1
|
Greenberg JA, Cheung MM, Gross M, Ochs-Balcom HM, Jiang X. Dietary eggs, egg nutrients, polygenic score for body mass index, "Western pattern" diet, and weight change, a prospective analysis in the Women's health initiative. Clin Nutr 2024; 43:80-90. [PMID: 39357086 DOI: 10.1016/j.clnu.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND & AIMS Eggs contain nutrients which could help enrich the diets of postmenopausal women. Egg consumption and elevated body weight have been associated with elevated risk of serious chronic disease. It is possible that elevated body weight mediates between egg consumption and serious chronic disease. However, few studies exist on the link between egg consumption and body weight in post-menopausal women, and none of them accounted for genetic weight gain predispositions. Our objective was to examine associations between egg consumption, body weight, and genetic predisposition for an elevated Body Mass Index (BMI), in postmenopausal women. METHODS We analyzed data from 4439 healthy Women's Health Initiative participants of European descent during a 6-year follow up using multivariable generalized linear mixed models to prospectively evaluate egg and egg-nutrient intake (measured by a food frequency questionnaire) against body weight and a BMI polygenic score (PGS-BMI) derived from GWAS meta-analysis effect-allele frequencies. RESULTS We found a positive prospective association between change in egg intake and body weight during the 6-year follow up. For instance, at year 3, women whose intake had increased by 2.0 eggs/week had gained 0.70 kg (95%CI: 0.34, 1.07, p = 0.0002) more than women whose intake had decreased by 2.4 eggs/week, p-linear <0.0001. Cholesterol-intake and choline-intake, but not betaine-intake, showed similar significant associations. Exploratory analysis revealed that: 1) women only demonstrated these significant associations if they exhibited higher intakes of "Western-pattern" foods including processed and red meats, French fries, sweets and deserts, sugar-sweetened beverages, fried foods, and dietary fat, and dietary energy; and 2) there was a significant positive prospective association between PGS-BMI and body-weight change, but only in the top quintile of egg-intake change. CONCLUSIONS We found significant positive prospective associations between weight change and changes in egg intake, cholesterol intake, and choline intake among healthy postmenopausal women of European ancestry in the Women's Health Initiative. Exploratory analyses revealed that: 1) these significant associations only obtained among women who ate large amounts of "Western-pattern" foods; and 2) women with a higher genetic susceptibility for an elevated BMI gained more weight only if they increased their egg intake considerably. Our results require confirmation.
Collapse
Affiliation(s)
- James A Greenberg
- Department of Health and Nutrition Sciences, Brooklyn, College of the City University of New York, 2900 Bedford Ave, Brooklyn, NY 11210, USA.
| | - May M Cheung
- Department of Health and Nutrition Sciences, Brooklyn, College of the City University of New York, 2900 Bedford Ave, Brooklyn, NY 11210, USA.
| | - Murray Gross
- Department of Computer and Information Sciences, Brooklyn College of the City University of New York, 2900 Bedford Ave, Brooklyn, NY 11210, USA.
| | - Heather M Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, 270 Farber Hall, Buffalo, NY 14214, USA.
| | - Xinyin Jiang
- Department of Health and Nutrition Sciences, Brooklyn, College of the City University of New York, 2900 Bedford Ave, Brooklyn, NY 11210, USA.
| |
Collapse
|
2
|
Sprinkles JK, Lulla A, Hullings AG, Trujillo-Gonzalez I, Klatt KC, Jacobs DR, Shah RV, Murthy VL, Howard AG, Gordon-Larsen P, Meyer KA. Choline Metabolites and 15-Year Risk of Incident Diabetes in a Prospective Cohort of Adults: Coronary Artery Risk Development in Young Adults (CARDIA) Study. Diabetes Care 2024; 47:1985-1994. [PMID: 39259767 PMCID: PMC11502527 DOI: 10.2337/dc24-1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE The potential for choline metabolism to influence the development of diabetes has received increased attention. Previous studies on circulating choline metabolites and incident diabetes have been conducted in samples of older adults, often with a high prevalence of risk factors. RESEARCH DESIGN AND METHODS Participants were from year 15 of follow-up (2000-2001) in the Coronary Artery Risk Development in Young Adults (CARDIA) Study (n = 3,133, aged 33-45 years) with plasma choline metabolite (choline, betaine, and trimethylamine N-oxide [TMAO]) data. We quantified associations between choline metabolites and 15-year risk of incident diabetes (n = 387) among participants free of diabetes at baseline using Cox proportional hazards regression models adjusted for sociodemographics, health behaviors, and clinical variables. RESULTS Betaine was inversely associated with 15-year risk of incident diabetes (hazard ratio 0.76 [95% CI 0.67, 0.88] per 1-SD unit betaine), and TMAO was positively associated with 15-year risk of incident diabetes (1.11 [1.01, 1.22] per 1-SD unit). Choline was not significantly associated with 15-year risk of incident diabetes (1.05 [0.94, 1.16] per 1-SD). CONCLUSIONS Our findings are consistent with other published literature supporting a role for choline metabolism in diabetes. Our study extends the current literature by analyzing a racially diverse population-based cohort of early middle-aged individuals in whom preventive activities may be most relevant.
Collapse
Affiliation(s)
- Jessica K. Sprinkles
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anju Lulla
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
| | - Autumn G. Hullings
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Isis Trujillo-Gonzalez
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kevin C. Klatt
- Department of Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN
| | - Ravi V. Shah
- Department of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Annie Green Howard
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Penny Gordon-Larsen
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Katie A. Meyer
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
3
|
Mikołajczyk-Stecyna J, Zuk E, Chmurzynska A, Blatkiewicz M, Jopek K, Rucinski M. Reply - Letter to the editor. Clin Nutr 2024; 43:2261-2262. [PMID: 39197234 DOI: 10.1016/j.clnu.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Affiliation(s)
| | - Ewelina Zuk
- Poznań University of Life Sciences, Department of Human Nutrition and Dietetics, Poznań, Poland
| | - Agata Chmurzynska
- Poznań University of Life Sciences, Department of Human Nutrition and Dietetics, Poznań, Poland
| | - Malgorzata Blatkiewicz
- Poznań University of Medical Sciences, Department of Histology and Embryology, Poznań, Poland
| | - Karol Jopek
- Poznań University of Medical Sciences, Department of Histology and Embryology, Poznań, Poland
| | - Marcin Rucinski
- Poznań University of Medical Sciences, Department of Histology and Embryology, Poznań, Poland
| |
Collapse
|
4
|
Traber MG. Deciphering the enigma of the function of alpha-tocopherol as a vitamin. Free Radic Biol Med 2024; 221:64-74. [PMID: 38754744 DOI: 10.1016/j.freeradbiomed.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
α-Tocopherol (α-T) is a vitamin, but the reasons for the α-T requirement are controversial. Given that α-T deficiency was first identified in embryos, we studied to the premier model of vertebrate embryo development, the zebrafish embryo. We developed an α-T-deficient diet for zebrafish and used fish consuming this diet to produce α-T deficient (E-) embryos. We showed that α-T deficiency causes increased lipid peroxidation, leading to metabolic dysregulation that impacts both biochemical and morphological changes at very early stages in development. These changes occur at an early developmental window, which takes place prior to an analogous time to when a human knows she is pregnant. We found that α-T limits the chain reaction of lipid peroxidation and protects metabolic pathways and integrated gene expression networks that control embryonic development. Importantly, not only is α-T critical during early development, but the neurodevelopmental process is highly dependent on α-T trafficking by the α-T transfer protein (TTPa). Data from both gene expression and evaluation of the metabolome in E- embryos suggest that the activity of the mechanistic Target of Rapamycin (mTOR) signaling pathway is dysregulated-mTOR is a master regulatory mechanism, which controls both metabolism and neurodevelopment. Our findings suggest that TTPa is needed not only for regulation of plasma α-T in adults but is a key regulator during embryogenesis.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, 97330, OR, USA.
| |
Collapse
|
5
|
Kathirvel E, Morgan K, Malysheva OV, Caudill MA, Morgan TR. Betaine for the prevention and treatment of insulin resistance and fatty liver in a high-fat dietary model of insulin resistance in C57BL mice. Front Nutr 2024; 11:1409972. [PMID: 39119463 PMCID: PMC11307150 DOI: 10.3389/fnut.2024.1409972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Aim The aim was to investigate mechanisms by which betaine improves hepatic insulin signaling in a dietary mouse model of insulin resistance and fatty liver. Methods C57BL 6J mice were fed a standard diet (SF), a standard diet with betaine (SFB), a nutritionally complete high fat (HF) diet, or a high fat diet with betaine (HFB) for 14 weeks. In a separate experiment, mice were fed high fat diet for 18 weeks, half of whom received betaine for the final 4 weeks. Activation of insulin signaling in the liver was assessed by western blot. Insulin signaling was also assessed in insulin resistant primary human hepatocytes treated with betaine. Results As compared with SF, mice receiving HF diet were heavier, had more hepatic steatosis, and abnormal glucose tolerance test (GTT). Betaine content in liver and serum was 50% lower in HF than in SF; betaine supplementation restored serum and liver betaine content. Betaine treatment of HF reduced whole body insulin resistance as measured by GTT. Betaine treatment of HF increased tyrosine phosphorylation of insulin receptor substrate-1 and phosphorylation (activation) of Akt, and increased hepatic glycogen content. In vitro, betaine reversed insulin resistance in primary human hepatocytes by increasing insulin-stimulated tyrosine phosphorylation of IRS1 and of Akt. Conclusion Betaine supplementation reduced whole body insulin resistance and increased activation of insulin signaling pathways in the liver in a mouse model of insulin resistance and fatty liver created by feeding a nutritionally complete high fat diet for 14 weeks. Betaine also reduced liver injury as assessed by ALT and by liver histology. In vitro, betaine reversed insulin resistance by increasing insulin-stimulated tyrosine phosphorylation of IRS1 and activation of downstream proteins in the insulin signaling cascade in insulin resistant primary human hepatocytes.
Collapse
Affiliation(s)
- Elango Kathirvel
- Research Healthcare Group, Veterans Administration Healthcare System, Long Beach, CA, United States
| | - Kengathevy Morgan
- Research Healthcare Group, Veterans Administration Healthcare System, Long Beach, CA, United States
| | - Olga V. Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Marie A. Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Timothy R. Morgan
- Research Healthcare Group, Veterans Administration Healthcare System, Long Beach, CA, United States
- Department of Medicine, University of California, Irvine, Irvine, CA, United States
- Medical Healthcare Group, Veterans Administration Healthcare System, Long Beach, CA, United States
| |
Collapse
|
6
|
Ma R, Shi G, Li Y, Shi H. Trimethylamine N-oxide, choline and its metabolites are associated with the risk of non-alcoholic fatty liver disease. Br J Nutr 2024; 131:1915-1923. [PMID: 38443197 DOI: 10.1017/s0007114524000631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
It is inconclusive whether trimethylamine N-oxide (TMAO) and choline and related metabolites, namely trimethylamine (TMA), l-carnitine, betaine and dimethylglycine (DMG), are associated with non-alcoholic fatty liver disease (NAFLD). Our objective was to investigate these potential associations. Additionally, we sought to determine the mediating role of TMAO. In this 1:1 age- and sex-matched case-control study, a total of 150 pairs comprising NAFLD cases and healthy controls were identified. According to the fully adjusted model, after the highest tertile was compared with the lowest tertile, the plasma TMAO concentration (OR = 2·02 (95 % CI 1·04, 3·92); P trend = 0·003), l-carnitine concentration (OR = 1·79 (1·01, 3·17); P trend = 0·020) and DMG concentration (OR = 1·81 (1·00, 3·28); P trend = 0·014) were significantly positively associated with NAFLD incidence. However, a significantly negative association was found for plasma betaine (OR = 0. 50 (0·28, 0·88); P trend = 0·001). The restricted cubic splines model consistently indicated positive dose-response relationships between exposure to TMAO, l-carnitine, and DMG and NAFLD risk, with a negative association being observed for betaine. The corresponding AUC increased significantly from 0·685 (0·626, 0·745) in the traditional risk factor model to 0·769 (0·716, 0·822) when TMAO and its precursors were included (l-carnitine, betaine and choline) (P = 0·032). Mediation analyses revealed that 14·7 and 18·6 % of the excess NAFLD risk associated with l-carnitine and DMG, respectively, was mediated by TMAO (the P values for the mediating effects were 0·021 and 0·036, respectively). These results suggest that a higher concentration of TMAO is associated with increased NAFLD risk among Chinese adults and provide evidence of the possible mediating role of TMAO.
Collapse
Affiliation(s)
- Rong Ma
- Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu610500, People's Republic of China
| | - Guangying Shi
- Department of Hepatology, Xinjiang Corps Hospital, Xinjiang832104, People's Republic of China
| | - Yanfang Li
- Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu610500, People's Republic of China
| | - Han Shi
- Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu610500, People's Republic of China
| |
Collapse
|
7
|
Abhijith A, Dunshea FR, Chauhan SS, Sejian V, DiGiacomo K. A Meta-Analysis of the Effects of Dietary Betaine on Milk Production, Growth Performance, and Carcass Traits of Ruminants. Animals (Basel) 2024; 14:1756. [PMID: 38929375 PMCID: PMC11201161 DOI: 10.3390/ani14121756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Betaine improves growth performance and health in monogastric animals under both thermoneutral and heat stress conditions, but results in ruminants have been more equivocal. This meta-analysis investigated the effects of betaine supplementation on productive performance, milk production and composition, and carcass traits of ruminants due to betaine supplementation. A comprehensive search for published studies investigating the effect of betaine was performed using Google Scholar, ScienceDirect, PubMed, and Scopus databases. Effect size analysis, random effects models, I2 statistics, and meta-regression analysis were utilized to assess differences in production parameters. Dietary betaine supplementation increased milk yield (+1.0 kg/d (weighted mean differences presented in this abstract), p < 0.001), dry matter intake (+0.15 kg/d, p < 0.001), and milk lactose (+0.05%, p = 0.010) in dairy cows housed under thermoneutral conditions. In the few studies conducted on small ruminants, there was an increase in milk yield in response to dietary betaine (0.45 kg/d, p = 0.040). Under heat stress conditions or grazing pasture during summer, dietary betaine increased milk yield (+1.0 kg/d, p < 0.001) and dry matter intake (+0.21 kg/d, p = 0.020). Dietary betaine increased final liveweight (+2.33 kg, p = 0.050) and back fat thickness (+0.74 cm, p < 0.001) in beef cattle. Dietary betaine increased final liveweight (0.14 kg, p = 0.010), daily gain (+0.019 kg/d, p < 0.001), and carcass weight (+0.80 kg, p < 0.001) but not backfat in small ruminants. These meta-analyses showed that dietary betaine increases liveweight in small ruminants and beef cattle and increases feed intake and milk yield in dairy cattle.
Collapse
Affiliation(s)
- Archana Abhijith
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia (F.R.D.); (S.S.C.)
| | - Frank R. Dunshea
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia (F.R.D.); (S.S.C.)
- School of Biology, Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Surinder S. Chauhan
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia (F.R.D.); (S.S.C.)
| | - Veerasamy Sejian
- Rajiv Gandhi Institute of Veterinary Education and Research (RIVER), Kurumbapet, Puducherry 605009, India;
| | - Kristy DiGiacomo
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia (F.R.D.); (S.S.C.)
| |
Collapse
|
8
|
Çelik S, Muruz H. Growth Performance, Blood Metabolites, Carcass Characteristics and Meat Quality of Lambs Fed Diets Containing Different Energy Levels Supplemented with Rumen-Protected Choline. Animals (Basel) 2024; 14:1682. [PMID: 38891729 PMCID: PMC11171108 DOI: 10.3390/ani14111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to examine the effects of metabolizable energy (ME) level and rumen-protected choline (RPC) supplementation on the growth performance, carcass characteristics, meat quality, serum energy, lipid, and protein profiles of Karayaka lambs. Twenty-eight Karayaka lambs, with an initial body weight (BW) of 26.85 ± 0.26 kg, were randomly assigned (2 × 2 factorial design) to one of four dietary treatments with two levels of ME (optimum: 2750 or low: 2500 kcal ME/kg dry matter) and two levels of RPC (0 or 4 g/d/lamb). Lambs of each group were housed in individual pens. The experiment lasted 66 d, with the first 10 d consisting of acclimation and the next 56 d of the formal experimental period. The data on BW, dietary matter intake (DMI), and serum glucose concentrations confirm that our model successfully induced low energy using 250 kcal/kg less energy than the optimum level. RPC supplementation did not significantly affect average daily DMI, total average daily gain (ADG), or feed conversion ratio (FCR) at any energy level. Additionally, there was no substantial effect on carcass characteristics, meat quality, serum lipids, energy metabolism indicators, and liver function parameters. There was also no interaction effect of RPC × ME on the parameters tested. However, at 56 d into the experiment, the interaction effect of RPC × ME on serum urea-N was highly significant, and RPC supplementation led to lower serum urea-N levels (p = 0.001). These results suggest that while RPC supplementation did not enhance overall performance and carcass characteristics in Karayaka lambs, it may play a role in modulating nitrogen metabolism, as indicated by the significant reduction in serum urea-N levels.
Collapse
Affiliation(s)
- Salih Çelik
- The Ministry of Agriculture and Forestry of the Republic of Turkey, Tokat Provincial Office, İmamlık Street. No:68, Tokat 60200, Turkey;
| | - Habip Muruz
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit Kampusu, Samsun 55100, Turkey
| |
Collapse
|
9
|
Mikołajczyk-Stecyna J, Zuk E, Chmurzynska A, Blatkiewicz M, Jopek K, Rucinski M. The effects of exposure to and timing of a choline-deficient diet during pregnancy and early postnatal life on the skeletal muscle transcriptome of the offspring. Clin Nutr 2024; 43:1503-1515. [PMID: 38729079 DOI: 10.1016/j.clnu.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) is related to muscle loss, but the precise mechanism underlying this association remains unclear. The aim of the present study was thus to determine the influence of maternal fatty liver and dietary choline deficiency during pregnancy and/or lactation periods on the skeletal muscle gene expression profile among 24-day-old male rat offspring. METHODS Histological examination of skeletal muscle tissue specimens obtained from offspring of dams suffering from fatty liver, provided with proper choline intake during pregnancy and lactation (NN), fed a choline-deficient diet during both periods (DD), deprived of choline only during pregnancy (DN), or only during lactation (ND), was performed. The global transcriptome pattern was assessed using a microarray approach (Affymetrix® Rat Gene 2.1 ST Array Strip). The relative expression of selected genes was validated by real-time PCR (qPCR). RESULTS Morphological differences in fat accumulation in skeletal muscle related to choline supply were observed. The global gene expression profile was consistent with abnormal morphological changes. Mettl21c gene was overexpressed in all choline-deficient groups compared to the NN group, while two genes, Cdkn1a and S100a4, were downregulated. Processes of protein biosynthesis were upregulated, and processes related to cell proliferation and lipid metabolism were inhibited in DD, DN, and ND groups compared to the NN group. CONCLUSIONS Prenatal and early postnatal exposure to fatty liver and dietary choline deficiency leads to changes in the transcriptome profile in skeletal muscle of 24-day old male rat offspring and is associated with muscle damage, but the mechanism of it seems to be different at different developmental stages of life. Adequate choline intake during pregnancy and lactation can prevent severe muscle disturbance in the progeny of females suffering from fatty liver.
Collapse
Affiliation(s)
| | - Ewelina Zuk
- Poznań University of Life Sciences, Department of Human Nutrition and Dietetics, Poznań, Poland
| | - Agata Chmurzynska
- Poznań University of Life Sciences, Department of Human Nutrition and Dietetics, Poznań, Poland
| | - Malgorzata Blatkiewicz
- Poznań University of Medical Sciences, Department of Histology and Embryology, Poznań, Poland
| | - Karol Jopek
- Poznań University of Medical Sciences, Department of Histology and Embryology, Poznań, Poland
| | - Marcin Rucinski
- Poznań University of Medical Sciences, Department of Histology and Embryology, Poznań, Poland
| |
Collapse
|
10
|
Xu H, Feng P, Sun Y, Wu D, Wang D, Wu L, Peng H, Li H. Plasma trimethylamine N-oxide metabolites in the second trimester predict the risk of hypertensive disorders of pregnancy: a nested case-control study. Hypertens Res 2024; 47:778-789. [PMID: 38177285 DOI: 10.1038/s41440-023-01563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
The relationship between gut microbiota products trimethylamine oxide (TMAO) and related metabolites including betaine, choline and L-carnitine and hypertensive disorders of pregnancy (HDP) is unclear. In order to examine whether plasma TMAO and related metabolites predict the risk of HDP, a nested case-control study was conducted in Chinese women based on a prospective cohort including 9447 participants. 387 pairs of pregnant women (n = 774) were matched and their plasma TMAO, betaine, choline, and L-carnitine at 16-20 gestational weeks were measured by liquid chromatography-mass spectrometry. Odds ratio (OR) and the 95% confidence interval (95% CI) were calculated using the conditional logistic regression, to examine the association between TMAO metabolites and HDP. The findings showed that higher plasma betaine (≥24.94 μmol/L) was associated with a decreased risk of HDP and its subtype gestational hypertension (GH), with adjusted ORs of 0.404 (95% CI: 0.226-0.721) and 0.293 (95% CI: 0.134-0.642), respectively. Higher betaine/choline ratio (>2.64) was associated with a lower risk of HDP and its subtype preeclampsia or chronic hypertension with superimposed preeclampsia (PE/CH-PE), with adjusted ORs of 0.554 (95% CI: 0.354-0.866) and 0.226 (95% CI: 0.080-0.634). Moreover, compared with traditional factors (TFs) model, the TMAO metabolites+ TFs model had a higher predictive ability for PE/CH-PE (all indexes P values < 0.0001). Therefore, it suggests that the detection of plasma betaine and choline in the early second trimester of pregnancy can better assess the risk of HDP.
Collapse
Affiliation(s)
- He Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Pei Feng
- Department of Community Health Care, Kunshan Maternity and Children's Health Care Hospital, Kunshan, China
| | - Yexiu Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Di Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Dandan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Lei Wu
- Department of Maternal and Child Health, Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou, China
| | - Hao Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou, 215123, China.
| | - Hongmei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou, 215123, China.
| |
Collapse
|
11
|
Moaddel R, Ubaida‐Mohien C, Tanaka T, Tian Q, Candia J, Moore AZ, Lovett J, Fantoni G, Shehadeh N, Turek L, Collingham V, Kaileh M, Chia CW, Sen R, Egan JM, Ferrucci L. Cross-sectional analysis of healthy individuals across decades: Aging signatures across multiple physiological compartments. Aging Cell 2024; 23:e13902. [PMID: 37350292 PMCID: PMC10776121 DOI: 10.1111/acel.13902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 05/27/2023] [Indexed: 06/24/2023] Open
Abstract
The study of age-related biomarkers from different biofluids and tissues within the same individual might provide a more comprehensive understanding of age-related changes within and between compartments as these changes are likely highly interconnected. Understanding age-related differences by compartments may shed light on the mechanism of their reciprocal interactions, which may contribute to the phenotypic manifestations of aging. To study such possible interactions, we carried out a targeted metabolomic analysis of plasma, skeletal muscle, and urine collected from healthy participants, age 22-92 years, and identified 92, 34, and 35 age-associated metabolites, respectively. The metabolic pathways that were identified across compartments included inflammation and cellular senescence, microbial metabolism, mitochondrial health, sphingolipid metabolism, lysosomal membrane permeabilization, vascular aging, and kidney function.
Collapse
Affiliation(s)
- Ruin Moaddel
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | | | - Toshiko Tanaka
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Qu Tian
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Julián Candia
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Ann Zenobia Moore
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Jacqueline Lovett
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Giovanna Fantoni
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Nader Shehadeh
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Lisa Turek
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Victoria Collingham
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Mary Kaileh
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Chee W. Chia
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Ranjan Sen
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Josephine M. Egan
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Luigi Ferrucci
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| |
Collapse
|
12
|
Grobler T, Opperman M, Bester J, Swanepoel AC, du Preez I. Metabolomic Profiling of Hormonal Contraceptive Use in Young Females Using a Commercially Available LC-MS/MS Kit. Metabolites 2023; 13:1092. [PMID: 37887417 PMCID: PMC10609319 DOI: 10.3390/metabo13101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Oral hormonal contraceptive users carry the risk of venous thrombosis and increased mortality. This study aimed to comprehensively profile the serum metabolome of participants using a combination of drospirenone (DRSP) and ethinyl estradiol (EE) containing oral contraceptives (COCs). The MxP Quant 500 kit for liquid chromatography mass tandem spectrometry (LC-MS/MS) was used to analyse the 22 controls and 44 COC users (22 on a low EE dose (DRSP/20EE) and 22 on a higher EE dose (DRSP/30EE)). The kit's results were compared to our internally developed untargeted and targeted metabolomics methods previously applied to this cohort. Of the 630 metabolites included in the method, 277 provided desirable results (consistently detected above their detection limits), and of these, 5 had p-values < 0.05, including betaine, glutamine, cortisol, glycine, and choline. Notably, these variations were observed between the control and COC groups, rather than among the two COC groups. Partial least squares-discriminant analysis revealed 49 compounds with VIP values ≥ 1, including amino acids and their derivatives, ceramides, phosphatidylcholines, and triglycerides, among others. Ten differential compounds were consistent with our previous studies, reinforcing the notion of COCs inducing a prothrombotic state and increased oxidative stress. Although only a limited number of compounds were deemed usable, these were quantified with high reliability and facilitated the identification of meaningful biological differences among the sample groups. In addition to substantiating known drug-induced variations, new hypotheses were also generated.
Collapse
Affiliation(s)
- Tania Grobler
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa
| | - Monique Opperman
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa
| | - Janette Bester
- Department of Physiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria 0002, South Africa
| | - Albe Carina Swanepoel
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa
| | - Ilse du Preez
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
13
|
Smith TJS, Navas-Acien A, Baker S, Kok C, Kruczynski K, Avolio LN, Pisanic N, Randad PR, Fry RC, Goessler W, van Geen A, Buckley JP, Rahman MH, Ali H, Haque R, Shaikh S, Siddiqua TJ, Schulze K, West KP, Labrique AB, Heaney CD. Anthropometric measures and arsenic methylation among pregnant women in rural northern Bangladesh. ENVIRONMENTAL RESEARCH 2023; 234:116453. [PMID: 37343752 PMCID: PMC10518461 DOI: 10.1016/j.envres.2023.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Arsenic methylation converts inorganic arsenic (iAs) to monomethyl (MMA) and dimethyl (DMA) arsenic compounds. Body mass index (BMI) has been positively associated with arsenic methylation efficiency (higher DMA%) in adults, but evidence in pregnancy is inconsistent. We estimated associations between anthropometric measures and arsenic methylation among pregnant women in rural northern Bangladesh. METHODS We enrolled pregnant women (n = 784) (median [IQR] gestational week: 14 [13, 15]) in Gaibandha District, Bangladesh from 2018 to 2019. Anthropometric measures were BMI, subscapular and triceps skinfold thicknesses, and mid-upper arm circumference (MUAC), fat area (MUAFA), and muscle area (MUAMA). Arsenic methylation measures were urinary iAs, MMA, and DMA divided by their sum and multiplied by 100 (iAs%, MMA%, and DMA%), primary methylation index (MMA/iAs; PMI), and secondary methylation index (DMA/MMA; SMI). In complete cases (n = 765 [97.6%]), we fitted linear, beta, and Dirichlet regression models to estimate cross-sectional differences in iAs%, MMA%, DMA%, PMI, and SMI per IQR-unit difference in each anthropometric measure, adjusting for drinking water arsenic, age, gestational age, education, living standards index, and plasma folate, vitamin B12, and homocysteine. RESULTS Median (IQR) BMI, subscapular skinfold thickness, triceps skinfold thickness, MUAC, MUAFA, and MUAMA were 21.5 (19.4, 23.8) kg/m2, 17.9 (13.2, 24.2) mm, 14.2 (10.2, 18.7) mm, 25.9 (23.8, 28.0) cm, 15.3 (10.5, 20.3) cm2, and 29.9 (25.6, 34.2) cm2, respectively. Median (IQR) iAs%, MMA%, DMA%, PMI, and SMI were 12.0 (9.3, 15.2)%, 6.6 (5.3, 8.3)%, 81.0 (77.1, 84.6)%, 0.6 (0.4, 0.7), and 12.2 (9.3, 15.7), respectively. In both unadjusted and adjusted linear models, all anthropometric measures were negatively associated with iAs%, MMA%, and PMI and positively associated with DMA% and SMI. For example, fully adjusted mean differences (95% CI) in DMA% per IQR-unit difference in BMI, subscapular skinfolds thickness, triceps skinfold thickness, MUAC, MUAFA, and MUAMA were 1.72 (1.16, 2.28), 1.58 (0.95, 2.21), 1.74 (1.11, 2.37), 1.45 (0.85, 2.06), 1.70 (1.08, 2.31), and 0.70 (0.13, 1.27) pp, respectively. CONCLUSIONS Anthropometric measures were positively associated with arsenic methylation efficiency among pregnant women in the early second trimester.
Collapse
Affiliation(s)
- Tyler J S Smith
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Sarah Baker
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Caryn Kok
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kate Kruczynski
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lindsay N Avolio
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nora Pisanic
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pranay R Randad
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, University of Graz, Graz, Austria
| | - Alexander van Geen
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Jessie P Buckley
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Md Hafizur Rahman
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Hasmot Ali
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Rezwanul Haque
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Saijuddin Shaikh
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Towfida J Siddiqua
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Kerry Schulze
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keith P West
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alain B Labrique
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christopher D Heaney
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
14
|
Schoen MS, Boland KM, Christ SE, Cui X, Ramakrishnan U, Ziegler TR, Alvarez JA, Singh RH. Total choline intake and working memory performance in adults with phenylketonuria. Orphanet J Rare Dis 2023; 18:222. [PMID: 37516884 PMCID: PMC10386684 DOI: 10.1186/s13023-023-02842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Despite early diagnosis and compliance with phenylalanine (Phe)-restricted diets, many individuals with phenylketonuria (PKU) still exhibit neurological changes and experience deficits in working memory and other executive functions. Suboptimal choline intake may contribute to these impairments, but this relationship has not been previously investigated in PKU. The objective of this study was to determine if choline intake is correlated with working memory performance, and if this relationship is modified by diagnosis and metabolic control. METHODS This was a cross-sectional study that included 40 adults with PKU and 40 demographically matched healthy adults. Web-based neurocognitive tests were used to assess working memory performance and 3-day dietary records were collected to evaluate nutrient intake. Recent and historical blood Phe concentrations were collected as measures of metabolic control. RESULTS Working memory performance was 0.32 z-scores (95% CI 0.06, 0.58) lower, on average, in participants with PKU compared to participants without PKU, and this difference was not modified by total choline intake (F[1,75] = 0.85, p = 0.36). However, in a subgroup with complete historical blood Phe data, increased total choline intake was related to improved working memory outcomes among participants with well controlled PKU (Phe = 360 µmol/L) after adjusting for intellectual ability and mid-childhood Phe concentrations (average change in working memory per 100 mg change in choline = 0.11; 95% CI 0.02, 0.20; p = 0.02). There also was a trend, albeit nonsignificant (p = 0.10), for this association to be attenuated with increased Phe concentrations. CONCLUSIONS Clinical monitoring of choline intake is essential for all individuals with PKU but may have important implications for working memory functioning among patients with good metabolic control. Results from this study should be confirmed in a larger controlled trial in people living with PKU.
Collapse
Affiliation(s)
- Meriah S Schoen
- Department of Human Genetics, Emory University School of Medicine, 101 Woodruff Circle, Suite 7130, Atlanta, GA, 30322, USA.
| | - Kelly M Boland
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Shawn E Christ
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Xiangqin Cui
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Usha Ramakrishnan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Thomas R Ziegler
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jessica A Alvarez
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Rani H Singh
- Department of Human Genetics, Emory University School of Medicine, 101 Woodruff Circle, Suite 7130, Atlanta, GA, 30322, USA
| |
Collapse
|
15
|
Du X, Cui Z, Zhang R, Zhao K, Wang L, Yao J, Liu S, Cai C, Cao Y. The Effects of Rumen-Protected Choline and Rumen-Protected Nicotinamide on Liver Transcriptomics in Periparturient Dairy Cows. Metabolites 2023; 13:metabo13050594. [PMID: 37233635 DOI: 10.3390/metabo13050594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
To investigate the effects of rumen-protected choline (RPC) and rumen-protected nicotinamide (RPM) on liver metabolic function based on transcriptome in periparturient dairy cows, 10 healthy Holstein dairy cows with similar parity were allocated to RPC and RPM groups (n = 5). The cows were fed experimental diets between 14 days before and 21 days after parturition. The RPC diet contained 60 g RPC per day, and the RPM diet contained 18.7 g RPM per day. Liver biopsies were taken 21 days after calving for the transcriptome analysis. A model of fat deposition hepatocytes was constructed using the LO2 cell line with the addition of NEFA (1.6 mmol/L), and the expression level of genes closely related to liver metabolism was validated and divided into a CHO group (75 μmol/L) and a NAM group (2 mmol/L). The results showed that the expression of a total of 11,023 genes was detected and clustered obviously between the RPC and RPM groups. These genes were assigned to 852 Gene Ontology terms, the majority of which were associated with biological process and molecular function. A total of 1123 differentially expressed genes (DEGs), 640 up-regulated and 483 down-regulated, were identified between the RPC and RPM groups. These DEGs were mainly correlated with fat metabolism, oxidative stress and some inflammatory pathways. In addition, compared with the NAM group, the gene expression level of FGF21, CYP26A1, SLC13A5, SLCO1B3, FBP2, MARS1 and CDH11 in the CHO group increased significantly (p < 0.05). We proposed that that RPC could play a prominent role in the liver metabolism of periparturient dairy cows by regulating metabolic processes such as fatty acid synthesis and metabolism and glucose metabolism; yet, RPM was more involved in biological processes such as the TCA cycle, ATP generation and inflammatory signaling.
Collapse
Affiliation(s)
- Xue'er Du
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Zhijie Cui
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Rui Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Keliang Zhao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Shimin Liu
- UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
16
|
Hussain Z, Iqbal Z, Roohi N, Khan S. Effect of betaine supplementation on production performance and serum antioxidant indices of Nili-Ravi buffaloes during summer. Trop Anim Health Prod 2023; 55:176. [PMID: 37099038 DOI: 10.1007/s11250-023-03590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 04/12/2023] [Indexed: 04/27/2023]
Abstract
This study aimed to determine whether feeding betaine (Bet) to lactating Nili-Ravi buffaloes elevates their production performance during the hot and humid climate. Sixty lactating Nili-Ravi buffaloes were randomly divided into four groups: the control group received a standard concentrates basal diet without Bet, whereas in the treated group the same diet was supplemented with Bet at 0.2%, 0.4%, and 0.6% on dry matter basis for 9 weeks. All animals received ad libitum amount of chopped green maize fodder. Milk production and its fat % were recorded twice daily, whereas for the remaining components samples were collected weekly. Blood samples were collected at the end of the experiment. The results showed that feeding Bet to buffaloes increased (p<0.05) milk yield, production efficiency, and nutrient utilization at all three inclusion levels; however, milk composition remained unaffected. A numerical but non-significant (p>0.05) increase in performance was noticed with higher doses of Bet. Superoxide dismutase in all three treatments and glutathione peroxidase in Bet 0.2% inclusion level were higher (p<0.05) as compared to the control. However, malondialdehyde was not significantly affected. Inclusion of Bet in the concentrate ration of lactating buffalos at 0.2% level on the dry matter basis is recommended as it positively influenced the production and also improved their antioxidant status during summer.
Collapse
Affiliation(s)
- Zakir Hussain
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Zahid Iqbal
- Department of Animal Production, Riphah College of Veterinary Sciences, Riphah International University, Lahore, Pakistan.
| | - Nabila Roohi
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Sirzamin Khan
- Department of Poultry Sciences, Agriculture University, Peshawar, 25120, Pakistan
| |
Collapse
|
17
|
Rankovic A, Godfrey H, Grant CE, Shoveller AK, Bakovic M, Kirby G, Verbrugghe A. Serum metabolomic analysis of the dose-response effect of dietary choline in overweight male cats fed at maintenance energy requirements. PLoS One 2023; 18:e0280734. [PMID: 36689425 PMCID: PMC9870128 DOI: 10.1371/journal.pone.0280734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Choline participates in methyl group metabolism and has been recognized for its roles in lipid metabolism, hepatic health and muscle function in various species. Data regarding the impacts of choline on feline metabolic pathways are scarce. The present study investigated how choline intake affects the metabolomic profile of overweight cats fed at maintenance energy. Overweight (n = 14; body condition score:6-8/9) male adult cats were supplemented with five doses of choline in a 5x5 Latin Square design. Cats received a daily dose of choline on extruded food (3620 mg choline/kg diet) for three weeks at maintenance energy requirements (130 kcal/kgBW0.4). Doses were based on body weight (BW) and the daily recommended allowance (RA) for choline for adult cats (63 mg/kg BW0.67). Treatment groups included: Control (no additional choline, 1.2 x NRC RA, 77 mg/kg BW0.67), 2 x NRC RA (126 mg/kg BW0.67), 4 x NRC RA (252 mg/kg BW0.67), 6 x RA (378 mg/kg BW0.67), and 8 x NRC RA (504 mg/kg BW0.67). Serum was collected after an overnight fast at the end of each treatment period and analyzed for metabolomic parameters through nuclear magnetic resonance (NMR) spectroscopy and direct infusion mass spectrometry (DI-MS). Data were analyzed using GLIMMIX, with group and period as random effects, and dose as the fixed effect. Choline up to 8 x NRC RA was well-tolerated. Choline at 6 and 8 x NRC RA resulted in greater concentrations of amino acids and one-carbon metabolites (P < 0.05) betaine, dimethylglycine and methionine. Choline at 6 x NRC RA also resulted in greater phosphatidylcholine and sphingomyelin concentrations (P < 0.05). Supplemental dietary choline may be beneficial for maintaining hepatic health in overweight cats, as it may increase hepatic fat mobilization and methyl donor status. Choline may also improve lean muscle mass in cats. More research is needed to quantify how choline impacts body composition.
Collapse
Affiliation(s)
- Alexandra Rankovic
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Hannah Godfrey
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Caitlin E. Grant
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Gordon Kirby
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
18
|
Tacconi E, Palma G, De Biase D, Luciano A, Barbieri M, de Nigris F, Bruzzese F. Microbiota Effect on Trimethylamine N-Oxide Production: From Cancer to Fitness-A Practical Preventing Recommendation and Therapies. Nutrients 2023; 15:563. [PMID: 36771270 PMCID: PMC9920414 DOI: 10.3390/nu15030563] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a microbial metabolite derived from nutrients, such as choline, L-carnitine, ergothioneine and betaine. Recently, it has come under the spotlight for its close interactions with gut microbiota and implications for gastrointestinal cancers, cardiovascular disease, and systemic inflammation. The culprits in the origin of these pathologies may be food sources, in particular, high fat meat, offal, egg yolk, whole dairy products, and fatty fish, but intercalated between these food sources and the production of pro-inflammatory TMAO, the composition of gut microbiota plays an important role in modulating this process. The aim of this review is to explain how the gut microbiota interacts with the conversion of specific compounds into TMA and its oxidation to TMAO. We will first cover the correlation between TMAO and various pathologies such as dysbiosis, then focus on cardiovascular disease, with a particular emphasis on pro-atherogenic factors, and then on systemic inflammation and gastrointestinal cancers. Finally, we will discuss primary prevention and therapies that are or may become possible. Possible treatments include modulation of the gut microbiota species with diets, physical activity and supplements, and administration of drugs, such as metformin and aspirin.
Collapse
Affiliation(s)
- Edoardo Tacconi
- Department of Human Science and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Antonio Luciano
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimiliano Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Francesca Bruzzese
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| |
Collapse
|
19
|
Choline and butyrate beneficially modulate the gut microbiome without affecting atherosclerosis in APOE*3-Leiden.CETP mice. Atherosclerosis 2022; 362:47-55. [PMID: 36347649 DOI: 10.1016/j.atherosclerosis.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Choline has been shown to exert atherogenic effects in Apoe-/- and Ldlr-/- mice, related to its conversion by gut bacteria into trimethylamine (TMA) that is converted by the liver into the proinflammatory metabolite trimethylamine-N-oxide (TMAO). Since butyrate beneficially modulates the gut microbiota and has anti-inflammatory and antiatherogenic properties, the aim of the present study was to investigate whether butyrate can alleviate choline-induced atherosclerosis. To this end, we used APOE*3-Leiden.CETP mice, a well-established atherosclerosis-prone model with human-like lipoprotein metabolism. METHODS Female APOE*3-Leiden.CETP mice were fed an atherogenic diet alone or supplemented with choline, butyrate or their combination for 16 weeks. RESULTS Interestingly, choline protected against fat mass gain, increased the abundance of anti-inflammatory gut microbes, and increased the expression of gut microbial genes involved in TMA and TMAO degradation. Butyrate similarly attenuated fat mass gain and beneficially modulated the gut microbiome, as shown by increased abundance of anti-inflammatory and short chain fatty acid-producing microbes, and inhibited expression of gut microbial genes involved in lipopolysaccharide synthesis. Both choline and butyrate upregulated hepatic expression of flavin-containing monooxygenases, and their combination resulted in highest circulating TMAO levels. Nonetheless, choline, butyrate and their combination did not influence atherosclerosis development, and TMAO levels were not associated with atherosclerotic lesion size. CONCLUSIONS While choline and butyrate have been reported to oppositely modulate atherosclerosis development in Apoe-/- and Ldlr-/- mice as related to changes in the gut microbiota, both dietary constituents did not affect atherosclerosis development while beneficially modulating the gut microbiome in APOE*3-Leiden.CETP mice.
Collapse
|
20
|
Li Z, Tan Y, Li X, Quan J, Bode AM, Cao Y, Luo X. DHRS2 inhibits cell growth and metastasis in ovarian cancer by downregulation of CHKα to disrupt choline metabolism. Cell Death Dis 2022; 13:845. [PMID: 36192391 PMCID: PMC9530226 DOI: 10.1038/s41419-022-05291-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/23/2023]
Abstract
The short-chain dehydrogenase/reductase (SDR) superfamily has essential roles in lipid metabolism and redox sensing. In recent years, accumulating evidence highlights the emerging association between SDR family enzymes and cancer. Dehydrogenase/reductase member 2(DHRS2) belongs to the NADH/NADPH-dependent SDR family, and extensively participates in the regulation of the proliferation, migration, and chemoresistance of cancer cells. However, the underlying mechanism has not been well defined. In the present study, we have demonstrated that DHRS2 inhibits the growth and metastasis of ovarian cancer (OC) cells in vitro and in vivo. Mechanistically, the combination of transcriptome and metabolome reveals an interruption of choline metabolism by DHRS2. DHRS2 post-transcriptionally downregulates choline kinase α (CHKα) to inhibit AKT signaling activation and reduce phosphorylcholine (PC)/glycerophosphorylcholine (GPC) ratio, impeding choline metabolism reprogramming in OC. These actions mainly account for the tumor-suppressive role of DHRS2 in OC. Overall, our findings establish the mechanistic connection among metabolic enzymes, metabolites, and the malignant phenotype of cancer cells. This could result in further development of novel pharmacological tools against OC by the induction of DHRS2 to disrupt the choline metabolic pathway.
Collapse
Affiliation(s)
- Zhenzhen Li
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China
| | - Yue Tan
- grid.412017.10000 0001 0266 8918Hengyang Medical College, University of South China, Hengyang, 421001 Hunan PR China
| | - Xiang Li
- grid.216417.70000 0001 0379 7164Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China
| | - Jing Quan
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China
| | - Ann M. Bode
- grid.17635.360000000419368657The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Ya Cao
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078 China
| | - Xiangjian Luo
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078 China ,grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 China ,grid.216417.70000 0001 0379 7164Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078 China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078 China
| |
Collapse
|
21
|
Collins HL, Adelman SJ, Butteiger DN, Bortz JD. Choline Supplementation Does Not Promote Atherosclerosis in CETP-Expressing Male Apolipoprotein E Knockout Mice. Nutrients 2022; 14:nu14081651. [PMID: 35458214 PMCID: PMC9032511 DOI: 10.3390/nu14081651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Dietary trimethylamines, such as choline, metabolized by intestinal microbiota to trimethylamine are absorbed by the gut and oxidized to trimethylamine N-oxide (TMAO). The objective of this study was to determine the effect of choline supplementation on atherosclerosis progression in Apoe−/− mice expressing human cholesterol ester transfer protein (hCETP) using the same diets as in previously reported studies. Mice expressing hCETP, after transfection with AAV2/8-hCETP, were fed an 18% protein diet with either 0.09% (standard chow), 0.5% or 1% choline for 16 weeks. Control mice not transfected with hCETP were fed 1% choline. Dietary choline supplementation increased plasma TMAO levels at 8 and 16 weeks. When atherosclerotic lesions were measured in the thoracic aorta and aortic root, there were no differences between any of the treatment groups in the amount of plaque development at either site. Throughout the study, no significant changes in plasma lipids or major classes of lipoproteins were observed in hCETP-expressing mice. Plasma-oxidized low density lipoprotein, myeloperoxidase and high density lipoprotein inflammatory index were measured at 16 weeks, with no significant changes in any of these inflammatory markers between the four treatment groups. Despite increasing plasma TMAO levels, dietary choline supplementation in Apoe−/− mice expressing hCETP did not promote atherosclerosis.
Collapse
Affiliation(s)
- Heidi L. Collins
- VascularStrategies LLC, 5110 Campus Drive, Suite 137, Plymouth Meeting, PA 19462, USA;
- Correspondence: ; Tel.: +1-484-575-1000
| | - Steven J. Adelman
- VascularStrategies LLC, 5110 Campus Drive, Suite 137, Plymouth Meeting, PA 19462, USA;
| | - Dustie N. Butteiger
- Human Nutrition and Health, Nutrition Science, Balchem Corporation, 52 Sunrise Park Road, New Hampton, NY 10958, USA; (D.N.B.); (J.D.B.)
| | - Jonathan D. Bortz
- Human Nutrition and Health, Nutrition Science, Balchem Corporation, 52 Sunrise Park Road, New Hampton, NY 10958, USA; (D.N.B.); (J.D.B.)
| |
Collapse
|
22
|
Omma T, Gulcelik NE, Zengin FH, Karahan I, Culha C. Dietary Acid Load is Associated with Hypertension and Diabetes in the Elderly. Curr Aging Sci 2022; 15:242-251. [PMID: 35346013 DOI: 10.2174/1874609815666220328123744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diet can affect the body's acid-base balance due to its content of acid or base precursors. There is conflicting evidence for the role of metabolic acidosis in the development of cardiometabolic disorders, hypertension (HT), and insulin resistance (IR). OBJECTIVE We hypothesize that dietary acid load (DAL) is associated with adverse metabolic risk factors and we aimed to investigate this in the elderly. METHODS A total of 114 elderly participants were included in the study. The participants were divided into four groups such as HT, diabetes (DM), both HT and DM, and healthy controls. Anthropometric, biochemical, and clinical findings were recorded. Potential renal acid load (PRAL) and net endogenous acid production (NEAP) results were obtained from three-day, 24-hour dietary records via a nutrient database program. (BeBiS software program). RESULTS The groups were matched for age, gender, and BMI. There was a statistically significant difference between the groups in terms of NEAP (p=0.01) and no significant difference for PRAL (p=0.086). The lowest NEAP and PRAL levels were seen in the control group while the highest in the HT group. Both NEAP and PRAL were correlated with waist circumference (r=0,325, p=0.001; r=0,231, p=0,016, respectively). CONCLUSION Our data confirmed that subjects with HT and DM had diets with greater acid-forming potential. High NEAP may be a risk factor for chronic metabolic diseases, particularly HT. PRAL couldn't be shown as a significantly different marker in all participants. Dietary content has a significant contribution to the reduction of cardiovascular risk factors such as HT, DM, and obesity.
Collapse
Affiliation(s)
- Tulay Omma
- Department of Endocrinology and Metabolism, University of Health Sciences, Ankara Training and Research Hospital, 06230, Ankara, Turkey
| | - Nese Ersoz Gulcelik
- Department of Endocrinology and Metabolism, University of Health Sciences, Gulhane Training and Research Hospital, 06010, Ankara, Turkey
| | - Fatmanur Humeyra Zengin
- Department of Nutrition and Dietetics, University of Health Sciences, Ankara Training and Research Hospital, 06230, Ankara, Turkey
| | - Irfan Karahan
- Department of Internal Medicine, University of Kırıkkale, Faculty of Medicine, 71450, Kırıkkale, Turkey
| | - Cavit Culha
- Department of Endocrinology and Metabolism, University of Health Sciences, Ankara Training and Research Hospital, 06230, Ankara, Turkey
| |
Collapse
|
23
|
Chang TY, Wu CH, Chang CY, Lee FJ, Wang BW, Doong JY, Lin YS, Kuo CS, Huang RFS. Optimal Dietary Intake Composition of Choline and Betaine Is Associated with Minimized Visceral Obesity-Related Hepatic Steatosis in a Case-Control Study. Nutrients 2022; 14:261. [PMID: 35057441 PMCID: PMC8779168 DOI: 10.3390/nu14020261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Few studies on humans have comprehensively evaluated the intake composition of methyl-donor nutrients (MDNs: choline, betaine, and folate) in relation to visceral obesity (VOB)-related hepatic steatosis (HS), the hallmark of non-alcoholic fatty liver diseases. In this case-control study, we recruited 105 patients with HS and 104 without HS (controls). HS was diagnosed through ultrasound examination. VOB was measured using a whole-body analyzer. MDN intake was assessed using a validated quantitative food frequency questionnaire. After adjustment for multiple HS risk factors, total choline intake was the most significant dietary determinant of HS in patients with VOB (Beta: -0.41, p = 0.01). Low intake of choline (<6.9 mg/kg body weight), betaine (<3.1 mg/kg body weight), and folate (<8.8 μg/kg body weight) predicted increased odds ratios (ORs) of VOB-related HS (choline: OR: 22, 95% confidence interval [CI]: 6.5-80; betaine: OR: 14, 95% CI: 4.4-50; and folate: OR: 19, 95% CI: 5.2-74). Combined high intake of choline and betaine, but not folate, was associated with an 81% reduction in VOB-related HS (OR: 0.19, 95% CI: 0.05-0.69). Our data suggest that the optimal intake of choline and betaine can minimize the risk of VOB-related HS in a threshold-dependent manner.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (T.-Y.C.); (J.-Y.D.); (Y.-S.L.)
| | - Chien-Hsien Wu
- Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Department of Gastroenterology and Hepatology, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
| | - Chi-Yang Chang
- Department of Gastroenterology and Hepatology, Fu Jen Catholic University Hospital, New Taipei City 243089, Taiwan; (C.-Y.C.); (F.-J.L.)
| | - Fu-Jen Lee
- Department of Gastroenterology and Hepatology, Fu Jen Catholic University Hospital, New Taipei City 243089, Taiwan; (C.-Y.C.); (F.-J.L.)
| | - Bei-Wen Wang
- Department of Nutrition, Fu Jen Catholic University Hospital, New Taipei City 243089, Taiwan;
| | - Jia-Yau Doong
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (T.-Y.C.); (J.-Y.D.); (Y.-S.L.)
| | - Yu-Shun Lin
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (T.-Y.C.); (J.-Y.D.); (Y.-S.L.)
| | - Chang-Sheng Kuo
- Department of Nutrition, Fu Jen Catholic University Hospital, New Taipei City 243089, Taiwan;
| | - Rwei-Fen S. Huang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (T.-Y.C.); (J.-Y.D.); (Y.-S.L.)
- Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| |
Collapse
|
24
|
OUP accepted manuscript. Nutr Rev 2022; 80:2178-2197. [DOI: 10.1093/nutrit/nuac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Bastian TW, von Hohenberg WC, Kaus OR, Lanier LM, Georgieff MK. Choline Supplementation Partially Restores Dendrite Structural Complexity in Developing Iron-Deficient Mouse Hippocampal Neurons. J Nutr 2021; 152:747-757. [PMID: 34958369 PMCID: PMC8891184 DOI: 10.1093/jn/nxab429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fetal-neonatal iron deficiency causes learning/memory deficits that persist after iron repletion. Simplified hippocampal neuron dendrite structure is a key mechanism underlying these long-term impairments. Early life choline supplementation, with postnatal iron repletion, improves learning/memory performance in formerly iron-deficient (ID) rats. OBJECTIVES To understand how choline improves iron deficiency-induced hippocampal dysfunction, we hypothesized that direct choline supplementation of ID hippocampal neurons may restore cellular energy production and dendrite structure. METHODS Embryonic mouse hippocampal neuron cultures were made ID with 9 μM deferoxamine beginning at 3 d in vitro (DIV). At 11 DIV, iron repletion (i.e., deferoxamine removal) was performed on a subset of ID cultures. These neuron cultures and iron-sufficient (IS) control cultures were treated with 30 μM choline (or vehicle) between 11 and 18 DIV. At 18 DIV, the independent and combined effects of iron and choline treatments (2-factor ANOVA) on neuronal dendrite numbers, lengths, and overall complexity and mitochondrial respiration and glycolysis were analyzed. RESULTS Choline treatment of ID neurons (ID + Cho) significantly increased overall dendrite complexity (150, 160, 180, and 210 μm from the soma) compared with untreated ID neurons to a level of complexity that was no longer significantly different from IS neurons. The average and total length of primary dendrites in ID + Cho neurons were significantly increased by ∼15% compared with ID neurons, indicating choline stimulation of dendrite growth. Measures of mitochondrial respiration, glycolysis, and ATP production rates were not significantly altered in ID + Cho neurons compared with ID neurons, remaining significantly reduced compared with IS neurons. Iron repletion significantly improved mitochondrial respiration, ATP production rates, overall dendrite complexity (100-180 μm from the soma), and dendrite and branch lengths compared with untreated ID neurons. CONCLUSIONS Because choline partially restores dendrite structure in ID neurons without iron repletion, it may have therapeutic potential when iron treatment is not possible or advisable. Choline's mechanism in ID neurons requires further investigation.
Collapse
Affiliation(s)
| | | | - Olivia R Kaus
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lorene M Lanier
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Michael K Georgieff
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
26
|
Miyaguti NADS, Chiocchetti GDME, Salgado CDM, Lopes-Aguiar L, Viana LR, Blanchard L, dos Santos RW, Gomes-Marcondes MCC. Walker-256 Tumour-Induced Cachexia Altered Liver Metabolomic Profile and Function in Weanling and Adult Rats. Metabolites 2021; 11:metabo11120831. [PMID: 34940589 PMCID: PMC8705353 DOI: 10.3390/metabo11120831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/05/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer cachexia occurs in up to 85% of advanced cancer patients, affecting different tissues and organs, mainly the liver, which plays a central role in body metabolism control. However, liver responses to cancer cachexia progression are still poorly understood. Considering the possible different challenges provided by the rodent’s phase of life and the cachexia progression, we evaluated the liver metabolic alterations affected by Walker-256 tumour growth in weanling and young-adult rats. For this, we applied a metabolomics approach associated with protein and gene expression analyses. Higher amino acid levels and impaired glucose metabolism were important features in tumour-bearing animals’ liver tissue. The weanling hosts had more pronounced cachexia, with higher carcass spoliation, liver lipid metabolism and impaired CII and CIV mitochondrial complexes. The liver alterations in young adult tumour-bearing rats were related to energy status and nucleotide metabolites, such as uridine, NAD+, xanthosine, hypoxanthine and inosine. In conclusion, the Walker-256 tumour-induced cachexia impaired liver metabolism, being more severe in the weanling hosts. Further studies are needed to correlate these changes in the preclinical model, which can be correlated to the clinical features of cancer cachexia, allowing for a translational potential involving the liver function and its responses to potential treatments.
Collapse
Affiliation(s)
- Natália Angelo da Silva Miyaguti
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
- Correspondence: (N.A.d.S.M.); (M.C.C.G.-M.); Tel.: +55-19-3521-6194 (M.C.C.G.-M.)
| | - Gabriela de Matuoka e Chiocchetti
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
| | - Carla de Moraes Salgado
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
| | - Leisa Lopes-Aguiar
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
| | - Lais Rosa Viana
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
| | - Lea Blanchard
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
- Biology Department, Université d’Angers, 4900 Angers, France
| | - Rogério Willians dos Santos
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
| | - Maria Cristina Cintra Gomes-Marcondes
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
- Correspondence: (N.A.d.S.M.); (M.C.C.G.-M.); Tel.: +55-19-3521-6194 (M.C.C.G.-M.)
| |
Collapse
|
27
|
Yao H, Hu Y, Wang Q, Zhang Y, Rao K, Shi S. Effects of dietary dimethylglycine supplementation on laying performance, egg quality, and tissue index of hens during late laying period. Poult Sci 2021; 101:101610. [PMID: 34936951 PMCID: PMC8704446 DOI: 10.1016/j.psj.2021.101610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, the effects of 5 graded dietary levels (0.025, 0.05, 0.075, 0.1, and 0.125%) of dimethylglycine (DMG) were studied in laying hens during the late laying period (71–78 wk). Graded doses of DMG from 0.025 to 0.125% in the diet produced quadratic positive (P < 0.05) responses in the laying rate, egg-feed ratio, yolk color, grade follicular weight, and the number of large white follicles and linear positive (P < 0.05) responses in average egg weight, and the number of large white follicles. With 0.1% DMG, the laying rate and egg-feed ratio improved (P < 0.05), and the abdominal fat percentage decreased. Considering the laying performance under the conditions used in this study, the best-fit model for the DMG requirements of laying hens was estimated to range from 0.049 to 0.065% DMG during the late laying period based on a regression analysis. The addition of DMG did not affect the total cholesterol (TCH) and triglyceride (TG) contents in the plasma of laying hens; however, it significantly reduced the abdominal fat rate. DMG may change the course of lipid deposition in laying hens during the late laying period. In conclusion, supplementation with DMG can improve the laying rate and follicles development of laying hens.
Collapse
Affiliation(s)
- Hong Yao
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China; College of Animal Husbandry and Veterinary, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Hu
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China
| | - Qiang Wang
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China
| | - Yijian Zhang
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China
| | - Kaiqing Rao
- College of Animal Husbandry and Veterinary, Southwest Minzu University, Chengdu, 610041, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
28
|
Head B, Traber MG. Expanding role of vitamin E in protection against metabolic dysregulation: Insights gained from model systems, especially the developing nervous system of zebrafish embryos. Free Radic Biol Med 2021; 176:80-91. [PMID: 34555455 DOI: 10.1016/j.freeradbiomed.2021.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
This review discusses why the embryo requires vitamin E (VitE) and shows that its lack causes metabolic dysregulation and impacts morphological changes at very early stages in development, which occur prior to when a woman knows she is pregnant. VitE halts the chain reactions of lipid peroxidation (LPO). Metabolomic analyses indicate that thiols become depleted in E- embryos because LPO generates products that require compensation using limited amino acids and methyl donors that are also developmentally relevant. Thus, VitE protects metabolic networks and the integrated gene expression networks that control development. VitE is critical especially for neurodevelopment, which is dependent on trafficking by the α-tocopherol transfer protein (TTPa). VitE-deficient (E-) zebrafish embryos initially appear normal, but by 12 and 24 h post-fertilization (hpf) E- embryos are developmentally abnormal with expression of pax2a and sox10 mis-localized in the midbrain-hindbrain boundary, neural crest cells and throughout the spinal neurons. These patterning defects indicate cells that are especially in need of VitE-protection. They precede obvious morphological abnormalities (cranial-facial malformation, pericardial edema, yolksac edema, skewed body-axis) and impaired behavioral responses to locomotor activity tests. The TTPA gene (ttpa) is expressed at the leading edges of the brain ventricle border. Ttpa knockdown using morpholinos is 100% lethal by 24 hpf, while E- embryo brains are often over- or under-inflated at 24 hpf. Further, E- embryos prior to 24 hpf have increased expression of genes involved in glycolysis and the pentose phosphate pathway, and decreased expression of genes involved in anabolic pathways and transcription. Combined data from both gene expression and the metabolome in E- embryos at 24 hpf suggest that the activity of the mechanistic Target of Rapamycin (mTOR) signaling pathway is decreased, which may impact both metabolism and neurodevelopment. Further evaluation of VitE deficiency in neurogenesis and its subsequent impact on learning and behavior is needed.
Collapse
Affiliation(s)
- Brian Head
- Linus Pauling Institute, Corvallis, OR, USA; Molecular and Cell Biology Program, Corvallis, OR, USA
| | - Maret G Traber
- Linus Pauling Institute, Corvallis, OR, USA; School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
29
|
Glade MJ, Crook MA. Choline deficiency: Is it being recognized? Nutrition 2021; 94:111509. [PMID: 34862116 DOI: 10.1016/j.nut.2021.111509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/15/2022]
Affiliation(s)
| | - Martin A Crook
- Department of Clinical Biochemistry and Metabolic Medicine, Guy's & St Thomas' Hospitals, London, UK.
| |
Collapse
|
30
|
Jin Y, Li H, Wang H. Dietary rumen-protected choline supplementation regulates blood biochemical profiles and urinary metabolome and improves growth performance of growing lambs. Anim Biotechnol 2021:1-11. [PMID: 34658301 DOI: 10.1080/10495398.2021.1984247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed to assess the growth performance and blood metabolites, as well as metabolic profiles in the urine of lambs fed on dietary rumen-protected choline (RPC). Thirty-six Dorper × Hu lambs weighing approximately 20 kg were equally assigned to three groups, and fed on three diets supplemented with different RPC concentrations (0, 0.25% and 0.75%) for 45 days. Supplementation of RPC significantly increased average daily gain (ADG) and decreased feed-to-gain ratio (F/G) of lambs (p < 0.05). Dietary RPC was significantly associated with elevated plasma high-density lipoprotein (HDL) and suppressed low-density lipoprotein (LDL) levels when compared to the control group (p < 0.05). Moreover, concentrations of very-low-density lipoprotein (VLDL) exhibited an increasing trend (p = 0.065), whereas β-hydroxybutyrate (BHBA) levels decreased (p = 0.086) in plasma. Analysis of urine metabolome revealed that RPC supplementation significantly suppressed urinary concentrations of pyruvate (p < 0.05), while increased urinary concentrations of trimethylamine oxide, p-cresol, phenylacetylglycine and hippurate (p < 0.05). These findings suggest that RPC supplementation can promote weight gain, alter plasma lipid metabolism and modify urinary metabolome which is correlated with energy metabolism, lipid metabolism and intestinal microbial metabolism in lambs. In conclusion, based on our findings, we recommend 0.25% RPC as a supplement for growing lambs.
Collapse
Affiliation(s)
- Yaqian Jin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| | - Huawei Li
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China.,Department of Scientific Research, Tangshan Normal University, Tangshan, P. R. China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
31
|
Zhong C, Miao M, Che B, Du J, Wang A, Peng H, Bu X, Zhang J, Ju Z, Xu T, He J, Zhang Y. Plasma choline and betaine and risks of cardiovascular events and recurrent stroke after ischemic stroke. Am J Clin Nutr 2021; 114:1351-1359. [PMID: 34159355 DOI: 10.1093/ajcn/nqab199] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/25/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Choline and betaine have been suggested to play a pivotal role in neurotransmitter synthesis, cell membrane integrity, and methyl-group metabolism, exerting neuroprotective effects in patients with various neurological disorders. However, population-based evidence on choline and betaine with subsequent cardiovascular events after stroke is rare. OBJECTIVES We aimed to prospectively investigate the relationships of circulating choline and betaine with cardiovascular events and recurrent stroke in patients with ischemic stroke. METHODS We performed a nested case-control study within the China Antihypertensive Trial in Acute Ischemic Stroke. A total of 323 cardiovascular events (including 264 recurrent strokes) and 323 controls (free of recurrent cardiovascular events) matched for age (±1 y), sex, and treatment group were included. The primary endpoint was a composite of cardiovascular events after ischemic stroke. Plasma choline and betaine were measured at baseline by ultra-high-performance LC-MS/MS. Conditional logistic regression models were applied, and discrimination, reclassification, and calibration of models with choline pathway metabolites were evaluated. RESULTS Plasma choline and betaine were inversely associated with cardiovascular events and recurrent stroke after ischemic stroke. Specifically, in fully adjusted models, each additional SD of choline and betaine was associated with 35% (95% CI: 20%-48%) and 30% (95% CI: 14%-43%) decreased risks of subsequent cardiovascular events, respectively, and 34% (95% CI: 16%-48%) and 29% (95% CI: 12%-43%) decreased risks of recurrent stroke, respectively. In addition, both choline and betaine offered substantial risk discrimination and reclassification improvement for cardiovascular events and recurrent stroke beyond traditional risk factors, as evidenced by an increase in C statistics, the net reclassification index, and integrated discrimination improvement. CONCLUSIONS Plasma choline pathway metabolites, including choline and betaine, were associated with decreased risks of cardiovascular events and recurrent stroke and provided incremental value in risk discrimination and stratification in patients with ischemic stroke. This nested case-control study was based on the China Antihypertensive Trial in Acute Ischemic Stroke, which is registered at clinicaltrials.gov as NCT01840072.
Collapse
Affiliation(s)
- Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Mengyuan Miao
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Bizhong Che
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jigang Du
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Aili Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Xiaoqing Bu
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jintao Zhang
- Department of Neurology, The 88th Hospital of PLA, Shandong, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Tongliao, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
32
|
Cao Y, Liu K, Xiong Y, Zhao C, Liu L. Increased expression of fragmented tRNA promoted neuronal necrosis. Cell Death Dis 2021; 12:823. [PMID: 34462418 PMCID: PMC8405691 DOI: 10.1038/s41419-021-04108-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Neuronal necrosis induced by excessive glutamate release is well known to contribute morbidity and mortality in ischemic stroke. Over the past decades, strategies on targeting glutamate receptor did not achieve desirable clinical outcomes. Finding the downstream mechanism of the glutamate receptor activation may provide new targets to suppress the cell death. Previously, our study demonstrated that the increase of H3K4 trimethylation (H3K4me3) played a key detrimental role on neuronal necrosis; however, the mechanism of this histone modification is unclear. Through a genome-wide small RNA sequencing, we identified several tRNA-derived fragments (tRFs) and piwi-interacting RNA (piRNAs) species were enriched in glutamate-induced neuronal necrosis in rat primary neuron cultures, and this enrichment was dependent on the H3K4me3 increase. Strikingly, when we transfected several synthesized tRFs and piRNA species into neurons, the tRFs but not the piRNAs induced neuron swelling and death. The cell death morphology recapitulated neuronal necrosis induced by glutamate. For the cytotoxic effect of tRFs, our data suggested that protein synthesis was inhibited likely through induction of ribosomal stalling. By proteomic analysis of tRFs effect, the most affected pathway was enriched in the mitochondrial metabolism. Consistently, mitochondrial fragmentation was increased in neuronal necrosis, and suppression of mitochondrial fission by genetic manipulation or drug rescued neuronal necrosis. Using our previously established Drosophila model of neuronal necrosis, we found that inhibition of small RNA transcription, blocking RNA transport from nucleus to cytosol, or knocking down Ago1/2 to suppress the RNA interference effect, all rescued the fly death, suggesting transcription and processing of small RNAs contribute to neuronal necrosis. Together, these results indicate that the abnormal transcription of tRFs may play a key role downstream of the H3K4me3 increase. This provides a potential new strategy to suppress neuronal necrosis.
Collapse
Affiliation(s)
- Yanyan Cao
- grid.24696.3f0000 0004 0369 153XDepartment of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, China ,grid.453074.10000 0000 9797 0900Department of Neurology, First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Kai Liu
- grid.49470.3e0000 0001 2331 6153College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Xiong
- grid.24696.3f0000 0004 0369 153XDepartment of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, China
| | - Chunyue Zhao
- grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Lei Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, China
| |
Collapse
|
33
|
Ramzan F, Vickers MH, Mithen RF. Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22095047. [PMID: 34068765 PMCID: PMC8126218 DOI: 10.3390/ijms22095047] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetics refers to the DNA chemistry changes that result in the modification of gene transcription and translation independently of the underlying DNA coding sequence. Epigenetic modifications are reported to involve various molecular mechanisms, including classical epigenetic changes affecting DNA methylation and histone modifications and small RNA-mediated processes, particularly that of microRNAs. Epigenetic changes are reversible and are closely interconnected. They are recognised to play a critical role as mediators of gene regulation, and any alteration in these mechanisms has been identified to mediate various pathophysiological conditions. Moreover, genetic predisposition and environmental factors, including dietary alterations, lifestyle or metabolic status, are identified to interact with the human epigenome, highlighting the importance of epigenetic factors as underlying processes in the aetiology of various diseases such as MetS. This review will reflect on how both the classical and microRNA-regulated epigenetic changes are associated with the pathophysiology of metabolic syndrome. We will then focus on the various aspects of epigenetic-based strategies used to modify MetS outcomes, including epigenetic diet, epigenetic drugs, epigenome editing tools and miRNA-based therapies.
Collapse
|
34
|
Abstract
Vitamin E, discovered in 1922, is essential for pregnant rats to carry their babies to term. However, 100 years later, the molecular mechanisms for the vitamin E requirement during embryogenesis remain unknown. Vitamin E's role during pregnancy has been difficult to study and thus, a vitamin E-deficient (E-) zebrafish embryo model was developed. Vitamin E deficiency in zebrafish embryos initiates lipid peroxidation, depletes a specific phospholipid (DHA-phosphatidyl choline), causes secondary deficiencies of choline, betaine and critical thiols (such as glutathione), and dysregulates energy metabolism. Vitamin E deficiency not only distorts the carefully programmed development of the nervous system, but it leads to defects in several developing organs. Both the α-tocopherol transfer protein and vitamin E are necessary for embryonic development, neurogenesis and cognition in this model and likely in human embryos. Elucidation of the control mechanisms for the cellular and metabolic pathways involved in the molecular dysregulation caused by vitamin E deficiency will lead to important insights into abnormal neurogenesis and embryonic malformations.
Collapse
|
35
|
Abuawad A, Spratlen MJ, Parvez F, Slavkovich V, Ilievski V, Lomax-Luu AM, Saxena R, Shahriar H, Nasir Uddin M, Islam T, Graziano JH, Navas-Acien A, Gamble MV. Association between body mass index and arsenic methylation in three studies of Bangladeshi adults and adolescents. ENVIRONMENT INTERNATIONAL 2021; 149:106401. [PMID: 33549917 PMCID: PMC7976732 DOI: 10.1016/j.envint.2021.106401] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Water-borne arsenic (As) exposure is a global health problem. Once ingested, inorganic As (iAs) is methylated to mono-methyl (MMA) and dimethyl (DMA) arsenicals via one-carbon metabolism (OCM). People with higher relative percentage of MMA (MMA%) in urine (inefficient As methylation), have been shown to have a higher risk of cardiovascular disease and several cancers but appear to have a lower risk of diabetes and obesity in populations from the US, Mexico, and Taiwan. It is unknown if this opposite pattern with obesity is present in Bangladesh, a country with lower adiposity and higher As exposure in drinking water. OBJECTIVE To characterize the association between body mass index (BMI) and As methylation in Bangladeshi adults and adolescents participating in the Folic Acid and Creatine Trial (FACT); Folate and Oxidative Stress (FOX) study; and Metals, Arsenic, and Nutrition in Adolescents Study (MANAS). METHODS Arsenic species (iAs, MMA, DMA) were measured in urine and blood. Height and weight were measured to calculate BMI. The associations between concurrent BMI with urine and blood As species were analyzed using linear regression models, adjusting for nutrients involved in OCM such as choline. In FACT, we also evaluated the prospective association between weight change and As species. RESULTS Mean BMIs were 19.2/20.4, 19.8/21.0, and 17.7/18.7 kg/m2 in males/females in FACT, FOX, and MANAS, respectively. BMI was associated with As species in female but not in male participants. In females, after adjustment for total urine As, age, and plasma folate, the adjusted mean differences (95% confidence) in urinary MMA% and DMA% for a 5 kg/m2 difference in BMI were -1.21 (-1.96, -0.45) and 2.47 (1.13, 3.81), respectively in FACT, -0.66 (-1.56, 0.25) and 1.43 (-0.23, 3.09) in FOX, and -0.59 (-1.19, 0.02) and 1.58 (-0.15, 3.30) in MANAS. The associations were attenuated after adjustment for choline. Similar associations were observed with blood As species. In FACT, a 1-kg of weight increase over 2 to 10 (mean 5.4) years in males/females was prospectively associated with mean DMA% that was 0.16%/0.19% higher. DISCUSSION BMI was negatively associated with MMA% and positively associated with %DMA in females but not males in Bangladesh; associations were attenuated after plasma choline adjustment. These findings may be related to the role of body fat on estrogen levels that can influence one-carbon metabolism, e.g. by increasing choline synthesis. Research is needed to determine whether the associations between BMI and As species are causal and their influence on As-related health outcomes.
Collapse
Affiliation(s)
- Ahlam Abuawad
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Miranda J Spratlen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Faruque Parvez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Angela M Lomax-Luu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Roheeni Saxena
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | | | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Joseph H Graziano
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Mary V Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States.
| |
Collapse
|
36
|
Palmitate and pyruvate carbon flux in response to choline and methionine in bovine neonatal hepatocytes. Sci Rep 2020; 10:19078. [PMID: 33154483 PMCID: PMC7645801 DOI: 10.1038/s41598-020-75956-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
Choline and methionine may serve unique functions to alter hepatic energy metabolism. Our objective was to trace carbon flux through pathways of oxidation and glucose metabolism in bovine hepatocytes exposed to increasing concentrations of choline chloride (CC) and D,L-methionine (DLM). Primary hepatocytes were isolated from 4 Holstein calves and maintained for 24 h before treatment with CC (0, 10, 100, 1000 μmol/L) and DLM (0, 100, 300 μmol/L) in a factorial design. After 21 h, [1-14C]C16:0 or [2-14C]pyruvate was added to measure complete and incomplete oxidation, and cellular glycogen. Reactive oxygen species (ROS), cellular triglyceride (TG), and glucose and ß-hydroxybutyrate (BHB) export were quantified. Exported very-low density lipoprotein particles were isolated for untargeted lipidomics and to quantify TG. Interactions between CC and DLM, and contrasts for CC (0 vs. [10, 100, 1000 μmol/L] and linear and quadratic contrast 10, 100, 1000 μmol/L) and DLM (0 vs. [100, 300 μmol/L] and 100 vs. 300 μmol/L) were evaluated. Presence of CC increased complete oxidation of [1-14C]C16:0 and decreased BHB export. Glucose export was decreased, but cellular glycogen was increased by the presence of CC and increasing CC. Presence of CC decreased ROS and marginally decreased cellular TG. No interactions between CC and DLM were detected for these outcomes. These data suggest a hepato-protective role for CC to limit ROS and cellular TG accumulation, and to alter hepatic energy metabolism to support complete oxidation of FA and glycogen storage regardless of Met supply.
Collapse
|
37
|
Liu KD, Acharjee A, Hinz C, Liggi S, Murgia A, Denes J, Gulston MK, Wang X, Chu Y, West JA, Glen RC, Roberts LD, Murray AJ, Griffin JL. Consequences of Lipid Remodeling of Adipocyte Membranes Being Functionally Distinct from Lipid Storage in Obesity. J Proteome Res 2020; 19:3919-3935. [PMID: 32646215 DOI: 10.1021/acs.jproteome.9b00894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Obesity is a complex disorder where the genome interacts with diet and environmental factors to ultimately influence body mass, composition, and shape. Numerous studies have investigated how bulk lipid metabolism of adipose tissue changes with obesity and, in particular, how the composition of triglycerides (TGs) changes with increased adipocyte expansion. However, reflecting the analytical challenge posed by examining non-TG lipids in extracts dominated by TGs, the glycerophospholipid composition of cell membranes has been seldom investigated. Phospholipids (PLs) contribute to a variety of cellular processes including maintaining organelle functionality, providing an optimized environment for membrane-associated proteins, and acting as pools for metabolites (e.g. choline for one-carbon metabolism and for methylation of DNA). We have conducted a comprehensive lipidomic study of white adipose tissue in mice which become obese either through genetic modification (ob/ob), diet (high fat diet), or a combination of the two, using both solid phase extraction and ion mobility to increase coverage of the lipidome. Composition changes in seven classes of lipids (free fatty acids, diglycerides, TGs, phosphatidylcholines, lyso-phosphatidylcholines, phosphatidylethanolamines, and phosphatidylserines) correlated with perturbations in one-carbon metabolism and transcriptional changes in adipose tissue. We demonstrate that changes in TGs that dominate the overall lipid composition of white adipose tissue are distinct from diet-induced alterations of PLs, the predominant components of the cell membranes. PLs correlate better with transcriptional and one-carbon metabolism changes within the cell, suggesting that the compositional changes that occur in cell membranes during adipocyte expansion have far-reaching functional consequences. Data are available at MetaboLights under the submission number: MTBLS1775.
Collapse
Affiliation(s)
- Ke-di Liu
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
| | - Animesh Acharjee
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, U.K
- Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, Birmingham B15 2TT, U.K
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, U.K
| | - Christine Hinz
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Sonia Liggi
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Antonio Murgia
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Julia Denes
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Melanie K Gulston
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Xinzhu Wang
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
| | - Yajing Chu
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
| | - James A West
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
| | - Robert C Glen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K
| | - Lee D Roberts
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, U.K
| | - Julian L Griffin
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K
| |
Collapse
|
38
|
The choline transporter Slc44a2 controls platelet activation and thrombosis by regulating mitochondrial function. Nat Commun 2020; 11:3479. [PMID: 32661250 PMCID: PMC7359028 DOI: 10.1038/s41467-020-17254-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 06/15/2020] [Indexed: 02/08/2023] Open
Abstract
Genetic factors contribute to the risk of thrombotic diseases. Recent genome wide association studies have identified genetic loci including SLC44A2 which may regulate thrombosis. Here we show that Slc44a2 controls platelet activation and thrombosis by regulating mitochondrial energetics. We find that Slc44a2 null mice (Slc44a2(KO)) have increased bleeding times and delayed thrombosis compared to wild-type (Slc44a2(WT)) controls. Platelets from Slc44a2(KO) mice have impaired activation in response to thrombin. We discover that Slc44a2 mediates choline transport into mitochondria, where choline metabolism leads to an increase in mitochondrial oxygen consumption and ATP production. Platelets lacking Slc44a2 contain less ATP at rest, release less ATP when activated, and have an activation defect that can be rescued by exogenous ADP. Taken together, our data suggest that mitochondria require choline for maximum function, demonstrate the importance of mitochondrial metabolism to platelet activation, and reveal a mechanism by which Slc44a2 influences thrombosis. Genetic association studies have identified loci including the choline transporter SLC44A2 as a potential regulator of thrombosis. Here the authors report that loss of SLC44A2 impairs platelet activation and thrombosis in mice via a reduction of mitochondrial ATP production.
Collapse
|
39
|
Hammoud R, Pannia E, Kubant R, Liao CS, Ho M, Yang NV, Chatterjee D, Caudill MA, Malysheva OV, Pausova Z, Anderson GH. Maternal Choline Intake Programs Hypothalamic Energy Regulation and Later-Life Phenotype of Male Wistar Rat Offspring. Mol Nutr Food Res 2020; 64:e1901178. [PMID: 32110848 DOI: 10.1002/mnfr.201901178] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/21/2020] [Indexed: 12/13/2022]
Abstract
SCOPE High-folic-acid diets during pregnancy result in obesity in the offspring, associated with altered DNA-methylation of hypothalamic food intake neurons. Like folic acid, the methyl-donor choline modulates foetal brain development, but its long-term programing effects on energy regulation remain undefined. This study aims to describe the effect of choline intake during pregnancy on offspring phenotype and hypothalamic energy-regulatory mechanisms. METHODS AND RESULTS Wistar rat dams are fed an AIN-93G diet with recommended choline (RC, 1 g kg-1 diet), low choline (LC, 0.5-fold), or high choline (HC, 2.5-fold) during pregnancy. Male pups are terminated at birth and 17 weeks post-weaning. Brain 1-carbon metabolites, body weight, food intake, energy expenditure, plasma hormones, and protein expression of hypothalamic neuropeptides are measured. HC pups have higher expression of the orexigenic neuropeptide-Y neurons at birth, consistent with higher cumulative food intake and body weight gain post-weaning compared to RC and LC offspring. LC pups have lower leptin receptor expression at birth and lower energy expenditure and activity during adulthood. CONCLUSION Choline content of diets that are consumed by rats during pregnancy affects the later-life phenotype of offspring, associated with altered in utero programing of hypothalamic food intake regulation.
Collapse
Affiliation(s)
- Rola Hammoud
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
| | - Emanuela Pannia
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
| | - Ruslan Kubant
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
| | - Chih-Sheng Liao
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
| | - Mandy Ho
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
| | - Neil V Yang
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
| | - Diptendu Chatterjee
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, 228 Savage Hall, Ithaca, NY, 14850, USA
| | - Olga V Malysheva
- Division of Nutritional Sciences, Cornell University, 228 Savage Hall, Ithaca, NY, 14850, USA
| | - Zdenka Pausova
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
- Department of Physiology, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, Rm. 109705, Toronto, Ontario, M5G0A4, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
- Department of Physiology, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
| |
Collapse
|
40
|
Short-term determination and long-term evaluation of the dietary methionine requirement in adult dogs. Br J Nutr 2020; 123:1333-1344. [PMID: 32100649 DOI: 10.1017/s0007114520000690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Methionine, an essential sulphur-containing amino acid (SAA), plays an integral role in many metabolic processes. Evidence for the methionine requirements of adult dogs is limited, and we employed the indicator amino acid oxidation (IAAO) method to estimate dietary methionine requirements in Labrador retrievers (n 21). Using semi-purified diets, the mean requirement was 0·55 (95 % CI 0·41, 0·71) g/4184 kJ. In a subsequent parallel design study, three groups of adult Labrador retrievers (n 52) were fed semi-purified diets with 0·55 g/4184 kJ (test diet 1), 0·71 g/4184 kJ (test diet 2) or 1·37 g/4184 kJ (control diet) of methionine for 32 weeks to assess the long-term consequences of feeding. The total SAA content (2·68 g/4184 kJ) was maintained through dietary supplementation of cystine. Plasma methionine did not decrease in test group and increased significantly on test diet 1 in weeks 8 and 16 compared with control. Reducing dietary methionine did not have a significant effect on whole blood, plasma or urinary taurine or plasma N-terminal pro B-type natriuretic peptide. Significant effects in both test diets were observed for cholesterol, betaine and dimethylglycine. In conclusion, feeding methionine at the IAAO-estimated mean was sufficient to maintain plasma methionine over 32 weeks when total SAA was maintained. However, choline oxidation may have increased to support plasma methionine and have additional consequences for lipid metabolism. While the IAAO can be employed to assess essential amino acid requirements, such as methionine in the dog using semi-purified diets, further work is required to establish safe levels for commercial diet formats.
Collapse
|
41
|
Huang KT, Shen YL, Lee CN, Chu KY, Ku WC, Liu CY, Huang RFS. Using Differential Threshold Effects of Individual and Combined Periconceptional Methyl Donor Status on Maternal Genomic LINE-1 and Imprinted H19 DNA Methylation to Predict Birth Weight Variance in the Taiwan Pregnancy-Newborn Epigenetics (TPNE) Cohort Study. J Nutr 2020; 150:108-117. [PMID: 31504733 DOI: 10.1093/jn/nxz204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Few studies have comprehensively examined the effect of methyl donor status on maternal DNA methylation and birth outcomes. OBJECTIVES This study examined associations between periconceptional methyl donor status and genome-wide and specific imprinted gene methylation and fetal growth indices in the Taiwan Pregnancy-Newborn Epigenetics cohort. METHODS Plasma folate, choline (free form), and betaine concentrations of the participants enrolled at 7-10 weeks of gestation were analyzed. DNA methylation at regulatory sequences of the imprinted H19 gene and genomic long interspersed nuclear element 1 (LINE-1) were measured in maternal lymphocytes using bisulfite/high-resolution melt polymerase chain reaction. Associations with birth weight (BW) were estimated through multiple regressions from 112 mother-newborn pairs. RESULTS A nonlinear "L-shaped" relation and an inverse association between maternal plasma folate in T1 (mean ± SE: 17.6 ± 5.1 nmol/L) and lymphocytic LINE-1 methylation (β: -0.49, P = 0.027) were characterized. After adjusting for LINE-1 methylation, individual maternal folate concentrations were positively associated with BW variance (β = 0.24, P = 0.035), and the association was more pronounced in mothers with choline in T1 (mean ± SE: 5.4 ± 0.6 μmol/L; β: 0.40, P = 0.039). Choline status of the mothers in T2 (mean ± SE: 7.2 ± 0.6 μmol/L) was inversely associated with LINE-1 methylation (β: -0.43, P = 0.035), and a positive association was evident between T1 choline and H19 methylation (β: 0.48, P = 0.011). After adjusting for epigenetic modification, maternal choline status predicted a positive association with BW (β: 0.56, P = 0.005), but the effect was limited to mothers with high betaine concentrations in T3 (mean ± SE: 36.4 ± 8.8 μmol/L), depending on folate status. CONCLUSIONS Our data highlight the differential threshold effects of periconceptional folate, choline, and betaine status on genomic LINE-1 and H19 DNA methylation and how their interplay has a long-term effect on BW variance.
Collapse
Affiliation(s)
- Kuang-Ta Huang
- PhD Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Loving Care Maternity and Children's Health Centers, New Taipei City, Taiwan
| | - Yu-Li Shen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chien-Nan Lee
- Department of Gynecology and Obstetrics, National Taiwan University Hospital, Taipei City, Taiwan
| | - Kuan-Yu Chu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chieh-Yu Liu
- Biostatistical Consultant Lab, Department of Speech Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei City, Taiwan
| | - Rwei-Fen S Huang
- PhD Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
42
|
Johnson RK, Vanderlinden L, DeFelice BC, Kechris K, Uusitalo U, Fiehn O, Sontag M, Crume T, Beyerlein A, Lernmark Å, Toppari J, Ziegler AG, She JX, Hagopian W, Rewers M, Akolkar B, Krischer J, Virtanen SM, Norris JM. Metabolite-related dietary patterns and the development of islet autoimmunity. Sci Rep 2019; 9:14819. [PMID: 31616039 PMCID: PMC6794249 DOI: 10.1038/s41598-019-51251-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
The role of diet in type 1 diabetes development is poorly understood. Metabolites, which reflect dietary response, may help elucidate this role. We explored metabolomics and lipidomics differences between 352 cases of islet autoimmunity (IA) and controls in the TEDDY (The Environmental Determinants of Diabetes in the Young) study. We created dietary patterns reflecting pre-IA metabolite differences between groups and examined their association with IA. Secondary outcomes included IA cases positive for multiple autoantibodies (mAb+). The association of 853 plasma metabolites with outcomes was tested at seroconversion to IA, just prior to seroconversion, and during infancy. Key compounds in enriched metabolite sets were used to create dietary patterns reflecting metabolite composition, which were then tested for association with outcomes in the nested case-control subset and the full TEDDY cohort. Unsaturated phosphatidylcholines, sphingomyelins, phosphatidylethanolamines, glucosylceramides, and phospholipid ethers in infancy were inversely associated with mAb+ risk, while dicarboxylic acids were associated with an increased risk. An infancy dietary pattern representing higher levels of unsaturated phosphatidylcholines and phospholipid ethers, and lower sphingomyelins was protective for mAb+ in the nested case-control study only. Characterization of this high-risk infant metabolomics profile may help shape the future of early diagnosis or prevention efforts.
Collapse
Affiliation(s)
- Randi K Johnson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Lauren Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Brian C DeFelice
- UC Davis Genome Center-Metabolomics, University of California Davis, Davis, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Ulla Uusitalo
- Health Informatics Institute, University of South Florida, Tampa, USA
| | - Oliver Fiehn
- UC Davis Genome Center-Metabolomics, University of California Davis, Davis, USA.,Department of Molecular and Cellular Biology, University of California Davis, Davis, USA
| | - Marci Sontag
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Tessa Crume
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Andreas Beyerlein
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, and Forschergruppe Diabetes e.V., Neuherberg, Germany
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Lund, Sweden
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland.,Institute of Biomedicine, Research Centre for Integrated Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, and Forschergruppe Diabetes e.V., Neuherberg, Germany
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, USA
| | | | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Beena Akolkar
- National Institutes of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, USA
| | - Jeffrey Krischer
- Health Informatics Institute, University of South Florida, Tampa, USA
| | - Suvi M Virtanen
- National Institute for Health and Welfare, Tampere, Finland.,University of Tampere, Tampere, Finland.,Tampere University Hospital, Tampere, Finland
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA.
| | | |
Collapse
|
43
|
Uncovering the anti-metastasis effects and mechanisms of capsaicin against hepatocellular carcinoma cells by metabolomics. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
44
|
van Lee L, Crozier SR, Aris IM, Tint MT, Sadananthan SA, Michael N, Quah PL, Robinson SM, Inskip HM, Harvey NC, Barker M, Cooper C, Velan SS, Lee YS, Fortier MV, Yap F, Gluckman PD, Tan KH, Shek LP, Chong YS, Godfrey KM, Chong MFF. Prospective associations of maternal choline status with offspring body composition in the first 5 years of life in two large mother-offspring cohorts: the Southampton Women's Survey cohort and the Growing Up in Singapore Towards healthy Outcomes cohort. Int J Epidemiol 2019; 48:433-444. [PMID: 30649331 PMCID: PMC6751083 DOI: 10.1093/ije/dyy291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Choline status has been positively associated with weight and fat mass in animal and human studies. As evidence examining maternal circulating choline concentrations and offspring body composition in human infants/children is lacking, we investigated this in two cohorts. METHODS Maternal choline concentrations were measured in the UK Southampton Women's Survey (SWS; serum, n = 985, 11 weeks' gestation) and Singapore Growing Up Towards healthy Outcomes (GUSTO); n = 955, 26-28 weeks' gestation) mother-offspring cohorts. Offspring anthropometry was measured at birth and up to age 5 years. Body fat mass was determined using dual-energy x-ray absorptiometry at birth and age 4 years for SWS; and using air-displacement plethysmography at birth and age 5 years for GUSTO. Linear-regression analyses were performed, adjusting for confounders. RESULTS In SWS, higher maternal choline concentrations were associated with higher neonatal total body fat mass {β = 0.60 standard deviation [SD]/5 µmol/L maternal choline [95% confidence interval (CI) 0.04-1.16]} and higher subscapular skinfold thickness [β = 0.55 mm/5 µmol/L (95% CI, 0.12-1.00)] at birth. In GUSTO, higher maternal choline concentrations were associated with higher neonatal body mass index-for-age z-score [β = 0.31 SD/5 µmol/L (0.10-0.51)] and higher triceps [β = 0.38 mm/5 µmol/L (95% CI, 0.11-0.65)] and subscapular skinfold thicknesses [β = 0.26 mm/5 µmol/L (95% CI, 0.01-0.50)] at birth. No consistent trends were observed between maternal choline and offspring gain in body mass index, skinfold thicknesses, abdominal circumference, weight, length/height and adiposity measures in later infancy and early childhood. CONCLUSION Our study provides evidence that maternal circulating choline concentrations during pregnancy are positively associated with offspring BMI, skinfold thicknesses and adiposity at birth, but not with growth and adiposity through infancy and early childhood to the age of 5 years.
Collapse
Affiliation(s)
- Linde van Lee
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
| | - Sarah R Crozier
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
| | - Izzuddin M Aris
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mya T Tint
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
| | - Navin Michael
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
| | - Phaik Ling Quah
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
| | - Sian M Robinson
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Hazel M Inskip
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Mary Barker
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Sendhil S Velan
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yung Seng Lee
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Marielle V Fortier
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Diagnostic and Interventional Imaging, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Fabian Yap
- Duke-NUS Medical School, Singapore, Nanyang Technological University, Singapore, Singapore
- Department of Pediatrics, KK Women’s and Children’s Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Liggings Institute, University of Auckland, New Zealand
| | - Kok Hian Tan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Lynette P Shek
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Mary FF Chong
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Clinical Nutrition Research Centre, Agency for Science, Technology, and Research, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
45
|
Evaluating the therapeutic potential of one-carbon donors in nonalcoholic fatty liver disease. Eur J Pharmacol 2019; 847:72-82. [DOI: 10.1016/j.ejphar.2019.01.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
|
46
|
Hepatic accumulation of S-adenosylmethionine in hamsters with non-alcoholic fatty liver disease associated with metabolic syndrome under selenium and vitamin E deficiency. Clin Sci (Lond) 2019; 133:409-423. [PMID: 29122967 DOI: 10.1042/cs20171039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/27/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
Progression of non-alcoholic fatty liver disease (NAFLD) in the context of metabolic syndrome (MetS) is only partially explored due to the lack of preclinical models. In order to study the alterations in hepatic metabolism that accompany this condition, we developed a model of MetS accompanied by the onset of steatohepatitis (NASH) by challenging golden hamsters with a high-fat diet low in vitamin E and selenium (HFD), since combined deficiency results in hepatic necroinflammation in rodents. Metabolomics and transcriptomics integrated analyses of livers revealed an unexpected accumulation of hepatic S-Adenosylmethionine (SAM) when compared with healthy livers likely due to diminished methylation reactions and repression of GNMT. SAM plays a key role in the maintenance of cellular homeostasis and cell cycle control. In agreement, analysis of over-represented transcription factors revealed a central role of c-myc and c-Jun pathways accompanied by negative correlations between SAM concentration, MYC expression and AMPK phosphorylation. These findings point to a drift of cell cycle control toward senescence in livers of HFD animals, which could explain the onset of NASH in this model. In contrast, hamsters with NAFLD induced by a conventional high-fat diet did not show SAM accumulation, suggesting a key role of selenium and vitamin E in SAM homeostasis. In conclusion, our results suggest that progression of NAFLD in the context of MetS can take place even in a situation of hepatic SAM excess and that selenium and vitamin E status might be considered in current therapies against NASH based on SAM supplementation.
Collapse
|
47
|
Izu H, Okuda M, Shibata S, Fujii T, Matsubara K. Anti-diabetic effect of S-adenosylmethionine and α-glycerophosphocholine in KK-A y mice. Biosci Biotechnol Biochem 2018; 83:747-750. [PMID: 30582404 DOI: 10.1080/09168451.2018.1559721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Six-week-old male KK-Ay mice received drinking water with S-adenosylmethionine (SAM), α-glycerophosphocholine (GPC), or SAM+GPC for 10 weeks. The serum glucose of SAM+GPC at 15 weeks old, total cholesterol of GPC at 12 weeks old, and triglyceride of GPC at 15 weeks old and of SAM at 16 weeks old were reduced. SAM+GPC reduced serum leptin and food intake. Abbreviations: SAM: S-adenosylmethionine; GPC: α-glycerophosphocholine.
Collapse
Affiliation(s)
- Hanae Izu
- a Safety and Quality Division , National Research Institute of Brewing , Higashi-Hiroshima , Japan
| | - Mayumi Okuda
- b Department of Human Life Science Education, Graduate School of Education , Hiroshima University , Higashi-Hiroshima , Japan
| | - Sachi Shibata
- c Department of Nutrition and Life Science, Faculty of Life Science and Biotechnology , Fukuyama University , Fukuyama , Japan
| | - Tsutomu Fujii
- a Safety and Quality Division , National Research Institute of Brewing , Higashi-Hiroshima , Japan.,d School of Applied Biological Science, Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| | - Kiminori Matsubara
- b Department of Human Life Science Education, Graduate School of Education , Hiroshima University , Higashi-Hiroshima , Japan
| |
Collapse
|
48
|
Leclerc D, Christensen KE, Cauvi O, Yang E, Fournelle F, Bahous RH, Malysheva OV, Deng L, Wu Q, Zhou Z, Gao ZH, Chaurand P, Caudill MA, Rozen R. Mild Methylenetetrahydrofolate Reductase Deficiency Alters Inflammatory and Lipid Pathways in Liver. Mol Nutr Food Res 2018; 63:e1801001. [PMID: 30408316 DOI: 10.1002/mnfr.201801001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Indexed: 12/13/2022]
Abstract
SCOPE Dietary and genetic folate disturbances can lead to nonalcoholic fatty liver disease (NAFLD). A common variant in methylenetetrahydrofolate reductase (MTHFR 677C→T) causes mild MTHFR deficiency with lower 5-methyltetrahydrofolate for methylation reactions. The goal is to determine whether mild murine MTHFR deficiency contributes to NAFLD-related effects. METHODS AND RESULTS Wild-type and Mthfr+/- mice, a model for the human variant, are fed control (CD) or high-fat (HFAT) diets for 8 weeks. On both diets, MTHFR deficiency results in decreased S-adenosylmethionine, increased S-adenosylhomocysteine, and decreased betaine with reduced methylation capacity, and changes in expression of several inflammatory or anti-inflammatory mediators (Saa1, Apoa1, and Pon1). On CD, MTHFR deficiency leads to microvesicular steatosis with expression changes in lipid regulators Xbp1s and Cyp7a1. The combination of MTHFR deficiency and HFAT exacerbates changes in inflammatory mediators and introduces additional effects on inflammation (Saa2) and lipid metabolism (Nr1h4, Srebf1c, Ppara, and Crot). These effects are consistent with increased expression of pro-inflammatory HDL precursors and greater lipid accumulation. MTHFR deficiency may enhance liver injury through alterations in methylation capacity, inflammatory response, and lipid metabolism. CONCLUSION Individuals with the MTHFR variant may be at increased risk for liver disease and related complications, particularly when consuming high-fat diets.
Collapse
Affiliation(s)
- Daniel Leclerc
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Karen E Christensen
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Olivia Cauvi
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Ethan Yang
- Department of Chemistry, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Frédéric Fournelle
- Department of Chemistry, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Renata H Bahous
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Olga V Malysheva
- Division of Nutritional Sciences and Genomics, Cornell University, Ithaca, NY, 14853, USA
| | - Liyuan Deng
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Qing Wu
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Zili Zhou
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Zu-Hua Gao
- Department of Pathology, McGill University, Montreal, H4A 3J1, Canada
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Marie A Caudill
- Division of Nutritional Sciences and Genomics, Cornell University, Ithaca, NY, 14853, USA
| | - Rima Rozen
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| |
Collapse
|
49
|
Chmurzynska A, Seremak-Mrozikiewicz A, Malinowska AM, Różycka A, Radziejewska A, Szwengiel A, Kurzawińska G, Barlik M, Jagodziński PP, Drews K. PEMT rs12325817 and PCYT1A rs7639752 polymorphisms are associated with betaine but not choline concentrations in pregnant women. Nutr Res 2018; 56:61-70. [PMID: 30055775 DOI: 10.1016/j.nutres.2018.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 02/04/2023]
Abstract
Maternal metabolism during gestation may depend on nutrient intake but also on polymorphism of genes encoding enzymes involved in metabolism of different nutrients. Data on choline or carnitine metabolism in pregnant women are scarce. We hypothesized that (1) choline intake in Polish pregnant women is inadequate and (2) choline and carnitine metabolism would differ by genotype and nutritional status of pregnant women. One hundred three healthy Polish women aged 18 to 44 years in the third trimester of pregnancy were enrolled in the study. The average choline, folate, and carnitine intakes were 365 ± 14 mg/d, 1089 ± 859 μg, and 132 ± 8 mg/d, respectively. Most women did not achieve an adequate intake of choline. Average choline, betaine, trimethylamine oxide, l-carnitine, and acetylcarnitine concentrations were 10.64 ± 3.30 μmol/L, 14.43 ± 4.01 μmol/L, 2.01 ± 1.24 μmol/L, 12.73 ± 5.41 μmol/L, and 6.79 ± 3.82 μmol/L, respectively. Approximately 15% lower betaine concentrations were observed in the GG homozygotes of PEMT rs12325817 and in the GG homozygotes of PCYT1A rs7639752 than in the respective minor allele carriers. Birth weight was higher in the G allele homozygotes of the CHDH rs2289205 than in the minor allele carriers: GG: 3398 ± 64 g; GA+AA: 3193 ± 76 g. Our study shows that choline intake in Polish pregnant women is inadequate and that polymorphisms of PEMT rs12325817 and PCYT1A rs7639752 are associated with betaine but not choline concentrations.
Collapse
Affiliation(s)
- Agata Chmurzynska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences.
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland; Laboratory of Molecular Biology, Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna M Malinowska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences
| | - Agata Różycka
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences
| | - Anna Radziejewska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences
| | - Artur Szwengiel
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences
| | - Grażyna Kurzawińska
- Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland; Laboratory of Molecular Biology, Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Magdalena Barlik
- Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland; Laboratory of Molecular Biology, Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences
| | - Krzysztof Drews
- Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland; Laboratory of Molecular Biology, Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
50
|
Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B, Traber MG, Stockwell BR. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 2018; 32:602-619. [PMID: 29802123 PMCID: PMC6004068 DOI: 10.1101/gad.314674.118] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review by Conrad et al. reviews the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea, and discusses the potential evolutionary roles of lipid peroxidation and ferroptosis. Lipid peroxidation is the process by which oxygen combines with lipids to generate lipid hydroperoxides via intermediate formation of peroxyl radicals. Vitamin E and coenzyme Q10 react with peroxyl radicals to yield peroxides, and then these oxidized lipid species can be detoxified by glutathione and glutathione peroxidase 4 (GPX4) and other components of the cellular antioxidant defense network. Ferroptosis is a form of regulated nonapoptotic cell death involving overwhelming iron-dependent lipid peroxidation. Here, we review the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea. We also discuss the potential evolutionary roles of lipid peroxidation and ferroptosis.
Collapse
Affiliation(s)
- Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Environmental Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Laboratory of Navigational Lipidomics of Cell Death and Regeneration, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330.,Molecular and Cell Biology Graduate Program, Oregon State University, Corvallis, Oregon 97330, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330.,College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon 97330, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|