1
|
Kong W, Zhao Y, Dai X, You C. Methodologies for the detection and sequencing of the epigenetic-like oxidative DNA modification, 8-oxo-7,8-dihydroguanine. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108516. [PMID: 39486616 DOI: 10.1016/j.mrrev.2024.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
The human genome is constantly threatened by endogenous and environmental DNA damaging agents that can induce a variety of chemically modified DNA lesions including 8-oxo-7,8-dihydroguanine (OG). Increasing evidence has indicated that OG is not only a biomarker for oxidative DNA damage but also a novel epigenetic-like modification involved in regulation of gene expression in mammalian cells. Here we summarize the recent progress in OG research focusing on the following points: (i) the mechanism of OG production in organisms and its biological consequences in cells, (ii) the accurate identification of OG in low-abundance genomes and complex biological backgrounds, (iii) the development of OG sequencing methods. These studies will be helpful for further understanding of the molecular mechanisms of OG-induced mutagenesis and its potential roles in human development and diseases such as cancer.
Collapse
Affiliation(s)
- Weiheng Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yingqi Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaoxia Dai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Changjun You
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
2
|
Zhai R, Tai F, Ding K, Tan X, Li H, Cao Z, Ge C, Zheng X, Fu H. Comparative Analysis of the Therapeutic Effects of MSCs From Umbilical Cord, Bone Marrow, and Adipose Tissue and Investigating the Impact of Oxidized RNA on Radiation-Induced Lung Injury. Stem Cells Int 2024; 2024:7419270. [PMID: 39483952 PMCID: PMC11527546 DOI: 10.1155/2024/7419270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 11/03/2024] Open
Abstract
Radiation-induced lung injury (RILI) is frequently observed in patients undergoing radiotherapy for thoracic malignancies, constituting a significant complication that hampers the effectiveness and utilization of tumor treatments. Ionizing radiation exerts both direct and indirect detrimental effects on cellular macromolecules, including DNA, RNA and proteins, but the impact of oxidized RNA in RILI remains inadequately explored. Mesenchymal stem cells (MSCs) can repair injured tissues, and the reparative potential and molecular mechanism of MSCs in treating RILI remains incompletely understood. This study aimed to investigate the therapeutic effects and mechanisms of action of three distinct sources of MSCs, including human umbilical cord mesenchymal stem cells (UCMSCs), bone marrow mesenchymal stem cells (BMSCs), and adipose-derived stem cells (ADSCs), in thoracically irradiated mice. Comparative analysis revealed that all three types of MSCs exhibited the ability to mitigate radiation-induced inflammatory infiltration, alveolar hemorrhage, and alveolar wall thickening in the lung tissue of the mice. MSCs also attenuated RILI by decreasing inflammatory factors, upregulating anti-inflammatory factor expression, and reducing collagen accumulation. Immunohistochemical results showed that all three MSCs reduced radiation-induced cell apoptosis and promoted the regeneration of lung tissue cells. The analysis of malondialdehyde (MDA) and 8-hydroyguanosine (8-OHG) content indicated that MSCs possess reparative properties against radiation-induced oxidative damage in lung tissue. The study provides evidence that UCMSCs are a more appropriate therapeutic option for RILI compared to BMSCs and ADSCs. Additionally, MSCs effectively reduce the accumulation of oxidized RNA in RILI, thereby, presenting a unique avenue for investigating the underlying mechanism of MSC-based treatment for RILI.
Collapse
Affiliation(s)
- Rui Zhai
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Fumin Tai
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Kexin Ding
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xin Tan
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Hujie Li
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhengyue Cao
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaofei Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hanjiang Fu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
3
|
Li Y, Wang X. The role of DNA and RNA guanosine oxidation in cardiovascular diseases. Pharmacol Res 2024; 204:107187. [PMID: 38657843 DOI: 10.1016/j.phrs.2024.107187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Cardiovascular diseases (CVD) persist as a prominent cause of mortality worldwide, with oxidative stress constituting a pivotal contributory element. The oxidative modification of guanosine, specifically 8-oxoguanine, has emerged as a crucial biomarker for oxidative stress, providing novel insights into the molecular underpinnings of CVD. 8-Oxoguanine can be directly generated at the DNA (8-oxo-dG) and RNA (8-oxo-G) levels, as well as at the free nucleotide level (8-oxo-dGTP or 8-oxo-GTP), which are produced and can be integrated through DNA replication or RNA transcription. When exposed to oxidative stress, guanine is more readily produced in RNA than in DNA. A burgeoning body of research surrounds 8-oxoguanine, exhibits its accumulation playing a pivotal role in the development of CVD. Therapeutic approaches targeting oxidative 8-Oxoguanine damage to DNA and RNA, encompassing the modulation of repair enzymes and the development of small molecule inhibitors, are anticipated to enhance CVD management. In conclusion, we explore the noteworthy elevation of 8-oxoguanine levels in patients with various cardiac conditions and deliberate upon the formation and regulation of 8-oxo-dG and 8-oxo-G under oxidative stress, as well as their function in CVD.
Collapse
Affiliation(s)
- Yiping Li
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China
| | - Xiaolong Wang
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China.
| |
Collapse
|
4
|
Villers J, Smith EM, DeLiberto AN, Arguello AE, Nyaanga J, Kleiner RE. Chemoproteomic Profiling of 8-Oxoguanosine-Sensitive RNA-Protein Interactions. Biochemistry 2023; 62:3411-3419. [PMID: 38010074 PMCID: PMC11031733 DOI: 10.1021/acs.biochem.3c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cellular nucleic acids are subject to assault by endogenous and exogenous agents that can perturb the flow of genetic information. Oxidative stress leads to the accumulation of 8-oxoguanine (8OG) in DNA and RNA. 8OG lesions on mRNA negatively impact translation, but their effect on global RNA-protein interactions is largely unknown. Here, we apply an RNA chemical proteomics approach to investigate the effect of 8OG on RNA-protein binding. We find proteins that bind preferentially to 8OG-modified RNA, including IGF2BP1-3 and hnRNPD, and proteins that are repelled by 8OG such as RBM4. We characterize these interactions using biochemical and biophysical assays to quantify the effect of 8OG on binding and show that a single 8OG abolishes the binding of RBM4 to its preferred CGG-containing substrate. Taken together, our work establishes the molecular consequences of 8OG on cellular RNA-protein binding and provides a framework for interrogating the role of RNA oxidation in biological systems.
Collapse
Affiliation(s)
- Jennifer Villers
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | - Joy Nyaanga
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
5
|
Zuniga G, Frost B. Selective neuronal vulnerability to deficits in RNA processing. Prog Neurobiol 2023; 229:102500. [PMID: 37454791 DOI: 10.1016/j.pneurobio.2023.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Emerging evidence indicates that errors in RNA processing can causally drive neurodegeneration. Given that RNA produced from expressed genes of all cell types undergoes processing (splicing, polyadenylation, 5' capping, etc.), the particular vulnerability of neurons to deficits in RNA processing calls for careful consideration. The activity-dependent transcriptome remodeling associated with synaptic plasticity in neurons requires rapid, multilevel post-transcriptional RNA processing events that provide additional opportunities for dysregulation and consequent introduction or persistence of errors in RNA transcripts. Here we review the accumulating evidence that neurons have an enhanced propensity for errors in RNA processing alongside grossly insufficient defenses to clear misprocessed RNA compared to other cell types. Additionally, we explore how tau, a microtubule-associated protein implicated in Alzheimer's disease and related tauopathies, contributes to deficits in RNA processing and clearance.
Collapse
Affiliation(s)
- Gabrielle Zuniga
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Chen ZB, He M, Li JYS, Shyy JYJ, Chien S. Epitranscriptional Regulation: From the Perspectives of Cardiovascular Bioengineering. Annu Rev Biomed Eng 2023; 25:157-184. [PMID: 36913673 DOI: 10.1146/annurev-bioeng-081922-021233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The central dogma of gene expression involves DNA transcription to RNA and RNA translation into protein. As key intermediaries and modifiers, RNAs undergo various forms of modifications such as methylation, pseudouridylation, deamination, and hydroxylation. These modifications, termed epitranscriptional regulations, lead to functional changes in RNAs. Recent studies have demonstrated crucial roles for RNA modifications in gene translation, DNA damage response, and cell fate regulation. Epitranscriptional modifications play an essential role in development, mechanosensing, atherogenesis, and regeneration in the cardiovascular (CV) system, and their elucidation is critically important to understanding the molecular mechanisms underlying CV physiology and pathophysiology. This review aims at providing biomedical engineers with an overview of the epitranscriptome landscape, related key concepts, recent findings in epitranscriptional regulations, and tools for epitranscriptome analysis. The potential applications of this important field in biomedical engineering research are discussed.
Collapse
Affiliation(s)
- Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Ming He
- Department of Medicine, University of California, San Diego, La Jolla, California, USA;
| | - Julie Yi-Shuan Li
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA;
| | - John Y-J Shyy
- Department of Medicine, University of California, San Diego, La Jolla, California, USA;
| | - Shu Chien
- Department of Medicine, University of California, San Diego, La Jolla, California, USA;
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
7
|
Liu Q, Liu Z, Wang C, Gao X, Li C, Wang M, Wang Q, Cai JP. Increased production of 8-oxo-7,8-dihydroguanine in human urine, a novel biomarker of osteoporosis. Free Radic Res 2022; 56:358-365. [PMID: 35880390 DOI: 10.1080/10715762.2022.2106224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Osteoporosis is a worldwide disease that seriously affects the quality of life and survival rate of the elderly. The detection of bone biomarkers will provide supplementary information of bone mineral density, contributing to the accurate diagnosis of osteoporosis and better health care for prevention. This study aimed to investigate the efficacy of oxidative stress markers-8-oxo-7,8-dihydroguanine (8-oxoGsn) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGsn) in the assessment of osteoporosis. We conducted a cross-sectional study among menopausal women with a mean (standard deviation) age of 62.967 (7.798) years old (n = 151). Participants were recruited for the bone mineral density (BMD) assessment, blood and urinary samples. Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-guanine concentrations were measured by ultra performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). The urinary 8-oxoGsn/Cre value differed significantly between normal and osteoporotic participants (p < 0.001), while the 8-oxodGsn/Cre value did not (p = 0.720). Even after adjusting for the age and body mass index, the BMD was still associated with urinary 8-oxoGsn/Cre value. ROC analysis showed that 8-oxoGsn has a strong diagnostic value for osteoporosis (AUC =0.744). The results show for the first time that 8-oxoGsn may be a biomarker for the future diagnosis of osteoporosis in women.
Collapse
Affiliation(s)
- Qian Liu
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P.R. China
| | - Zhen Liu
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P.R. China
| | - Chenchen Wang
- Department of Pharmacy, Quzhou KeCheng People's Hospital, Quzhou, Zhejiang, China
| | - Xin Gao
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P.R. China
| | - Chuanbao Li
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Meng Wang
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Qiang Wang
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Ping Cai
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P.R. China
| |
Collapse
|
8
|
Gao F, Zhang J, Wu X, Zhao Y, Wang F, Wu K. Dual-platination and induced oxidation of uridine by a photoactivatable diazido Pt(IV) anticancer prodrug. Dalton Trans 2022; 51:11834-11839. [PMID: 35866478 DOI: 10.1039/d2dt01719a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoactivatable Pt(IV) anticancer prodrug trans,trans,trans-[Pt(N3)2(OH)2(pyridine)2] (1) has been shown to bind to and induce oxidation of all four DNA nucleobases. Herein, to further render the binding spectrum of complex 1 to nucleic acids, the interaction between complex 1 and uridine, an exclusive RNA component, was investigated by electrospray ionization mass spectrometry (ESI-MS) and NMR spectroscopy. The results showed that complex 1 can bind to uridine through the N3 (major) and O4 (minor) sites upon light irradiation to form the major mono-platinated uridine adduct and the minor di-platinated uridine adduct. Moreover, mono-platinated uridine associated with the oxidation of uridine to 5-hydroxyuridine and 6-hydroxyuridine was also observed. This is the first report that the photoactivatable Pt(IV) prodrug binds to and induces the oxidation of uridine, and also the last piece of the puzzle for the interactions of complex 1 with nucleobases. Combined with our previous results about the interactions between complex 1 and DNA bases, these data showed a wide interaction spectrum of this kind of photoactivatable diazido Pt(IV) prodrugs with nucleobases through such dual-action modes, strongly suggesting that RNA may be a potential target of Pt(IV) prodrugs.
Collapse
Affiliation(s)
- Fang Gao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Jishuai Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China. .,Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
9
|
Hemagirri M, Sasidharan S. Biology of aging: Oxidative stress and RNA oxidation. Mol Biol Rep 2022; 49:5089-5105. [PMID: 35449319 DOI: 10.1007/s11033-022-07219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
Abstract
The prevalence of aged people has increased rapidly in recent years and brings profound demographic changes worldwide. The multi-level progression of aging occurs at diverse stages of complexity, from cell to organ systems and eventually to the human as a whole. The cellular and molecular damages are usually regulated by the cells; repair or degrade mechanisms. However, these mechanisms are not entirely functional; their effectiveness decreases with age due to influence from endogenous sources like oxidative stress, which all contribute to the aging process. The hunt for novel strategies to increase the man's longevity since ancient times needs better understandings of the biology of aging, oxidative stress, and their roles in RNA oxidation. The critical goal in developing new strategies to increase the man's longevity is to compile the novel developed knowledge on human aging into a single picture, preferably able to understand the biology of aging and the contributing factors. This review discusses the biology of aging, oxidative stress, and their roles in RNA oxidation, leading to aging in humans.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
| |
Collapse
|
10
|
Chen X, Yu H, Li Z, Ye W, Liu Z, Gao J, Wang Y, Li X, Zhang L, Alenina N, Bader M, Ding H, Li P, Aung LHH. Oxidative RNA Damage in the Pathogenesis and Treatment of Type 2 Diabetes. Front Physiol 2022; 13:725919. [PMID: 35418873 PMCID: PMC8995861 DOI: 10.3389/fphys.2022.725919] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Excessive production of free radicals can induce cellular damage, which is associated with many diseases. RNA is more susceptible to oxidative damage than DNA due to its single-stranded structure, and lack of protective proteins. Yet, oxidative damage to RNAs received little attention. Accumulating evidence reveals that oxidized RNAs may be dysfunctional and play fundamental role in the occurrence and development of type 2 diabetes (T2D) and its complications. Oxidized guanine nucleoside, 8-oxo-7, 8-dihydroguanine (8-oxoGuo) is a biomarker of RNA oxidation that could be associated with prognosis in patients with T2D. Nowadays, some clinical trials used antioxidants for the treatment of T2D, though the pharmacological effects remained unclear. In this review, we overview the cellular handling mechanisms and the consequences of the oxidative RNA damage for the better understanding of pathogenesis of T2D and may provide new insights to better therapeutic strategy.
Collapse
Affiliation(s)
- Xiatian Chen
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hua Yu
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Zhe Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wei Ye
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Device, Huaiyin Institute of Technology, Huaian, China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jinning Gao
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xin Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhang
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Hongyan Ding
- School of Bioengineering, Suqian University, Suqian, China
| | - Peifeng Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Peifeng Li, ; Lynn Htet Htet Aung,
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Peifeng Li, ; Lynn Htet Htet Aung,
| |
Collapse
|
11
|
Taniguchi Y. Development of Artificial Nucleoside Analogues for the Recognition and Detection of Damaged Nucleoside in DNA. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Shan KJ, Wei C, Wang Y, Huan Q, Qian W. Host-specific asymmetric accumulation of mutation types reveals that the origin of SARS-CoV-2 is consistent with a natural process. Innovation (N Y) 2021; 2:100159. [PMID: 34485968 PMCID: PMC8405235 DOI: 10.1016/j.xinn.2021.100159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
The capacity of RNA viruses to adapt to new hosts and rapidly escape the host immune system is largely attributable to de novo genetic diversity that emerges through mutations in RNA. Although the molecular spectrum of de novo mutations-the relative rates at which various base substitutions occur-are widely recognized as informative toward understanding the evolution of a viral genome, little attention has been paid to the possibility of using molecular spectra to infer the host origins of a virus. Here, we characterize the molecular spectrum of de novo mutations for SARS-CoV-2 from transcriptomic data obtained from virus-infected cell lines, enabled by the use of sporadic junctions formed during discontinuous transcription as molecular barcodes. We find that de novo mutations are generated in a replication-independent manner, typically on the genomic strand, and highly dependent on mutagenic mechanisms specific to the host cellular environment. De novo mutations will then strongly influence the types of base substitutions accumulated during SARS-CoV-2 evolution, in an asymmetric manner favoring specific mutation types. Consequently, similarities between the mutation spectra of SARS-CoV-2 and the bat coronavirus RaTG13, which have accumulated since their divergence strongly suggest that SARS-CoV-2 evolved in a host cellular environment highly similar to that of bats before its zoonotic transfer into humans. Collectively, our findings provide data-driven support for the natural origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Jia Shan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changshuo Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Huan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Zhang LQ, Xu XM, Li XY, Guo J, Wang HZ, Sun JY, Cai JP. Urinary 8-oxo-7,8-dihydroguanosine levels are elevated in HCV-infected patients. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:884-895. [PMID: 34379042 DOI: 10.1080/15257770.2021.1961272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
HCV patients are usually under substantial oxidative stress because of viral infection. A total of 177 patients with HCV infection and 198 age- and sex-matched healthy controls were enrolled in this study. We evaluated the urinary levels of 8-oxo-7, 8-dihydro-2'deoxyguanosine (8-oxodGuo) and 8-oxo-7, 8-dihydroguanosine (8-oxoGuo) in patients with HCV infection and explored the factors affecting the urinary 8-oxodGuo or 8-oxoGuo levels. Biomarkers of liver function, cancer, and inflammation were determined. Nonparametric correlations were used to evaluate the correlation between 8-oxoGuo or 8-oxodGuo and various laboratory biochemical indicators. Results showed that the levels of urinary 8-oxoGuo both in male and female patients with HCV infection were significantly higher than those in healthy controls (both p < 0.0001), while the urinary 8-oxodGuo levels only in male patients with HCV infection were significantly higher than those in healthy controls (p < 0.01). Urinary 8-oxoGuo was significantly associated with the white blood cell count, C-reactive protein level, and 8-oxodGuo level (p = 0.016, p = 0.003, and p = 0.000, respectively). Urinary 8-oxodGuo was significantly associated with the white blood cell count and 8-oxoGuo level (p = 0.018 and p = 0.000, respectively). A regression equation of urinary 8-oxoGuo or 8-oxodGuo was also established using the biomarkers in plasma. The results suggested that patients with a high C-reactive protein level are likely to have high urinary 8-oxoGuo levels as well, which may be useful for assessing the level of inflammation and oxidative stress in HCV patients.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.1961272 .
Collapse
Affiliation(s)
- Li-Qun Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Beijing, P.R. China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Xin-Min Xu
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, P.R. China
| | - Xiang-Yu Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Beijing, P.R. China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Jie Guo
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, P.R. China
| | - Hui-Zhu Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, P.R. China
| | - Ji-Yun Sun
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, P.R. China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Beijing, P.R. China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
14
|
Karabekmez ME, Taymaz-Nikerel H, Eraslan S, Kirdar B. Time-dependent re-organization of biological processes by the analysis of the dynamic transcriptional response of yeast cells to doxorubicin. Mol Omics 2021; 17:572-582. [PMID: 34095940 DOI: 10.1039/d1mo00046b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Doxorubicin is an efficient chemotherapeutic reagent in the treatment of a variety of cancers. However, its underlying molecular mechanism is not fully understood and several severe side effects limit its application. In this study, the dynamic transcriptomic response of Saccharomyces cerevisiae cells to a doxorubicin pulse in a chemostat system was investigated to reveal the underlying molecular mechanism of this drug. The clustering of differentially and significantly expressed genes (DEGs) indicated that the response of yeast cells to doxorubicin is time dependent and may be classified as short-term, mid-term and long-term responses. The cells have started to reorganize their response after the first minute following the injection of the pulse. A modified version of Weighted Gene Co-expression Network Analysis (WGCNA) was used to cluster the positively correlated co-expression profiles, and functional enrichment analysis of these clusters was carried out. DNA replication and DNA repair processes were significantly affected and induced 60 minutes after exposure to doxorubicin. The response to oxidative stress was not identified as a significant term. A transcriptional re-organization of the metabolic pathways seems to be an early event and persists afterwards. The present study reveals for the first time that the RNA surveillance pathway, which is a post-transcriptional regulatory pathway, may be implicated in the short-term reaction of yeast cells to doxorubicin. Integration with regulome revealed the dynamic re-organization of the transcriptomic landscape. Fhl1p, Mbp1p, and Mcm1p were identified as primary regulatory factors responsible for tuning the differentially expressed genes.
Collapse
Affiliation(s)
| | - Hilal Taymaz-Nikerel
- Department of Genetics and Bioengineering, Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey
| | - Serpil Eraslan
- Koç University Hospital, Diagnosis Centre for Genetic Disorders, Topkapı, Istanbul, Turkey
| | - Betul Kirdar
- Department of Chemical Engineering, Bogazici University, 34342 Bebek, Istanbul, Turkey.
| |
Collapse
|
15
|
Sun C, Limbach PA, Addepalli B. Characterization of UVA-Induced Alterations to Transfer RNA Sequences. Biomolecules 2020; 10:E1527. [PMID: 33171700 PMCID: PMC7695249 DOI: 10.3390/biom10111527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Ultraviolet radiation (UVR) adversely affects the integrity of DNA, RNA, and their nucleoside modifications. By employing liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based RNA modification mapping approaches, we identified the transfer RNA (tRNA) regions most vulnerable to photooxidation. Photooxidative damage to the anticodon and variable loop regions was consistently observed in both modified and unmodified sequences of tRNA upon UVA (λ 370 nm) exposure. The extent of oxidative damage measured in terms of oxidized guanosine, however, was higher in unmodified RNA compared to its modified version, suggesting an auxiliary role for nucleoside modifications. The type of oxidation product formed in the anticodon stem-loop region varied with the modification type, status, and whether the tRNA was inside or outside the cell during exposure. Oligonucleotide-based characterization of tRNA following UVA exposure also revealed the presence of novel photoproducts and stable intermediates not observed by nucleoside analysis alone. This approach provides sequence-specific information revealing potential hotspots for UVA-induced damage in tRNAs.
Collapse
Affiliation(s)
| | | | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA; (C.S.); (P.A.L.)
| |
Collapse
|
16
|
Facile one-pot green solvent synergized fluorescence reaction for determination of doxorubicin in presence of paclitaxel; co-administered drug, application to stability study and analysis in bulk, vial and biological fluids. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
17
|
Zhang X, Li L. The Significance of 8-oxoGsn in Aging-Related Diseases. Aging Dis 2020; 11:1329-1338. [PMID: 33014540 PMCID: PMC7505272 DOI: 10.14336/ad.2019.1021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/21/2019] [Indexed: 01/10/2023] Open
Abstract
Aging is a common risk factor for the occurrence and development of many diseases, such as Parkinson’s disease, Alzheimer’s disease, diabetes, hypertension, atherosclerosis and coronary heart disease, and cancer, among others, and is a key problem threatening the health and life expectancy of the elderly. Oxidative damage is an important mechanism involved in aging. The latest discovery pertaining to oxidative damage is that 8-oxoGsn (8-oxo-7,8-dihydroguanosine), an oxidative damage product of RNA, can represent the level of oxidative stress. The significance of RNA oxidative damage to aging has not been fully explained, but the relationship between the accumulation of 8-oxoGsn, a marker of RNA oxidative damage, and the occurrence of diseases has been confirmed in many aging-related diseases. Studying the aging mechanism, monitoring the aging level of the body and exploring the corresponding countermeasures are of great significance for achieving healthy aging and promoting public health and social development. This article reviews the progress of research on 8-oxoGsn in aging-related diseases.
Collapse
Affiliation(s)
- Xinmu Zhang
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Lin Li
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
18
|
Gonzalez-Rivera JC, Sherman MW, Wang DS, Chuvalo-Abraham JCL, Hildebrandt Ruiz L, Contreras LM. RNA oxidation in chromatin modification and DNA-damage response following exposure to formaldehyde. Sci Rep 2020; 10:16545. [PMID: 33024153 PMCID: PMC7538935 DOI: 10.1038/s41598-020-73376-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/11/2020] [Indexed: 01/18/2023] Open
Abstract
Formaldehyde is an environmental and occupational chemical carcinogen implicated in the damage of proteins and nucleic acids. However, whether formaldehyde provokes modifications of RNAs such as 8-oxo-7,8-dihydroguanine (8-oxoG) and the role that these modifications play on conferring long-term adverse health effects remains unexplored. Here, we profile 8-oxoG modifications using RNA-immunoprecipitation and RNA sequencing (8-oxoG RIP-seq) to identify 343 RNA transcripts heavily enriched in oxidations in human bronchial epithelial BEAS-2B cell cultures exposed to 1 ppm formaldehyde for 2 h. RNA oxidation altered expression of many transcripts involved in chromatin modification and p53-mediated DNA-damage responses, two pathways that play key roles in sustaining genome integrity and typically deregulated in tumorigenesis. Given that these observations were identified in normal cells exhibiting minimal cell stress and death phenotypes (for example, lack of nuclear shrinkage, F-actin alterations or increased LDH activity); we hypothesize that oxidative modification of specific RNA transcripts following formaldehyde exposure denotes an early process occurring in carcinogenesis analogous to the oxidative events surfacing at early stages of neurodegenerative diseases. As such, we provide initial investigations of RNA oxidation as a potentially novel mechanism underlying formaldehyde-induced tumorigenesis.
Collapse
Affiliation(s)
- Juan C Gonzalez-Rivera
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78714, USA
| | - Mark W Sherman
- Department of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78714, USA
| | - Dongyu S Wang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78714, USA
| | | | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78714, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78714, USA.
- Department of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78714, USA.
| |
Collapse
|
19
|
Li Z, Chen X, Liu Z, Ye W, Li L, Qian L, Ding H, Li P, Aung LHH. Recent Advances: Molecular Mechanism of RNA Oxidation and Its Role in Various Diseases. Front Mol Biosci 2020; 7:184. [PMID: 32850971 PMCID: PMC7413073 DOI: 10.3389/fmolb.2020.00184] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Compared with the research on DNA damage, there are fewer studies on RNA damage, and the damage mechanism remains mostly unknown. Recent studies have shown that RNA is more vulnerable to damage than DNA when the cells are exposed to endogenous and exogenous insults. RNA injury may participate in a variety of disease occurrence and development. RNA not only has important catalytic functions and other housekeeping functions, it also plays a decisive role in the translation of genetic information and protein biosynthesis. Various kinds of stressors, such as ultraviolet, reactive oxygen species and nitrogen, can cause damage to RNA. It may involve in the development and progression of diseases. In this review, we focused on the relationship between the RNA damage and disease as well as the research progress on the mechanism of RNA damage, which is of great significance for the pathogenesis, diagnosis, and treatment of related diseases.
Collapse
Affiliation(s)
- Zhe Li
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiatian Chen
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wei Ye
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Device, Huaiyin Institute of Technology, Huaian, China
| | - Ling Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lili Qian
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hongyan Ding
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Device, Huaiyin Institute of Technology, Huaian, China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Post-transcriptional air pollution oxidation to the cholesterol biosynthesis pathway promotes pulmonary stress phenotypes. Commun Biol 2020; 3:392. [PMID: 32699268 PMCID: PMC7376215 DOI: 10.1038/s42003-020-01118-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The impact of environmentally-induced chemical changes in RNA has been fairly unexplored. Air pollution induces oxidative modifications such as 8-oxo-7,8-dihydroguanine (8-oxoG) in RNAs of lung cells, which could be associated with premature lung dysfunction. We develop a method for 8-oxoG profiling using immunocapturing and RNA sequencing. We find 42 oxidized transcripts in bronchial epithelial BEAS-2B cells exposed to two air pollution mixtures that recreate urban atmospheres. We show that the FDFT1 transcript in the cholesterol biosynthesis pathway is susceptible to air pollution-induced oxidation. This process leads to decreased transcript and protein expression of FDFT1, and reduced cholesterol synthesis in cells exposed to air pollution. Knockdown of FDFT1 replicates alterations seen in air pollution exposure such as transformed cell size and suppressed cytoskeleton organization. Our results argue of a possible novel biomarker and of an unseen mechanism by which air pollution selectively modifies key metabolic-related transcripts facilitating cell phenotypes in bronchial dysfunction. Gonzales-Rivera et al. develop a method for 8-oxoG profiling using immunocapturing and RNA sequencing. They show that the FDFT1 transcript is susceptible to air pollution-induced oxidation, after identifying 42 transcripts that are differentially oxidized in bronchial epithelial BEAS-2B cells under air pollution conditions relative to clean air. FDFT1 oxidation affects cholesterol synthesis pathway, leading to phenotypes associated with several lung diseases.
Collapse
|
21
|
Current perspectives on the clinical implications of oxidative RNA damage in aging research: challenges and opportunities. GeroScience 2020; 43:487-505. [PMID: 32529593 PMCID: PMC8110629 DOI: 10.1007/s11357-020-00209-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/28/2020] [Indexed: 02/05/2023] Open
Abstract
Ribonucleic acid (RNA) molecules can be easily attacked by reactive oxygen species (ROS), which are produced during normal cellular metabolism and under various oxidative stress conditions. Numerous findings report that the amount of cellular 8-oxoG, the most abundant RNA damage biomarker, is a promising target for the sensitive measurement of oxidative stress and aging-associated diseases, including neuropsychiatric disorders. Most importantly, available data suggest that RNA oxidation has important implications for various signaling pathways and gene expression regulation in aging-related diseases, highlighting the necessity of using combinations of RNA oxidation adducts in both experimental studies and clinical trials. In this review, we primarily describe evidence for the effect of oxidative stress on RNA integrity modulation and possible quality control systems. Additionally, we discuss the profiles and clinical implications of RNA oxidation products that have been under intensive investigation in several aging-associated medical disorders.
Collapse
|
22
|
Abstract
Similar to many other biological molecules, RNA is vulnerable to chemical insults from endogenous and exogenous sources. Noxious agents such as reactive oxygen species or alkylating chemicals have the potential to profoundly affect the chemical properties and hence the function of RNA molecules in the cell. Given the central role of RNA in many fundamental biological processes, including translation and splicing, changes to its chemical composition can have a detrimental impact on cellular fitness, with some evidence suggesting that RNA damage has roles in diseases such as neurodegenerative disorders. We are only just beginning to learn about how cells cope with RNA damage, with recent studies revealing the existence of quality-control processes that are capable of recognizing and degrading or repairing damaged RNA. Here, we begin by reviewing the most abundant types of chemical damage to RNA, including oxidation and alkylation. Focusing on mRNA damage, we then discuss how alterations to this species of RNA affect its function and how cells respond to these challenges to maintain proteostasis. Finally, we briefly discuss how chemical damage to noncoding RNAs such as rRNA, tRNA, small nuclear RNA, and small nucleolar RNA is likely to affect their function.
Collapse
Affiliation(s)
- Liewei L. Yan
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Hani S. Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, To whom correspondence should be addressed:
Dept. of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Dr., St. Louis, MO 63130. Tel.:
314-935-7662; Fax:
314-935-4432; E-mail:
| |
Collapse
|
23
|
Willi J, Küpfer P, Evéquoz D, Fernandez G, Katz A, Leumann C, Polacek N. Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center. Nucleic Acids Res 2019; 46:1945-1957. [PMID: 29309687 PMCID: PMC5829716 DOI: 10.1093/nar/gkx1308] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023] Open
Abstract
Intracellular levels of reactive oxygen species (ROS) increase as a consequence of oxidative stress and represent a major source of damage to biomolecules. Due to its high cellular abundance RNA is more frequently the target for oxidative damage than DNA. Nevertheless the functional consequences of damage on stable RNA are poorly understood. Using a genome-wide approach, based on 8-oxo-guanosine immunoprecipitation, we present evidence that the most abundant non-coding RNA in a cell, the ribosomal RNA (rRNA), is target for oxidative nucleobase damage by ROS. Subjecting ribosomes to oxidative stress, we demonstrate that oxidized 23S rRNA inhibits the ribosome during protein biosynthesis. Placing single oxidized nucleobases at specific position within the ribosome's catalytic center by atomic mutagenesis resulted in markedly different functional outcomes. While some active site nucleobases tolerated oxidative damage well, oxidation at others had detrimental effects on protein synthesis by inhibiting different sub-steps of the ribosomal elongation cycle. Our data provide molecular insight into the biological consequences of RNA oxidation in one of the most central cellular enzymes and reveal mechanistic insight on the role of individual active site nucleobases during translation.
Collapse
Affiliation(s)
- Jessica Willi
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Pascal Küpfer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Damien Evéquoz
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Guillermo Fernandez
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Assaf Katz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Christian Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
24
|
Li S, Jin Y, Zhao H, Jiang Y, Cai Z. Evaluation of bisphenol A exposure induced oxidative RNA damage by liquid chromatography-mass spectrometry. CHEMOSPHERE 2019; 222:235-242. [PMID: 30708157 DOI: 10.1016/j.chemosphere.2019.01.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/03/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Highlighted evidence suggests the possible implication of bisphenol A (BPA) exposure on a variety of biological functions, such as DNA damage. Similar to DNA, exposed to BPA may also have potential risks to RNA damage due to its induction of reactive oxygen species. However, there are no related research reports about such health risks of BPA. Therefore, this work tried to investigate the BPA exposure induced oxidative RNA damage by detecting urinary nucleosides, the end-products of RNA metabolism. An ultra-high performance liquid chromatography-Orbitrap mass spectrometry method was applied to selectively and sensitively determine urinary nucleosides. As a result, 66 nucleosides were identified and the effects of BPA exposure on these nucleosides in rat urine samples were evaluated. The nucleosides showed different changing tendency along with different exposure dose of BPA. The strongest effect was observed in high does-exposure rats, indicating dose-response relationship between BPA-treatment and urinary nucleosides. Significant change of some nucleosides, including 8-oxoguanosine, was observed in the high-dose exposure group, suggesting obvious RNA damage to rats. To the best of our knowledge, it is the first study about the RNA damage induced by BPA exposure. The results provided a new perspective on the toxic effects of BPA exposure.
Collapse
Affiliation(s)
- Shangfu Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, PR China
| | - Yibao Jin
- Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, PR China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, PR China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, PR China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, PR China.
| |
Collapse
|
25
|
Weimann A, McLeod G, Henriksen T, Cejvanovic V, Poulsen HE. Identification and quantification of isoguanosine in humans and mice. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 79:225-232. [PMID: 30888208 DOI: 10.1080/00365513.2019.1585566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Isoguanine (2-hydroxyadenine), considered to be a non-natural nucleobase has, however, been shown to occur in the croton bean, butterfly wings and a mollusk. For the first time, to the best of our knowledge, we report the identification of isoguanosine (2-hydroxyadenosine), the ribonucleoside, in humans and mouse. Isoguanosine is identified and quantified in RNA from mouse liver samples and in human urine and cerebrospinal fluid. Isoguanine could not be detected as the 2'-deoxyribonucleoside in mouse liver DNA. It could be speculated that the source of isoguanosine was formation from adenosine during oxidative stress in the body. However, the urinary concentrations of isoguanosine and the levels in the liver found here by using isotope dilution liquid chromatography-tandem mass spectrometry are identical to or exceed those of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-guanosine. Guanine is the nucleobase that is oxidized the easiest, so it appears spectacular that the levels of isoguanosine are higher than the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-guanosine. It also appears intriguing that it was only possible to detect the ribonucleoside isoguanosine and not the 2'-deoxyribonucleoside. These observations could indicate that the isoguanosine found is not formed by oxidative stress and could have biological functions.
Collapse
Affiliation(s)
- Allan Weimann
- a Department of Clinical Pharmacology , Bispebjerg and Frederiksberg Hospital Copenhagen , Denmark
| | - George McLeod
- b Bruker UK Ltd , Coventry , UK.,c Owlstone Medical Ltd , Cambridge , UK
| | - Trine Henriksen
- a Department of Clinical Pharmacology , Bispebjerg and Frederiksberg Hospital Copenhagen , Denmark
| | - Vanja Cejvanovic
- a Department of Clinical Pharmacology , Bispebjerg and Frederiksberg Hospital Copenhagen , Denmark.,d Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Henrik E Poulsen
- a Department of Clinical Pharmacology , Bispebjerg and Frederiksberg Hospital Copenhagen , Denmark.,d Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
26
|
Kjaer LK, Oellgaard J, Henriksen T, Gaede P, Pedersen O, Poulsen HE. Indicator of RNA oxidation in urine for the prediction of mortality in patients with type 2 diabetes and microalbuminuria: A post-hoc analysis of the Steno-2 trial. Free Radic Biol Med 2018; 129:247-255. [PMID: 30244028 DOI: 10.1016/j.freeradbiomed.2018.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The RNA oxidation product, 8-oxo-7,8-dihydroguanosine (8-oxoGuo), has been associated with mortality in patients with type 2 diabetes (T2D). However, the identification and the potential effect of approved treatments decreasing urine 8-oxoGuo level remain unraveled. In the Steno-2 study intensified multifactorial treatment compared with conventional multifactorial treatment reduced mortality in T2D patients with microalbuminuria by 45%. We assessed association between 8-oxoGuo at advanced baseline and total mortality with up to 19.9 years follow-up and from end of intervention to end of follow-up up to (up to 13.9 years). MATERIALS AND METHODS In 1993, 160 T2D patients with microalbuminuria were included in the Steno-2 trial. Urine samples from baseline were not available, but samples were available from 155 patients (97%) in 1995 (advanced baseline) and from 125 patients (96%) in 2001 (end of intervention). Hazard ratios (HR) for log2-transformed 8-oxoGuo and dichotomized (cut-off at median; low vs. high RNA oxidation) were estimated using Cox regressions. RESULTS During follow-up of 19.9 years after advanced baseline, 89 died and no association between 8-oxoGuo and mortality was found (p = 0.40). From the end of 7.8 years of intervention and during remaining 13.9 years of observation, 61 died and doubling the urine 8-oxoGuo level was associated with mortality with a HR 3.08 (95% CI [1.86 -5.12]; p < 0.001) after multiple adjustments. Patients with low 8-oxoGuo in the intensified-treatment had the lowest risk of dying compared with high 8-oxoGuo in the conventional-treatment both from advanced baseline onwards, adjusted HR 0.40 (95% CI [0.21 -0.75]; p = 0.004), and from end of intervention onwards, adjusted HR 0.28 (95% CI [0.13 -0.61]; p = 0.001). CONCLUSIONS In T2D patients with microalbuminuria, high levels of urine 8-oxoGuo after 7.8 years of multifactorial intervention was associated with higher mortality during 13.9 years of post-trial follow-up. Patients with low 8-oxoGuo in the intensified treatment group had the lowest risk of dying.
Collapse
Affiliation(s)
- Laura Kofoed Kjaer
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Oellgaard
- Slagelse Hospital, Slagelse, Denmark; University of Southern Denmark, Odense, Denmark; Steno Diabetes Center, Gentofte, Denmark
| | - Trine Henriksen
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Peter Gaede
- Slagelse Hospital, Slagelse, Denmark; University of Southern Denmark, Odense, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark.
| | - Henrik Enghusen Poulsen
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
de Oliveira AAF, de Oliveira TF, Dias MF, Medeiros MHG, Di Mascio P, Veras M, Lemos M, Marcourakis T, Saldiva PHN, Loureiro APM. Genotoxic and epigenotoxic effects in mice exposed to concentrated ambient fine particulate matter (PM 2.5) from São Paulo city, Brazil. Part Fibre Toxicol 2018; 15:40. [PMID: 30340610 PMCID: PMC6194750 DOI: 10.1186/s12989-018-0276-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Metropolitan Area of São Paulo has a unique composition of atmospheric pollutants, and positive correlations between exposure and the risk of diseases and mortality have been observed. Here we assessed the effects of ambient fine particulate matter (PM2.5) on genotoxic and global DNA methylation and hydroxymethylation changes, as well as the activities of antioxidant enzymes, in tissues of AJ mice exposed whole body to ambient air enriched in PM2.5, which was concentrated in a chamber near an avenue of intense traffic in São Paulo City, Brazil. RESULTS Mice exposed to concentrated ambient PM2.5 (1 h daily, 3 months) were compared to in situ ambient air exposed mice as the study control. The concentrated PM2.5 exposed group presented increased levels of the oxidized nucleoside 8-oxo-7,8-dihydro-2'-deoxyguanosine in lung and kidney DNA and increased levels of the etheno adducts 1,N6-etheno-2'-deoxyadenosine and 1,N2-etheno-2'-deoxyguanosine in kidney and liver DNA, respectively. Apart from the genotoxic effects, the exposure to PM2.5 led to decreased levels of the epigenetic mark 5-hydroxymethylcytosine (5-hmC) in lung and liver DNA. Changes in lung, liver, and erythrocyte antioxidant enzyme activities were also observed. Decreased glutathione reductase and increased superoxide dismutase (SOD) activities were observed in the lungs, while the liver presented increased glutathione S-transferase and decreased SOD activities. An increase in SOD activity was also observed in erythrocytes. These changes are consistent with the induction of local and systemic oxidative stress. CONCLUSIONS Mice exposed daily to PM2.5 at a concentration that mimics 24-h exposure to the mean concentration found in ambient air presented, after 3 months, increased levels of DNA lesions related to the occurrence of oxidative stress in the lungs, liver, and kidney, in parallel to decreased global levels of 5-hmC in lung and liver DNA. Genetic and epigenetic alterations induced by pollutants may affect the genes committed to cell cycle control, apoptosis, and cell differentiation, increasing the chance of cancer development, which merits further investigation.
Collapse
Affiliation(s)
- Antonio Anax Falcão de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Tiago Franco de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
- Present address: Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite 245, Porto Alegre, Rio Grande do Sul CEP 90050-170 Brazil
| | - Michelle Francini Dias
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Marisa Helena Gennari Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Mariana Veras
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Miriam Lemos
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
- Instituto de Estudos Avançados, Universidade de São Paulo, R. do Anfiteatro, 513, São Paulo, CEP 05508060 Brazil
| | - Ana Paula Melo Loureiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| |
Collapse
|
28
|
Zitka O, Kudr J, Labuda J, Xhaxhiu K, Adam V. Separation of Nucleobases Using High-performance Liquid Chromatography Coupled with Voltammetric Scanning. ELECTROANAL 2018. [DOI: 10.1002/elan.201800175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ondrej Zitka
- Department of Chemistry and Biochemistry; Mendel University in Brno; Zemedelska 1 CZ-613 00 Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Purkyňova 656/123 612 00 BRNO Czech Republic
| | - Jiri Kudr
- Department of Chemistry and Biochemistry; Mendel University in Brno; Zemedelska 1 CZ-613 00 Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Purkyňova 656/123 612 00 BRNO Czech Republic
- Faculty of Electrical Engineering and Communication; Brno University of Technology; Technicka 3058/10, 616 Brno Czech Republic
| | - Jan Labuda
- Institute of Analytical Chemistry; Slovak University of Technology in Bratislava; Radlinskeho 9 SK-812 37 Bratislava Slovakia
| | - Kledi Xhaxhiu
- Department of Chemistry; Faculty of Natural Sciences; University of Tirana, Blv. Zog I, No. 2/1, 1001; Tirana Albania
| | - Vojtech Adam
- Department of Chemistry and Biochemistry; Mendel University in Brno; Zemedelska 1 CZ-613 00 Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Purkyňova 656/123 612 00 BRNO Czech Republic
| |
Collapse
|
29
|
Van Ruyskensvelde V, Van Breusegem F, Van Der Kelen K. Post-transcriptional regulation of the oxidative stress response in plants. Free Radic Biol Med 2018; 122:181-192. [PMID: 29496616 DOI: 10.1016/j.freeradbiomed.2018.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
Abstract
Due to their sessile lifestyle, plants can be exposed to several kinds of stresses that will increase the production of reactive oxygen species (ROS), such as hydrogen peroxide, singlet oxygen, and hydroxyl radicals, in the plant cells and activate several signaling pathways that cause alterations in the cellular metabolism. Nevertheless, when ROS production outreaches a certain level, oxidative damage to nucleic acids, lipids, metabolites, and proteins will occur, finally leading to cell death. Until now, the most comprehensive and detailed readout of oxidative stress responses is undoubtedly obtained at the transcriptome level. However, transcript levels often do not correlate with the corresponding protein levels. Indeed, together with transcriptional regulations, post-transcriptional, translational, and/or post-translational regulations will shape the active proteome. Here, we review the current knowledge on the post-transcriptional gene regulation during the oxidative stress responses in planta.
Collapse
Affiliation(s)
- Valerie Van Ruyskensvelde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
30
|
Gan W, Liu XL, Yu T, Zou YG, Li TT, Wang S, Deng J, Wang LL, Cai JP. Urinary 8-oxo-7,8-dihydroguanosine as a Potential Biomarker of Aging. Front Aging Neurosci 2018. [PMID: 29535624 PMCID: PMC5835306 DOI: 10.3389/fnagi.2018.00034] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: A molecular biomarker of physiologic age, as opposed to chronologic age, is needed in clinical medicine. 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGsn) and 8-oxo-7, 8-dihydroguanosine (8-oxoGsn) are two promising aging biomarkers. Methods: A total of 1,228 healthy Chinese residents (613 males and 615 females) 2–90 years of age were randomly selected. Spot urine samples were collected, and the concentrations of 8-oxodGsn and 8-oxoGsn were measured using ultra-high-performance liquid chromatography with a triple quadrupole mass spectrometer (UPLC-MS/MS). Method validation, including accuracy, precision, linearity and quantification limit, was performed. The relationship between oxidized guanosine and age/gender was evaluated. Results: 8-oxodGsn and 8-oxoGsn were eluted at 1.61 and 1.30 min, respectively. The calibration curve was linear in the range of 0.2–500 ng/ml for both analytes. The lowest limit of quantification (LLOQ) was 0.2 ng/ml for 8-oxodGsn and 0.1 ng/ml for 8-oxoGsn. There was an age-dependent increase in the biomarkers from the 21- to 30-year-old group to the 81- to 90-year-old group in both genders. In the subjects older than 61 years of age, the levels of 8-oxodGsn as well as 8-oxoGsn in urine were much higher in females than in males. The content of 8-oxoGsn correlated more closely with age and was higher (approximately 2-fold) than that of 8-oxodGsn for a given individual. Conclusions: 8-oxodGsn and 8-oxoGsn can be easily measured by UPLC-MS/MS. Urinary 8-oxoGsn may be a potential biomarker to determine a person's physiologic age and identify individuals at high risk of developing age-associated disease.
Collapse
Affiliation(s)
- Wei Gan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Xin-Le Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Yu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan-Gao Zou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ting-Ting Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Deng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lan-Lan Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Ping Cai
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
31
|
Xu XM, Zhou XY, Li XY, Guo J, Wang HZ, Li Y, Yang CC, Liu TH, Cai JP. Increased oxidative damage of RNA in liver injury caused by hepatitis B virus (HBV) infection. Free Radic Res 2018; 52:426-433. [PMID: 29424259 DOI: 10.1080/10715762.2018.1439165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To evaluate the urinary levels of 8-oxo-7,8-dihydro-2'deoxyguanosine (8-oxo-dGsn) and 8-oxo-7,8-dihydroguanosine (8-oxo-Gsn) in liver injury patients with hepatitis B virus (HBV) infection and to explore the relationship between urinary 8-oxo-dGsn or 8-oxo-Gsn and degree of liver damage. We enrolled 138 liver injury patients with HBV infection and 169 age- and sex-matched healthy controls in this study. A sensitive and accurate isotope-diluted liquid chromatograph mass spectrometer/mass spectrometer (LC-MS/MS) method was used to measure the urinary levels of 8-oxo-Gsn and 8-oxo-dGsn. Simultaneously, pathological analysis of liver biopsy tissues was carried out, and immunohistochemistry was carried out for 8-oxo-Guo, 8-oxo-dGuo and MTH1 protein in some liver injury tissues. We analysed the correlation between the degrees of inflammation and fibrosis and levels of 8-oxo-Gsn and 8-oxo-dGsn. We also analysed the levels of urinary 8-oxo-Gsn and 8-oxo-dGsn with clinical data of HBeAg, HBsAg, and HBV genotype and detected the levels of plasma aspartate aminotransferase, alanine aminotransferase (AST), platelet, alkaline phosphatase, prothrombin time (PT) and HBV DNA, and calculated the aspartate amino transferase-to-platelet ratio index (APRI) score. Nonparametric correlations were used to evaluate the correlation between 8-oxo-Gsn, 8-oxo-dGsn or APRI and various laboratory biochemical indicators. Results showed that the levels of urinary 8-oxo-Gsn and 8-oxo-dGsn in patients with liver injury were significantly higher than those of healthy controls (both p < .001). Urinary 8-oxo-Gsn was significantly associated with AST, APRI and PT (p = .013, p = .026 and p = .049). The receiver operating characteristic curves of 8-oxo-Gsn were 0.696 (0.632-0.759) and 0.731 (0.672-0.790) for inflammatory activity and fibrosis, respectively. Patients with higher levels of urinary 8-oxo-Gsn are more likely to have a high degree of fibrosis and urinary 8-oxo-Gsn may have a great potential in assessing liver fibrosis.
Collapse
Affiliation(s)
- Xin-Min Xu
- a Department of Clinical Laboratory , Beijing Ditan Hospital, Capital Medical University , Beijing , China
| | - Xiao-Yang Zhou
- b National Center of Gerontology, MOH Key Laboratory of Geriatrics, Beijing Hospital , Beijing , China
| | - Xiang-Yu Li
- b National Center of Gerontology, MOH Key Laboratory of Geriatrics, Beijing Hospital , Beijing , China
| | - Jie Guo
- a Department of Clinical Laboratory , Beijing Ditan Hospital, Capital Medical University , Beijing , China
| | - Hui-Zhu Wang
- a Department of Clinical Laboratory , Beijing Ditan Hospital, Capital Medical University , Beijing , China
| | - Yue Li
- a Department of Clinical Laboratory , Beijing Ditan Hospital, Capital Medical University , Beijing , China
| | - Cheng-Cheng Yang
- b National Center of Gerontology, MOH Key Laboratory of Geriatrics, Beijing Hospital , Beijing , China
| | - Teng-Hui Liu
- b National Center of Gerontology, MOH Key Laboratory of Geriatrics, Beijing Hospital , Beijing , China
| | - Jian-Ping Cai
- b National Center of Gerontology, MOH Key Laboratory of Geriatrics, Beijing Hospital , Beijing , China
| |
Collapse
|
32
|
Cejvanovic V, Kjær LK, Bergholdt HKM, Torp-Pedersen A, Henriksen T, Weimann A, Ellervik C, Poulsen HE. Iron induced RNA-oxidation in the general population and in mouse tissue. Free Radic Biol Med 2018; 115:127-135. [PMID: 29157668 DOI: 10.1016/j.freeradbiomed.2017.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
Abstract
Iron promotes formation of hydroxyl radicals by the Fenton reaction, subsequently leading to potential oxidatively generated damage of nucleic acids. Oxidatively generated damage to RNA, measured as 8-oxo-7,8-dihydroguanosine (8-oxoGuo) in urine, is increased in patients with genetic iron overload, which have led us to test the hypothesis that high iron status, assessed by iron biomarkers and genetic disposition, increases urinary excretion of 8-oxoGuo. In a general Danish population study we used a Mendelian randomization design with HFE genotypes as a proxy for iron status and supplemented with ex vivo experiments in mice muscle tissue exposed to iron(II) sulfate to attempt to clarify this hypothesis. The biomarkers ferritin, transferrin, and transferrin saturation (TS) were associated with 8-oxoGuo (in linear univariable and multivariable regression analyses: P < 0.001). Mendelian randomization indicated a causal pathway between genetically elevated iron biomarkers (assessed by ferritin and TS) and high levels of 8-oxoGuo. The ex vivo experiments showed a monotonically increase in 8-oxoGuo with increased iron concentration (ANOVA: P = 0.0008) that was prevented with iron chelation (P = 0.01). Our results indicate a causal relationship between iron biomarkers and 8-oxoGuo. Furthermore, the ex vivo experiment shows a mechanistic link between iron and 8-oxoGuo formation. Both iron overload and the biomarker 8-oxoGuo have been linked to e.g. diabetes, which merits future studies to investigate if iron induced 8-oxoGuo is involved in disease development.
Collapse
Affiliation(s)
- Vanja Cejvanovic
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Laura Kofoed Kjær
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Arendse Torp-Pedersen
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Trine Henriksen
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Allan Weimann
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Christina Ellervik
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Production, Research and Innovation, Region Zealand, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Weimann A, Simonsen AH, Poulsen HE. Measurement of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-guanosine in cerebrospinal fluid by ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1073:110-117. [PMID: 29248768 DOI: 10.1016/j.jchromb.2017.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023]
Abstract
Increased levels of nucleosides modified by oxidation in human cerebrospinal fluid (CSF) have several times been reported in Alzheimer patients and patients suffering from Parkinson's disease. The focus has especially been on nucleosides containing the 8-hydroxylation of guanine. Only few reports on quantification of the ribonucleoside 8-oxo-7,8-dihydro-guanosine (8oxoGuo) in CSF have been published, whereas more have been published on the quantification of the deoxy-ribonucleoside 8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxodGuo). The reports on the quantification of 8oxodGuo concentrations in CSF report absolute concentrations varying by a factor >105 in healthy humans. This could indicate that there is a serious specificity problem in some of the methods. In this paper an isotope-dilution UPLC-MS/MS method with high specificity and sensitivity for the quantification of 8oxoGuo and 8oxodGuo in CSF is presented. LLOQ for the two analytes is determined to 4pM and 2pM, respectively. The calibration curves has been tested to be linear in the range from 4 to 3,000pM for 8oxoGuo and between 2 and 3,000pM for 8oxodGuo. Using a weighting factor of 1/x the correlation coefficient "r" for both analytes is >0.999.
Collapse
Affiliation(s)
- Allan Weimann
- Laboratory of Clinical Pharmacology Q7642, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark; Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark.
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Section 6991, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark
| | - Henrik E Poulsen
- Laboratory of Clinical Pharmacology Q7642, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark; Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
DNA versus RNA oxidation in Parkinson's disease: Which is more important? Neurosci Lett 2017; 662:22-28. [PMID: 28963060 DOI: 10.1016/j.neulet.2017.09.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 11/21/2022]
Abstract
BACKROUND 8-hydroxy-2 deoxyguanosine (8-OHdG) and the 8-hydroxyguanosine (8-OHG) are the most widely used biomarkers of nucleoside oxidation affecting DNA and RNA and are considered reliable markers of oxidative stress. Increased levels of these markers are found in the various biological fluids of patients with neurodegenerative disorders. OBJECTIVE The primary aim of our study was to assess the differences of investigated markers between patient groups and subsequently study the influence of clinical factors that might modify the levels of investigated markers during the disease progression. METHODS In this study, we analysed the 8-OHdG and 8-OHG levels in the cerebrospinal fluid (CSF) and serum from 44 patients with Parkinson's disease (PD) and 32 controls using an ELISA. RESULTS There were significantly higher CSF levels of both investigated markers in Parkinson's disease patients as compared to controls (p=0.02 and p=0.04). Significantly higher CSF values of 8-OHdG were found in PD patients without dementia (p=0.05), whereas patients with dementia recorded lower 8-OHG CSF levels compared to controls (p=0.04). The disease duration and age influenced the levels of both markers within investigated groups. CONCLUSION Oxidative DNA damage plays an important role in the early stages of PD, whereas during the progression of the disease the process is more complex, and other mechanisms are in the foreground. The measurement of 8-OHdG might be used as an "early-stage marker", whereas the decrease of 8-OHG in CSF might reflect the degree of neurodegeneration during the disease progression, suggesting its utility as a prognostic marker of advanced PD stages.
Collapse
|
35
|
Consequences of RNA oxidation on protein synthesis rate and fidelity: implications for the pathophysiology of neuropsychiatric disorders. Biochem Soc Trans 2017; 45:1053-1066. [DOI: 10.1042/bst20160433] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
Unlike DNA, oxidative damage to RNA has received little attention presumably due to the assumed transient nature of RNA. However, RNAs including mRNA can persist for several hours to days in certain tissues and are demonstrated to sustain greater oxidative damage than DNA. Because neuronal cells in the brain are continuously exposed to reactive oxygen species due to a high oxygen consumption rate, it is not surprising that neuronal RNA oxidation is observed as a common feature at an early stage in a series of neurodegenerative disorders. A recent study on a well-defined bacterial translation system has revealed that mRNA containing 8-oxo-guanosine (8-oxoGuo) has little effect on fidelity despite the anticipated miscoding. Indeed, 8-oxoGuo-containing mRNA leads to ribosomal stalling with a reduced rate of peptide-bond formation by 3–4 orders of magnitude and is subject to no-go decay, a ribosome-based mRNA surveillance mechanism. Another study demonstrates that transfer RNA oxidation catalyzed by cytochrome c (cyt c) leads to its depurination and cross-linking, which may facilitate cyt c release from mitochondria and subsequently induce apoptosis. Even more importantly, a discovery of oxidized microRNA has been recently reported. The oxidized microRNA causes misrecognizing the target mRNAs and subsequent down-regulation in the protein synthesis. It is noteworthy that oxidative modification to RNA not only interferes with the translational machinery but also with regulatory mechanisms of noncoding RNAs that contribute toward the biological complexity of the mammalian brain. Oxidative RNA damage might be a promising therapeutic target potentially useful for an early intervention of diverse neuropsychiatric disorders.
Collapse
|
36
|
Bernáldez V, Rodríguez A, Rodríguez M, Sánchez-Montero L, Córdoba JJ. Evaluation of different RNA extraction methods of filamentous fungi in various food matrices. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Choi YJ, Chang SJ, Gibala KS, Resendiz MJE. 8-Oxo-7,8-dihydroadenine and 8-Oxo-7,8-dihydroadenosine-Chemistry, Structure, and Function in RNA and Their Presence in Natural Products and Potential Drug Derivatives. Chemistry 2017; 23:6706-6716. [PMID: 27960050 DOI: 10.1002/chem.201605163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Indexed: 01/02/2023]
Abstract
A description and history of the role that 8-oxo-7,8-dihydroadenine (8-oxoAde) and 8-oxo-7,8-dihydroadenosine (8-oxoA) have in various fields has been compiled. This Review focusses on 1) the formation of this oxidatively generated modification in RNA, its interactions with other biopolymers, and its potential role in the development/progression of disease; 2) the independent synthesis and incorporation of this modified nucleoside into oligonucleotides of RNA to display the progress that has been made in establishing its behavior in biologically relevant systems; 3) reported synthetic routes, which date back to 1890, along with the progress that has been made in the total synthesis of the nucleobase, nucleoside, and their corresponding derivatives; and 4) the isolation, total synthesis, and biological activity of natural products containing these moieties as the backbone. The current state of research regarding this oxidatively generated lesion as well as its importance in the context of RNA, natural products, and potential as drug derivatives is illustrated using all available examples reported to date.
Collapse
Affiliation(s)
- Yu Jung Choi
- Department of Chemistry, University of Colorado Denver, Science Building, 1151 Arapahoe St., Denver, CO, 80204, USA
| | - Stephanie J Chang
- Department of Chemistry, University of Colorado Denver, Science Building, 1151 Arapahoe St., Denver, CO, 80204, USA
| | - Krzysztof S Gibala
- Department of Chemistry, University of Colorado Denver, Science Building, 1151 Arapahoe St., Denver, CO, 80204, USA
| | - Marino J E Resendiz
- Department of Chemistry, University of Colorado Denver, Science Building, 1151 Arapahoe St., Denver, CO, 80204, USA
| |
Collapse
|
38
|
Extermann M, Leeuwenburgh C, Samiian L, Sehovic M, Xu J, Cubitt C, Jacobsen PB, Pahor M, Grobmyer SR, Manini TM. Impact of chemotherapy on medium-term physical function and activity of older breast cancer survivors, and associated biomarkers. J Geriatr Oncol 2017; 8:69-75. [PMID: 27743848 PMCID: PMC5299045 DOI: 10.1016/j.jgo.2016.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/01/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Chemotherapy is less often prescribed in older individuals due to concerns about post-treatment morbidity and quality of life. We evaluated the physical performance of breast cancer survivors treated with and without adjuvant chemotherapy. MATERIALS AND METHODS We conducted a case-control study in 56 estrogen receptor positive breast cancer survivors (BCS) on adjuvant aromatase inhibitors 1-2years after definitive surgery. Cases had received adjuvant chemotherapy (n=27; age 70.5±3.6years) versus age-matched controls who had not (n=29; age 70.0±4.3years). Measures of grip strength, physical activity and performance, walking speed, fatigue, and self-reported physical function were collected. Biological correlates of inflammation, frailty and markers of DNA and RNA oxidation were compared. RESULTS Grip strength (controls: 21±7.4 vs. CASES 29.7±5.0kg, p=0.20), physical activity (5403±3204 vs. 6801±9320steps/day, p=0.45), physical performance (short physical performance battery score: 10.1±1.8 vs. 10.4±1.1, p=0.52) and long-distance walking speed (1.2±0.21 vs. 1.3±0.41m/s, p=0.17) were similar between the two groups. Self-reported physical function was marginally lower in cases than controls (controls: 72±24 vs. CASES 57±34AU, p=0.07). Fatigue disruptiveness was not different between groups (controls: 11.1±13.0 vs. CASES 15.7±16.2AU, p=0.24). Similarly, the inflammation, oxidation, and frailty markers did not present a significant difference between groups, except for vitamin D levels (p=0.04). CONCLUSION Older women who received chemotherapy reported having slightly lower physical function, but a similar physical performance compared to women who did not. These data suggest that older BCS treated with chemotherapy recover to an extent similar to survivors who only received hormonal therapy.
Collapse
Affiliation(s)
| | | | - Laila Samiian
- Department of Surgery, University of Florida, Jacksonville, FL, USA
| | - Marina Sehovic
- Moffitt Cancer Center, University of South Florida, Tampa, FL, USA
| | - Jinze Xu
- Division of Aging, University of Florida, Gainesville, FL, USA
| | | | - Paul B Jacobsen
- Moffitt Cancer Center, University of South Florida, Tampa, FL, USA
| | - Marco Pahor
- Division of Aging, University of Florida, Gainesville, FL, USA
| | | | - Todd M Manini
- Division of Aging, University of Florida, Gainesville, FL, USA
| |
Collapse
|
39
|
Hofer T, Perry G. Nucleic acid oxidative damage in Alzheimer's disease-explained by the hepcidin-ferroportin neuronal iron overload hypothesis? J Trace Elem Med Biol 2016; 38:1-9. [PMID: 27329321 DOI: 10.1016/j.jtemb.2016.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
Abstract
There is strong literature support for brain metal dysregulation, oxidative stress and oxidative damage to neurons in Alzheimer's disease (AD); these processes begin early and continue throughout the disease. Here, we review current knowledge on metal dysregulation and nucleic acid oxidative damage in AD (we also include new data demonstrating increased RNA and DNA oxidative damage in hippocampus from individuals having suffered from degenerative (e.g. AD) and psychological diseases: 8-oxo-7,8-dihydroguanine (8-oxoGua) levels as determined by HPLC-EC-UV were particularly elevated in RNA and heterogeneously distributed among adjacent regions versus the control). Whereas neuronal iron accumulation occurs in aging, neuronal iron levels further increase in AD accompanied by oxidative damage, decreased copper levels, amyloid plaque formation and brain inflammation. The 'hepcidin-ferroportin iron overload' AD hypothesis links these processes together and is discussed here. Moreover, we find that most existing transgenic animal AD models only partly involve these processes, rather they are often limited to expression of mutated amyloid beta protein precursor (AbetaPP), presenilin, tau or apolipoprotein E proteins although a few models appear more relevant than others. Relevant models are likely to be crucial for refining and testing this hypothesis as well as developing new drugs.
Collapse
Affiliation(s)
- Tim Hofer
- Department of Toxicology and Risk Assessment, Infection Control and Environmental Health, The Norwegian Institute of Public Health, Oslo, Norway.
| | - George Perry
- UTSA Neurosciences Institute and Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
40
|
Wang WX, Luo SB, Xia MM, Mao YH, Zhou XY, Jiang P, Jiang HY, Dai DP, Li CB, Hu GX, Cai JP. Analysis of the oxidative damage of DNA, RNA, and their metabolites induced by hyperglycemia and related nephropathy in Sprague Dawley rats. Free Radic Res 2016; 49:1199-209. [PMID: 25968952 DOI: 10.3109/10715762.2015.1033416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We used a sensitive and accurate method based on isotope dilution high-performance liquid chromatography-triple quadrupole mass spectrometry (ID-LC-MS/MS) to determine the levels of 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxo-dGsn) and 8-oxo-7,8-dihydroguanosin (8-oxo-Gsn) in various tissue specimens, plasma, and urine of hyperglycemic Sprague Dawley rats induced by streptozotocin (STZ). The oxidative DNA and RNA damages were observed in various organs and the amounts of 8-oxo-dGsn and 8-oxo-Gsn derived from DNA and RNA were increased with hyperglycemic status. In contrast to the results of the nucleic acid samples derived from tissues, the levels of 8-oxo-Gsn in urine and plasma were significantly higher compared with that of 8-oxo-dGsn, which most likely reflected the RNA damage that occurs more frequently compared with DNA damage. For the oxidative stress induced by hyperglycemia, 8-oxo-Gsn in urine may be a sensitive biomarker on the basis of the results in urine, plasma, and tissues. In addition, high levels of urinary 8-oxo-Gsn were observed before diabetic microvascular complications. Based on that the 8-oxo-dGsn was associated with diabetic nephropathy and RNA was more vulnerable to oxidative stress compared with DNA. We also propose that 8-oxo-Gsn is correlated with diabetic nephropathy and that 8-oxo-Gsn in urine could be a useful and sensitive marker of diabetic nephropathy.
Collapse
Affiliation(s)
- Wan-Xia Wang
- a Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College , Dongdan, Beijing , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Simms CL, Zaher HS. Quality control of chemically damaged RNA. Cell Mol Life Sci 2016; 73:3639-53. [PMID: 27155660 DOI: 10.1007/s00018-016-2261-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/15/2016] [Accepted: 04/29/2016] [Indexed: 01/10/2023]
Abstract
The "central dogma" of molecular biology describes how information contained in DNA is transformed into RNA and finally into proteins. In order for proteins to maintain their functionality in both the parent cell and subsequent generations, it is essential that the information encoded in DNA and RNA remains unaltered. DNA and RNA are constantly exposed to damaging agents, which can modify nucleic acids and change the information they encode. While much is known about how cells respond to damaged DNA, the importance of protecting RNA has only become appreciated over the past decade. Modification of the nucleobase through oxidation and alkylation has long been known to affect its base-pairing properties during DNA replication. Similarly, recent studies have begun to highlight some of the unwanted consequences of chemical damage on mRNA decoding during translation. Oxidation and alkylation of mRNA appear to have drastic effects on the speed and fidelity of protein synthesis. As some mRNAs can persist for days in certain tissues, it is not surprising that it has recently emerged that mRNA-surveillance and RNA-repair pathways have evolved to clear or correct damaged mRNA.
Collapse
Affiliation(s)
- Carrie L Simms
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO, 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO, 63130, USA.
| |
Collapse
|
42
|
Koga Y, Taniguchi Y, Kikukawa Y, Sasaki S. Recognition and detection of 8-oxo-rG in RNA using the DNA/OMeRNA chimera probes containing fluorescent adenosine-diazaphenoxazine analog. Bioorg Med Chem 2016; 24:1308-13. [PMID: 26872394 DOI: 10.1016/j.bmc.2016.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Recent studies indicate that oxidative damage to RNA results in dysfunction of translation and eventual pathogenesis. A representative oxidized base in RNA is 8-hydroxyguanosine (8-oxo-rG), however, unlike its DNA counterpart (8-oxo-dG), its role in pathogenesis has not attracted much attention until recently. The 2'-deoxyadenosine derivative with a diazaphenoxazine skeleton at the 6-amino group (Adap) was shown to be selective for 8-oxo-dG in DNA. In this study, the 2'-O-methoxy derivative of Adap (2'-OMeAdap) was designed as a selective molecule for 8-oxo-rG in RNA. 8-Oxo-rG in the homopurine RNA was selectively recognized by the ODN probe incorporating Adap. In contrast, although it was not possible by the Adap-containing ODN prove due to the instability of the corresponding duplex, 8-oxo-rG in homopyrimidine RNA was selectively detected by the 2'-OMeRNA probe incorporating 2'-OMeAdap.
Collapse
Affiliation(s)
- Yohei Koga
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yoshiya Kikukawa
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
43
|
Gruber H, Wessels W, Boynton P, Xu J, Wohlgemuth S, Leeuwenburgh C, Qi W, Austad SN, Schaible R, Philipp EER. Age-related cellular changes in the long-lived bivalve A. islandica. AGE (DORDRECHT, NETHERLANDS) 2015; 37:90. [PMID: 26318854 PMCID: PMC5005836 DOI: 10.1007/s11357-015-9831-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 08/20/2015] [Indexed: 06/04/2023]
Abstract
One of the biggest challenges to studying causes and effects of aging is identifying changes in cells that are related to senescence instead of simply the passing of chronological time. We investigated two populations of the longest living non-colonial metazoan, Arctica islandica, with lifespans that differed sixfolds. Of four investigated parameters (nucleic acid oxidation, protein oxidation, lipid oxidation, and protein instability), only nucleic acid oxidation increased with age and correlated with relative lifespan. Nucleic acid oxidation levels increased significantly faster and were significantly higher in the shorter-lived than the longer-lived population. In contrast, neither protein oxidation, lipid oxidation, nor protein stability changed over time. Protein resistance to unfolding stress when treated with urea was significantly lower overall in the shorter-lived population, and lipid peroxidation levels were higher in the longer-lived population. With the exception of nucleic acid oxidation, damage levels of A. islandica do not change with age, indicating excellent cellular maintenance in both populations. Since correlations between nucleic acid oxidation and age have also been shown previously in other organisms, and nucleic acid oxidation accumulation rate correlates with relative age in both investigated populations, nucleic acid oxidation may reflect intrinsic aging mechanisms.
Collapse
Affiliation(s)
- Heike Gruber
- Max-Planck-Institute for Evolutionary Biology, August-Thienemann Str. 2, 24306, Plön, Germany,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chmielowska-Bąk J, Izbiańska K, Deckert J. Products of lipid, protein and RNA oxidation as signals and regulators of gene expression in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:405. [PMID: 26082792 PMCID: PMC4451250 DOI: 10.3389/fpls.2015.00405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/19/2015] [Indexed: 05/21/2023]
Abstract
Reactive oxygen species (ROS) are engaged in several processes essential for normal cell functioning, such as differentiation, anti-microbial defense, stimulus sensing and signaling. Interestingly, recent studies imply that cellular signal transduction and gene regulation are mediated not only directly by ROS but also by the molecules derived from ROS-mediated oxidation. Lipid peroxidation leads to non-enzymatic formation of oxylipins. These molecules were shown to modulate expression of signaling associated genes including genes encoding phosphatases, kinases and transcription factors. Oxidized peptides derived from protein oxidation might be engaged in organelle-specific ROS signaling. In turn, oxidation of particular mRNAs leads to decrease in the level of encoded proteins and thus, contributes to the post-transcriptional regulation of gene expression. Present mini review summarizes latest findings concerning involvement of products of lipid, protein and RNA oxidation in signal transduction and gene regulation.
Collapse
Affiliation(s)
| | | | - Joanna Deckert
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
45
|
Role of Oxidative RNA Damage in Chronic-Degenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:358713. [PMID: 26078805 PMCID: PMC4452857 DOI: 10.1155/2015/358713] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/18/2022]
Abstract
Normal cellular metabolism and exposure to ionizing and ultraviolet radiations and exogenous agents produce reactive oxygen species (ROS). Due to their reactivity, they can interact with many critical biomolecules and induce cell damage. The reaction of ROS with free nucleobases, nucleosides, nucleotides, or oligonucleotides can generate numerous distinct modifications in nucleic acids. Oxidative damage to DNA has been widely investigated and is strongly implicated in the development of many chronic-degenerative diseases. In contrast, RNA damage is a poorly examined field in biomedical research. In this review, I discuss the importance of RNA as a target of oxidative damage and the role of oxidative damage to RNA in the pathogenesis of some chronic-degenerative diseases, such as neurological disorders, atherosclerosis, and cancer. Furthermore, I review recent evidence suggesting that RNA may be the target for toxic agents and indicating RNA degradation as a powerful tool to treat any pathology in which there is an aberrant expression of mRNA and/or its gene products.
Collapse
|
46
|
Kühnel H, Adilijiang A, Dadak A, Wieser M, Upur H, Stolze K, Grillari J, Strasser A. Investigations into cytotoxic effects of the herbal preparation Abnormal Savda Munziq. Chin J Integr Med 2015. [PMID: 25967604 DOI: 10.1007/s11655-015-2132-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To evaluate the effects of Abnormal Savda Munziq (ASMq), a traditional herbal medicine, for the prevention and treatment of human diseases, e.g. bowel cancer. METHODS The parameters total polyphenol content, cell proliferation and DNA-damage as well as RNA and protein-oxidation were analysed in vitro. Besides, the expressions of miRNA and tumor suppressor genes as well as cellular senescence were evaluated. RESULTS ASMq had a high polyphenol content and induced damage to proteins, RNA as well as to DNA, which is correlated with its cytotoxicity. Furthermore ASMq up-regulated the tumor suppressor genes p21, p53 and p16 and down-regulated the micro-RNAs hsa-mir-17 and hsa-mir-106b. In addition cellular growth arrest and SA-β-gal-staining were induced. CONCLUSION ASMq has the ability to induce DNA damage and cellular senescence, which are double-edged mechanisms in fighting cancer, as they might also have harmful side effects.
Collapse
Affiliation(s)
- Harald Kühnel
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, A-1210, Austria
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wegman MP, Guo MH, Bennion DM, Shankar MN, Chrzanowski SM, Goldberg LA, Xu J, Williams TA, Lu X, Hsu SI, Anton SD, Leeuwenburgh C, Brantly ML. Practicality of intermittent fasting in humans and its effect on oxidative stress and genes related to aging and metabolism. Rejuvenation Res 2015; 18:162-72. [PMID: 25546413 PMCID: PMC4403246 DOI: 10.1089/rej.2014.1624] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/26/2014] [Indexed: 12/16/2022] Open
Abstract
Caloric restriction has consistently been shown to extend life span and ameliorate aging-related diseases. These effects may be due to diet-induced reactive oxygen species acting to up-regulate sirtuins and related protective pathways, which research suggests may be partially inhibited by dietary anti-oxidant supplementation. Because caloric restriction is not sustainable long term for most humans, we investigated an alternative dietary approach, intermittent fasting (IF), which is proposed to act on similar biological pathways. We hypothesized that a modified IF diet, where participants maintain overall energy balance by alternating between days of fasting (25% of normal caloric intake) and feasting (175% of normal), would increase expression of genes associated with aging and reduce oxidative stress and that these effects would be suppressed by anti-oxidant supplementation. To assess the tolerability of the diet and to explore effects on biological mechanisms related to aging and metabolism, we recruited a cohort of 24 healthy individuals in a double-crossover, double-blinded, randomized clinical trial. Study participants underwent two 3-week treatment periods-IF and IF with anti-oxidant (vitamins C and E) supplementation. We found strict adherence to study-provided diets and that participants found the diet tolerable, with no adverse clinical findings or weight change. We detected a marginal increase (2.7%) in SIRT3 expression due to the IF diet, but no change in expression of other genes or oxidative stress markers analyzed. We also found that IF decreased plasma insulin levels (1.01 μU/mL). Although our study suggests that the IF dieting paradigm is acceptable in healthy individuals, additional research is needed to further assess the potential benefits and risks.
Collapse
Affiliation(s)
- Martin P Wegman
- 1 University of Florida College of Medicine , Gainesville, Florida
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nakagawa O. [Development of artificial nucleic acids functionalized for damaged gene diagnosis, gene inhibition and delivery system]. YAKUGAKU ZASSHI 2014; 134:1319-29. [PMID: 25452241 DOI: 10.1248/yakushi.14-00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Artificial nucleic acids have recently been widely used with their properties optimized for various technologies such as the inhibition of gene expression (antisense/antigene strategies, RNA interference) and genetic diagnosis (single nucleotide polymorphism (SNP), damaged nucleobase). For practical application of nucleic acid therapeutics, establishment of an effective delivery system for oligonucleotides is also required because of their poor permeability into cells. Various useful delivery technologies including lipoplexes formed using cationic lipids and polyplexes made with cationic polymers have been developed; however, there is no crucial tool for oligonucleotide therapeutics at present. If technologies of functional nucleic acids and adequate delivery systems are cooperatively developed, the realization of nucleic acid therapeutics might be effectively accelerated. Based on this concept, we have been cooperatively developing these technologies based on organic synthetic chemistry during the past decade. This paper summarizes our recent results: 1) development of a specific fluorescent probe for 8-oxoguanine; 2) synthesis and evaluation of a prodrug-type small interfering RNA (siRNA) molecule; and 3) targeted intracellular delivery of oligonucleotides via conjugation with receptor-targeted ligands.
Collapse
Affiliation(s)
- Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
49
|
Narasimhan M, Riar AK, Rathinam ML, Vedpathak D, Henderson G, Mahimainathan L. Hydrogen peroxide responsive miR153 targets Nrf2/ARE cytoprotection in paraquat induced dopaminergic neurotoxicity. Toxicol Lett 2014; 228:179-91. [PMID: 24866057 PMCID: PMC4122323 DOI: 10.1016/j.toxlet.2014.05.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 12/11/2022]
Abstract
Epidemiological and animal studies suggest that environmental toxins including paraquat (PQ) increase the risk of developing Parkinson's disease (PD) by damaging nigrostriatal dopaminergic neurons. We previously showed that overexpression of a group of microRNAs (miRs) affects the antioxidant promoting factor, Nrf2 and related glutathione-redox homeostasis in SH-SY5Y dopaminergic neurons. Although, dysregulation of redox balance by PQ is well documented, the role for miRs and their impact have not been elucidated. In the current study we investigated whether PQ impairs Nrf2 and its related cytoprotective machinery by misexpression of specific fine tune miRs in SH-SY5Y neurons. Real time PCR analysis revealed that PQ significantly (p<0.05) increased the expression of brain enriched miR153 with an associated decrease in Nrf2 and its function as revealed by decrease in 4× ARE activity and expression of GCLC and NQO1. Also, PQ and H2O2-induced decrease in Nrf2 3' UTR activity was restored on miR153 site mutation suggesting a 3' UTR interacting role. Overexpression of either anti-miR153 or Nrf2 cDNA devoid of 3' UTR prevented PQ and H2O2-induced loss in Nrf2 activity confirming that PQ could cause miR153 to bind to and target Nrf2 3' UTR thereby weakening the cellular antioxidant defense. Adenovirus mediated overexpression of cytoplasmic catalase (Ad cCAT) confirmed that PQ induced miR153 is hydrogen peroxide (H2O2) dependent. In addition, Ad cCAT significantly (p<0.05) negated the PQ induced dysregulation of Nrf2 and function along with minimizing ROS, caspase 3/7 activation and neuronal death. Altogether, these results suggest a critical role for oxidant mediated miR153-Nrf2/ARE pathway interaction in paraquat neurotoxicity. This novel finding facilitates the understanding of molecular mechanisms and to develop appropriate management alternatives to counteract PQ-induced neuronal pathogenesis.
Collapse
Affiliation(s)
- Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430 USA; South Plains Alcohol and Addiction Research Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Amanjot Kaur Riar
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430 USA
| | - Mary Latha Rathinam
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430 USA
| | - Dhanashree Vedpathak
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430 USA
| | - George Henderson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430 USA; South Plains Alcohol and Addiction Research Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Lenin Mahimainathan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430 USA; South Plains Alcohol and Addiction Research Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
50
|
MicroRNAs and reactive oxygen species: Are they in the same regulatory circuit? MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 764-765:64-71. [DOI: 10.1016/j.mrgentox.2013.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022]
|