and fibrosis in diverse subpopulations. RESULTS The study found that low levels of α-Klotho were associated with NAFLD, with ORs ranging from 0.72 to 0.83. However, high levels of α-Klotho were associated with NAFLD-related fibrosis. The Q4 group showed significant results in individuals aged 51 years or younger and in females. Non-Hispanic White ethnicity, education level of high school or above, non-smoking, non-hypertension, and non-diabetic groups showed negative correlations. CONCLUSIONS Our study suggests a potential correlation between α-Klotho levels in the blood and NAFLD in adult patients, especially among younger individuals, females and Non-Hispanic Whites. Elevated α-Klotho levels may have therapeutic benefits in treating NAFLD. Further research is required to validate these findings, but they provide new insights for managing this condition.
Collapse
Affiliation(s)
- Zhenfei Chi
- Liaoning University of Traditional Chinese Medicine, PR China
| | - Yun Teng
- Liaoning University of Traditional Chinese Medicine, PR China
| | - Yuting Liu
- Liaoning University of Traditional Chinese Medicine, PR China
| | - Lu Gao
- Liaoning University of Traditional Chinese Medicine, PR China
| | - Junhan Yang
- Liaoning University of Traditional Chinese Medicine, PR China
| | - Zhe Zhang
- Liaoning University of Traditional Chinese Medicine, PR China.
| |
Collapse
|
42
|
Hamed EAR, Salem MAM, Badr NL, Tolba MF. An Efficient Combination of Convolutional Neural Network and LightGBM Algorithm for Lung Cancer Histopathology Classification. Diagnostics (Basel) 2023; 13:2469. [PMID: 37568831 PMCID: PMC10416893 DOI: 10.3390/diagnostics13152469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
The most dangerous disease in recent decades is lung cancer. The most accurate method of cancer diagnosis, according to research, is through the use of histopathological images that are acquired by a biopsy. Deep learning techniques have achieved success in bioinformatics, particularly medical imaging. In this paper, we present an innovative method for rapidly identifying and classifying histopathology images of lung tissues by combining a newly proposed Convolutional Neural Networks (CNN) model with a few total parameters and the enhanced Light Gradient Boosting Model (LightGBM) classifier. After the images have been pre-processed in this study, the proposed CNN technique is provided for feature extraction. Then, the LightGBM model with multiple threads has been used for lung tissue classification. The simulation result, applied to the LC25000 dataset, demonstrated that the novel technique successfully classifies lung tissue with 99.6% accuracy and sensitivity. Furthermore, the proposed CNN model has achieved the lowest training parameters of only one million parameters, and it has also achieved the shortest processing time of just one second throughout the feature extraction process. When this result is compared with the most recent state-of-the-art approaches, the suggested approach has increased effectiveness in the areas of both disease classification accuracy and processing time.
Collapse
Affiliation(s)
- Esraa A.-R. Hamed
- Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt; (N.L.B.); (M.F.T.)
| | - Mohammed A.-M. Salem
- Media Engineering and Technology, German University in Cairo (GUC), Cairo 16482, Egypt;
| | - Nagwa L. Badr
- Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt; (N.L.B.); (M.F.T.)
| | - Mohamed F. Tolba
- Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt; (N.L.B.); (M.F.T.)
| |
Collapse
|
43
|
Karabegović I, Maas SCE, Shuai Y, Ikram MA, Stricker B, Aerts J, Brusselle G, Lahousse L, Voortman T, Ghanbari M. Smoking-related dysregulation of plasma circulating microRNAs: the Rotterdam study. Hum Genomics 2023; 17:61. [PMID: 37430296 DOI: 10.1186/s40246-023-00504-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression. Differential miRNA expression, which is widely shown to be associated with the pathogenesis of various diseases, can be influenced by lifestyle factors, including smoking. This study aimed to investigate the plasma miRNA signature of smoking habits, the potential effect of smoking cessation on miRNA levels, and relate the findings with lung cancer incidence. RESULTS A targeted RNA-sequencing approach measured plasma miRNA levels in 2686 participants from the population-based Rotterdam study cohort. The association between cigarette smoking (current versus never) and 591 well-expressed miRNAs was assessed via adjusted linear regression models, identifying 41 smoking-associated miRNAs that passed the Bonferroni-corrected threshold (P < 0.05/591 = 8.46 × 10-5). Moreover, we found 42 miRNAs with a significant association (P < 8.46 × 10-5) between current (reference group) and former smokers. Then, we used adjusted linear regression models to explore the effect of smoking cessation time on miRNA expression levels. The expression levels of two miRNAs were significantly different within 5 years of cessation (P < 0.05/41 = 1.22 × 10-3) from current smokers, while for cessation time between 5 and 15 years we found 19 miRNAs to be significantly different from current smokers, and finally, 38 miRNAs were significantly different after more than 15 years of cessation time (P < 1.22 × 10-3). These results imply the reversibility of the smoking effect on plasma levels of at least 38 out of the 41 smoking-miRNAs following smoking cessation. Next, we found 8 out of the 41 smoking-related miRNAs to be nominally associated (P < 0.05) with the incidence of lung cancer. CONCLUSIONS This study demonstrates smoking-related dysregulation of plasma miRNAs, which might have a potential for reversibility when comparing different smoking cessation groups. The identified miRNAs are involved in several cancer-related pathways and include 8 miRNAs associated with lung cancer incidence. Our results may lay the groundwork for further investigation of miRNAs as potential mechanism linking smoking, gene expression and cancer.
Collapse
Affiliation(s)
- Irma Karabegović
- Department of Epidemiology, Erasmus MC University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Silvana C E Maas
- Department of Epidemiology, Erasmus MC University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Yu Shuai
- Department of Epidemiology, Erasmus MC University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Bruno Stricker
- Department of Epidemiology, Erasmus MC University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Joachim Aerts
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, 9000, Ghent, Belgium
| | - Lies Lahousse
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Division of Human Nutrition and Health, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
44
|
Alhamad S, Elmasry Y, Uwagboe I, Chekmeneva E, Sands C, Cooper BW, Camuzeaux S, Salam A, Parsons M. B7-H3 Associates with IMPDH2 and Regulates Cancer Cell Survival. Cancers (Basel) 2023; 15:3530. [PMID: 37444640 DOI: 10.3390/cancers15133530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is one of the most common cancers worldwide, and despite improvements in treatment regimens, patient prognosis remains poor. Lung adenocarcinomas develop from the lung epithelia and understanding how specific genetic and environmental factors lead to oncogenic transformation in these cells is of great importance to define the pathways that contribute to tumorigenesis. The recent rise in the use of immunotherapy to treat different cancers has prompted the exploration of immune modulators in tumour cells that may provide new targets to manipulate this process. Of these, the B7 family of cell surface receptors, which includes PD-1, is of particular interest due to its role in modulating immune cell responses within the tumour microenvironment. B7-H3 (CD276) is one family member that is upregulated in many cancer types and suggested to contribute to tumour-immune interactions. However, the function and ligand(s) for this receptor in normal lung epithelia and the mechanisms through which the overexpression of B7-H3 regulate cancer progression in the absence of immune cell interactions remain unclear. Here, we present evidence that B7-H3 is associated with one of the key rate-limiting metabolic enzymes IMPDH2, and the localisation of this complex is altered in human lung cancer cells that express high levels of B7-H3. Mechanistically, the IMPDH2:B7-H3 complex provides a protective role in cancer cells to escape oxidative stress triggered by chemotherapy, thus leading to cell survival. We further demonstrate that the loss of B7-H3 in cancer cells has no effect on growth or migration in 2D but promotes the expansion of 3D spheroids in an IMPDH2-dependent manner. These findings provide new insights into the B7-H3 function in the metabolic homeostasis of normal and transformed lung cancer cells, and whilst this molecule remains an interesting target for immunotherapy, these findings caution against the use of anti-B7-H3 therapies in certain clinical settings.
Collapse
Affiliation(s)
- Salwa Alhamad
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Yassmin Elmasry
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
| | - Isabel Uwagboe
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
| | - Elena Chekmeneva
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Caroline Sands
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Benjamin W Cooper
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Stephane Camuzeaux
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Ash Salam
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
| |
Collapse
|
45
|
Balandrán JC, Lasry A, Aifantis I. The Role of Inflammation in the Initiation and Progression of Myeloid Neoplasms. Blood Cancer Discov 2023; 4:254-266. [PMID: 37052531 PMCID: PMC10320626 DOI: 10.1158/2643-3230.bcd-22-0176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Myeloid malignancies are devastating hematologic cancers with limited therapeutic options. Inflammation is emerging as a novel driver of myeloid malignancy, with important implications for tumor composition, immune response, therapeutic options, and patient survival. Here, we discuss the role of inflammation in normal and malignant hematopoiesis, from clonal hematopoiesis to full-blown myeloid leukemia. We discuss how inflammation shapes clonal output from hematopoietic stem cells, how inflammation alters the immune microenvironment in the bone marrow, and novel therapies aimed at targeting inflammation in myeloid disease. SIGNIFICANCE Inflammation is emerging as an important factor in myeloid malignancies. Understanding the role of inflammation in myeloid transformation, and the interplay between inflammation and other drivers of leukemogenesis, may yield novel avenues for therapy.
Collapse
Affiliation(s)
- Juan Carlos Balandrán
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| | - Audrey Lasry
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| | - Iannis Aifantis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
46
|
Cao M, Fan B, Zhen T, Das A, Wang J. Ruthenium biochanin-A complex ameliorates lung carcinoma through the downregulation of the TGF-β/PPARγ/PI3K/TNF-α pathway in association with caspase-3-mediated apoptosis. Toxicol Res 2023; 39:455-475. [PMID: 37398567 PMCID: PMC10313601 DOI: 10.1007/s43188-023-00177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 07/04/2023] Open
Abstract
Lung cancer is the most often reported cancer with a terrible prognosis worldwide. Flavonoid metal complexes have exhibited potential chemotherapeutic effects with substantially low adverse effects. This study investigated the chemotherapeutic effect of the ruthenium biochanin-A complex on lung carcinoma in both in vitro and in vivo model systems. The synthesized organometallic complex was characterized via UV‒visible spectroscopy, FTIR, mass spectrometry, and scanning electron microscopy. Moreover, the DNA binding activity of the complex was determined. The in vitro chemotherapeutic assessment was performed on the A549 cell line through MTT assay, flow cytometry, and western blot analysis. An in vivo toxicity study was performed to determine the chemotherapeutic dose of the complex, and subsequently, chemotherapeutic activity was assessed in benzo-α-pyrene-induced lung cancer mouse model by evaluating the histopathology, immunohistochemistry, and TUNEL assays. The IC50 value of the complex in A549 cells was found to be 20 µM. The complex demonstrated significant apoptosis induction, enhanced caspase-3 expression and cell cycle arrest with downregulated PI3K, PPARγ, TGF-β, and TNF-α expression in A549 cells. The in vivo study suggested that ruthenium biochanin-A therapy restored the morphological architecture of lung tissue in a benzo-α-pyrene-induced lung cancer model and inhibited the expression of Bcl2. Additionally, increased apoptotic events were identified with upregulation of caspase-3 and p53 expression. In conclusion, the ruthenium biochanin-A complex successfully amelioratedlung cancer incidence in both in vitro and in vivo models through the alteration of the TGF-β/PPARγ/PI3K/TNF-α axis with the induction of the p53/caspase-3-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Ming Cao
- Department of Thoracic Surgery, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250014 Shandong Province China
| | - Bo Fan
- Department of Thoracic Surgery, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250014 Shandong Province China
| | - Tianchang Zhen
- Department of Thoracic Surgery, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250014 Shandong Province China
| | - Abhijit Das
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, 124 B.L. Saha Road, Kolkata, West Bengal 700053 India
| | - Junling Wang
- Department of Respiratory and Critical Care, The First Hospital Affiliated with Shandong First Medical University, No.16766, Lixia District, Jingshi Road, Jinan, 250014 Shandong Province China
| |
Collapse
|
47
|
Antunes-Ferreira M, D'Ambrosi S, Arkani M, Post E, In 't Veld SGJG, Ramaker J, Zwaan K, Kucukguzel ED, Wedekind LE, Griffioen AW, Oude Egbrink M, Kuijpers MJE, van den Broek D, Noske DP, Hartemink KJ, Sabrkhany S, Bahce I, Sol N, Bogaard HJ, Koppers-Lalic D, Best MG, Wurdinger T. Tumor-educated platelet blood tests for Non-Small Cell Lung Cancer detection and management. Sci Rep 2023; 13:9359. [PMID: 37291189 PMCID: PMC10250384 DOI: 10.1038/s41598-023-35818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Liquid biopsy approaches offer a promising technology for early and minimally invasive cancer detection. Tumor-educated platelets (TEPs) have emerged as a promising liquid biopsy biosource for the detection of various cancer types. In this study, we processed and analyzed the TEPs collected from 466 Non-small Cell Lung Carcinoma (NSCLC) patients and 410 asymptomatic individuals (controls) using the previously established thromboSeq protocol. We developed a novel particle-swarm optimization machine learning algorithm which enabled the selection of an 881 RNA biomarker panel (AUC 0.88). Herein we propose and validate in an independent cohort of samples (n = 558) two approaches for blood samples testing: one with high sensitivity (95% NSCLC detected) and another with high specificity (94% controls detected). Our data explain how TEP-derived spliced RNAs may serve as a biomarker for minimally-invasive clinical blood tests, complement existing imaging tests, and assist the detection and management of lung cancer patients.
Collapse
Affiliation(s)
- Mafalda Antunes-Ferreira
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Silvia D'Ambrosi
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Mohammad Arkani
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Biomedical Data Science, Leiden University Medical Center, Leiden, The Netherlands
| | - Edward Post
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Sjors G J G In 't Veld
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Jip Ramaker
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Kenn Zwaan
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Ece Demirel Kucukguzel
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Laurine E Wedekind
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Mirjam Oude Egbrink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Daan van den Broek
- Department of Laboratory Medicine, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - David P Noske
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Koen J Hartemink
- Department of Thoracic Surgery, The Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Siamack Sabrkhany
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Idris Bahce
- Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Nik Sol
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Harm-Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | | | - Myron G Best
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Amsterdam, The Netherlands.
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Zhao Y, O'Keefe CM, Hsieh K, Cope L, Joyce SC, Pisanic TR, Herman JG, Wang TH. Multiplex Digital Methylation-Specific PCR for Noninvasive Screening of Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206518. [PMID: 37039321 DOI: 10.1002/advs.202206518] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/18/2023] [Indexed: 06/04/2023]
Abstract
There remains tremendous interest in developing liquid biopsy assays for detection of cancer-specific alterations, such as mutations and DNA methylation, in cell-free DNA (cfDNA) obtained through noninvasive blood draws. However, liquid biopsy analysis is often challenging due to exceedingly low fractions of circulating tumor DNA (ctDNA), necessitating the use of extended tumor biomarker panels. While multiplexed PCR strategies provide advantages such as higher throughput, their implementation is often hindered by challenges such as primer-dimers and PCR competition. Alternatively, digital PCR (dPCR) approaches generally offer superior performance, but with constrained multiplexing capability. This paper describes development and validation of the first multiplex digital methylation-specific PCR (mdMSP) platform for simultaneous analysis of four methylation biomarkers for liquid-biopsy-based detection of non-small cell lung cancer (NSCLC). mdMSP employs a microfluidic device containing four independent, but identical modules, housing a total of 40 160 nanowells. Analytical validation of the mdMSP platform demonstrates multiplex detection at analytical specificities as low as 0.0005%. The clinical utility of mdMSP is also demonstrated in a cohort of 72 clinical samples of low-volume liquid biopsy specimens from patients with computed tomography (CT)-scan indeterminant pulmonary nodules, exhibiting superior clinical performance when compared to traditional MSP assays for noninvasive detection of early-stage NSCLC.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Christine M O'Keefe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Leslie Cope
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Sonali C Joyce
- The UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Thomas R Pisanic
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - James G Herman
- The UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
49
|
Freeman B, Mamallapalli J, Bian T, Ballas K, Lynch A, Scala A, Huo Z, Fredenburg KM, Bruijnzeel AW, Baglole CJ, Lu J, Salloum RG, Malaty J, Xing C. Opportunities and Challenges of Kava in Lung Cancer Prevention. Int J Mol Sci 2023; 24:ijms24119539. [PMID: 37298489 DOI: 10.3390/ijms24119539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths due to its high incidence, late diagnosis, and limited success in clinical treatment. Prevention therefore is critical to help improve lung cancer management. Although tobacco control and tobacco cessation are effective strategies for lung cancer prevention, the numbers of current and former smokers in the USA and globally are not expected to decrease significantly in the near future. Chemoprevention and interception are needed to help high-risk individuals reduce their lung cancer risk or delay lung cancer development. This article will review the epidemiological data, pre-clinical animal data, and limited clinical data that support the potential of kava in reducing human lung cancer risk via its holistic polypharmacological effects. To facilitate its future clinical translation, advanced knowledge is needed with respect to its mechanisms of action and the development of mechanism-based non-invasive biomarkers in addition to safety and efficacy in more clinically relevant animal models.
Collapse
Affiliation(s)
- Breanne Freeman
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Jessica Mamallapalli
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Tengfei Bian
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Kayleigh Ballas
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Allison Lynch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Alexander Scala
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kristianna M Fredenburg
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Carolyn J Baglole
- Department of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Junxuan Lu
- Department of Pharmacology, PennState Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Ramzi G Salloum
- Department of Health Outcome & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John Malaty
- Department of Community Health & Family Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
50
|
Malyla V, Paudel KR, De Rubis G, Hansbro NG, Hansbro PM, Dua K. Cigarette smoking induces lung cancer tumorigenesis via upregulation of the WNT/β-catenin signaling pathway. Life Sci 2023; 326:121787. [PMID: 37209867 DOI: 10.1016/j.lfs.2023.121787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Lung cancer has the highest mortality rate compared to any other cancer worldwide, and cigarette smoking is one of the major etiological factors. How cigarette smoke (CS) induces tumorigenesis in healthy cells is still not completely understood. In this study, we treated healthy human bronchial epithelial cells (16HBE14o) with 1 % cigarette smoke extract (CSE) for one week. The CSE exposed cells showed upregulation of WNT/β-catenin pathway genes like WNT3, DLV3, AXIN and β-catenin, 30 oncology proteins were found to be upregulated after CSE treatment. Further, we explored whether the role of extracellular vesicles (EVs) obtained from CSE exposed cells can induce tumorigenesis. We observed that CSE EVs induced migration of healthy 16HBE14o cells by upregulation of various oncology proteins in recipient cells like AXL, EGFR, DKK1, ENG, FGF2, ICAM1, HMOX1, HIF1a, SERPINE1, SNAIL, HGFR, PLAU which are related to WNT signaling, epithelial mesenchymal transition (EMT) and Inflammation, whereas inflammatory marker, GAL-3 and EMT marker, VIM were downregulated. Moreover, β-catenin RNA was found in CSE EVs, upon treatment of these EVs to healthy cells, the β-catenin gene level was decreased in recipient cells compared to healthy 16HBE14o cells, indicating the utilisation of β-catenin RNA in healthy cells. Overall, our study suggests that CS treatment can induce tumorigenesis of healthy cells by upregulating WNT/β-catenin signaling in vitro and human lung cancer patients. Therefore targeting the WNT/β-catenin signaling pathway is involved in tumorigenesis inhibition of this pathway could be a potential therapeutic approach for cigarette smoke induced lung cancer.
Collapse
Affiliation(s)
- Vamshikrishna Malyla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|