1
|
Rao B, Wang L, Yang M, Luo H, Sun J, Liu S, Wang H, Wang X, Li L, Yuan C, Yu Z, Ren Z. Safety and immunogenicity of CoronaVac in healthy adults: A prospective observational multicenter real-world study in Henan Province, China. Virulence 2024; 15:2310450. [PMID: 38326274 PMCID: PMC10854291 DOI: 10.1080/21505594.2024.2310450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Vaccination has emerged as the primar approach for managing the COVID-19 pandemic. Despite certain clinical trials reporting the safety and immunogenicity of CoronaVac, additional multicenter real-world studies are still necessary. In this study, we recruited 506 healthy volunteers who were not infected with COVID-19 or vaccinated. Each participant provided peripheral blood samples three times: prior to the first dose of vaccine, prior to the second dose, and 8 weeks following the second dose. Ultimately, 388 participants completed the entire follow-up process. No serious adverse events were observed among any of the participants. Within 1 week of vaccination, 13.4% of participants experienced systemic adverse reactions, with fatigue (5.93%) and dizziness (3.35%) being the most frequent. Although some clinical indicators, including creatinine, significantly changed after vaccination (p < 0.05), the mean of all altered indicators remained within the normal range. The positive rates of neutralizing antibodies (NAb), IgG, and IgM were 12.3%, 18.85%, and 5.24% prior to the second dose, respectively; and 57.99%, 86.34%, and 2.32% at 8 weeks following the second dose, respectively. Additionally, seven indicators, such as sex, age, and BMI, were significantly correlated with NAb (p < 0.05). Finally, a prediction model was developed based on age, monocytes, and alanine aminotransferase (ALT) with an AUC value of 87.56% in the train set and 80.71% in the test set. This study demonstrated that safety and immunogenicity of CoronaVac were good. The prediction model based on the baseline clinical characteristics prior to vaccination can help to develop more suitable vaccination strategies.
Collapse
Affiliation(s)
- Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province/Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Ling Wang
- Department of Laboratory Medicine, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Mengzhao Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province/Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Hong Luo
- Department of Laboratory Medicine, Guangshan County People’s Hospital, Xinyang, Henan, China
| | - Junyi Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province/Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Shanshuo Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province/Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province/Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Xuemei Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province/Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Lei Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province/Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Chengyu Yuan
- Department of Laboratory Medicine, Guangshan County People’s Hospital, Xinyang, Henan, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province/Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province/Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
2
|
Sadique MA, Yadav S, Khan R, Srivastava AK. Engineered two-dimensional nanomaterials based diagnostics integrated with internet of medical things (IoMT) for COVID-19. Chem Soc Rev 2024; 53:3774-3828. [PMID: 38433614 DOI: 10.1039/d3cs00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
More than four years have passed since an inimitable coronavirus disease (COVID-19) pandemic hit the globe in 2019 after an uncontrolled transmission of the severe acute respiratory syndrome (SARS-CoV-2) infection. The occurrence of this highly contagious respiratory infectious disease led to chaos and mortality all over the world. The peak paradigm shift of the researchers was inclined towards the accurate and rapid detection of diseases. Since 2019, there has been a boost in the diagnostics of COVID-19 via numerous conventional diagnostic tools like RT-PCR, ELISA, etc., and advanced biosensing kits like LFIA, etc. For the same reason, the use of nanotechnology and two-dimensional nanomaterials (2DNMs) has aided in the fabrication of efficient diagnostic tools to combat COVID-19. This article discusses the engineering techniques utilized for fabricating chemically active E2DNMs that are exceptionally thin and irregular. The techniques encompass the introduction of heteroatoms, intercalation of ions, and the design of strain and defects. E2DNMs possess unique characteristics, including a substantial surface area and controllable electrical, optical, and bioactive properties. These characteristics enable the development of sophisticated diagnostic platforms for real-time biosensors with exceptional sensitivity in detecting SARS-CoV-2. Integrating the Internet of Medical Things (IoMT) with these E2DNMs-based advanced diagnostics has led to the development of portable, real-time, scalable, more accurate, and cost-effective SARS-CoV-2 diagnostic platforms. These diagnostic platforms have the potential to revolutionize SARS-CoV-2 diagnosis by making it faster, easier, and more accessible to people worldwide, thus making them ideal for resource-limited settings. These advanced IoMT diagnostic platforms may help with combating SARS-CoV-2 as well as tracking and predicting the spread of future pandemics, ultimately saving lives and mitigating their impact on global health systems.
Collapse
Affiliation(s)
- Mohd Abubakar Sadique
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Khan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avanish K Srivastava
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
G VCVS, Reddy PVJ, Suravajhala P, Suravajhala R, V UK, Pb KK, Tc V, Polavarapu R. Performance evaluation of in-house developed Covid-19 IgG/IgM antibody rapid diagnostic kit. AMB Express 2023; 13:116. [PMID: 37848586 PMCID: PMC10581998 DOI: 10.1186/s13568-023-01620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
In the interest of preventing the Coronavirus Disease 2019 (COVID-19) pandemic from spreading, it is crucial to promptly identify and confine afflicted patients. Serological antibody testing is a significant diagnostic technique that is increasingly employed in clinics, however its clinical use is still being investigated. The present study was carried out to scrutinize how well Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) antibody testing using in-house developed rapid antibody assay worked against the chemiluminescence (CLIA) assay. Either IgG positive (IgG + IgM-) or IgM positive (IgM + IgG-); both IgG and IgM positive (IgM + IgG+); and negatives (IgM- IgG-) have been evaluated. A total of 300 samples with diverse age and sexual identity data were included. The combined sensitivities for IgG + IgM+, IgM + IgG-, IgG + IgM- and IgG-IgM- were evaluated. More accurate diagnostic results may be obtained using molecular diagnostic tools. The Antibody Rapid Diagnostic kit's (in-house developed) performance was satisfactory for determining the presence of Covid-19 infection with IgG and IgM positivity. The IgG and IgM positivity helped evaluate the immune response in the individual for the COVID-19 infection. These results lend support to the additional utilisation of serological antibody tests in the COVID-19 diagnosis.
Collapse
Affiliation(s)
- Vinaya Chandu Vidya Sagar G
- Genomix CARL Pvt. Ltd, Pulivendula, Andhra Pradesh, 516 390, India
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Vadlamudi, Guntur, Andhra Pradesh, 522 213, India
| | | | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, 690525, India.
- Bioclues.org, Hyderabad, India.
| | - Renuka Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, 690525, India
| | - Uday Kiran V
- Genomix CARL Pvt. Ltd, Pulivendula, Andhra Pradesh, 516 390, India
| | - Kavi Kishor Pb
- Department of Genetics, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Venkateswarulu Tc
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Vadlamudi, Guntur, Andhra Pradesh, 522 213, India
| | | |
Collapse
|
4
|
Lai S, Liu Y, Fang S, Wu Q, Fan M, Lin D, Lin J, Feng S. Ultrasensitive detection of SARS-CoV-2 antigen using surface-enhanced Raman spectroscopy-based lateral flow immunosensor. JOURNAL OF BIOPHOTONICS 2023:e202300004. [PMID: 36999175 DOI: 10.1002/jbio.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The fast spread and transmission of the coronavirus 2019 (COVID-19) has become one of serious global public health problems. Herein, a surface enhanced Raman spectroscopy-based lateral flow immunoassay (LFA) was developed for the detection of SARS-CoV-2 antigen. Using uniquely designed core-shell nanoparticle with embedded Raman probe molecules as the indicator to reveal the concentration of target protein, excellent quantitative performance with a limit of detection (LOD) of 0.03 ng/mL and detection range of 10-1000 ng/mL can be achieved within 15 min. Besides, the detection of spiked virus protein in human saliva was also performed with a portable Raman spectrometer, proposing the feasibility of the method in practical applications. This easy-to-use, rapid and accurate method would provide a point-of-care testing way as the ideal alternative for current detection requirement of virus-related biomarkers.
Collapse
Affiliation(s)
- Shuxia Lai
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Yi Liu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Shubin Fang
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qiong Wu
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian, China
| | - Min Fan
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Jizhen Lin
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Alamri SS, Alsaieedi A, Khouqeer Y, Afeef M, Alharbi S, Algaissi A, Alghanmi M, Altorki T, Zawawi A, Alfaleh MA, Hashem AM, Alhabbab R. The importance of combining serological testing with RT-PCR assays for efficient detection of COVID-19 and higher diagnostic accuracy. PeerJ 2023; 11:e15024. [PMID: 37065688 PMCID: PMC10103696 DOI: 10.7717/peerj.15024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/17/2023] [Indexed: 04/18/2023] Open
Abstract
Misdiagnosing suspected COVID-19 individuals could largely contribute to the viruses transmission, therefore, making an accurate diagnosis of infected subjects vital in minimizing and containing the disease. Although RT-PCR is the standard method in detecting COVID-19, it is associated with some limitations, including possible false negative results. Therefore, serological testing has been suggested as a complement assay to RT-PCR to support the diagnosis of acute infections. In this study, 15 out of 639 unvaccinated healthcare workers (HCWs) were tested negative for COVID-19 by RT-PCR and were found seropositive for SARS-CoV-2 nucleocapsid protein-specific IgM and IgG antibodies. These participants underwent additional confirmatory RT-PCR and SARS-CoV-2 spike-specific ELISA tests. Of the 15 individuals, nine participants were found negative by second RT-PCR but seropositive for anti-spike IgM and IgG antibodies and neutralizing antibodies confirming their acute infection. At the time of collection, these nine individuals were in close contact with COVID-19-confirmed patients, with 77.7% reporting COVID-19-related symptoms. These results indicate that including serological tests in the current testing profile can provide better outcomes and help contain the spread of the virus by increasing diagnostic accuracy to prevent future outbreaks rapidly.
Collapse
Affiliation(s)
- Sawsan S. Alamri
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahdab Alsaieedi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yousef Khouqeer
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Marwah Afeef
- Study & Research Department, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Samiyah Alharbi
- Intensive Care Unit, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Abdullah Algaissi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Maimonah Alghanmi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarfa Altorki
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat Zawawi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A. Alfaleh
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rowa Alhabbab
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, Hettiarachchi D, Mathangasinghe Y, Weeratunga P, Wickramasinghe D, Bergman H, Buckley BS, Probyn K, Sguassero Y, Davenport C, Cunningham J, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Struyf T, Van den Bruel A, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Deeks JJ. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev 2022; 11:CD013652. [PMID: 36394900 PMCID: PMC9671206 DOI: 10.1002/14651858.cd013652.pub2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The diagnostic challenges associated with the COVID-19 pandemic resulted in rapid development of diagnostic test methods for detecting SARS-CoV-2 infection. Serology tests to detect the presence of antibodies to SARS-CoV-2 enable detection of past infection and may detect cases of SARS-CoV-2 infection that were missed by earlier diagnostic tests. Understanding the diagnostic accuracy of serology tests for SARS-CoV-2 infection may enable development of effective diagnostic and management pathways, inform public health management decisions and understanding of SARS-CoV-2 epidemiology. OBJECTIVES To assess the accuracy of antibody tests, firstly, to determine if a person presenting in the community, or in primary or secondary care has current SARS-CoV-2 infection according to time after onset of infection and, secondly, to determine if a person has previously been infected with SARS-CoV-2. Sources of heterogeneity investigated included: timing of test, test method, SARS-CoV-2 antigen used, test brand, and reference standard for non-SARS-CoV-2 cases. SEARCH METHODS The COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) was searched on 30 September 2020. We included additional publications from the Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) 'COVID-19: Living map of the evidence' and the Norwegian Institute of Public Health 'NIPH systematic and living map on COVID-19 evidence'. We did not apply language restrictions. SELECTION CRITERIA We included test accuracy studies of any design that evaluated commercially produced serology tests, targeting IgG, IgM, IgA alone, or in combination. Studies must have provided data for sensitivity, that could be allocated to a predefined time period after onset of symptoms, or after a positive RT-PCR test. Small studies with fewer than 25 SARS-CoV-2 infection cases were excluded. We included any reference standard to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR), clinical diagnostic criteria, and pre-pandemic samples). DATA COLLECTION AND ANALYSIS We use standard screening procedures with three reviewers. Quality assessment (using the QUADAS-2 tool) and numeric study results were extracted independently by two people. Other study characteristics were extracted by one reviewer and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and, for meta-analysis, we fitted univariate random-effects logistic regression models for sensitivity by eligible time period and for specificity by reference standard group. Heterogeneity was investigated by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and summarised results for tests that were evaluated in 200 or more samples and that met a modification of UK Medicines and Healthcare products Regulatory Agency (MHRA) target performance criteria. MAIN RESULTS We included 178 separate studies (described in 177 study reports, with 45 as pre-prints) providing 527 test evaluations. The studies included 64,688 samples including 25,724 from people with confirmed SARS-CoV-2; most compared the accuracy of two or more assays (102/178, 57%). Participants with confirmed SARS-CoV-2 infection were most commonly hospital inpatients (78/178, 44%), and pre-pandemic samples were used by 45% (81/178) to estimate specificity. Over two-thirds of studies recruited participants based on known SARS-CoV-2 infection status (123/178, 69%). All studies were conducted prior to the introduction of SARS-CoV-2 vaccines and present data for naturally acquired antibody responses. Seventy-nine percent (141/178) of studies reported sensitivity by week after symptom onset and 66% (117/178) for convalescent phase infection. Studies evaluated enzyme-linked immunosorbent assays (ELISA) (165/527; 31%), chemiluminescent assays (CLIA) (167/527; 32%) or lateral flow assays (LFA) (188/527; 36%). Risk of bias was high because of participant selection (172, 97%); application and interpretation of the index test (35, 20%); weaknesses in the reference standard (38, 21%); and issues related to participant flow and timing (148, 82%). We judged that there were high concerns about the applicability of the evidence related to participants in 170 (96%) studies, and about the applicability of the reference standard in 162 (91%) studies. Average sensitivities for current SARS-CoV-2 infection increased by week after onset for all target antibodies. Average sensitivity for the combination of either IgG or IgM was 41.1% in week one (95% CI 38.1 to 44.2; 103 evaluations; 3881 samples, 1593 cases), 74.9% in week two (95% CI 72.4 to 77.3; 96 evaluations, 3948 samples, 2904 cases) and 88.0% by week three after onset of symptoms (95% CI 86.3 to 89.5; 103 evaluations, 2929 samples, 2571 cases). Average sensitivity during the convalescent phase of infection (up to a maximum of 100 days since onset of symptoms, where reported) was 89.8% for IgG (95% CI 88.5 to 90.9; 253 evaluations, 16,846 samples, 14,183 cases), 92.9% for IgG or IgM combined (95% CI 91.0 to 94.4; 108 evaluations, 3571 samples, 3206 cases) and 94.3% for total antibodies (95% CI 92.8 to 95.5; 58 evaluations, 7063 samples, 6652 cases). Average sensitivities for IgM alone followed a similar pattern but were of a lower test accuracy in every time slot. Average specificities were consistently high and precise, particularly for pre-pandemic samples which provide the least biased estimates of specificity (ranging from 98.6% for IgM to 99.8% for total antibodies). Subgroup analyses suggested small differences in sensitivity and specificity by test technology however heterogeneity in study results, timing of sample collection, and smaller sample numbers in some groups made comparisons difficult. For IgG, CLIAs were the most sensitive (convalescent-phase infection) and specific (pre-pandemic samples) compared to both ELISAs and LFAs (P < 0.001 for differences across test methods). The antigen(s) used (whether from the Spike-protein or nucleocapsid) appeared to have some effect on average sensitivity in the first weeks after onset but there was no clear evidence of an effect during convalescent-phase infection. Investigations of test performance by brand showed considerable variation in sensitivity between tests, and in results between studies evaluating the same test. For tests that were evaluated in 200 or more samples, the lower bound of the 95% CI for sensitivity was 90% or more for only a small number of tests (IgG, n = 5; IgG or IgM, n = 1; total antibodies, n = 4). More test brands met the MHRA minimum criteria for specificity of 98% or above (IgG, n = 16; IgG or IgM, n = 5; total antibodies, n = 7). Seven assays met the specified criteria for both sensitivity and specificity. In a low-prevalence (2%) setting, where antibody testing is used to diagnose COVID-19 in people with symptoms but who have had a negative PCR test, we would anticipate that 1 (1 to 2) case would be missed and 8 (5 to 15) would be falsely positive in 1000 people undergoing IgG or IgM testing in week three after onset of SARS-CoV-2 infection. In a seroprevalence survey, where prevalence of prior infection is 50%, we would anticipate that 51 (46 to 58) cases would be missed and 6 (5 to 7) would be falsely positive in 1000 people having IgG tests during the convalescent phase (21 to 100 days post-symptom onset or post-positive PCR) of SARS-CoV-2 infection. AUTHORS' CONCLUSIONS Some antibody tests could be a useful diagnostic tool for those in whom molecular- or antigen-based tests have failed to detect the SARS-CoV-2 virus, including in those with ongoing symptoms of acute infection (from week three onwards) or those presenting with post-acute sequelae of COVID-19. However, antibody tests have an increasing likelihood of detecting an immune response to infection as time since onset of infection progresses and have demonstrated adequate performance for detection of prior infection for sero-epidemiological purposes. The applicability of results for detection of vaccination-induced antibodies is uncertain.
Collapse
Affiliation(s)
- Tilly Fox
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Julia Geppert
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Katie Scandrett
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jacob Bigio
- Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| | - Giorgia Sulis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Dineshani Hettiarachchi
- Department of Anatomy Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Yasith Mathangasinghe
- Department of Anatomy Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Praveen Weeratunga
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | | | - Brian S Buckley
- Cochrane Response, Cochrane, London, UK
- Department of Surgery, University of the Philippines, Manila, Philippines
| | | | | | - Clare Davenport
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | | | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht , Netherlands
| | - Mariska Mg Leeflang
- Epidemiology and Data Science, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health, Amsterdam, Netherlands
| | | | - René Spijker
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thomas Struyf
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jan Y Verbakel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Sian Taylor-Phillips
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Wang S, Wu Y, Wang Y, Chen Z, Ying D, Lin X, Liu C, Lin M, Zhang J, Zhu Y, Guo S, Shang H, Chen X, Qiang H, Yin Y, Tang Z, Zheng Z, Xia N. Potential of antibody pair targeting conserved antigenic sites in diagnosis of SARS-CoV-2 variants infection. J Virol Methods 2022; 309:114597. [PMID: 35932997 PMCID: PMC9347178 DOI: 10.1016/j.jviromet.2022.114597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has become disaster for human society. As the pandemic becomes more regular, we should develop more rapid and accurate detection methods to achieve early diagnosis and treatment. Antigen detection methods based on spike protein has great potential, however, it has not been effectively developed, probably due to the torturing conformational complexity. By utilizing cross-blocking data, we clustered SARS-CoV-2 receptor binding domain (RBD)-specific monoclonal antibodies (mAbs) into 6 clusters. Subsequently, the antigenic sites for representative mAbs were identified by RBDs with designed residue substitutions. The sensitivity and specificity of selected antibody pairs was demonstrated using serial diluted samples of SARS-CoV-2 S protein and SARS-CoV S protein. Furthermore, pseudovirus system was constructed to determine the detection capability against SARS-CoV-2 and SARS-CoV. 6 RBD-specific mAbs, recognizing different antigenic sites, were identified as potential candidates for optimal antibody pairs for detection of SARS-CoV-2 S protein. By considering relative spatial position, accessibility and conservation of corresponding antigenic sites, affinity and the presence of competitive antibodies in clinical samples, 6H7-6G3 was rationally identified as optimal antibody pair for detection of both SARS-CoV-2 and SARS-CoV. Furthermore, our results showed that 6H7 and 6G3 effectively bind to SARS-CoV-2 variants of concern (VOCs). Taken together, we identified 6H7-6G3 antibody pair as a promising rapid antigen diagnostic tool in containing COVID-19 pandemic caused by multiple VOCs. Moreover, our results also provide an important reference in screening of antibody pairs detecting antigens with complex conformation.
Collapse
Affiliation(s)
- Siling Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Yangling Wu
- Emergency Department, The First Affiliated Hospital of Xiamen University, 361003 Xiamen, Fujian, PR China
| | - Yizhen Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Zihao Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Dong Ying
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Xue Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Chang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Min Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Jinlei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Yuhe Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Shaoqi Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Huixian Shang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Xiuting Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Hongsheng Qiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Yifan Yin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Zimin Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China.
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China.
| |
Collapse
|
8
|
Schambeck SE, Mateyka LM, Burrell T, Graf N, Brill I, Stark T, Protzer U, Busch DH, Gerhard M, Riehl H, Poppert H. Two-Year Follow-Up on Chemosensory Dysfunction and Adaptive Immune Response after Infection with SARS-CoV-2 in a Cohort of 44 Healthcare Workers. Life (Basel) 2022; 12:1556. [PMID: 36294991 PMCID: PMC9605261 DOI: 10.3390/life12101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Persistent chemosensory dysfunction (PCD) is a common symptom of long-COVID. Chemosensory dysfunction (CD) as well as SARS-CoV-2-specific antibody levels and CD8+ T-cell immunity were investigated in a cohort of 44 healthcare workers up to a median of 721 days after a positive PCR test. CD was assessed using questionnaires and psychophysical screening tests. After 721 days, 11 of 44 (25%) participants reported PCD, with five describing an impaired quality of life. One participant reported hyperosmia (increased sense of smell). The risk of PCD at 721 days was higher for participants reporting qualitative changes (parosmia (altered smell), dysgeusia (altered taste), or phantosmia (hallucination of smell)) during initial infection than in those with isolated quantitative losses during the first COVID-19 infection (62.5% vs. 7.1%). The main recovery rate occurred within the first 100 days and did not continue until follow-up at 2 years. No correlation was found between antibody levels and CD, but we observed a trend of a higher percentage of T-cell responders in participants with CD. In conclusion, a significant proportion of patients suffer from PCD and impaired quality of life 2 years after initial infection. Qualitative changes in smell or taste during COVID-19 pose a higher risk for PCD.
Collapse
Affiliation(s)
- Sophia E. Schambeck
- Helios Klinikum Munich West, Steinerweg 5, 81241 Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany
| | - Laura M. Mateyka
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany
| | - Teresa Burrell
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany
| | - Natalia Graf
- Institute of Virology, School of Medicine, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany
| | - Ioana Brill
- Helios Klinikum Munich West, Steinerweg 5, 81241 Munich, Germany
| | - Thomas Stark
- Helios Klinikum Munich West, Steinerweg 5, 81241 Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Henriette Riehl
- Helios Klinikum Munich West, Steinerweg 5, 81241 Munich, Germany
| | - Holger Poppert
- Helios Klinikum Munich West, Steinerweg 5, 81241 Munich, Germany
- Klinik und Poliklinik für Neurologie im Neuro-Kopf-Zentrum, Klinikum rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
9
|
Cui GY, Rao BC, Zeng ZH, Wang XM, Ren T, Wang HY, Luo H, Ren HY, Liu C, Ding SY, Tan JJ, Liu ZG, Zou YW, Ren ZG, Yu ZJ. Characterization of oral and gut microbiome and plasma metabolomics in COVID-19 patients after 1-year follow-up. Mil Med Res 2022; 9:32. [PMID: 35715833 PMCID: PMC9204369 DOI: 10.1186/s40779-022-00387-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/26/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Due to the outbreak and rapid spread of coronavirus disease 2019 (COVID-19), more than 160 million patients have become convalescents worldwide to date. Significant alterations have occurred in the gut and oral microbiome and metabonomics of patients with COVID-19. However, it is unknown whether their characteristics return to normal after the 1-year recovery. METHODS We recruited 35 confirmed patients to provide specimens at discharge and one year later, as well as 160 healthy controls. A total of 497 samples were prospectively collected, including 219 tongue-coating, 129 stool and 149 plasma samples. Tongue-coating and stool samples were subjected to 16S rRNA sequencing, and plasma samples were subjected to untargeted metabolomics testing. RESULTS The oral and gut microbiome and metabolomics characteristics of the 1-year convalescents were restored to a large extent but did not completely return to normal. In the recovery process, the microbial diversity gradually increased. Butyric acid-producing microbes and Bifidobacterium gradually increased, whereas lipopolysaccharide-producing microbes gradually decreased. In addition, sphingosine-1-phosphate, which is closely related to the inflammatory factor storm of COVID-19, increased significantly during the recovery process. Moreover, the predictive models established based on the microbiome and metabolites of patients at the time of discharge reached high efficacy in predicting their neutralizing antibody levels one year later. CONCLUSIONS This study is the first to characterize the oral and gut microbiome and metabonomics in 1-year convalescents of COVID-19. The key microbiome and metabolites in the process of recovery were identified, and provided new treatment ideas for accelerating recovery. And the predictive models based on the microbiome and metabolomics afford new insights for predicting the recovery situation which benefited affected individuals and healthcare.
Collapse
Affiliation(s)
- Guang-Ying Cui
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Gene Hospital of Henan Province/Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ben-Chen Rao
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Gene Hospital of Henan Province/Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhao-Hai Zeng
- Department of Infectious Diseases, Guangshan County People's Hospital, Guangshan County, Xinyang, 465450, Henan, China
| | - Xue-Mei Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Gene Hospital of Henan Province/Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tong Ren
- Department of Breast Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hai-Yu Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Gene Hospital of Henan Province/Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Luo
- Department of Infectious Diseases, Guangshan County People's Hospital, Guangshan County, Xinyang, 465450, Henan, China
| | - Hong-Yan Ren
- Shanghai Mobio Biomedical Technology Co., Ltd, Shanghai, 201111, China
| | - Chao Liu
- Shanghai Mobio Biomedical Technology Co., Ltd, Shanghai, 201111, China
| | - Su-Ying Ding
- Health Management Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun-Jie Tan
- Department of Infectious Diseases, Guangshan County People's Hospital, Guangshan County, Xinyang, 465450, Henan, China
| | - Zhen-Guo Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Gene Hospital of Henan Province/Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ya-Wen Zou
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Gene Hospital of Henan Province/Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhi-Gang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Gene Hospital of Henan Province/Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zu-Jiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Gene Hospital of Henan Province/Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
Li Z, Wang A, Zhou J, Chen Y, Liu H, Liu Y, Zhang Y, Ding P, Zhu X, Liang C, Qi Y, Liu E, Zhang G. A Universal Fluorescent Immunochromatography Assay Based on Quantum Dot Nanoparticles for the Rapid Detection of Specific Antibodies against SARS-CoV-2 Nucleocapsid Protein. Int J Mol Sci 2022; 23:ijms23116225. [PMID: 35682904 PMCID: PMC9180975 DOI: 10.3390/ijms23116225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the pathogenic agent leading to COVID-19. Due to high speed of transmission and mutation rates, universal diagnosis and appropriate prevention are still urgently needed. The nucleocapsid protein of SARS-CoV-2 is considered more conserved than spike proteins and is abundant during the virus’ life cycle, making it suitable for diagnostic applications. Here, we designed and developed a fluorescent immunochromatography assay (FICA) for the rapid detection of SARS-CoV-2-specific antibodies using ZnCdSe/ZnS QDs-conjugated nucleocapsid (N) proteins as probes. The nucleocapsid protein was expressed in E.coli and purified via Ni-NTA affinity chromatography with considerable concentration (0.762 mg/mL) and a purity of more than 90%, which could bind to specific antibodies and the complex could be captured by Staphylococcal protein A (SPA) with fluorescence displayed. After the optimization of coupling and detecting conditions, the limit of detection was determined to be 1:1.024 × 105 with an IgG concentration of 48.84 ng/mL with good specificity shown to antibodies against other zoonotic coronaviruses and respiratory infection-related viruses (n = 5). The universal fluorescent immunochromatography assay simplified operation processes in one step, which could be used for the point of care detection of SARS-CoV-2-specific antibodies. Moreover, it was also considered as an efficient tool for the serological screening of potential susceptible animals and for monitoring the expansion of virus host ranges.
Collapse
Affiliation(s)
- Zehui Li
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Aiping Wang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Jingming Zhou
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Yumei Chen
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Hongliang Liu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Yankai Liu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Ying Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Peiyang Ding
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Xifang Zhu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Chao Liang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Yanhua Qi
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Enping Liu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Gaiping Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
- School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou 450000, China
- Correspondence: ; Tel.: +86-371-6355-0369
| |
Collapse
|
11
|
Kurano M, Ohmiya H, Kishi Y, Okada J, Nakano Y, Yokoyama R, Qian C, Xia F, He F, Zheng L, Yu Y, Jubishi D, Okamoto K, Moriya K, Kodama T, Yatomi Y. Measurement of SARS-CoV-2 Antibody Titers Improves the Prediction Accuracy of COVID-19 Maximum Severity by Machine Learning in Non-Vaccinated Patients. Front Immunol 2022; 13:811952. [PMID: 35126396 PMCID: PMC8814445 DOI: 10.3389/fimmu.2022.811952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022] Open
Abstract
Numerous studies have suggested that the titers of antibodies against SARS-CoV-2 are associated with the COVID-19 severity, however, the types of antibodies associated with the disease maximum severity and the timing at which the associations are best observed, especially within one week after symptom onset, remain controversial. We attempted to elucidate the antibody responses against SARS-CoV-2 that are associated with the maximum severity of COVID-19 in the early phase of the disease, and to investigate whether antibody testing might contribute to prediction of the disease maximum severity in COVID-19 patients. We classified the patients into four groups according to the disease maximum severity (severity group 1 (did not require oxygen supplementation), severity group 2a (required oxygen supplementation at low flow rates), severity group 2b (required oxygen supplementation at relatively high flow rates), and severity group 3 (required mechanical ventilatory support)), and serially measured the titers of IgM, IgG, and IgA against the nucleocapsid protein, spike protein, and receptor-binding domain of SARS-CoV-2 until day 12 after symptom onset. The titers of all the measured antibody responses were higher in severity group 2b and 3, especially severity group 2b, as early as at one week after symptom onset. Addition of data obtained from antibody testing improved the ability of analysis models constructed using a machine learning technique to distinguish severity group 2b and 3 from severity group 1 and 2a. These models constructed with non-vaccinated COVID-19 patients could not be applied to the cases of breakthrough infections. These results suggest that antibody testing might help physicians identify non-vaccinated COVID-19 patients who are likely to require admission to an intensive care unit.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- *Correspondence: Makoto Kurano,
| | - Hiroko Ohmiya
- Business Planning Department, Sales & Marketing Division, Medical & Biological Laboratories Co., Ltd, Tokyo, Japan
| | - Yoshiro Kishi
- Business Planning Department, Sales & Marketing Division, Medical & Biological Laboratories Co., Ltd, Tokyo, Japan
| | - Jun Okada
- Business Planning Department, Sales & Marketing Division, Medical & Biological Laboratories Co., Ltd, Tokyo, Japan
| | - Yuki Nakano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Rin Yokoyama
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Chungen Qian
- The Key Laboratory for Biomedical Photonics of Ministry of Education at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fuzhen Xia
- Reagent R&D Center, Shenzhen YHLO Biotech Co., Ltd, Shenzhen, China
| | - Fan He
- Reagent R&D Center, Shenzhen YHLO Biotech Co., Ltd, Shenzhen, China
| | - Liang Zheng
- Reagent R&D Center, Shenzhen YHLO Biotech Co., Ltd, Shenzhen, China
| | - Yi Yu
- Reagent R&D Center, Shenzhen YHLO Biotech Co., Ltd, Shenzhen, China
| | - Daisuke Jubishi
- Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Koh Okamoto
- Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Emeribe AU, Abdullahi IN, Shuwa HA, Uzairue L, Musa S, Anka AU, Adekola HA, Bello ZM, Rogo LD, Aliyu D, Haruna S, Usman Y, Muhammad HY, Gwarzo AM, Nwofe JO, Chiwar HM, Okwume CC, Animasaun OS, Fasogbon SA, Olayemi L, Ogar C, Emeribe CH, Ghamba PE, Awoniyi LO, Musa BOP. Humoral immunological kinetics of severe acute respiratory syndrome coronavirus 2 infection and diagnostic performance of serological assays for coronavirus disease 2019: an analysis of global reports. Int Health 2022; 14:18-52. [PMID: 33620427 PMCID: PMC7928871 DOI: 10.1093/inthealth/ihab005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/23/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic continues to rise and second waves are reported in some countries, serological test kits and strips are being considered to scale up an adequate laboratory response. This study provides an update on the kinetics of humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and performance characteristics of serological protocols (lateral flow assay [LFA], chemiluminescence immunoassay [CLIA] and ELISA) used for evaluations of recent and past SARS-CoV-2 infection. A thorough and comprehensive review of suitable and eligible full-text articles was performed on PubMed, Scopus, Web of Science, Wordometer and medRxiv from 10 January to 16 July 2020. These articles were searched using the Medical Subject Headings terms 'COVID-19', 'Serological assay', 'Laboratory Diagnosis', 'Performance characteristics', 'POCT', 'LFA', 'CLIA', 'ELISA' and 'SARS-CoV-2'. Data from original research articles on SARS-CoV-2 antibody detection ≥second day postinfection were included in this study. In total, there were 7938 published articles on humoral immune response and laboratory diagnosis of COVID-19. Of these, 74 were included in this study. The detection, peak and decline period of blood anti-SARS-CoV-2 IgM, IgG and total antibodies for point-of-care testing (POCT), ELISA and CLIA vary widely. The most promising of these assays for POCT detected anti-SARS-CoV-2 at day 3 postinfection and peaked on the 15th day; ELISA products detected anti-SARS-CoV-2 IgM and IgG at days 2 and 6 then peaked on the eighth day; and the most promising CLIA product detected anti-SARS-CoV-2 at day 1 and peaked on the 30th day. The most promising LFA, ELISA and CLIA that had the best performance characteristics were those targeting total SARS-CoV-2 antibodies followed by those targeting anti-SARS-CoV-2 IgG then IgM. Essentially, the CLIA-based SARS-CoV-2 tests had the best performance characteristics, followed by ELISA then POCT. Given the varied performance characteristics of all the serological assays, there is a need to continuously improve their detection thresholds, as well as to monitor and re-evaluate their performances to assure their significance and applicability for COVID-19 clinical and epidemiological purposes.
Collapse
Affiliation(s)
- Anthony Uchenna Emeribe
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria
| | - Idris Nasir Abdullahi
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Halima Ali Shuwa
- University Health Services, College of Health and Medical Sciences, Federal University, Dutse, Nigeria
| | - Leonard Uzairue
- Department of Microbiology, Federal University of Agriculture Abeokuta, Nigeria
| | - Sanusi Musa
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Abubakar Umar Anka
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | | | - Zakariyya Muhammad Bello
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Lawal Dahiru Rogo
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University, Kano Nigeria
| | - Dorcas Aliyu
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria
| | - Shamsuddeen Haruna
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Yahaya Usman
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Habiba Yahaya Muhammad
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University, Kano Nigeria
| | | | | | - Hassan Musa Chiwar
- Department of Medical Laboratory Science, University of Maiduguri Maiduguri, Nigeria
| | - Chukwudi Crescent Okwume
- Department of Medical Laboratory Services, University of Nigeria Teaching Hospital, Enugu, Nigeria
| | - Olawale Sunday Animasaun
- Nigeria Field Epidemiology and Laboratory Training Programme, African Field Epidemiology Network, Abuja, Nigeria
| | - Samuel Ayobami Fasogbon
- Public Health In-vitro Diagnostic Control Laboratory, Medical Laboratory Science Council of Nigeria, Lagos, Nigeria
| | - Lawal Olayemi
- School of Medicine, Faculty of Health Sciences, National University of Samoa, Apia, Samoa
| | - Christopher Ogar
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria
| | - Chinenye Helen Emeribe
- Department of Family Medicine, University of Calabar Teaching Hospital, PMB 1278 Calabar, Cross River, Nigeria
| | - Peter Elisha Ghamba
- WHO National Polio Reference Laboratory, University of Maiduguri Teaching Hospital, Maiduguri, Nigeria
| | - Luqman O Awoniyi
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
| | - Bolanle O P Musa
- Immunology Unit, Department of Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
13
|
Yokoyama R, Kurano M, Nakano Y, Morita Y, Ohmiya H, Kishi Y, Okada J, Qian C, Xia F, He F, Zheng L, Yu Y, Mizoguchi M, Higurashi Y, Harada S, Jubishi D, Okamoto K, Moriya K, Kodama T, Yatomi Y. Association of the Serum Levels of the Nucleocapsid Antigen of SARS-CoV-2 With the Diagnosis, Disease Severity, and Antibody Titers in Patients With COVID-19: A Retrospective Cross-Sectional Study. Front Microbiol 2021; 12:791489. [PMID: 34956158 PMCID: PMC8696188 DOI: 10.3389/fmicb.2021.791489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Several types of laboratory tests for COVID-19 have been established to date; however, the clinical significance of the serum SARS-CoV-2 nucleocapsid (N) antigen levels remains to be fully elucidated. In the present study, we attempted to elucidate the usefulness and clinical significance of the serum N antigen levels. Methods: We measured the serum N antigen levels in 391 serum samples collected from symptomatic patients with a confirmed diagnosis of COVID-19 and 96 serum samples collected from patients with non-COVID-19, using a fully automated chemiluminescence immunoassay analyzer. Results: Receiver operating characteristic analysis identified the optimal cutoff value of the serum N antigen level (cutoff index, based on Youden’s index) as 0.255, which yielded a sensitivity and specificity for the diagnosis of COVID-19 of 91.0 and 81.3%, respectively. The serum N antigen levels were significantly higher in the patient groups with moderate and severe COVID-19 than with mild disease. Moreover, a significant negative correlation was observed between the serum N antigen levels and the SARS-CoV-2 IgG antibody titers, especially in patients with severe COVID-19. Conclusion: Serum N antigen testing might be useful both for the diagnosis of COVID-19 and for obtaining a better understanding of the clinical features of the disease.
Collapse
Affiliation(s)
- Rin Yokoyama
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan.,Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Nakano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshifumi Morita
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroko Ohmiya
- Sales and Marketing Division, Business Planning Department, Medical and Biological Laboratories Co., Ltd., Tokyo, Japan
| | - Yoshiro Kishi
- Sales and Marketing Division, Business Planning Department, Medical and Biological Laboratories Co., Ltd., Tokyo, Japan
| | - Jun Okada
- Sales and Marketing Division, Business Planning Department, Medical and Biological Laboratories Co., Ltd., Tokyo, Japan
| | - Chungen Qian
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fuzhen Xia
- Reagent R and D Center, Shenzhen YHLO Biotech Co., Ltd., Guangdong, China
| | - Fan He
- Reagent R and D Center, Shenzhen YHLO Biotech Co., Ltd., Guangdong, China
| | - Liang Zheng
- Reagent R and D Center, Shenzhen YHLO Biotech Co., Ltd., Guangdong, China
| | - Yi Yu
- Reagent R and D Center, Shenzhen YHLO Biotech Co., Ltd., Guangdong, China
| | - Miyuki Mizoguchi
- Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Yoshimi Higurashi
- Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Sohei Harada
- Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Daisuke Jubishi
- Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Koh Okamoto
- Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan.,Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Response kinetics of different classes of antibodies to SARS-CoV2 infection in the Japanese population: The IgA and IgG titers increased earlier than the IgM titers. Int Immunopharmacol 2021; 103:108491. [PMID: 34954559 PMCID: PMC8687758 DOI: 10.1016/j.intimp.2021.108491] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
To better understand the immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in individuals with COVID-19, it is important to investigate the kinetics of the antibody responses and their associations with the clinical course in different populations, since there seem to be considerable differences between Western and Asian populations in the clinical features and spread of COVID-19. In this study, we serially measured the serum titers of IgM, IgG and IgA antibodies generated against the nucleocapsid protein (NCP), S1 subunit of the spike protein (S1), and receptor-binding domain in the S1 subunit (RBD) of SARS-CoV-2 in Japanese individuals with COVID-19. Among the IgM, IgG, and IgA antibodies, IgA antibodies against all of the aforementioned viral proteins were the first to appear after the infection, and IgG and/or IgA seroconversion often preceded IgM seroconversion. In regard to the timeline of the antibody responses to the different viral proteins (NCP, S1 and RBD), IgA against NCP appeared than IgA against S1 or RBD, while IgM and IgG against S1 appeared earlier than IgM/IgG against NCP or RBD. The IgG responses to all three viral proteins and responses of all three antibody classes to S1 and RBD were sustained for longer durations than the IgA/IgM responses to all three viral proteins and responses of all three antibody classes to NCP, respectively. The seroconversion of IgA against NCP occurred later and less frequently in patients with mild COVID-19. These results suggest possible differences in the antibody responses to SARS-CoV-2 antigens between the Japanese and Western populations.
Collapse
|
15
|
Schambeck SE, Crowell CS, Wagner KI, D’Ippolito E, Burrell T, Mijočević H, Protzer U, Busch DH, Gerhard M, Poppert H, Beyer H. Phantosmia, Parosmia, and Dysgeusia Are Prolonged and Late-Onset Symptoms of COVID-19. J Clin Med 2021; 10:jcm10225266. [PMID: 34830550 PMCID: PMC8618742 DOI: 10.3390/jcm10225266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022] Open
Abstract
Deficiencies in smell and taste are common symptoms of COVID-19. Quantitative losses are well surveyed. This study focuses on qualitative changes such as phantosmia (hallucination of smell), parosmia (alteration of smell), and dysgeusia (alteration of taste) and possible connections with the adaptive immune system. Subjective experience of deficiency in taste and smell was assessed by two different questionnaires after a median of 100 and 244 days after first positive RT-PCR test. SARS-CoV-2-specific antibody levels were measured with the iFlash-SARS-CoV-2 assay. After 100 days a psychophysical screening test for olfactory and gustatory dysfunction was administered. 30 of 44 (68.2%) participants reported a chemosensory dysfunction (14 quantitative, 6 qualitative, 10 quantitative, and qualitative) during COVID-19, eleven (25.0%) participants (1 quantitative, 7 qualitative, 3 quantitative, and quantity) after 100 days, and 14 (31.8%) participants (1 quantitative, 10 qualitative, 3 quantitative and qualitative) after 244 days. Four (9.1%) participants, who were symptom-free after 100 days reported now recently arisen qualitative changes. Serological and T-cell analysis showed no correlation with impairment of taste and smell. In conclusion, qualitative changes can persist for several months and occur as late-onset symptoms months after full recovery from COVID-19-induced quantitative losses in taste and smell.
Collapse
Affiliation(s)
- Sophia E. Schambeck
- Helios Klinikum München West, Steinerweg 5, 81241 München, Germany; (H.P.); (H.B.)
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstr. 30, 81675 München, Germany; (C.S.C.); (K.I.W.); (E.D.); (T.B.); (D.H.B.); (M.G.)
- Correspondence:
| | - Claudia S. Crowell
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstr. 30, 81675 München, Germany; (C.S.C.); (K.I.W.); (E.D.); (T.B.); (D.H.B.); (M.G.)
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany;
| | - Karolin I. Wagner
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstr. 30, 81675 München, Germany; (C.S.C.); (K.I.W.); (E.D.); (T.B.); (D.H.B.); (M.G.)
| | - Elvira D’Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstr. 30, 81675 München, Germany; (C.S.C.); (K.I.W.); (E.D.); (T.B.); (D.H.B.); (M.G.)
| | - Teresa Burrell
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstr. 30, 81675 München, Germany; (C.S.C.); (K.I.W.); (E.D.); (T.B.); (D.H.B.); (M.G.)
| | - Hrvoje Mijočević
- Institute of Virology, School of Medicine, Technical University of Munich, Trogerstr. 30, 81675 München, Germany;
| | - Ulrike Protzer
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany;
- Institute of Virology, School of Medicine, Technical University of Munich, Trogerstr. 30, 81675 München, Germany;
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstr. 30, 81675 München, Germany; (C.S.C.); (K.I.W.); (E.D.); (T.B.); (D.H.B.); (M.G.)
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany;
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstr. 30, 81675 München, Germany; (C.S.C.); (K.I.W.); (E.D.); (T.B.); (D.H.B.); (M.G.)
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany;
| | - Holger Poppert
- Helios Klinikum München West, Steinerweg 5, 81241 München, Germany; (H.P.); (H.B.)
- Klinik und Poliklinik für Neurologie im Neuro-Kopf-Zentrum, Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 München, Germany
| | - Henriette Beyer
- Helios Klinikum München West, Steinerweg 5, 81241 München, Germany; (H.P.); (H.B.)
| |
Collapse
|
16
|
Makoah NA, Tipih T, Litabe MM, Brink M, Sempa JB, Goedhals D, Burt FJ. A systematic review and meta-analysis of the sensitivity of antibody tests for the laboratory confirmation of COVID-19. Future Virol 2021; 17:10.2217/fvl-2021-0211. [PMID: 34950219 PMCID: PMC8686841 DOI: 10.2217/fvl-2021-0211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Aim: The aim of this study was to investigate the utility of serological tests for the diagnosis of COVID-19 during the first week of symptom onset in patients confirmed with the real-time RT-PCR. Materials & methods: A systematic review and meta-analysis of 58 publications were performed using data obtained from Academic Search Ultimate, Africa-wide, Scopus, Web of Science and MEDLINE. Results: We found that the highest pooled sensitivities were obtained with ELISA IgM-IgG and chemiluminescence immunoassay IgM tests. Conclusion: Serological tests have low sensitivity within the first week of symptom onset and cannot replace nucleic acid amplification tests. However, serological assays can be used to support nucleic acid amplification tests.
Collapse
Affiliation(s)
- Nigel A Makoah
- Division of Virology, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
| | - Thomas Tipih
- Division of Virology, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
| | - Matefo M Litabe
- Division of Virology, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
| | - Mareza Brink
- Free State Department of Health, Bloemfontein, 9301, South Africa
| | - Joseph B Sempa
- Department of Biostatistics, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
- DST-NRF Centre of Excellence in Epidemiological Modelling & Analysis (SACEMA), Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Dominique Goedhals
- Division of Virology, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
- Division of Virology, National Health Laboratory Service, Bloemfontein, 9301, South Africa
| | - Felicity J Burt
- Division of Virology, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
- Division of Virology, National Health Laboratory Service, Bloemfontein, 9301, South Africa
| |
Collapse
|
17
|
Luo S, Xu J, Cho CY, Zhu S, Whittaker KC, Wang X, Feng J, Wang M, Xie S, Fang J, Huang AS, Song X, Huang RP. Quantitative Detection of Anti-SARS-CoV-2 Antibodies Using Indirect ELISA. Lab Med 2021; 53:225-234. [PMID: 34718706 PMCID: PMC8574490 DOI: 10.1093/labmed/lmab085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective Real-time reverse transcription-polymerase chain reaction is the gold standard for the diagnosis of COVID-19, but it is necessary to utilize other tests to determine the burden of the disease and the spread of the outbreak such as IgG-, IgM-, and IgA-based antibody detection using enzyme-linked immunosorbent assay (ELISA). Materials and Methods We developed an indirect ELISA assay to quantitatively measure the amount of COVID-19 IgG, IgM, and IgA antibodies present in patient serum, dried blood, and plasma. Results The population cutoff values for positivity were determined by receiver operating characteristic curves to be 1.23 U/mL, 23.09 U/mL, and 6.36 U/mL for IgG, IgM, and IgA, respectively. After albumin subtraction, the specificity remained >98% and the sensitivity was 95.72%, 83.47%, and 82.60%, respectively, for IgG, IgM, and IgA antibodies to the combined spike subunit 1 receptor binding domain and N proteins in serum. Plasma and dried blood spot specimens were also validated on this assay. Conclusion This assay may be used for determining the seroprevalence of SARS-CoV-2 in a population exposed to the virus or in vaccinated individuals.
Collapse
Affiliation(s)
- Shuhong Luo
- RayBiotech, Guangzhou, China.,RayBiotech Life, Peachtree Corners, Georgia, US
| | - Jianhua Xu
- Department of Laboratory Science, Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | | | | | - Xingqi Wang
- RayBiotech Life, Peachtree Corners, Georgia, US
| | - Jie Feng
- RayBiotech Life, Peachtree Corners, Georgia, US
| | - Meng Wang
- RayBiotech Life, Peachtree Corners, Georgia, US
| | | | - Jianmin Fang
- RayBiotech, Guangzhou, China.,RayBiotech Life, Peachtree Corners, Georgia, US
| | | | | | - Ruo-Pan Huang
- RayBiotech, Guangzhou, China.,RayBiotech Life, Peachtree Corners, Georgia, US.,South China Biochip Research Center, Guangzhou, China
| |
Collapse
|
18
|
Nishimura T, Uwamino Y, Uno S, Kashimura S, Shiraki T, Kurafuji T, Morita M, Noguchi M, Azegami T, Yamada-Goto N, Murai-Takeda A, Yokoyama H, Kuwabara K, Kato S, Matsumoto M, Hirata A, Iida M, Harada S, Ishizaka T, Misawa K, Murata M, Saya H, Amagai M, Kitagawa Y, Takeuchi T, Mori M, Takebayashi T, Hasegawa N. SARS-CoV-2 Infection among Medical Institution Faculty and Healthcare Workers in Tokyo, Japan. Intern Med 2021; 60:2569-2575. [PMID: 34148952 PMCID: PMC8429286 DOI: 10.2169/internalmedicine.7033-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective To consider effective measures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in medical institutions, this study estimated the SARS-CoV-2 infection rate among healthcare workers (HCWs) in Tokyo, Japan, and determined the specific findings for mild coronavirus disease 2019 (COVID-19) cases. Methods This study analyzed the results of serologic tests to detect immunoglobulin G antibodies against SARS-CoV-2 and evaluated the demographic and clinical characteristics of the faculty and HCWs at a Tokyo medical institution in August 2020. The demographic and clinical characteristics of participants with antibody-positive results were compared to those of participants with antibody-negative results. Materials This study recruited 2,341 faculty and HCWs at a Tokyo medical institution, 21 of whom had a COVID-19 history. Results Of the 2,320 participants without a COVID-19 history, 20 (0.862%) had positive serologic test results. A fever and dysgeusia or dysosmia occurred with greater frequency among the participants with positive test results than in those with negative results [odds ratio (OR), 5.475; 95% confidence interval (CI), 1.960-15.293 and OR, 24.158; 95% CI, 2.693-216.720, respectively]. No significant difference was observed in the positivity rate between HCWs providing medical care for COVID-19 patients using adequate protection and other HCWs (OR, 2.514; 95% CI, 0.959-6.588). Conclusion To reduce the risk of COVID-19 spread in medical institutions, faculty and HCWs should follow standard and necessary transmission-based precautions, and those with a fever and dysgeusia or dysosmia should excuse themselves from work as soon as possible.
Collapse
Affiliation(s)
- Tomoyasu Nishimura
- Keio University Health Center, Japan
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - Yoshifumi Uwamino
- Department of Infectious Diseases, Keio University School of Medicine, Japan
- Department of Laboratory Medicine, Keio University School of Medicine, Japan
| | - Shunsuke Uno
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - Shoko Kashimura
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - Toshikimi Shiraki
- Department of Laboratory Medicine, Keio University School of Medicine, Japan
| | - Toshinobu Kurafuji
- Department of Laboratory Medicine, Keio University School of Medicine, Japan
| | - Maasa Morita
- Department of Laboratory Medicine, Keio University School of Medicine, Japan
| | - Masayo Noguchi
- Department of Laboratory Medicine, Keio University School of Medicine, Japan
| | | | | | | | | | - Kazuyo Kuwabara
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Japan
| | - Suzuka Kato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Japan
| | - Minako Matsumoto
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Japan
| | - Aya Hirata
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Japan
| | - Miho Iida
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Japan
| | - Sei Harada
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Japan
| | - Tamami Ishizaka
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - Kana Misawa
- Department of Infectious Diseases, Keio University School of Medicine, Japan
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Japan
| | - Mitsuru Murata
- Department of Laboratory Medicine, Keio University School of Medicine, Japan
| | - Hideyuki Saya
- Institute for Advanced Medical Research, Keio University School of Medicine, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Medicine, Keio University School of Medicine, Japan
| | | | - Toru Takebayashi
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Japan
| | - Naoki Hasegawa
- Department of Laboratory Medicine, Keio University School of Medicine, Japan
| |
Collapse
|
19
|
Gong F, Wei HX, Li Q, Liu L, Li B. Evaluation and Comparison of Serological Methods for COVID-19 Diagnosis. Front Mol Biosci 2021; 8:682405. [PMID: 34368226 PMCID: PMC8343015 DOI: 10.3389/fmolb.2021.682405] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
The worldwide pandemic of COVID-19 has become a global public health crisis. Various clinical diagnosis methods have been developed to distinguish COVID-19-infected patients from healthy people. The nucleic acid test is the golden standard for virus detection as it is suitable for early diagnosis. However, due to the low amount of viral nucleic acid in the respiratory tract, the sensitivity of nucleic acid detection is unsatisfactory. As a result, serological screening began to be widely used with the merits of simple procedures, lower cost, and shorter detection time. Serological tests currently include the enzyme-linked immunosorbent assay (ELISA), lateral flow immunoassay (LFIA), and chemiluminescence immunoassay (CLIA). This review describes various serological methods, discusses the performance and diagnostic effects of different methods, and points out the problems and the direction of optimization, to improve the efficiency of clinical diagnosis. These increasingly sophisticated and diverse serological diagnostic technologies will help human beings to control the spread of COVID-19.
Collapse
Affiliation(s)
- Fanwu Gong
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hua-Xing Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiangsheng Li
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liu Liu
- Department of General Surgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Bofeng Li
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Diao M, Lang L, Feng J, Li R. Molecular detections of coronavirus: current and emerging methodologies. Expert Rev Anti Infect Ther 2021; 20:199-210. [PMID: 34225540 DOI: 10.1080/14787210.2021.1949986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Seven coronavirus species have been identified that can infect humans. While human coronavirus infections had been historically associated with only mild respiratory symptoms similar to the common cold, three coronaviruses identified since 2003, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, cause life-threatening severe respiratory syndromes. The coronavirus disease 2019 (COVID-19) caused by the highly transmissible SARS-CoV-2 has triggered a worldwide health emergency. Due to the lack of effective drugs and vaccination, rapid and reliable detection is of vital importance to control coronavirus epidemics/pandemics.Area covered: A literature search was performed in Pubmed covering the detections and diagnostics of SARS, MERS and SARS-CoV-2. This review summarized the current knowledge of established and emerging methods for coronavirus detection. The characteristics of different diagnostic approaches were described, and the strengths and weaknesses of each method were analyzed and compared. In addition, future trends in the field of coronavirus detection were also discussed.Expert opinion: Nucleic acid-based RT-PCR is the current golden-standard of coronavirus detection, while immunoassays provide history of coronavirus infection besides diagnostic information. Integrated high-throughput system holds the great potential and is the trend of future detection and diagnosis of virus infection.
Collapse
Affiliation(s)
- Mingkun Diao
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Lang Lang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Rongsong Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
21
|
Zeng F, Wu M, Wang J, Li J, Hu G, Wang L. Over 1-year duration and age difference of SARS-CoV-2 antibodies in convalescent COVID-19 patients. J Med Virol 2021; 93:6506-6511. [PMID: 34170519 PMCID: PMC8426830 DOI: 10.1002/jmv.27152] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
Anti‐severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) immunoglouilin G (IgG) and immunoglouilin M (IgM) antibodies have been widely used to assist clinical diagnosis. Our previous study reported a discrepancy in SARS‐CoV‐2 antibody response between male and female coronavirus disease 2019 (COVID‐19) patients. However, the duration and discrepancy between ages as well as sexes of SARS‐CoV‐2 antibody in convalescent COVID‐19 patients have not been clarified. In this study, a total of 538 health‐examination individuals who were confirmed with SARS‐CoV‐2 infection a year ago were enrolled. Blood samples were collected and detected for IgM and IgG antibodies. Among these convalescent patients, 12.80% were detected positive for IgM antibodies. The positive rates for IgM antibody were close between sexes: for males, this is 9.17% and for females 13.75%. However, the IgG antibody was detected positive in as much as 82.90% convalescent patients and the positive rates were nearly the same between males (82.57%) and females (82.98%). Besides this, the level of IgM and IgG antibodies showed no difference between male and female convalescent patients. The level of IgG antibodies showed a significant difference between ages. The elder patients (over 35 years old) maintained a higher level of IgG antibody than the younger patients (under or equal 35 years old) after recovering for 1 year. In addition, IgG antibody was more vulnerable to disappear in younger patients than in elder patients. Overall, our study identified over 1‐year duration of SARS‐CoV‐2 antibody and age difference of IgG antibody response in convalescent COVID‐19 patients. These findings may provide new insights into long‐term humoral immune response, vaccines efficacy and age‐based personalized vaccination strategies. Anti‐SARS‐CoV‐2 IgG antibody could maintain over 1‐year in most convalescent COVID‐19 patients. Anti‐SARS‐CoV‐2 IgG antibody responses may be different between young and elder convalescent COVID‐19 patients.
Collapse
Affiliation(s)
- Fanfan Zeng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengjun Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinbiao Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianyu Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoyun Hu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
22
|
Epidemiological study using IgM and IgG antibody titers against SARS-CoV-2 in The University of Tokyo, Japan (UT-CATS). J Infect Chemother 2021; 27:1342-1349. [PMID: 34158239 PMCID: PMC8196331 DOI: 10.1016/j.jiac.2021.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022]
Abstract
Introduction The worldwide pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to date. Given that some of the patients with coronavirus disease 2019 (COVID-19) are asymptomatic, antibody tests are useful to determine whether there is a previous infection with SARS-CoV-2. In this study, we measured IgM and IgG antibody titers against SARS-CoV-2 in the serum of asymptomatic healthy subjects in The University of Tokyo, Japan. Methods From June 2020, we recruited participants, who were students, staff, and faculty members of The University of Tokyo in the project named The University of Tokyo COVID-19 Antibody Titer Survey (UT-CATS). Following blood sample collection, participants were required to answer an online questionnaire about their social and health information. We measured IgG and IgM titers against SARS-CoV-2 using iFlash-SARS-CoV-2 IgM and IgG detection kit which applies a chemiluminescent immunoassay (CLIA) for the qualitative detection. Results There were 6609 volunteers in this study. After setting the cutoff value at 10 AU/mL, 32 (0.48%) were positive for IgG and 16 (0.24%) for IgM. Of six participants with a history of COVID-19, five were positive for IgG, whereas all were negative for IgM. The median titer of IgG was 0.40 AU/mL and 0.39 AU/mL for IgM. Both IgG and IgM titers were affected by gender, age, smoking status, and comorbidities. Conclusions Positive rates of IgG and IgM titers were relatively low in our university. Serum levels of these antibodies were affected by several factors, which might affect the clinical course of COVID-19.
Collapse
|
23
|
Vengesai A, Midzi H, Kasambala M, Mutandadzi H, Mduluza-Jokonya TL, Rusakaniko S, Mutapi F, Naicker T, Mduluza T. A systematic and meta-analysis review on the diagnostic accuracy of antibodies in the serological diagnosis of COVID-19. Syst Rev 2021; 10:155. [PMID: 34039423 PMCID: PMC8152206 DOI: 10.1186/s13643-021-01689-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Serological testing based on different antibody types are an alternative method being used to diagnose SARS-CoV-2 and has the potential of having higher diagnostic accuracy compared to the current gold standard rRT-PCR. Therefore, the objective of this review was to evaluate the diagnostic accuracy of IgG and IgM based point-of-care (POC) lateral flow immunoassay (LFIA), chemiluminescence enzyme immunoassay (CLIA), fluorescence enzyme-linked immunoassay (FIA) and ELISA systems that detect SARS-CoV-2 antigens. METHOD A systematic literature search was carried out in PubMed, Medline complete and MedRxiv. Studies evaluating the diagnostic accuracy of serological assays for SARS-CoV-2 were eligible. Study selection and data-extraction were performed by two authors independently. QUADAS-2 checklist tool was used to assess the quality of the studies. The bivariate model and the hierarchical summary receiver operating characteristic curve model were performed to evaluate the diagnostic accuracy of the serological tests. Subgroup meta-analysis was performed to explore the heterogeneity. RESULTS The pooled sensitivity for IgG (n = 17), IgM (n = 16) and IgG-IgM (n = 24) based LFIA tests were 0.5856, 0.4637 and 0.6886, respectively compared to rRT-PCR method. The pooled sensitivity for IgG (n = 9) and IgM (n = 10) based CLIA tests were 0.9311 and 0.8516, respectively compared to rRT-PCR. The pooled sensitivity the IgG (n = 10), IgM (n = 11) and IgG-IgM (n = 5) based ELISA tests were 0.8292, 0.8388 and 0.8531 respectively compared to rRT-PCR. All tests displayed high specificities ranging from 0.9693 to 0.9991. Amongst the evaluated tests, IgG based CLIA expressed the highest sensitivity signifying its accurate detection of the largest proportion of infections identified by rRT-PCR. ELISA and CLIA tests performed better in terms of sensitivity compared to LFIA. IgG based tests performed better compared to IgM except for the ELISA. CONCLUSIONS We report that IgG-IgM based ELISA tests have the best overall diagnostic test accuracy. Moreover, irrespective of the method, a combined IgG/IgM test seems to be a better choice in terms of sensitivity than measuring either antibody type independently. Given the poor performances of the current LFIA devices, there is a need for more research on the development of highly sensitivity and specific POC LFIA that are adequate for most individual patient applications and attractive for large sero-prevalence studies. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020179112.
Collapse
Affiliation(s)
- Arthur Vengesai
- Department of Biochemistry, University of Zimbabwe, P.O. Box MP 167, Mt Pleasant, Harare, Zimbabwe
- Optics and Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal South Africa
| | - Herald Midzi
- Department of Biochemistry, University of Zimbabwe, P.O. Box MP 167, Mt Pleasant, Harare, Zimbabwe
| | - Maritha Kasambala
- Department of Biochemistry, University of Zimbabwe, P.O. Box MP 167, Mt Pleasant, Harare, Zimbabwe
| | - Hamlet Mutandadzi
- College of Health Sciences, University of Zimbabwe, Box A178 Mazowe Street Avondale, Harare, Zimbabwe
| | - Tariro L. Mduluza-Jokonya
- Department of Biochemistry, University of Zimbabwe, P.O. Box MP 167, Mt Pleasant, Harare, Zimbabwe
- Optics and Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal South Africa
| | - Simbarashe Rusakaniko
- College of Health Sciences, University of Zimbabwe, Box A178 Mazowe Street Avondale, Harare, Zimbabwe
| | - Francisca Mutapi
- Institute for Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, King’s Buildings, Charlotte Auerbach Rd, Edinburgh, EH9 3JT UK
| | - Thajasvarie Naicker
- Optics and Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal South Africa
| | - Takafira Mduluza
- Department of Biochemistry, University of Zimbabwe, P.O. Box MP 167, Mt Pleasant, Harare, Zimbabwe
- Optics and Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal South Africa
| |
Collapse
|
24
|
Barreiro P, Candel FJ, Sanz JC, San Román J, del Mar Carretero M, Pérez-Abeledo M, Ramos B, Viñuela-Prieto JM, Canora J, Martínez-Peromingo FJ, Zapatero A. Virological Correlates of IgM-IgG Patterns of Response to SARS-CoV-2 Infection According to Targeted Antigens. Viruses 2021; 13:874. [PMID: 34068703 PMCID: PMC8151912 DOI: 10.3390/v13050874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022] Open
Abstract
The virological meaning of the different patterns of serology in COVID-19 has been little examined in clinical settings. Asymptomatic subjects with IgM-spike (S) and IgG-nucleocapsid (N) determinations by chemiluminescence were studied for SARS-CoV-2 shedding in respiratory secretions by transcription-mediated amplification (TMA). In subjects showing IgM-S positive and IgG-N negative, IgG-S was determined by lateral flow assay. A total of 712 individuals were tested: 30.0% presented IgM-S(+)/IgG-N(-), 25.8% had IgM-S(+)/IgG-N(+) and 44.2% had IgM-S(-)/IgG-N(+); the proportion with TMA(+) were comparable in these three groups: 12.1, 8.7 and 10.5%, respectively. In individuals with IgM-S(+)/IgG-N(-), IgG-S(+) was detected in 66.5%. The frequency of IgM-S(+)/IgG-S(-) in the total population was 10.0%, of whom 24.1% had TMA(+); the chances for TMA(+) in subjects with an IgM-S(+) alone pattern were 2.4%. Targeting of the same SARS-CoV-2 antigen seems to be better for the characterization of IgM/IgG patterns of response. IgM-S(+) alone reactivity is rare, and a small proportion is associated with viral shedding.
Collapse
Affiliation(s)
- Pablo Barreiro
- Public Health Regional Laboratory, Hospital Isabel Zendal, Av. Manuel Fraga Iribarne, 2, 28055 Madrid, Spain; (F.J.C.); (J.C.S.); (J.S.R.); (M.d.M.C.); (M.P.-A.); (B.R.); (J.M.V.-P.)
- Council of Public Health, Community of Madrid, Calle O’Donnell, 50, 28009 Madrid, Spain; (J.C.); (F.J.M.-P.); (A.Z.)
| | - Francisco Javier Candel
- Public Health Regional Laboratory, Hospital Isabel Zendal, Av. Manuel Fraga Iribarne, 2, 28055 Madrid, Spain; (F.J.C.); (J.C.S.); (J.S.R.); (M.d.M.C.); (M.P.-A.); (B.R.); (J.M.V.-P.)
- Council of Public Health, Community of Madrid, Calle O’Donnell, 50, 28009 Madrid, Spain; (J.C.); (F.J.M.-P.); (A.Z.)
| | - Juan Carlos Sanz
- Public Health Regional Laboratory, Hospital Isabel Zendal, Av. Manuel Fraga Iribarne, 2, 28055 Madrid, Spain; (F.J.C.); (J.C.S.); (J.S.R.); (M.d.M.C.); (M.P.-A.); (B.R.); (J.M.V.-P.)
| | - Jesús San Román
- Public Health Regional Laboratory, Hospital Isabel Zendal, Av. Manuel Fraga Iribarne, 2, 28055 Madrid, Spain; (F.J.C.); (J.C.S.); (J.S.R.); (M.d.M.C.); (M.P.-A.); (B.R.); (J.M.V.-P.)
- Council of Public Health, Community of Madrid, Calle O’Donnell, 50, 28009 Madrid, Spain; (J.C.); (F.J.M.-P.); (A.Z.)
| | - María del Mar Carretero
- Public Health Regional Laboratory, Hospital Isabel Zendal, Av. Manuel Fraga Iribarne, 2, 28055 Madrid, Spain; (F.J.C.); (J.C.S.); (J.S.R.); (M.d.M.C.); (M.P.-A.); (B.R.); (J.M.V.-P.)
- Council of Public Health, Community of Madrid, Calle O’Donnell, 50, 28009 Madrid, Spain; (J.C.); (F.J.M.-P.); (A.Z.)
| | - Marta Pérez-Abeledo
- Public Health Regional Laboratory, Hospital Isabel Zendal, Av. Manuel Fraga Iribarne, 2, 28055 Madrid, Spain; (F.J.C.); (J.C.S.); (J.S.R.); (M.d.M.C.); (M.P.-A.); (B.R.); (J.M.V.-P.)
| | - Belén Ramos
- Public Health Regional Laboratory, Hospital Isabel Zendal, Av. Manuel Fraga Iribarne, 2, 28055 Madrid, Spain; (F.J.C.); (J.C.S.); (J.S.R.); (M.d.M.C.); (M.P.-A.); (B.R.); (J.M.V.-P.)
| | - José Manuel Viñuela-Prieto
- Public Health Regional Laboratory, Hospital Isabel Zendal, Av. Manuel Fraga Iribarne, 2, 28055 Madrid, Spain; (F.J.C.); (J.C.S.); (J.S.R.); (M.d.M.C.); (M.P.-A.); (B.R.); (J.M.V.-P.)
| | - Jesús Canora
- Council of Public Health, Community of Madrid, Calle O’Donnell, 50, 28009 Madrid, Spain; (J.C.); (F.J.M.-P.); (A.Z.)
| | | | - Antonio Zapatero
- Council of Public Health, Community of Madrid, Calle O’Donnell, 50, 28009 Madrid, Spain; (J.C.); (F.J.M.-P.); (A.Z.)
| |
Collapse
|
25
|
Cs L, Sp H, Yl L, Sk P, Tc A. Performance of an automated chemiluminescent immunoassay for SARS-COV-2 IgM and head-to-head comparison of Abbott and Roche COVID-19 antibody assays. Pract Lab Med 2021; 25:e00230. [PMID: 33937471 PMCID: PMC8079267 DOI: 10.1016/j.plabm.2021.e00230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/21/2021] [Indexed: 12/29/2022] Open
Abstract
Introduction We evaluated the performance of the new Abbott SARS-CoV-2 IgM assay on the Architect immunoassay analyser and compared it to the Architect IgG/Roche Cobas total antibody assays in both SARS-CoV-2 RT-PCR positive cases and healthy controls. Method 200 healthy control samples and 48 individuals with other antibody-positive disorders (18 hepatitis/18 dengue/11 ANA/1 dsDNA) served to assess for potential cross-reactivity. Anonymised residual leftover sera positive for SARS-CoV-2 on RT-PCR were recruited as cases (N = 133). The sensitivity/specificity/cross-reactivity of the Architect IgM assay were assessed. Concordance between the 3 assays were also analysed. Results There was no cross-reactivity with controls and other antibody positive samples. The Architect IgM assay was 100% specific (95% CI 98.5 to 100) and sensitivity was 77.8% (95% CI 60.8 to 89.9) ≥14 days post-first positive RT-PCR (POS). Sensitivity of the combined Architect IgM and IgG results (30.8%) was significantly better than the Cobas total antibodies (15.4%) in early disease (p = 0.04). While the Architect IgM assay had moderate agreement with the Cobas total antibody result (Cohen’s kappa 0.72), a combined Architect IgM and IgG result had better agreement (Cohen’s kappa 0.83). Conclusion The Architect IgM assay has good specificity and no cross-reactivity with other antibody positive cases. A combined Architect IgM and IgG result has better sensitivity than the individual assays for early COVID-19. The Architect IgM assay is not comparable to the Cobas total antibody assay, but the Architect IgM and IgG combined result has good agreement with the Cobas assay. IgM/IgG may not develop in some cases of COVID-19, even ≥14 days post infection. The sensitivity/PPV of the combined Architect IgG/IgM assays improves ≥14 days POS. The Architect IgM/IgG combined result has good agreement with the Cobas assay. The Architect IgM and IgG combined results slightly outperforms the Cobas assay.
Collapse
Affiliation(s)
- Lau Cs
- Department of Laboratory Medicine, Changi General Hospital, Singapore
| | - Hoo Sp
- Department of Laboratory Medicine, Changi General Hospital, Singapore
| | - Liang Yl
- Department of Laboratory Medicine, Changi General Hospital, Singapore
| | - Phua Sk
- Department of Laboratory Medicine, Changi General Hospital, Singapore
| | - Aw Tc
- Department of Laboratory Medicine, Changi General Hospital, Singapore.,Department of Medicine, National University of Singapore, Singapore.,Academic Pathology Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
26
|
Liu PP, Zong Y, Jiang SP, Jiao YJ, Yu XJ. Development of a Nucleocapsid Protein-Based ELISA for Detection of Human IgM and IgG Antibodies to SARS-CoV-2. ACS OMEGA 2021; 6:9667-9671. [PMID: 33869946 PMCID: PMC8028019 DOI: 10.1021/acsomega.1c00253] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
SARS-CoV-2 is the etiologic agent of COVID-19, which has led to a dramatic loss of human life and presents an unprecedented challenge to public health worldwide. The gold standard assay for SARS-CoV-2 identification is real-time polymerase chain reaction; however, this assay depends on highly trained personnel and sophisticated equipment and may suffer from false results. Thus, a serological antibody test is a supplement to the diagnosis or screening of SARS-CoV-2. Here, we develop and evaluate the diagnostic performance of an IgM/IgG indirect ELISA method for antibodies against SARS-CoV-2 in COVID-19. The ELISA was constructed by coating with a recombinant nucleocapsid protein of SARS-CoV-2 on an enzyme immunoassay plate, and its sensitivity and specificity for clinical diagnosis of SARS-CoV-2 infection was assessed by detecting the SARS-CoV-2-specific IgM and IgG antibodies in COVID-19 patient's sera or healthy person's sera. The SARS-CoV-2 positive serum samples (n = 168) were collected from confirmed COVID-19 patients. A commercial nucleocapsid protein-based chemiluminescent immunoassay (CLIA) kit and a colloidal gold immunochromatography kit were compared with those of the ELISA assay. The specificity, sensitivity, positive predictive value (PPV), and negative predictive value (NPV) of IgM were 100, 95.24, 100, and 91.84%, whereas those of IgG were 100, 97.02, 100, and 94.74%, respectively. We developed a highly sensitive and specific SARS-CoV-2 nucleocapsid protein-based ELISA method for the diagnosis and epidemiologic investigation of COVID-19 by SARS-CoV-2 IgM and IgG antibody detection.
Collapse
Affiliation(s)
- Pan-pan Liu
- State
Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, Hubei Province, P. R. China
| | - Yang Zong
- High
School Affiliated to Nanjing Normal University, Nanjing 210003, Jiangsu Province, P. R. China
| | - Shu-peng Jiang
- Department
of Laboratory Medicine, Renmin Hospital
of Wuhan University, Wuhan 430060, Hubei Province, P. R. China
| | - Yong-jun Jiao
- Jiangsu
Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu Province, P. R. China
| | - Xue-jie Yu
- State
Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, Hubei Province, P. R. China
| |
Collapse
|
27
|
Validation of a new automated chemiluminescent anti-SARS-CoV-2 IgM and IgG antibody assay system detecting both N and S proteins in Japan. PLoS One 2021; 16:e0247711. [PMID: 33661990 PMCID: PMC7932516 DOI: 10.1371/journal.pone.0247711] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/11/2021] [Indexed: 01/08/2023] Open
Abstract
PCR methods are presently the standard for the diagnosis of Coronavirus disease 2019 (COVID-19), but additional methodologies are needed to complement PCR methods, which have some limitations. Here, we validated and investigated the usefulness of measuring serum antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using the iFlash3000 CLIA analyzer. We measured IgM and IgG titers against SARS-CoV-2 in sera collected from 26 PCR-positive COVID-19 patients, 53 COVID-19-suspected but PCR-negative patients, and 20 and 100 randomly selected non-COVID-19 patients who visited our hospital in 2020 and 2017, respectively. The repeatability and within-laboratory precision were obviously good in validations, following to the CLSI document EP15-A3. Linearity was also considered good between 0.6 AU/mL and 112.7 AU/mL for SARS-CoV-2 IgM and between 3.2 AU/mL and 55.3 AU/mL for SARS-CoV-2 IgG, while the linearity curves plateaued above the upper measurement range. We also confirmed that the seroconversion and no-antibody titers were over the cutoff values in all 100 serum samples collected in 2017. These results indicate that this measurement system successfully detects SARS-CoV-2 IgM/IgG. We observed four false-positive cases in the IgM assay and no false-positive cases in the IgG assay when 111 serum samples known to contain autoantibodies were evaluated. The concordance rates of the antibody test with the PCR test were 98.1% for SARS-CoV-2 IgM and 100% for IgG among PCR-negative cases and 30.8% for SARS-CoV-2 IgM and 73.1% for SARS-CoV-2 IgG among PCR-positive cases. In conclusion, the performance of this new automated method for detecting antibody against both N and S proteins of SARS-CoV-2 is sufficient for use in laboratory testing.
Collapse
|
28
|
Nakano Y, Kurano M, Morita Y, Shimura T, Yokoyama R, Qian C, Xia F, He F, Kishi Y, Okada J, Yoshikawa N, Nagura Y, Okazaki H, Moriya K, Seto Y, Kodama T, Yatomi Y. Time course of the sensitivity and specificity of anti-SARS-CoV-2 IgM and IgG antibodies for symptomatic COVID-19 in Japan. Sci Rep 2021; 11:2776. [PMID: 33531605 PMCID: PMC7854735 DOI: 10.1038/s41598-021-82428-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/20/2021] [Indexed: 01/04/2023] Open
Abstract
The accurate and prompt diagnosis of SARS-CoV-2 infection is required for the control and treatment of the coronavirus infection disease 2019 (COVID-19). In this study, we aimed to investigate the time courses of the anti-severe acute corona respiratory syndrome coronavirus 2 (SARS-CoV-2) IgM and IgG titers and to evaluate the sensitivity and specificity of such tests according to the specific day after the onset of COVID-19 among a patient population in Japan. We measured the titers of SARS-CoV-2 IgM and IgG in sera from 105 subjects, including 26 symptomatic COVID-19 patients, using chemiluminescent immunoassay (CLIA) methods utilizing magnetic beads coated with SARS-CoV-2 nucleocapsid protein and spike protein. The results of a ROC analysis suggested the possibility that the cutoff values in Japan might be lower than the manufacturer’s reported cutoff (10 AU/mL): 1 AU/mL for IgM and 5 AU/mL for IgG. The sensitivity of the test before Day 8 after symptom onset was less than 50%; at Days 9–10, however, we obtained a much higher sensitivity of 81.8% for both IgM and IgG. At 15 days or later after symptom onset, the SARS-CoV-2 IgG test had a sensitivity of 100%. These results suggest that if the number of days since disease onset is taken into consideration, these antibody tests could be very useful for the diagnosis of COVID-19 and similar diseases.
Collapse
Affiliation(s)
- Yuki Nakano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan. .,Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yoshifumi Morita
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Takuya Shimura
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Rin Yokoyama
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Chungen Qian
- The Key Laboratory for Biomedical Photonics of MOE At Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Fuzhen Xia
- Reagent R&D Center, Shenzhen YHLO Biotech Co., Ltd, Shenzhen, Guangdong, People's Republic of China
| | - Fan He
- Reagent R&D Center, Shenzhen YHLO Biotech Co., Ltd, Shenzhen, Guangdong, People's Republic of China
| | - Yoshiro Kishi
- Business Planning Department, Sales and Marketing Division, Medical and Biological Laboratories Co, Ltd, Tokyo, Japan
| | - Jun Okada
- Business Planning Department, Sales and Marketing Division, Medical and Biological Laboratories Co, Ltd, Tokyo, Japan
| | - Naoyuki Yoshikawa
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Nagura
- Department of Blood Transfusion, The University of Tokyo Hospital, Tokyo, Japan
| | - Hitoshi Okazaki
- Department of Blood Transfusion, The University of Tokyo Hospital, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan. .,Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
29
|
Torrente-Rodríguez RM, Lukas H, Tu J, Min J, Yang Y, Xu C, Rossiter HB, Gao W. SARS-CoV-2 RapidPlex: A Graphene-Based Multiplexed Telemedicine Platform for Rapid and Low-Cost COVID-19 Diagnosis and Monitoring. MATTER 2020; 3:1981-1998. [PMID: 33043291 PMCID: PMC7535803 DOI: 10.1016/j.matt.2020.09.027] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 05/15/2023]
Abstract
The COVID-19 pandemic is an ongoing global challenge for public health systems. Ultrasensitive and early identification of infection is critical in preventing widespread COVID-19 infection by presymptomatic and asymptomatic individuals, especially in the community and in-home settings. We demonstrate a multiplexed, portable, wireless electrochemical platform for ultra-rapid detection of COVID-19: the SARS-CoV-2 RapidPlex. It detects viral antigen nucleocapsid protein, IgM and IgG antibodies, as well as the inflammatory biomarker C-reactive protein, based on our mass-producible laser-engraved graphene electrodes. We demonstrate ultrasensitive, highly selective, and rapid electrochemical detection in the physiologically relevant ranges. We successfully evaluated the applicability of our SARS-CoV-2 RapidPlex platform with COVID-19-positive and COVID-19-negative blood and saliva samples. Based on this pilot study, our multiplexed immunosensor platform may allow for high-frequency at-home testing for COVID-19 telemedicine diagnosis and monitoring.
Collapse
Affiliation(s)
- Rebeca M Torrente-Rodríguez
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
30
|
Ejazi SA, Ghosh S, Ali N. Antibody detection assays for COVID-19 diagnosis: an early overview. Immunol Cell Biol 2020; 99:21-33. [PMID: 32864735 DOI: 10.1111/imcb.12397] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022]
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) has not only commenced a global health emergency but also agitated various aspects of humanity. During this period of crisis, researchers over the world have ramped their efforts to constrain the disease in all possible ways, whether it is vaccination, therapy or diagnosis. Because the spread of the disease has not yet elapsed, sharing the ongoing research findings could be the key to disease control and management. An early and efficient diagnosis could leverage the outcome until a successful vaccine is developed. Both in-house and commercial kits are the preferred molecular tests being used worldwide in the COVID-19 diagnosis. However, the limitation of high prices and lengthy procedures impede their use for mass testing. Keeping the constant rise of infection in mind, the search for an alternative test that is cost-effective, simple and suitable for large-scale testing and surveillance is the need of the hour. One such alternative could be immunological tests. In the last few months, a deluge of immunological rapid tests have been developed and validated across the globe. The objective of this review is to share the diagnostic performance of various immunological assays reported so far in severe acute respiratory syndrome coronavirus 2 case detection. We consolidate the studies (published and preprints) related to serological tests such as chemiluminescence, enzyme-linked and lateral flow-based point-of-care tests in COVID-19 diagnosis and update the current scenario. This review aims to be an add-on in COVID-19 research and will contribute to congregation of the evidence for decision making.
Collapse
Affiliation(s)
- Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sneha Ghosh
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India.,Department of Biochemistry, Ballygunge Science College, University of Calcutta, Kolkata, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
31
|
Zhang X, Chen L, Wei J, Zhou J, Cao Y, Wang G. Asymptomatic Subclinical Cases of Coronavirus Disease 2019 without Viral Transmission in Three Independent Families. Infect Drug Resist 2020; 13:3267-3271. [PMID: 33061473 PMCID: PMC7522516 DOI: 10.2147/idr.s261304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/30/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE There is increasing evidence indicating that considerable fractions of cases of SARS-CoV-2 infection are asymptomatic. We traced three asymptomatic clusters to investigate the infectivity of subclinical cases of coronavirus disease 2019 (COVID-19). PATIENTS AND METHODS Three medical staff who were asymptomatic were diagnosed with coronavirus disease 2019 by serological tests. Their close contacts were systematically evaluated based on COVID-19-related symptoms, nucleic acid tests, serological tests, and chest computed tomography (CT) as needed to determine if they were infected by SARS-CoV-2. RESULTS None of the staff's close contacts, including 10 family members, were infected by the indexes, even though no protective measures were taken. CONCLUSION The infectivity of asymptomatic subclinical infection patients of coronavirus disease 2019 seems to be low.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Gaoxiang Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| |
Collapse
|
32
|
Roy V, Fischinger S, Atyeo C, Slein M, Loos C, Balazs A, Luedemann C, Astudillo MG, Yang D, Wesemann DR, Charles R, Lafrate AJ, Feldman J, Hauser B, Caradonna T, Miller TE, Murali MR, Baden L, Nilles E, Ryan E, Lauffenburger D, Beltran WG, Alter G. SARS-CoV-2-specific ELISA development. J Immunol Methods 2020; 484-485:112832. [PMID: 32780998 PMCID: PMC7414735 DOI: 10.1016/j.jim.2020.112832] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
Critical to managing the spread of COVID-19 is the ability to diagnose infection and define the acquired immune response across the population. While genomic tests for the novel Several Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) detect the presence of viral RNA for a limited time frame, when the virus is shed in the upper respiratory tract, tests able to define exposure and infection beyond this short window of detectable viral replication are urgently needed. Following infection, antibodies are generated within days, providing a durable read-out and archive of exposure and infection. Several antibody tests have emerged to diagnose SARS-CoV-2. Here we report on a qualified quantitative ELISA assay that displays all the necessary characteristics for high-throughput sample analysis. Collectively, this test offers a quantitative opportunity to define both exposure and levels of immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Stephanie Fischinger
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Matthew Slein
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Carolin Loos
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America; Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Alejandro Balazs
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Corinne Luedemann
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Michael Gerino Astudillo
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Diane Yang
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Duane R Wesemann
- Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Richelle Charles
- Division of Infectious Disease, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - A John Lafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Blake Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Tim Caradonna
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Tyler E Miller
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Mandakolathur R Murali
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Lindsey Baden
- Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Eric Nilles
- Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Edward Ryan
- Division of Infectious Disease, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Douglas Lauffenburger
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Wilfredo Garcia Beltran
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America.
| |
Collapse
|
33
|
La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SM. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed Online 2020; 41:483-499. [PMID: 32651106 PMCID: PMC7293848 DOI: 10.1016/j.rbmo.2020.06.001] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/23/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated coronavirus disease 2019 (COVID-19) pandemic has demanded rapid upscaling of in-vitro diagnostic assays to enable mass screening and testing of high-risk groups, and simultaneous ascertainment of robust data on past SARS-CoV-2 exposure at an individual and a population level. To meet the exponential demand in testing, there has been an accelerated development of both molecular and serological assays across a plethora of platforms. The present review discusses the current literature on these modalities, including nucleic acid amplification tests, direct viral antigen tests and the rapidly expanding laboratory-based and point of care serological tests. This suite of complementary tests will inform crucial decisions by healthcare providers and policy makers, and understanding their strengths and limitations will be critical to their judicious application for the development of algorithmic approaches to treatment and public health strategies.
Collapse
Affiliation(s)
- Antonio La Marca
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy.
| | - Martina Capuzzo
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Tiziana Paglia
- Department of Anesthesiology, Hesperia Hospital, Modena, Italy
| | - Laura Roli
- Department of Laboratory Medicine and Pathology, Azieda USL, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Azieda USL, Modena, Italy
| | - Scott M Nelson
- School of Medicine, University of Glasgow, Glasgow, UK; NIHR Bristol Biomedical Research Centre Bristol, UK; The Fertility Partnership, Oxford, UK
| |
Collapse
|
34
|
Xu M, Wang D, Wang H, Zhang X, Liang T, Dai J, Li M, Zhang J, Zhang K, Xu D, Yu X. COVID-19 diagnostic testing: Technology perspective. Clin Transl Med 2020; 10:e158. [PMID: 32898340 PMCID: PMC7443140 DOI: 10.1002/ctm2.158] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
The corona virus disease 2019 (COVID-19) is a highly contagious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More than 18 million people were infected with a total of 0.7 million deaths in ∼188 countries. Controlling the spread of SARS-CoV-2 is therefore inherently dependent on identifying and isolating infected individuals, especially since COVID-19 can result in little to no symptoms. Here, we provide a comprehensive review of the different primary technologies used to test for COVID-19 infection, discuss the advantages and disadvantages of each technology, and highlight the studies that have employed them. We also describe technologies that have the potential to accelerate SARS-CoV-2 detection in the future, including digital PCR, CRISPR, and microarray. Finally, remaining challenges in COVID-19 diagnostic testing are discussed, including (a) the lack of universal standards for diagnostic testing; (b) the identification of appropriate sample collection site(s); (c) the difficulty in performing large population screening; and (d) the limited understanding of SARS-COV-2 viral invasion, replication, and transmission.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina
| | - Dan Wang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Hongye Wang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Xiaomei Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Te Liang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Jiayu Dai
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Meng Li
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Jiahui Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Kai Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina
| | - Xiaobo Yu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| |
Collapse
|
35
|
Li XF, Shen WZ, Jin X, Ren P, Zhang J. Let-7c regulated epithelial-mesenchymal transition leads to osimertinib resistance in NSCLC cells with EGFR T790M mutations. Sci Rep 2020; 10:11236. [PMID: 32641854 PMCID: PMC7343825 DOI: 10.1038/s41598-020-67908-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor- tyrosine kinase inhibitors (EGFR-TKIs) have shown promise against non-small cell lung cancers (NSCLCs) in clinics but the utility is often short-lived because of T790M mutations in EGFR that help evade TKIs’ action. Osimertinib is the third and latest generation TKI that targets EGFRs with T790M mutations. However, there are already reports on acquired resistance against Osimertinib. Recent work has revealed the role that miRNAs, particularly tumor suppressor let-7c, play in the invasiveness and acquired resistance of NSCLCs, but the mechanistic details, particularly in Osimertinib resistance, remain elusive. Using two cells lines, H1975 (endogenous T790M mutation) and HCC827-T790M (with acquired T790M mutation), we found that let-7c is a regulator of EMT, as well as it affects CSC phenotype. In both the cell lines, transfection with pre-let-7c led to reversal of EMT as studied through EMT markers e-cadherin and ZEB1. This resulted in reduced proliferation and invasion. Conversely, reduced expression of let-7c through anti-let-7c transfections significantly increased proliferation and invasion of lung cancer cells. Expression of let-7c was functionally relevant as EMT correlated with resistance to Osimertinib. High let-7c expression reversed EMT and made cells sensitive to Osimertinib, and vice versa. WNT1 and TCF-4 were found to be two targets of let-7c which were epigenetic suppressed by let-7c through increased methylation. In vivo, pre-let-7c inhibited while anti-let-7c potentiated tumor growth and WNT1 and TCF-4 were downregulated in xenografts with pre-let-7c. Silencing of both WNT1 and TCF-4 resulted in potentiation of Osimertinib action. Our results suggest an important role of let-7c in regulating EMT and the resulting Osimertinib resistance in T790M NSCLCs. More clinical studies need to be performed to fully understand the translational relevance of this novel mechanism.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Department of Oncology and Hematology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Wei-Zhang Shen
- Department of Oncology and Hematology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Xin Jin
- Department of Oncology and Hematology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, Chaoyang, Changchun, 130021, Jilin, People's Republic of China.
| | - Jie Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
36
|
Lisboa Bastos M, Tavaziva G, Abidi SK, Campbell JR, Haraoui LP, Johnston JC, Lan Z, Law S, MacLean E, Trajman A, Menzies D, Benedetti A, Ahmad Khan F. Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis. BMJ 2020; 370:m2516. [PMID: 32611558 PMCID: PMC7327913 DOI: 10.1136/bmj.m2516] [Citation(s) in RCA: 499] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To determine the diagnostic accuracy of serological tests for coronavirus disease-2019 (covid-19). DESIGN Systematic review and meta-analysis. DATA SOURCES Medline, bioRxiv, and medRxiv from 1 January to 30 April 2020, using subject headings or subheadings combined with text words for the concepts of covid-19 and serological tests for covid-19. ELIGIBILITY CRITERIA AND DATA ANALYSIS Eligible studies measured sensitivity or specificity, or both of a covid-19 serological test compared with a reference standard of viral culture or reverse transcriptase polymerase chain reaction. Studies were excluded with fewer than five participants or samples. Risk of bias was assessed using quality assessment of diagnostic accuracy studies 2 (QUADAS-2). Pooled sensitivity and specificity were estimated using random effects bivariate meta-analyses. MAIN OUTCOME MEASURES The primary outcome was overall sensitivity and specificity, stratified by method of serological testing (enzyme linked immunosorbent assays (ELISAs), lateral flow immunoassays (LFIAs), or chemiluminescent immunoassays (CLIAs)) and immunoglobulin class (IgG, IgM, or both). Secondary outcomes were stratum specific sensitivity and specificity within subgroups defined by study or participant characteristics, including time since symptom onset. RESULTS 5016 references were identified and 40 studies included. 49 risk of bias assessments were carried out (one for each population and method evaluated). High risk of patient selection bias was found in 98% (48/49) of assessments and high or unclear risk of bias from performance or interpretation of the serological test in 73% (36/49). Only 10% (4/40) of studies included outpatients. Only two studies evaluated tests at the point of care. For each method of testing, pooled sensitivity and specificity were not associated with the immunoglobulin class measured. The pooled sensitivity of ELISAs measuring IgG or IgM was 84.3% (95% confidence interval 75.6% to 90.9%), of LFIAs was 66.0% (49.3% to 79.3%), and of CLIAs was 97.8% (46.2% to 100%). In all analyses, pooled sensitivity was lower for LFIAs, the potential point-of-care method. Pooled specificities ranged from 96.6% to 99.7%. Of the samples used for estimating specificity, 83% (10 465/12 547) were from populations tested before the epidemic or not suspected of having covid-19. Among LFIAs, pooled sensitivity of commercial kits (65.0%, 49.0% to 78.2%) was lower than that of non-commercial tests (88.2%, 83.6% to 91.3%). Heterogeneity was seen in all analyses. Sensitivity was higher at least three weeks after symptom onset (ranging from 69.9% to 98.9%) compared with within the first week (from 13.4% to 50.3%). CONCLUSION Higher quality clinical studies assessing the diagnostic accuracy of serological tests for covid-19 are urgently needed. Currently, available evidence does not support the continued use of existing point-of-care serological tests. STUDY REGISTRATION PROSPERO CRD42020179452.
Collapse
Affiliation(s)
- Mayara Lisboa Bastos
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Canada
- Social Medicine Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gamuchirai Tavaziva
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Syed Kunal Abidi
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Jonathon R Campbell
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Canada
- Departments of Epidemiology, Biostatistics and Occupational Health, and Medicine, McGill University, Montreal, Canada
| | - Louis-Patrick Haraoui
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Zhiyi Lan
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Stephanie Law
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Emily MacLean
- Departments of Epidemiology, Biostatistics and Occupational Health, and Medicine, McGill University, Montreal, Canada
| | - Anete Trajman
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Canada
- Social Medicine Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dick Menzies
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Canada
- Departments of Epidemiology, Biostatistics and Occupational Health, and Medicine, McGill University, Montreal, Canada
| | - Andrea Benedetti
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Canada
- Departments of Epidemiology, Biostatistics and Occupational Health, and Medicine, McGill University, Montreal, Canada
| | - Faiz Ahmad Khan
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Canada
- Departments of Epidemiology, Biostatistics and Occupational Health, and Medicine, McGill University, Montreal, Canada
| |
Collapse
|
37
|
Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Spijker R, Taylor-Phillips S, Adriano A, Beese S, Dretzke J, Ferrante di Ruffano L, Harris IM, Price MJ, Dittrich S, Emperador D, Hooft L, Leeflang MM, Van den Bruel A. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev 2020; 6:CD013652. [PMID: 32584464 PMCID: PMC7387103 DOI: 10.1002/14651858.cd013652] [Citation(s) in RCA: 438] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and resulting COVID-19 pandemic present important diagnostic challenges. Several diagnostic strategies are available to identify current infection, rule out infection, identify people in need of care escalation, or to test for past infection and immune response. Serology tests to detect the presence of antibodies to SARS-CoV-2 aim to identify previous SARS-CoV-2 infection, and may help to confirm the presence of current infection. OBJECTIVES To assess the diagnostic accuracy of antibody tests to determine if a person presenting in the community or in primary or secondary care has SARS-CoV-2 infection, or has previously had SARS-CoV-2 infection, and the accuracy of antibody tests for use in seroprevalence surveys. SEARCH METHODS We undertook electronic searches in the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern, which is updated daily with published articles from PubMed and Embase and with preprints from medRxiv and bioRxiv. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. We conducted searches for this review iteration up to 27 April 2020. SELECTION CRITERIA We included test accuracy studies of any design that evaluated antibody tests (including enzyme-linked immunosorbent assays, chemiluminescence immunoassays, and lateral flow assays) in people suspected of current or previous SARS-CoV-2 infection, or where tests were used to screen for infection. We also included studies of people either known to have, or not to have SARS-CoV-2 infection. We included all reference standards to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR) and clinical diagnostic criteria). DATA COLLECTION AND ANALYSIS We assessed possible bias and applicability of the studies using the QUADAS-2 tool. We extracted 2x2 contingency table data and present sensitivity and specificity for each antibody (or combination of antibodies) using paired forest plots. We pooled data using random-effects logistic regression where appropriate, stratifying by time since post-symptom onset. We tabulated available data by test manufacturer. We have presented uncertainty in estimates of sensitivity and specificity using 95% confidence intervals (CIs). MAIN RESULTS We included 57 publications reporting on a total of 54 study cohorts with 15,976 samples, of which 8526 were from cases of SARS-CoV-2 infection. Studies were conducted in Asia (n = 38), Europe (n = 15), and the USA and China (n = 1). We identified data from 25 commercial tests and numerous in-house assays, a small fraction of the 279 antibody assays listed by the Foundation for Innovative Diagnostics. More than half (n = 28) of the studies included were only available as preprints. We had concerns about risk of bias and applicability. Common issues were use of multi-group designs (n = 29), inclusion of only COVID-19 cases (n = 19), lack of blinding of the index test (n = 49) and reference standard (n = 29), differential verification (n = 22), and the lack of clarity about participant numbers, characteristics and study exclusions (n = 47). Most studies (n = 44) only included people hospitalised due to suspected or confirmed COVID-19 infection. There were no studies exclusively in asymptomatic participants. Two-thirds of the studies (n = 33) defined COVID-19 cases based on RT-PCR results alone, ignoring the potential for false-negative RT-PCR results. We observed evidence of selective publication of study findings through omission of the identity of tests (n = 5). We observed substantial heterogeneity in sensitivities of IgA, IgM and IgG antibodies, or combinations thereof, for results aggregated across different time periods post-symptom onset (range 0% to 100% for all target antibodies). We thus based the main results of the review on the 38 studies that stratified results by time since symptom onset. The numbers of individuals contributing data within each study each week are small and are usually not based on tracking the same groups of patients over time. Pooled results for IgG, IgM, IgA, total antibodies and IgG/IgM all showed low sensitivity during the first week since onset of symptoms (all less than 30.1%), rising in the second week and reaching their highest values in the third week. The combination of IgG/IgM had a sensitivity of 30.1% (95% CI 21.4 to 40.7) for 1 to 7 days, 72.2% (95% CI 63.5 to 79.5) for 8 to 14 days, 91.4% (95% CI 87.0 to 94.4) for 15 to 21 days. Estimates of accuracy beyond three weeks are based on smaller sample sizes and fewer studies. For 21 to 35 days, pooled sensitivities for IgG/IgM were 96.0% (95% CI 90.6 to 98.3). There are insufficient studies to estimate sensitivity of tests beyond 35 days post-symptom onset. Summary specificities (provided in 35 studies) exceeded 98% for all target antibodies with confidence intervals no more than 2 percentage points wide. False-positive results were more common where COVID-19 had been suspected and ruled out, but numbers were small and the difference was within the range expected by chance. Assuming a prevalence of 50%, a value considered possible in healthcare workers who have suffered respiratory symptoms, we would anticipate that 43 (28 to 65) would be missed and 7 (3 to 14) would be falsely positive in 1000 people undergoing IgG/IgM testing at days 15 to 21 post-symptom onset. At a prevalence of 20%, a likely value in surveys in high-risk settings, 17 (11 to 26) would be missed per 1000 people tested and 10 (5 to 22) would be falsely positive. At a lower prevalence of 5%, a likely value in national surveys, 4 (3 to 7) would be missed per 1000 tested, and 12 (6 to 27) would be falsely positive. Analyses showed small differences in sensitivity between assay type, but methodological concerns and sparse data prevent comparisons between test brands. AUTHORS' CONCLUSIONS The sensitivity of antibody tests is too low in the first week since symptom onset to have a primary role for the diagnosis of COVID-19, but they may still have a role complementing other testing in individuals presenting later, when RT-PCR tests are negative, or are not done. Antibody tests are likely to have a useful role for detecting previous SARS-CoV-2 infection if used 15 or more days after the onset of symptoms. However, the duration of antibody rises is currently unknown, and we found very little data beyond 35 days post-symptom onset. We are therefore uncertain about the utility of these tests for seroprevalence surveys for public health management purposes. Concerns about high risk of bias and applicability make it likely that the accuracy of tests when used in clinical care will be lower than reported in the included studies. Sensitivity has mainly been evaluated in hospitalised patients, so it is unclear whether the tests are able to detect lower antibody levels likely seen with milder and asymptomatic COVID-19 disease. The design, execution and reporting of studies of the accuracy of COVID-19 tests requires considerable improvement. Studies must report data on sensitivity disaggregated by time since onset of symptoms. COVID-19-positive cases who are RT-PCR-negative should be included as well as those confirmed RT-PCR, in accordance with the World Health Organization (WHO) and China National Health Commission of the People's Republic of China (CDC) case definitions. We were only able to obtain data from a small proportion of available tests, and action is needed to ensure that all results of test evaluations are available in the public domain to prevent selective reporting. This is a fast-moving field and we plan ongoing updates of this living systematic review.
Collapse
Affiliation(s)
- Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Clare Davenport
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - René Spijker
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sian Taylor-Phillips
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ada Adriano
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sophie Beese
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Janine Dretzke
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Lavinia Ferrante di Ruffano
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Isobel M Harris
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Malcolm J Price
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | | | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mariska Mg Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Biomarker and Test Evaluation Programme (BiTE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| |
Collapse
|