1
|
Li L. Circadian Vision in Zebrafish: From Molecule to Cell and from Neural Network to Behavior. J Biol Rhythms 2019; 34:451-462. [DOI: 10.1177/0748730419863917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Most visual system functions, such as opsin gene expression, retinal neural transmission, light perception, and visual sensitivity, display robust day-night rhythms. The rhythms persist in constant lighting conditions, suggesting the involvement of endogenous circadian clocks. While the circadian pacemakers that control the rhythms of animal behaviors are mostly found in the forebrain and midbrain, self-sustained circadian oscillators are also present in the neural retina, where they play important roles in the regulation of circadian vision. This review highlights some of the correlative studies of the circadian control of visual system functions in zebrafish. Because zebrafish maintain a high evolutionary proximity to mammals, the findings from zebrafish research may provide insights for a better understanding of the mechanisms of circadian vision in other vertebrate species including humans.
Collapse
Affiliation(s)
- Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
2
|
Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018; 43:937-952. [PMID: 29206811 PMCID: PMC5854814 DOI: 10.1038/npp.2017.294] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
Abstract
Humans have been fascinated by sleep for millennia. After almost a century of scientific interrogation, significant progress has been made in understanding the neuronal regulation and functions of sleep. The application of new methods in neuroscience that enable the analysis of genetically defined neuronal circuits with unprecedented specificity and precision has been paramount in this endeavor. In this review, we first discuss electrophysiological and behavioral features of sleep/wake states and the principal neuronal populations involved in their regulation. Next, we describe the main modulatory drives of sleep and wakefulness, including homeostatic, circadian, and motivational processes. Finally, we describe a revised integrative model for sleep/wake regulation.
Collapse
Affiliation(s)
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Zheng P, Li J, Kros JM. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research-practice gaps, challenges, and insights. Med Res Rev 2018; 38:325-376. [PMID: 28862319 PMCID: PMC5763363 DOI: 10.1002/med.21463] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022]
Abstract
To date, five cancer treatment modalities have been defined. The three traditional modalities of cancer treatment are surgery, radiotherapy, and conventional chemotherapy, and the two modern modalities include molecularly targeted therapy (the fourth modality) and immunotherapy (the fifth modality). The cardiotoxicity associated with conventional chemotherapy and radiotherapy is well known. Similar adverse cardiac events are resurging with the fourth modality. Aside from the conventional and newer targeted agents, even the most newly developed, immune-based therapeutic modalities of anticancer treatment (the fifth modality), e.g., immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy, have unfortunately led to potentially lethal cardiotoxicity in patients. Cardiac complications represent unresolved and potentially life-threatening conditions in cancer survivors, while effective clinical management remains quite challenging. As a consequence, morbidity and mortality related to cardiac complications now threaten to offset some favorable benefits of modern cancer treatments in cancer-related survival, regardless of the oncologic prognosis. This review focuses on identifying critical research-practice gaps, addressing real-world challenges and pinpointing real-time insights in general terms under the context of clinical cardiotoxicity induced by the fourth and fifth modalities of cancer treatment. The information ranges from basic science to clinical management in the field of cardio-oncology and crosses the interface between oncology and onco-pharmacology. The complexity of the ongoing clinical problem is addressed at different levels. A better understanding of these research-practice gaps may advance research initiatives on the development of mechanism-based diagnoses and treatments for the effective clinical management of cardiotoxicity.
Collapse
Affiliation(s)
- Ping‐Pin Zheng
- Cardio‐Oncology Research GroupErasmus Medical CenterRotterdamthe Netherlands
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| | - Jin Li
- Department of OncologyShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Johan M Kros
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| |
Collapse
|
4
|
Laermans J, Depoortere I. Chronobesity: role of the circadian system in the obesity epidemic. Obes Rev 2016; 17:108-25. [PMID: 26693661 DOI: 10.1111/obr.12351] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 01/17/2023]
Abstract
Although obesity is considered to result from an imbalance between energy uptake and energy expenditure, the strategy of dietary changes and physical exercise has failed to tackle the global obesity epidemic. In search of alternative and more adequate treatment options, research has aimed at further unravelling the mechanisms underlying this excessive weight gain. While numerous studies are focusing on the neuroendocrine alterations that occur after bariatric Roux-en-Y gastric bypass surgery, an increasing amount of chronobiological studies have started to raise awareness concerning the pivotal role of the circadian system in the development and exacerbation of obesity. This internal timekeeping mechanism rhythmically regulates metabolic and physiological processes in order to meet the fluctuating demands in energy use and supply throughout the 24-h day. This review elaborates on the extensive bidirectional interaction between the circadian system and metabolism and explains how disruption of body clocks by means of shift work, frequent time zone travelling or non-stop consumption of calorie-dense foods can evoke detrimental metabolic alterations that contribute to obesity. Altering the body's circadian rhythms by means of time-related dietary approaches (chrononutrition) or pharmacological substances (chronobiotics) may therefore represent a novel and interesting way to prevent or treat obesity and associated comorbidities.
Collapse
Affiliation(s)
- J Laermans
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - I Depoortere
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Poletini MO, Ramos BC, Moraes MN, Castrucci AML. Nonvisual Opsins and the Regulation of Peripheral Clocks by Light and Hormones. Photochem Photobiol 2015; 91:1046-55. [DOI: 10.1111/php.12494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Maristela O. Poletini
- Department of Physiology and Biophysics; Institute of Biological Sciences; Federal University of Minas Gerais; Belo Horizonte Brazil
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| | - Bruno C. Ramos
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| | - Maria Nathalia Moraes
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| | - Ana Maria L. Castrucci
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| |
Collapse
|
6
|
Krishnan HC, Lyons LC. Synchrony and desynchrony in circadian clocks: impacts on learning and memory. ACTA ACUST UNITED AC 2015; 22:426-37. [PMID: 26286653 PMCID: PMC4561405 DOI: 10.1101/lm.038877.115] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/29/2015] [Indexed: 12/11/2022]
Abstract
Circadian clocks evolved under conditions of environmental variation, primarily alternating light dark cycles, to enable organisms to anticipate daily environmental events and coordinate metabolic, physiological, and behavioral activities. However, modern lifestyle and advances in technology have increased the percentage of individuals working in phases misaligned with natural circadian activity rhythms. Endogenous circadian oscillators modulate alertness, the acquisition of learning, memory formation, and the recall of memory with examples of circadian modulation of memory observed across phyla from invertebrates to humans. Cognitive performance and memory are significantly diminished when occurring out of phase with natural circadian rhythms. Disruptions in circadian regulation can lead to impairment in the formation of memories and manifestation of other cognitive deficits. This review explores the types of interactions through which the circadian clock modulates cognition, highlights recent progress in identifying mechanistic interactions between the circadian system and the processes involved in memory formation, and outlines methods used to remediate circadian perturbations and reinforce circadian adaptation.
Collapse
Affiliation(s)
- Harini C Krishnan
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
7
|
Froy O. Circadian rhythms and obesity in mammals. ISRN OBESITY 2012; 2012:437198. [PMID: 24527263 PMCID: PMC3914271 DOI: 10.5402/2012/437198] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/11/2012] [Indexed: 02/02/2023]
Abstract
Obesity has become a serious public health problem and a major risk factor for the development of illnesses, such as insulin resistance and hypertension. Attempts to understand the causes of obesity and develop new therapeutic strategies have mostly focused on caloric intake and energy expenditure. Recent studies have shown that the circadian clock controls energy homeostasis by regulating the circadian expression and/or activity of enzymes, hormones, and transport systems involved in metabolism. Moreover, disruption of circadian rhythms leads to obesity and metabolic disorders. Therefore, it is plausible that resetting of the circadian clock can be used as a new approach to attenuate obesity. Feeding regimens, such as restricted feeding (RF), calorie restriction (CR), and intermittent fasting (IF), provide a time cue and reset the circadian clock and lead to better health. In contrast, high-fat (HF) diet leads to disrupted circadian expression of metabolic factors and obesity. This paper focuses on circadian rhythms and their link to obesity.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, 76100 Rehovot, Israel
| |
Collapse
|
8
|
Bae JH, Ahn K, Nam GH, Lee CE, Park KD, Lee HK, Cho BW, Kim HS. Molecular characterization of alternative transcripts of the horse BMAL1 gene. Zoolog Sci 2011; 28:671-5. [PMID: 21882956 DOI: 10.2108/zsj.28.671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The horse BMAL1 gene encodes the brain and muscle Arnt-like protein 1, which is a key regulator of circadian rhythmic systems in most organs and cells. The first exon of the horse-specific BMAL1 gene is produced by an exonization event of LINE3 (CR1) and SINE (MIR) was detected by bioinformatic analysis. Alternative variants generated by cassette exon event in various horse tissues were also detected by RT-PCR amplification and sequencing. The cDNA sequences of the horse transcripts (BMAL1a, BMAL1b) contain additional 21 bp and 71 bp fragments relative to horse BMAL1. Quantitative real-time RT-PCR was performed to compare the expression patterns between transcript variants in various horse tissues. The results of these experiments showed splice variants that were widely expressed in most tissues. Furthermore, they were highly expressed in cerebellum, heart, and kidney.
Collapse
Affiliation(s)
- Jin-Han Bae
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Martín-Robles AJ, Isorna E, Whitmore D, Muñoz-Cueto JA, Pendón C. The clock gene Period3 in the nocturnal flatfish Solea senegalensis: Molecular cloning, tissue expression and daily rhythms in central areas. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:7-15. [PMID: 21281733 DOI: 10.1016/j.cbpa.2011.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Clock genes are responsible for generating and sustaining most rhythmic daily functions in vertebrates. Their expression is endogenously driven, although they are entrained by external cues such as light, temperature and nutrient availability. In the present study, a full-length coding region of Solea senegalensis clock gene Period3 (Per3) has been isolated from sole brain as a first step in understanding the molecular basis underlying circadian rhythms in this nocturnal species. The complete cDNA is 4141 base pairs (bp) in length, including an ORF of 3804bp, a 5'UTR of 247bp and a 3'UTR of 90bp. It encodes a putative PERIOD3 protein (PER3) of 1267 amino acids which shares the main functional domains conserved between transcription factors regulating the circadian clock pathway. Sole PER3 displays high identity with PER3 proteins from teleost species (61-77%) and lower identity (39-46%) with other vertebrate PER3 sequences. This gene is expressed in all examined tissues, being mRNA expression particularly evident in retina, cerebellum, diencephalon, optic tectum, liver and ovary. Per3 exhibits a significant daily oscillation in retina and optic tectum but not in diencephalon and cerebellum. Our results suggest an important role of Per3 in the circadian clockwork machinery of visually-related areas of sole.
Collapse
Affiliation(s)
- Agueda J Martín-Robles
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, E-11510, Puerto Real, Spain
| | | | | | | | | |
Collapse
|
10
|
Froy O, Miskin R. Effect of feeding regimens on circadian rhythms: implications for aging and longevity. Aging (Albany NY) 2010; 2:7-27. [PMID: 20228939 PMCID: PMC2837202 DOI: 10.18632/aging.100116] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 01/09/2010] [Indexed: 01/19/2023]
Abstract
Increased longevity and improved health can be achieved in mammals by two feeding regimens, caloric restriction (CR), which limits the amount of daily calorie intake, and intermittent fasting (IF), which allows the food to be available ad libitum every other day. The precise mechanisms mediating these beneficial effects are still unresolved. Resetting the circadian clock is another intervention that can lead to increased life span and well being, while clock disruption is associated with aging and morbidity. Currently, a large body of evidence links circadian rhythms with metabolism and feeding regimens. In particular, CR, and possibly also IF, can entrain the master clock located in the suprachiasmatic nuclei (SCN) of the brain hypothalamus. These findings raise the hypothesis that the beneficial effects exerted by these feeding regimens could be mediated, at least in part, through resetting of the circadian clock, thus leading to synchrony in metabolism and physiology. This hypothesis is reinforced by a transgenic mouse model showing spontaneously reduced eating alongside robust circadian rhythms and increased life span. This review will summarize recent findings concerning the relationships between feeding regimens, circadian rhythms, and metabolism with implications for ageing attenuation and life span extension.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | |
Collapse
|
11
|
Abstract
Mammals have developed an endogenous circadian clock located in the SCN (suprachiasmatic nuclei) of the anterior hypothalamus that responds to the environmental light–dark cycle. Human homoeostatic systems have adapted to daily changes in a way that the body anticipates the sleep and activity periods. Similar clocks have been found in peripheral tissues, such as the liver, intestine and adipose tissue. Recently it has been found that the circadian clock regulates cellular and physiological functions in addition to the expression and/or activity of enzymes and hormones involved in metabolism. In turn, key metabolic enzymes and transcription activators interact with and affect the core clock mechanism. Animals with mutations in clock genes that disrupt cellular rhythmicity have provided evidence to the relationship between the circadian clock and metabolic homoeostasis. The present review will summarize recent findings concerning the relationship between metabolism and circadian rhythms.
Collapse
|
12
|
Abstract
Obesity has become a serious public health problem and a major risk factor for the development of illnesses, such as insulin resistance and hypertension. Human homeostatic systems have adapted to daily changes in light and dark in a way that the body anticipates the sleep and activity periods. Mammals have developed an endogenous circadian clock located in the suprachiasmatic nuclei of the anterior hypothalamus that responds to the environmental light-dark cycle. Similar clocks have been found in peripheral tissues, such as the liver, intestine, and adipose tissue, regulating cellular and physiological functions. The circadian clock has been reported to regulate metabolism and energy homeostasis in the liver and other peripheral tissues. This is achieved by mediating the expression and/or activity of certain metabolic enzymes and transport systems. In return, key metabolic enzymes and transcription activators interact with and affect the core clock mechanism. In addition, the core clock mechanism has been shown to be linked with lipogenic and adipogenic pathways. Animals with mutations in clock genes that disrupt cellular rhythmicity have provided evidence for the relationship between the circadian clock and metabolic homeostasis. In addition, clinical studies in shift workers and obese patients accentuate the link between the circadian clock and metabolism. This review will focus on the interconnection between the circadian clock and metabolism, with implications for obesity and how the circadian clock is influenced by hormones, nutrients, and timed meals.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science, and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
13
|
|
14
|
Hsieh MC, Yang SC, Tseng HL, Hwang LL, Chen CT, Shieh KR. Abnormal expressions of circadian-clock and circadian clock-controlled genes in the livers and kidneys of long-term, high-fat-diet-treated mice. Int J Obes (Lond) 2009; 34:227-39. [PMID: 19901953 DOI: 10.1038/ijo.2009.228] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Physiological and behavioral circadian rhythmicities are exhibited by all mammals and are generated by intracellular levels of circadian oscillators, which are composed of transcriptional/translational feedback loops involving a set of circadian-clock genes, such as Clock, Per1-3, Cry1-2, Bmal1, Dbp, E4BP4 and CK1varepsilon. These circadian-clock genes play important roles in regulating circadian rhythms and also energy homeostasis and metabolism. Determining whether obesity induced by high-fat diet affected the expressions of circadian-clock genes and their related genes in peripheral tissues, was the main focus of this study. To address this issue, we fed male C57BL/6 mice a high-fat diet for 11 months to induce obesity, hyperglycemic, hypercholesterolemic and hyperinsulinemic symptoms, and used quantitative real-time reverse transcription-PCR to measure gene expression levels. RESULTS We found that the expressions of circadian-clock genes and circadian clock-controlled genes, including Per1-3, Cry1-2, Bmal1, Dbp, E4BP4, CK1varepsilon, PEPCK, PDK4 and NHE3, were altered in the livers and/or kidneys. CONCLUSIONS These results indicate that obesity induced by high-fat diet alters the circadian-clock system, and obesity and metabolic syndrome are highly correlated with the expressions of circadian-clock genes and their downstream, circadian clock-controlled genes.
Collapse
Affiliation(s)
- M-C Hsieh
- Institute of Physiological and Anatomical Medicine (formerly Institute of Integrative Physiology and Clinical Sciences), Tzu Chi University, Hualien, Taiwan.
| | | | | | | | | | | |
Collapse
|
15
|
Midkine expression is regulated by the circadian clock in the retina of the zebrafish. Vis Neurosci 2009; 26:495-501. [PMID: 19860997 DOI: 10.1017/s0952523809990204] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The retina displays numerous processes that follow a circadian rhythm. These processes are coordinated through the direct action of light on photoreceptive molecules and, in the absence of light, through autocrine/paracrine actions of extracellular neuromodulators. We previously described the expression of the genes encoding the secreted heparin-binding growth factors, midkine-a (mdka) and midkine-b (mdkb), in the retina of the zebrafish. Here, we provide evidence that the expression of mdka and mdkb follows a daily rhythm, which is independent of the presence or absence of light, and we propose that the expression of mdka is regulated by the circadian clock. Both qualitative and quantitative measures show that for mdka, the levels of mRNA and protein decrease during the night and increase during the subjective day. Qualitative measures show that the expression of mdkb increases during the second half of the subjective night and decreases during the second half of the subjective day. Within horizontal cells, the two midkine paralogs show asynchronous circadian regulation. Though intensely studied in the contexts of physiology and disease, this is the first study to provide evidence for the circadian regulation of midkines in the vertebrate nervous system.
Collapse
|
16
|
Grimaldi B, Nakahata Y, Kaluzova M, Masubuchi S, Sassone-Corsi P. Chromatin remodeling, metabolism and circadian clocks: the interplay of CLOCK and SIRT1. Int J Biochem Cell Biol 2008; 41:81-6. [PMID: 18817890 DOI: 10.1016/j.biocel.2008.08.035] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/28/2008] [Accepted: 08/28/2008] [Indexed: 12/31/2022]
Abstract
Circadian rhythms govern a wide variety of physiological and metabolic functions in almost all organisms. These are controlled by the circadian clock machinery, which is mostly based on transcriptional-translational feedback loops. Importantly, 10-15% of the mammalian transcripts oscillate in a circadian manner. The complex program of gene expression that characterizes circadian physiology is possible through dynamic changes in chromatin transitions. These remodeling events are therefore of great importance to insure the proper timing and extent of circadian regulation. Recent advances in the field have revealed unexpected links between circadian regulators, chromatin remodeling and cellular metabolism. Specifically, the central clock protein CLOCK has HAT enzymatic properties. It directs acetylation of histone H3 and of its dimerization partner BMAL1 at K537, an event essential for circadian function. In addition, the HDAC activity of the NAD(+)-dependent SIRT1 enzyme is regulated in a circadian manner. It has been proposed that SIRT1 functions as an enzymatic rheostat of circadian function, transducing signals originated by cellular metabolites to the circadian clock. Thus, a specialized program of chromatin remodeling appears to be at the core of the circadian machinery.
Collapse
|
17
|
Sauzet S, Besseau L, Herrera Perez P, Covès D, Chatain B, Peyric E, Boeuf G, Muñoz-Cueto JA, Falcón J. Cloning and retinal expression of melatonin receptors in the European sea bass, Dicentrarchus labrax. Gen Comp Endocrinol 2008; 157:186-95. [PMID: 18555069 DOI: 10.1016/j.ygcen.2008.04.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/28/2008] [Accepted: 04/08/2008] [Indexed: 10/22/2022]
Abstract
Melatonin contributes to synchronizing behaviors and physiological functions to daily and seasonal rhythm in fish. However, no coherent vision emerges because the effects vary with the species, sex, age, moment of the year or sexual cycle. And, scarce information is available concerning the melatonin receptors, which is crucial to our understanding of the role melatonin plays. We report here the full length cloning of three different melatonin receptor subtypes in the sea bass Dicentrarchus labrax, belonging, respectively, to the MT1, MT2 and Mel1c subtypes. MT1, the most abundantly expressed, was detected in the central nervous system, retina, and gills. MT2 was detected in the pituitary gland, blood cells and, to a lesser extend, in the optic tectum, diencephalon, liver and retina. Mel1c was mainly expressed in the skin; traces were found in the retina. The cellular sites of MT1 and MT2 expressions were investigated by in situ hybridization in the retina of pigmented and albino fish. The strongest signals were obtained with the MT1 riboprobes. Expression was seen in cells also known to express the enzymes of the melatonin biosynthesis, i.e., in the photoreceptor, inner nuclear and ganglion cell layers. MT1 receptor mRNAs were also abundant in the retinal pigment epithelium. The results are consistent with the idea that melatonin is an autocrine (neural retina) and paracrine (retinal pigment epithelium) regulator of retinal function. The molecular tools provided here will be of valuable interest to further investigate the targets and role of melatonin in nervous and peripheral tissues of fish.
Collapse
Affiliation(s)
- Sandrine Sauzet
- Université Pierre et Marie Curie-Paris6, UMR7628, Laboratoire Aragó, Avenue Fontaulé, BP44, F-66651 Banyuls-sur-Mer, Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Froy O. The relationship between nutrition and circadian rhythms in mammals. Front Neuroendocrinol 2007; 28:61-71. [PMID: 17451793 DOI: 10.1016/j.yfrne.2007.03.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Revised: 03/04/2007] [Accepted: 03/15/2007] [Indexed: 12/21/2022]
Abstract
The master clock located in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus regulates circadian rhythms in mammals. The clock is an intracellular, transcriptional mechanism sharing the same molecular components in SCN neurons and in peripheral cells, such as the liver, intestine, and retina. The circadian clock controls food processing and energy homeostasis by regulating the expression and/or activity of enzymes involved in cholesterol, amino acid, lipid, glycogen, and glucose metabolism. In addition, many hormones involved in metabolism, such as insulin, glucagon, adiponectin, corticosterone, leptin, and ghrelin, exhibit circadian oscillation. Furthermore, disruption of circadian rhythms is involved in the development of cancer, metabolic syndrome, and obesity. Metabolism and food intake also feed back to influence the biological clock. Calorie restriction (CR) entrains the SCN clock, whereas timed meals entrain peripheral oscillators. Furthermore, the cellular redox state, dictated by food metabolism, and several nutrients, such as glucose, ethanol, adenosine, caffeine, thiamine, and retinoic acid, can phase-shift circadian rhythms. In conclusion, there is a large body of evidence that links feeding regimens, food components, and the biological clock.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.
| |
Collapse
|
19
|
Froy O, Miskin R. The interrelations among feeding, circadian rhythms and ageing. Prog Neurobiol 2007; 82:142-50. [PMID: 17482337 DOI: 10.1016/j.pneurobio.2007.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 01/25/2007] [Accepted: 03/19/2007] [Indexed: 01/22/2023]
Abstract
The master clock located in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus in the brain regulates circadian rhythms in mammals. Similar circadian oscillators have been found in peripheral tissues, such as the liver, intestine and retina. Life span has been previously linked independently to both circadian rhythms and caloric restriction (CR). The mechanisms by which CR attenuates ageing and extends life span are virtually unknown. It has recently been found that the alphaMUPA mice, transgenic mice that exhibit spontaneously reduced eating and live longer compared to their FVB/N wild-type control mice, show high amplitude, appropriately reset circadian rhythms. These pronounced rhythms were found both in clock gene expression in the liver and clock-controlled output systems, such as feeding time and body temperature. Furthermore, it was previously shown that CR could reset the central biological clock in the SCN. As the circadian clock in the SCN controls many physiological and biochemical systems, we suggest that appropriately reset peripheral rhythms could constitute an important mediator of longevity in calorically restricted animals. Thus, we suggest that three parameters, i.e., caloric restriction, circadian rhythms and life span, are interconnected. This surmise is novel, and we provide evidence to support it. Furthermore, we discuss other feeding regimens and their effects on circadian rhythms and/or life span.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.
| | | |
Collapse
|
20
|
Li H, Sun NL, Wang J, Liu AJ, Su DF. Circadian expression of clock genes and angiotensin II type 1 receptors in suprachiasmatic nuclei of sinoaortic-denervated rats. Acta Pharmacol Sin 2007; 28:484-92. [PMID: 17376287 DOI: 10.1111/j.1745-7254.2007.00543.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM To investigate whether the circadian expression of central clock genes and angiotensin II type 1 (AT1) receptors was altered in sinoaortic-denervated (SAD) rats. METHODS Male Sprague-Dawley rats underwent sinoaortic denervation or a sham operation at the age of 12 weeks. Four weeks after the operation, blood pressure and heart period were measured in the conscious state in a group of sham-operated (n=10) and SAD rats (n=9). Rest SAD and sham-operated rats were divided into 6 groups (n=6 in each group). The suprachiasmatic nuclei (SCN) tissues were taken every 4 h throughout the day from each group for the determination of the mRNA expression of clock genes (Per2 and Bmal1) and the AT1 receptor by RT-PCR; the protein expression of Per2 and Bmal1 was determined by Western blotting. RESULTS Blood pressure levels in the SAD rats were similar to those of the sham-operated rats. However, blood pressure variabilities significantly increased in the SAD rats compared with the sham-operated rats. The circadian variation of clock genes in the SCN of the sham-operated rats was characterized by a marked increase in the mRNA and protein expression during dark periods. Per2 and Bmal1 mRNA levels were significantly lower in the SAD rats, especially during dark periods. Western blot analysis confirmed an attenuation of the circadian rhythm of the 2 clock proteins in the SCN of the SAD rats. AT1 receptor mRNA expressions in the SCN were abnormally upregulated in the light phase, changed to a 12-h cycle in the SAD rats. CONCLUSION The circadian variation of the 2 central clock genes was attenuated in the SAD rats. Arterial baroreflex dysfunction also induced a disturbance in the expression of AT1 receptors in the SCN.
Collapse
Affiliation(s)
- Hui Li
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | | | | | | | | |
Collapse
|
21
|
Wu YH, Swaab DF. Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer's disease. Sleep Med 2007; 8:623-36. [PMID: 17383938 DOI: 10.1016/j.sleep.2006.11.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 11/09/2006] [Accepted: 11/11/2006] [Indexed: 12/15/2022]
Abstract
Circadian rhythm disturbances, such as sleep disorders, are frequently seen in aging and are even more pronounced in Alzheimer's disease (AD). Alterations in the biological clock, the suprachiasmatic nucleus (SCN), and the pineal gland during aging and AD are considered to be the biological basis for these circadian rhythm disturbances. Recently, our group found that pineal melatonin secretion and pineal clock gene oscillation were disrupted in AD patients, and surprisingly even in non-demented controls with the earliest signs of AD neuropathology (neuropathological Braak stages I-II), in contrast to non-demented controls without AD neuropathology. Furthermore, a functional disruption of the SCN was observed from the earliest AD stages onwards, as shown by decreased vasopressin mRNA, a clock-controlled major output of the SCN. The observed functional disconnection between the SCN and the pineal from the earliest AD stage onwards seems to account for the pineal clock gene and melatonin changes and underlies circadian rhythm disturbances in AD. This paper further discusses potential therapeutic strategies for reactivation of the circadian timing system, including melatonin and bright light therapy. As the presence of melatonin MT1 receptor in the SCN is extremely decreased in late AD patients, supplementary melatonin in the late AD stages may not lead to clear effects on circadian rhythm disorders.
Collapse
Affiliation(s)
- Ying-Hui Wu
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | | |
Collapse
|
22
|
Lyons LC, Rawashdeh O, Eskin A. Non-ocular circadian oscillators and photoreceptors modulate long term memory formation in Aplysia. J Biol Rhythms 2007; 21:245-55. [PMID: 16864645 PMCID: PMC2723792 DOI: 10.1177/0748730406289890] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In Aplysia californica, memory formation for long-term sensitization (LTS) and for a more complex type of associative learning, learning that food is inedible (LFI), is modulated by a circadian clock. For both types of learning, formation of long-term memory occurs during the day and significantly less during the night. Aplysia eyes contain a well-characterized circadian oscillator that is strongly coupled to the locomotor activity rhythm. Thus, the authors hypothesized that the ocular circadian oscillator was responsible for the circadian modulation of LFI and LTS. To test this hypothesis, they investigated whether the eyes were necessary for circadian modulation of LFI and LTS. Eyeless animals trained during the subjective day and tested 24 h later demonstrated robust long-term memory for both LFI and LTS, while eyeless animals trained and tested during the subjective night showed little or no memory for LFI or LTS. The amplitude of the rhythm of modulation in eyeless animals was similar to that of intact Aplysia, suggesting that extraocular circadian oscillators were mainly responsible for the circadian rhythms in long-term memory formation. Next, the authors investigated whether the eyes played a role in photic entrainment for circadian regulation of long-term memory formation. Eyeless animals were exposed to a reversed LD cycle for 7 days and then trained and tested for long-term memory using the LFI paradigm. Eyeless Aplysia formed significant long-term memory when trained during the projected shifted day but not during the projected shifted night. Thus, the extraocular circadian oscillator responsible for the rhythmic modulation of long-term memory formation can be entrained by extraocular photoreceptors.
Collapse
Affiliation(s)
- Lisa C Lyons
- University of Houston, Department of Biology & Biochemistry, 369 Science and Research II, Houston, TX 77204-5001, USA
| | | | | |
Collapse
|
23
|
Boughner JC, Hallgrímsson B. Biological spacetime and the temporal integration of functional modules: A case study of dento–gnathic developmental timing. Dev Dyn 2007; 237:1-17. [DOI: 10.1002/dvdy.21383] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
24
|
Abe T, Ishikawa T, Masuda T, Mizusawa K, Tsukamoto T, Mitani H, Yanagisawa T, Todo T, Iigo M. Molecular analysis of Dec1 and Dec2 in the peripheral circadian clock of zebrafish photosensitive cells. Biochem Biophys Res Commun 2006; 351:1072-7. [PMID: 17097613 DOI: 10.1016/j.bbrc.2006.10.172] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Accepted: 10/31/2006] [Indexed: 12/16/2022]
Abstract
To elucidate the roles of DEC1 and DEC2, basic helix-loop-helix transcription factors, in the circadian clock of photosensitive zebrafish peripheral cells, zebrafish Dec1 and Dec2 (zDec1 and zDec2) were cloned and their functions and expression patterns were examined in BRF41, a zebrafish cell line. zDEC1 and zDEC2 have high sequence similarity to mammalian counterparts and the molecular phylogenetic analysis of the zDEC1 and zDEC2 sequences reflected the predicted pattern of species classification. zDEC1 and zDEC2 inhibited zCLOCK1:zBMAL3 mediated transcription as CRY1a. zDec1 and zDec2 mRNA showed robust circadian oscillation in BRF41 cells. However, zDec1 and zDec2 mRNA was not strongly induced by exposure to light. These results indicate that zDec1 and zDec2 are involved in the circadian clock mechanism in photosensitive zebrafish peripheral cells by suppressing CLOCK/BMAL-induced gene expression and that the feedback loops of zDEC1 and zDEC2 may be interlocked with the PER/CRY core circadian feedback loops.
Collapse
Affiliation(s)
- Tomotaka Abe
- Department of Biotechnology, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Partch CL, Sancar A. Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochem Photobiol 2006; 81:1291-304. [PMID: 16164372 DOI: 10.1562/2005-07-08-ir-607] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cryptochromes are flavoproteins that exhibit high sequence and structural similarity to the light-dependent DNA-repair enzyme, photolyase. Cryptochromes have lost the ability to repair DNA; instead, they use the energy from near-UV/blue light to regulate a variety of growth and adaptive processes in organisms ranging from bacteria to humans. The photocycle of cryptochrome is not yet known, although it is hypothesized that it may share some similarity to that of photolyase, which utilizes light-driven electron transfer from the catalytic flavin chromophore. In this review, we present genetic evidence for the photoreceptive role of cryptochromes and discuss recent biochemical studies that have furthered our understanding of the cryptochrome photocycle. In particular, the role of the unique C-terminal domain in cryptochrome phototransduction is discussed.
Collapse
Affiliation(s)
- Carrie L Partch
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
26
|
Chergui K, Svenningsson P, Greengard P. Physiological role for casein kinase 1 in glutamatergic synaptic transmission. J Neurosci 2006; 25:6601-9. [PMID: 16014721 PMCID: PMC6725422 DOI: 10.1523/jneurosci.1082-05.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Casein kinase 1 (CK1) is a highly conserved serine/threonine kinase, present in virtually all cell types, in which it phosphorylates a wide variety of substrates. So far, no role has been found for this ubiquitous protein kinase in the physiology of nerve cells. In the present study, we show that CK1 regulates fast synaptic transmission mediated by glutamate, the major excitatory neurotransmitter in the brain. Through the use of CK1 inhibitors, we present evidence that activation of CK1 decreases NMDA receptor activity in the striatum via a mechanism that involves activation by this kinase of protein phosphatase 1 and/or 2A and resultant increased dephosphorylation of NMDA receptors. Indeed, inhibition of CK1 increases NMDA-mediated EPSCs in medium spiny striatal neurons. This effect is associated with an increased phosphorylation of the NR1 and NR2B subunits of the NMDA receptor and is occluded by the phosphatase inhibitor okadaic acid. The mGluR1, but not mGluR5, subclass of metabotropic glutamate receptors uses CK1 to inhibit NMDA-mediated synaptic currents. These results provide the first evidence for a role of CK1 in the regulation of synaptic transmission in the brain.
Collapse
Affiliation(s)
- Karima Chergui
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
27
|
Wolff S, Xiao Z, Wittau M, Süssner N, Stöter M, Knippschild U. Interaction of casein kinase 1 delta (CK1 delta) with the light chain LC2 of microtubule associated protein 1A (MAP1A). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:196-206. [PMID: 15961172 DOI: 10.1016/j.bbamcr.2005.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 04/28/2005] [Accepted: 05/13/2005] [Indexed: 11/25/2022]
Abstract
CK1delta, a member of the casein kinase 1 family of serine/threonine specific kinases, has been shown to be involved in the regulation of microtubule dynamics. We have now identified a 176 aa fragment of the light chain LC2 of MAP1A (termed LC2-P16) specifically interacting with CK1delta. Two CK1delta interacting domains of LC2 were identified, located between aa 2629 and 2753 close to aa 2683 and between aa 2712 and 2805 of LC2. The two regions necessary for the interaction of LC2 with CK1delta have been mapped between aa 76-103 and aa 351-375 of CK1delta. Furthermore, LC2 has been identified as a new substrate of CK1delta. We therefore propose a model in which CK1delta could modulate microtubule dynamics by changing the phosphorylation status of the light chain LC2 of MAP1A.
Collapse
Affiliation(s)
- Sonja Wolff
- Department of Visceral and Transplantation Surgery at the Medical University of Ulm, Chirurgische Universitätsklinik Ulm, Steinhövelstr. 9, 89075 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 2005; 6:544-56. [PMID: 15951747 PMCID: PMC2735866 DOI: 10.1038/nrg1633] [Citation(s) in RCA: 965] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The organization of biological activities into daily cycles is universal in organisms as diverse as cyanobacteria, fungi, algae, plants, flies, birds and man. Comparisons of circadian clocks in unicellular and multicellular organisms using molecular genetics and genomics have provided new insights into the mechanisms and complexity of clock systems. Whereas unicellular organisms require stand-alone clocks that can generate 24-hour rhythms for diverse processes, organisms with differentiated tissues can partition clock function to generate and coordinate different rhythms. In both cases, the temporal coordination of a multi-oscillator system is essential for producing robust circadian rhythms of gene expression and biological activity.
Collapse
Affiliation(s)
- Deborah Bell-Pedersen
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Knippschild U, Gocht A, Wolff S, Huber N, Löhler J, Stöter M. The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 2005; 17:675-89. [PMID: 15722192 DOI: 10.1016/j.cellsig.2004.12.011] [Citation(s) in RCA: 423] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 12/22/2004] [Accepted: 12/22/2004] [Indexed: 12/11/2022]
Abstract
Phosphorylation of serine, threonine and tyrosine residues by cellular protein kinases plays an important role in the regulation of various cellular processes. The serine/threonine specific casein kinase 1 and 2 protein kinase families--(CK1 and CK2)--were among the first protein kinases that had been described. In recent years our knowledge of the regulation and function of mammalian CK1 kinase family members has rapidly increased. Extracellular stimuli, the subcellular localization of CK1 isoforms, their interaction with various cellular structures and proteins, as well as autophosphorylation and proteolytic cleavage of their C-terminal regulatory domains influence CK1 kinase activity. Mammalian CK1 isoforms phosphorylate many different substrates among them key regulatory proteins involved in the control of cell differentiation, proliferation, chromosome segregation and circadian rhythms. Deregulation and/or the incidence of mutations in the coding sequence of CK1 isoforms have been linked to neurodegenerative diseases and cancer. This review will summarize our current knowledge about the function and regulation of mammalian CK1 isoforms.
Collapse
Affiliation(s)
- Uwe Knippschild
- Department of Visceral and Transplantation Surgery, University of Ulm, Steinhövelstr. 9, 89075 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Tamai TK, Vardhanabhuti V, Foulkes NS, Whitmore D. Early embryonic light detection improves survival. Curr Biol 2004. [DOI: 10.1016/j.cub.2004.01.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Lee-Rivera I, Zarain-Herzberg A, López-Colomé AM. Developmental expression of N-methyl-D-aspartate glutamate receptor 1 splice variants in the chick retina. J Neurosci Res 2003; 73:369-83. [PMID: 12868071 DOI: 10.1002/jnr.10664] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate retina. The N-methyl-D-aspartate glutamate receptor (NMDAR) is assembled as a tetramer containing NR1 and NR2, and possibly NR3 subunits, NR1 being essential for the formation of the ion channel. The NMDAR1 (NR1) gene encodes for mRNAs that generate at least eight functional variants by alternative splicing of exon 5 (cassette N1), 21 (cassette C1), or 22 (cassettes C2 or C2'). NR1 splice variants were identified in the mature chick retina, and their variation during embryonic development (ED) was analyzed. NR1 was shown to lack N1 in early ED, shifting to N1-containing variants in the mature retina, which could contribute to explaining the distinct biochemical properties of retinal NMDARs compared with the CNS. Sequence analysis of C-terminal variants containing C1 and C2 cassettes suggests a membrane-targeting mechanism for avian NMDARs distinct from that in mammals. An NR1 variant containing a novel alternative C-terminal splice exon named C3 was found, which encodes six amino acids containing a predicted casein kinase II phosphorylation site. This new variant is expressed in the retina during a restricted period of ED, coincident with the generation of spontaneous calcium activity waves, which precedes synapse formation in the retina, suggesting its participation in this process.
Collapse
Affiliation(s)
- I Lee-Rivera
- Instituto de Fisiología Celular, UNAM, México D.F., México
| | | | | |
Collapse
|
32
|
Tsuchiya Y, Akashi M, Nishida E. Temperature compensation and temperature resetting of circadian rhythms in mammalian cultured fibroblasts. Genes Cells 2003; 8:713-20. [PMID: 12875656 DOI: 10.1046/j.1365-2443.2003.00669.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Circadian rhythms control many physiological processes. One of characteristic properties of circadian rhythms is insensitivity to temperature, called temperature compensation. Although this temperature-insensitive property has repeatedly been observed mainly in circadian output rhythms, temperature effect on autoregulatory feedback loops of clock gene expression, the rhythm-generating mechanisms, has not been fully investigated. RESULTS We show first that the circadian oscillation of clock gene expression in NIH3T3 fibroblasts, which is induced by TPA (12-O-tetradecanoylphorbol-13-acetate) treatment, is strongly temperature-compensated over the temperature range of 33-42 degrees C. We then show that heat treatment at 42 degrees C is able to trigger circadian oscillation of clock gene expression in NIH3T3 cells. This 42 degrees C heat treatment, unlike serum shock or TPA treatment, did not induce immediate expression of mPer1 mRNA, suggesting the existence of several different resetting mechanisms. CONCLUSIONS This is the first demonstration of temperature compensation of the rhythm-generating core feedback loops of clock gene expression in mammalian cultured cells. It is possible that cells in the periphery could sense the change of ambient temperature as a resetting cue and that the whole organism thus could be entrained rapidly at dawn, in cooperation with the resetting mechanism by light.
Collapse
Affiliation(s)
- Yoshiki Tsuchiya
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
33
|
Maritzen T, Löhler J, Deppert W, Knippschild U. Casein kinase I delta (CKIdelta) is involved in lymphocyte physiology. Eur J Cell Biol 2003; 82:369-78. [PMID: 12924632 DOI: 10.1078/0171-9335-00323] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The casein kinase I isoform delta (CKIdelta) plays an important role in vesicular trafficking, chromosome segregation, cell cycle progression, cytokinesis, developmental processes, and circadian rhythm. In this study we examined the distribution pattern of CKIdelta and quantified its kinase activity in various tissues of BALB/c mice. Whereas CKIdelta is ubiquitously expressed, differences in the kinase activity were detected in organs with comparable CKIdelta protein levels. To elucidate the role of CKIdelta in splenocytes, which displayed the highest kinase activity, the cell type-specific distribution of CKIdelta within the spleen was investigated. Immunohistochemical analysis revealed a strong CKIdelta immunolabeling in lymphoid cells of the white pulp, while in the red pulp CKIdelta immunoreactivity was found in cells of various haematopoietic lineages. Furthermore, high CKIdelta kinase acitivity was observed in isolated lymphocytes and granulocytes of young BALB/c mice. In lymphocytes the CKIdelta activity increased upon mitogenic stimulation, whereas upon gamma-irradiation CKIdelta protein and activity levels were diminished. Interestingly, the comparison of CKIdelta activity in p53+/+ and p53-/- lymphocytes revealed a higher activity in p53+/+ lymphocytes. In addition, we observed an increased immunostaining in cells of hyperplastic B follicles and advanced B-cell lymphomas in p53-deficient mice. Thus, our results indicate that CKIdelta plays several roles in lymphocyte physiology.
Collapse
Affiliation(s)
- Tanja Maritzen
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Hamburg, Germany
| | | | | | | |
Collapse
|
34
|
Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 2003; 55:325-95. [PMID: 12773631 DOI: 10.1124/pr.55.2.2] [Citation(s) in RCA: 449] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melatonin, the major hormone produced by the pineal gland, displays characteristic daily and seasonal patterns of secretion. These robust and predictable rhythms in circulating melatonin are strong synchronizers for the expression of numerous physiological processes in photoperiodic species. In mammals, the nighttime production of melatonin is mainly driven by the circadian clock, situated in the suprachiasmatic nucleus of the hypothalamus, which controls the release of norepinephrine from the dense pineal sympathetic afferents. The pivotal role of norepinephrine in the nocturnal stimulation of melatonin synthesis has been extensively dissected at the cellular and molecular levels. Besides the noradrenergic input, the presence of numerous other transmitters originating from various sources has been reported in the pineal gland. Many of these are neuropeptides and appear to contribute to the regulation of melatonin synthesis by modulating the effects of norepinephrine on pineal biochemistry. The aim of this review is firstly to update our knowledge of the cellular and molecular events underlying the noradrenergic control of melatonin synthesis; and secondly to gather together early and recent data on the effects of the nonadrenergic transmitters on modulation of melatonin synthesis. This information reveals the variety of inputs that can be integrated by the pineal gland; what elements are crucial to deliver the very precise timing information to the organism. This also clarifies the role of these various inputs in the seasonal variation of melatonin synthesis and their subsequent physiological function.
Collapse
Affiliation(s)
- Valerie Simonneaux
- Laboratoire de Neurobiologie Rythmes, UMR 7518 CNRS/ULP, 12, rue de l'Université, 67000 Strasbourg, France.
| | | |
Collapse
|
35
|
Akashi M, Tsuchiya Y, Yoshino T, Nishida E. Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIepsilon) and CKIdelta in cultured cells. Mol Cell Biol 2002; 22:1693-703. [PMID: 11865049 PMCID: PMC135601 DOI: 10.1128/mcb.22.6.1693-1703.2002] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2001] [Revised: 08/20/2001] [Accepted: 12/04/2001] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown that casein kinase I epsilon (CKIepsilon) is an essential regulator of the mammalian circadian clock. However, the detailed mechanisms by which CKIepsilon regulates each component of the circadian negative-feedback loop have not been fully defined. We show here that mPer proteins, negative limbs of the autoregulatory loop, are specific substrates for CKIepsilon and CKIdelta. The CKI phosphorylation of mPer1 and mPer3 proteins results in their rapid degradation, which is dependent on the ubiquitin-proteasome pathway. Moreover, CKIepsilon and CKIdelta are able to induce nuclear translocation of mPer3, which requires its nuclear localization signal. The mutation in potential phosphorylation sites on mPer3 decreased the extent of both nuclear translocation and degradation of mPer3 that are stimulated by CKIepsilon. CKIepsilon and CKIdelta affected the inhibitory effect of mPer proteins on the transcriptional activity of BMAL1-CLOCK, but the inhibitory effect of mCry proteins on the activity of BMAL1-CLOCK was unaffected. These results suggest that CKIepsilon and CKIdelta regulate the mammalian circadian autoregulatory loop by controlling both protein turnover and subcellular localization of mPer proteins.
Collapse
Affiliation(s)
- Makoto Akashi
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
36
|
Pando MP, Pinchak AB, Cermakian N, Sassone-Corsi P. A cell-based system that recapitulates the dynamic light-dependent regulation of the vertebrate clock. Proc Natl Acad Sci U S A 2001; 98:10178-83. [PMID: 11517315 PMCID: PMC56935 DOI: 10.1073/pnas.181228598] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The primary hallmark of circadian clocks is their ability to entrain to environmental stimuli. The dominant, and therefore most physiologically important, entraining stimulus comes from environmental light cycles. Here we describe the establishment and characterization of a new cell line, designated Z3, which derives from zebrafish embryos and contains an independent, light-entrainable circadian oscillator. Using this system, we show distinct and differential light-dependent gene activation for several central clock components. In particular, activation of Per2 expression is shown to be strictly regulated and dependent on light. Furthermore, we demonstrate that Per1, Per2, and Per3 all have distinct responses to light-dark (LD) cycles and light-pulse treatments. We also show that Clock, Bmal1, and Bmal2 all oscillate under LD and dark-dark conditions with similar kinetics, but only Clock is significantly induced while initiating a light-induced circadian oscillation in Z3 cells that have never been exposed to a LD cycle. Finally, our results suggest that Per2 is responsible for establishing the phase of a circadian rhythm entraining to an alternate LD cycle. These findings not only underscore the complexity by which central clock genes are regulated, but also establishes the Z3 cells as an invaluable system for investigating the links between light-dependent gene activation and the signaling pathways responsible for vertebrate circadian rhythms.
Collapse
Affiliation(s)
- M P Pando
- Institute de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique-Institut National de la Santé et de la Recherche Médicale-Université Louis Pasteur, 1 Rue Laurent Fries, 67404 Illkirch, Strasbourg, France
| | | | | | | |
Collapse
|
37
|
Coto-Montes A, Tomás-Zapico C, Rodríguez-Colunga MJ, Tolivia-Cadrecha D, Martínez-Fraga J, Hardeland R, Tolivia D. Effects of the circadian mutation 'tau' on the Harderian glands of Syrian hamsters. J Cell Biochem 2001; 83:426-34. [PMID: 11596111 DOI: 10.1002/jcb.1240] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Syrian hamster Harderian gland (HG) is an organ continually exposed to oxidative stress caused by high concentrations of porphyric metabolites. According to previous studies, melatonin, which is rhythmically secreted by the pineal gland and tonically produced by the HG, antagonizes the oxidative damage. HGs exhibit a strong gender-dependent correlation between porphyrins, melatonin, and histological appearance. In HGs of both sexes, we have investigated effects of a single gene defect in the circadian clock system (tau mutation) causing a shortened free-running period and an advanced maximum of circulating melatonin. Comparisons were made with wild-type animals, one group of which received daily pharmacological injections of melatonin in late photophase. Changes were observed in histological characteristics, porphyrin content, antioxidant enzyme activities, and damage of proteins and lipids. HGs of tau hamsters showed morphological changes which can be partially interpreted in terms of increased damage. Additionally, tau females exhibited a many-fold augmentation in the percentage of so-called type II cells, which are otherwise typical for the male glands. In tau hamsters of both sexes, major antioxidative enzyme activities (superoxide dismutase, glutathione reductase, and catalase) were markedly enhanced, a presumably compensatory response to increased oxidative stress. Higher oxidative damage in tau HGs was directly demonstrable by a many-fold increase in protein carbonyl. Rises in antioxidative enzymes were also observed upon injections of melatonin; this was, however, not accompanied by changes in protein carbonyl, so that enzyme inductions by the hormone should be understood as protective actions. Our data are not only in accordance with findings on protective effects by melatonin, but also with our earlier observation made in Drosophila that perturbations in the circadian system lead to increased oxidative stress.
Collapse
Affiliation(s)
- A Coto-Montes
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, E-33006 Oviedo, Asturias, Spain.
| | | | | | | | | | | | | |
Collapse
|