1
|
Gajić Bojić M, Aranđelović J, Škrbić R, Savić MM. Peripheral GABA A receptors - Physiological relevance and therapeutic implications. Pharmacol Ther 2025; 266:108759. [PMID: 39615599 DOI: 10.1016/j.pharmthera.2024.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024]
Abstract
The role of γ- aminobutyric acid (GABA) and GABAA receptors is not only essential for neurotransmission in the central nervous system (CNS), but they are also involved in communication in various peripheral tissues such as the pancreas, liver, kidney, gastrointestinal tract, trachea, immune cells and blood vessels. GABAA receptors located outside the CNS ("peripheral GABAA receptors") enable both neuronal and non-neuronal GABA-ergic signaling in various physiological processes and are generally thought to have similar properties to the extrasynaptic receptors in the CNS. By activating these peripheral receptors, GABA and various GABAA receptor modulators, including drugs such as benzodiazepines and general anesthetics, may contribute to or otherwise affect the maintenance of general body homeostasis. However, the existing data in the literature on the role of non-neuronal GABA-ergic signaling in insulin secretion, glucose metabolism, renal function, intestinal motility, airway tone, immune response and blood pressure regulation are far from complete. In fact, they mainly focus on the identification of components for the local synthesis and utilization of GABA and on the expression repertoire of GABAA receptor subunits rather than on subunit composition, activation effects and (sub)cellular localization. A deeper understanding of how modulation of peripheral GABAA receptors can have significant therapeutic effects on a range of pathological conditions such as multiple sclerosis, diabetes, irritable bowel syndrome, asthma or hypertension could contribute to the development of more specific pharmacological strategies that would provide an alternative or complement to existing therapies. Selective GABAA receptor modulators with improved peripheral efficacy and reduced central side effects would therefore be highly desirable first-in-class drug candidates. This review updates recent advances unraveling the molecular components and cellular determinants of the GABA signaling machinery in peripheral organs, tissues and cells of both, humans and experimental animals.
Collapse
Affiliation(s)
- Milica Gajić Bojić
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina; Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Banja Luka - Faculty of Medicine, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Jovana Aranđelović
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade 11000, Serbia
| | - Ranko Škrbić
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina; Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Banja Luka - Faculty of Medicine, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Miroslav M Savić
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade 11000, Serbia.
| |
Collapse
|
2
|
Bojić MG, Treven M, Pandey KP, Tiruveedhula VVNPB, Santrač A, Đukanović Đ, Vojinović N, Amidžić L, Škrbić R, Scholze P, Ernst M, Cook JM, Savić MM. Vascular effects of midazolam, flumazenil, and a novel imidazobenzodiazepine MP-III-058 on isolated rat aorta. Can J Physiol Pharmacol 2024; 102:206-217. [PMID: 37909404 DOI: 10.1139/cjpp-2023-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Hypotensive influences of benzodiazepines and other GABAA receptor ligands, recognized in clinical practice, seem to stem from the existence of "vascular" GABAA receptors in peripheral blood vessels, besides any mechanisms in the central and peripheral nervous systems. We aimed to further elucidate the vasodilatatory effects of ligands acting through GABAA receptors. Using immunohistochemistry, the rat aortic smooth muscle layer was found to express GABAA γ2 and α1-5 subunit proteins. To confirm the role of "vascular" GABAA receptors, we investigated the vascular effects of standard benzodiazepines, midazolam, and flumazenil, as well as the novel compound MP-III-058. Using two-electrode voltage clamp electrophysiology and radioligand binding assays, MP-III-058 was found to have modest binding but substantial functional selectivity for α5β3γ2 over other αxβ3γ2 GABAA receptors. Tissue bath assays revealed comparable vasodilatory effects of MP-III-058 and midazolam, both of which at 100 µmol/L concentrations had efficacy similar to prazosin. Flumazenil exhibited weak vasoactivity per se, but significantly prevented the relaxant effects of midazolam and MP-III-058. These studies indicate the existence of functional GABAA receptors in the rat aorta, where ligands exert vasodilatory effects by positive modulation of the benzodiazepine binding site, suggesting the potential for further quest for leads with optimized pharmacokinetic properties as prospective adjuvant vasodilators.
Collapse
Affiliation(s)
- Milica Gajić Bojić
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Marco Treven
- Neurology Department, Medical University of Vienna, Vienna, Austria
| | - Kamal P Pandey
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - V V N Phani Babu Tiruveedhula
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Anja Santrač
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade 11000, Serbia
| | - Đorđe Đukanović
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Nataša Vojinović
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Ljiljana Amidžić
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Ranko Škrbić
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Petra Scholze
- Department of Pathobiology of the Nervous SystemCenter for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous SystemCenter for Brain Research, Medical University of Vienna, Vienna, Austria
| | - James M Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Miroslav M Savić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
3
|
Shalabi S, Belayachi A, Larrivée B. Involvement of neuronal factors in tumor angiogenesis and the shaping of the cancer microenvironment. Front Immunol 2024; 15:1284629. [PMID: 38375479 PMCID: PMC10875004 DOI: 10.3389/fimmu.2024.1284629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Emerging evidence suggests that nerves within the tumor microenvironment play a crucial role in regulating angiogenesis. Neurotransmitters and neuropeptides released by nerves can interact with nearby blood vessels and tumor cells, influencing their behavior and modulating the angiogenic response. Moreover, nerve-derived signals may activate signaling pathways that enhance the production of pro-angiogenic factors within the tumor microenvironment, further supporting blood vessel growth around tumors. The intricate network of communication between neural constituents and the vascular system accentuates the potential of therapeutically targeting neural-mediated pathways as an innovative strategy to modulate tumor angiogenesis and, consequently, neoplastic proliferation. Hereby, we review studies that evaluate the precise molecular interplay and the potential clinical ramifications of manipulating neural elements for the purpose of anti-angiogenic therapeutics within the scope of cancer treatment.
Collapse
Affiliation(s)
- Sharif Shalabi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Ali Belayachi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Montréal, QC, Canada
- Ophthalmology, Université de Montréal, boul. Édouard-Montpetit, Montréal, QC, Canada
| |
Collapse
|
4
|
Ye S, Wang Z, Ma JH, Ji S, Peng Y, Huang Y, Chen J, Tang S. Diabetes Reshapes the Circadian Transcriptome Profile in Murine Retina. Invest Ophthalmol Vis Sci 2023; 64:3. [PMID: 37788001 PMCID: PMC10552875 DOI: 10.1167/iovs.64.13.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/09/2023] [Indexed: 10/04/2023] Open
Abstract
Purpose Diabetic retinopathy (DR) is a common complication of diabetes and has a high prevalence. Dysregulation of circadian rhythmicity is associated with the development of DR. This research aimed to investigate rhythmical transcriptome alterations in the retina of diabetic mice. Methods C57BL/6J mice were used to establish a diabetes model by intraperitoneal injection of streptozotocin (STZ). After 12 weeks, retinas were collected continuously at 4-hour intervals over 1 day. Total RNA was extracted from normal and STZ-treated retinas and RNA sequencing was performed. Meta2d algorithm, Kyoto Encyclopedia of Genes, Phase Set Enrichment Analysis, and time-series cluster analysis were used to identify, analyze and annotate the composition, phase, and molecular functions of rhythmic transcripts in retinas. Results The retina exhibited powerful transcriptome rhythmicity. STZ-induced diabetes markedly modified the transcriptome characteristics of the circadian transcriptome in the retina, including composition, phase, and amplitude. Moreover, the diabetic mice led to re-organized temporal and clustering enrichment pathways in space and time and affected core clock machinery. Conclusions Diabetes impairs the circadian rhythm of the transcriptomic profile of retinas. This study offers new perspectives on the negative effects of diabetes on the retina, which may provide important information for the development of new treatments for DR.
Collapse
Affiliation(s)
- Suna Ye
- AIER Eye Hospital, Jinan University, Guangzhou, China
- AIER Eye Institute, Changsha, China
| | | | | | | | | | | | - Jiansu Chen
- AIER Eye Hospital, Jinan University, Guangzhou, China
- AIER Eye Institute, Changsha, China
| | - Shibo Tang
- AIER Eye Hospital, Jinan University, Guangzhou, China
- AIER Eye Institute, Changsha, China
| |
Collapse
|
5
|
Zhang D, Zhang W, Deng S, Liu L, Wei H, Xue F, Yang H, Wang X, Fan Z. Tenuigenin promotes non-rapid eye movement sleep via the GABA A receptor and exerts somnogenic effect in a MPTP mouse model of Parkinson's disease. Biomed Pharmacother 2023; 165:115259. [PMID: 37531785 DOI: 10.1016/j.biopha.2023.115259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023] Open
Abstract
Sleep disturbances are commonly non-motor symptoms in Parkinson's diseases (PD). However, standard dopamine replacement therapies for the treatment of motor symptoms often prove inadequate in combating sleep disturbances. Previous studies conducted by our research group have reported the neuroprotective effects of tenuigenin, a natural extract from Polygala tenuifolia root, which has been traditionally employed in treating insomnia. The objective of this study was to investigate the potential of tenuigenin in modulating sleep-wake behaviors and elucidate the underlying mechanisms. We employed EEG/EMG recordings to evaluate the impact of tenuigenin on sleep-wake profiles. Furthermore, we utilized c-Fos immunostaining, whole-cell patch clamping and local field potentials (LFP) recording to explore the mechanisms involved in sleep-promoting effects of tenuigenin. Additionally, we examined the effects of tenuigenin on sleep-promoting in MPTP PD mice. Here, we found tenuigenin demonstrated a significant increase in NREM sleep and a reduction in sleep latency in mice, without altering the EEG power density. Moreover, tenuigenin increased c-Fos expression in the ventrolateral preoptic area (VLPO) and stimulated sleep-promoting neurons in VLPO. The sleep-promoting effects of tenuigenin were abolished when mice were pretreated with flumazenil, an antagonist at the benzodiazepine site of the GABAA receptor. Furthermore, tenuigenin was found to ameliorate sleep disturbances in MPTP-induced mice. The results suggesting that tenuigenin facilitated a type of NREM sleep comparable to physiological NREM sleep through interaction with the GABAA receptor. Additionally, tenuigenin demonstrated improvements in sleep disturbances in MPTP-induced PD mice, suggesting its potential as a sleep-promoting substance, particularly for PD patients experiencing sleep disturbances.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Wenjing Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Shumin Deng
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Lu Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Hua Wei
- Core Facility Center, Capital Medical University, Beijing, PR China
| | - Fenqin Xue
- Core Facility Center, Capital Medical University, Beijing, PR China
| | - Hui Yang
- Core Facility Center, Capital Medical University, Beijing, PR China
| | - Xiaomin Wang
- Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Zheng Fan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China.
| |
Collapse
|
6
|
Al-Kuraishy HM, Al-Gareeb AI, Elewa YHA, Zahran MH, Alexiou A, Papadakis M, Batiha GES. Parkinson's Disease Risk and Hyperhomocysteinemia: The Possible Link. Cell Mol Neurobiol 2023:10.1007/s10571-023-01350-8. [PMID: 37074484 DOI: 10.1007/s10571-023-01350-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/09/2023] [Indexed: 04/20/2023]
Abstract
Parkinson's disease (PD) is one of the most common degenerative brain disorders caused by the loss of dopaminergic neurons in the substantia nigra (SN). Lewy bodies and -synuclein accumulation in the SN are hallmarks of the neuropathology of PD. Due to lifestyle changes and prolonged L-dopa administration, patients with PD frequently have vitamin deficiencies, especially folate, vitamin B6, and vitamin B12. These disorders augment circulating levels of Homocysteine with the development of hyperhomocysteinemia, which may contribute to the pathogenesis of PD. Therefore, this review aimed to ascertain if hyperhomocysteinemia may play a part in oxidative and inflammatory signaling pathways that contribute to PD development. Hyperhomocysteinemia is implicated in the pathogenesis of neurodegenerative disorders, including PD. Hyperhomocysteinemia triggers the development and progression of PD by different mechanisms, including oxidative stress, mitochondrial dysfunction, apoptosis, and endothelial dysfunction. Particularly, the progression of PD is linked with high inflammatory changes and systemic inflammatory disorders. Hyperhomocysteinemia induces immune activation and oxidative stress. In turn, activated immune response promotes the development and progression of hyperhomocysteinemia. Therefore, hyperhomocysteinemia-induced immunoinflammatory disorders and abnormal immune response may aggravate abnormal immunoinflammatory in PD, leading to more progression of PD severity. Also, inflammatory signaling pathways like nuclear factor kappa B (NF-κB) and nod-like receptor pyrin 3 (NLRP3) inflammasome and other signaling pathways are intricate in the pathogenesis of PD. In conclusion, hyperhomocysteinemia is involved in the development and progression of PD neuropathology either directly via induction degeneration of dopaminergic neurons or indirectly via activation of inflammatory signaling pathways.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
- Faculty of Veterinary medicine , Hokkaido University, Sapporo, Japan.
| | - Mahmoud Hosny Zahran
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, AlBeheira, 22511, Egypt.
| |
Collapse
|
7
|
GABA A and GABA B Receptors Mediate GABA-Induced Intracellular Ca 2+ Signals in Human Brain Microvascular Endothelial Cells. Cells 2022; 11:cells11233860. [PMID: 36497118 PMCID: PMC9739010 DOI: 10.3390/cells11233860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Numerous studies recently showed that the inhibitory neurotransmitter, γ-aminobutyric acid (GABA), can stimulate cerebral angiogenesis and promote neurovascular coupling by activating the ionotropic GABAA receptors on cerebrovascular endothelial cells, whereas the endothelial role of the metabotropic GABAB receptors is still unknown. Preliminary evidence showed that GABAA receptor stimulation can induce an increase in endothelial Ca2+ levels, but the underlying signaling pathway remains to be fully unraveled. In the present investigation, we found that GABA evoked a biphasic elevation in [Ca2+]i that was initiated by inositol-1,4,5-trisphosphate- and nicotinic acid adenine dinucleotide phosphate-dependent Ca2+ release from neutral and acidic Ca2+ stores, respectively, and sustained by store-operated Ca2+ entry. GABAA and GABAB receptors were both required to trigger the endothelial Ca2+ response. Unexpectedly, we found that the GABAA receptors signal in a flux-independent manner via the metabotropic GABAB receptors. Likewise, the full Ca2+ response to GABAB receptors requires functional GABAA receptors. This study, therefore, sheds novel light on the molecular mechanisms by which GABA controls endothelial signaling at the neurovascular unit.
Collapse
|
8
|
Agrud A, Subburaju S, Goel P, Ren J, Kumar AS, Caldarone BJ, Dai W, Chavez J, Fukumura D, Jain RK, Kloner RA, Vasudevan A. Gabrb3 endothelial cell-specific knockout mice display abnormal blood flow, hypertension, and behavioral dysfunction. Sci Rep 2022; 12:4922. [PMID: 35318369 PMCID: PMC8941104 DOI: 10.1038/s41598-022-08806-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Our recent studies uncovered a novel GABA signaling pathway in embryonic forebrain endothelial cells that works independently from neuronal GABA signaling and revealed that disruptions in endothelial GABAA receptor-GABA signaling from early embryonic stages can directly contribute to the origin of psychiatric disorders. In the GABAA receptor β3 subunit endothelial cell conditional knockout (Gabrb3ECKO) mice, the β3 subunit is deleted selectively from endothelial cells, therefore endothelial GABAA receptors become inactivated and dysfunctional. There is a reduction in vessel densities and increased vessel morphology in the Gabrb3ECKO telencephalon that persists in the adult neocortex. Gabrb3ECKO mice show behavioral deficits such as impaired reciprocal social interactions, communication deficits, heightened anxiety, and depression. Here, we characterize the functional changes in Gabrb3ECKO mice by evaluating cortical blood flow, examine the consequences of loss of endothelial Gabrb3 on cardiac tissue, and define more in-depth altered behaviors. Red blood cell velocity and blood flow were increased in the cortical microcirculation of the Gabrb3ECKO mice. The Gabrb3ECKO mice had a reduction in vessel densities in the heart, similar to the brain; exhibited wavy, myocardial fibers, with elongated 'worm-like' nuclei in their cardiac histology, and developed hypertension. Additional alterations in behavioral function were observed in the Gabrb3ECKO mice such as increased spontaneous exploratory activity and rearing in an open field, reduced short term memory, decreased ambulatory activity in CLAMS testing, and altered prepulse inhibition to startle, an important biomarker of psychiatric diseases such as schizophrenia. Our results imply that vascular Gabrb3 is a key player in the brain as well as the heart, and its loss in both organs can lead to concurrent development of psychiatric and cardiac dysfunction.
Collapse
Affiliation(s)
- Anass Agrud
- grid.280933.30000 0004 0452 8371Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105 USA
| | - Sivan Subburaju
- grid.280933.30000 0004 0452 8371Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105 USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA 02215 USA ,grid.240206.20000 0000 8795 072XDivision of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Pranay Goel
- grid.280933.30000 0004 0452 8371Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105 USA
| | - Jun Ren
- grid.32224.350000 0004 0386 9924Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Ashwin Srinivasan Kumar
- grid.32224.350000 0004 0386 9924Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA ,grid.116068.80000 0001 2341 2786Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Barbara J. Caldarone
- grid.38142.3c000000041936754XMouse Behavior Core, Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Wangde Dai
- grid.280933.30000 0004 0452 8371Huntington Medical Research Institutes, Pasadena, CA USA ,grid.42505.360000 0001 2156 6853Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA USA
| | - Jesus Chavez
- grid.280933.30000 0004 0452 8371Huntington Medical Research Institutes, Pasadena, CA USA ,grid.42505.360000 0001 2156 6853Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA USA
| | - Dai Fukumura
- grid.32224.350000 0004 0386 9924Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Rakesh K. Jain
- grid.32224.350000 0004 0386 9924Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Robert A. Kloner
- grid.280933.30000 0004 0452 8371Huntington Medical Research Institutes, Pasadena, CA USA ,grid.42505.360000 0001 2156 6853Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA USA
| | - Anju Vasudevan
- Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA, 91105, USA.
| |
Collapse
|
9
|
Ibrahim NM, Fahim SH, Hassan M, Farag AE, Georgey HH. Design and synthesis of ciprofloxacin-sulfonamide hybrids to manipulate ciprofloxacin pharmacological qualities: Potency and side effects. Eur J Med Chem 2022; 228:114021. [PMID: 34871841 DOI: 10.1016/j.ejmech.2021.114021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022]
Abstract
Fluoroquinolones are a class of antibacterial agents used clinically to treat a wide array of bacterial infections. Although being potent, susceptibility to CNS side effects limits their use. It was observed that improvements in absorption, activity and side effects were achieved via modifications at the N atom of the C7 of the side chain. To meet the increasing demand for development of new antibacterial agents, nineteen novel ciprofloxacin-sulfonamide hybrid molecules were designed, synthesized and characterized by IR, 1H NMR and 13C NMR as potential antibacterial agents with dual DNA gyrase/topoisomerase IV inhibitory activity. Most of the synthesized compounds showed significant antibacterial activity that was revealed by testing their inhibitory activity against DNA gyrase, DNA topoisomerase IV as well as their minimum inhibitory concentration against Staphylococcus aureus. Six ciprofloxacin-sulfonamide hybrids (3f, 5d, 7a, 7d, 7e and 9b) showed potent inhibitory activity against DNA topoisomerase IV, compared to ciprofloxacin (IC50: 0.55 μM), with IC50 range: 0.23-0.44 μM. DNA gyrase was also efficiently inhibited by five ciprofloxacin-sulfonamide hybrids (3f, 5d, 5e, 7a and 7d) with IC50 range: 0.43-1.1 μM (IC50 of ciprofloxacin: 0.83 μM). Compounds 3a and 3b showed a marked improvement in the antibacterial activity over ciprofloxacin against both Gram-positive and Gram-negative pathogens, namely, Staphylococcus aureus Newman and Escherichia coli ATCC8739, with MIC = 0.324 and 0.422 μM, respectively, that is 4.2-fold and 3.2-fold lower than ciprofloxacin (MIC = 1.359 μM) against the Gram-positive Staphylococcus aureus, and MIC = 0.025 and 0.013 μM, respectively, that is 10.2-fold and 19.6-fold lower than ciprofloxacin (MIC = 0.255 μM) against the Gram-negative Escherichia coli ATCC8739. Also, the most active compounds showed lower CNS and convulsive side effects compared to ciprofloxacin with a concomitant decrease in GABA expression.
Collapse
Affiliation(s)
- Noha M Ibrahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo, 11562, Egypt
| | - Samar H Fahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo, 11562, Egypt.
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo, 11562, Egypt
| | - Awatef E Farag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo, 11562, Egypt
| | - Hanan H Georgey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo, 11562, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| |
Collapse
|
10
|
Bojić MG, Todorović L, Santrač A, Mian MY, Sharmin D, Cook JM, Savić MM. Vasodilatory effects of a variety of positive allosteric modulators of GABA A receptors on rat thoracic aorta. Eur J Pharmacol 2021; 899:174023. [PMID: 33722589 DOI: 10.1016/j.ejphar.2021.174023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Accepted: 03/10/2021] [Indexed: 01/06/2023]
Abstract
Different subtypes of GABAA (gamma-aminobutyric acid A) receptors, through their specific regional and cellular localization, are involved in the manifestation of various functions, both at the central and peripheral levels. We hypothesized that various non-neuronal GABAA receptors are expressed on blood vessels, through which positive allosteric modulators of GABAA receptors exhibit vasodilatory effects. This study involved two parts: one to determine the presence of α1-6 subunit GABAA receptor mRNAs in the rat thoracic aorta, and the other to determine the vasoactivity of the various selective and non-selective positive GABAA receptor modulators: zolpidem (α1-selective), XHe-III-074 (α4-selective), MP-III-022 (α5-selective), DK-I-56-1 (α6-selective), SH-I-048A and diazepam (non-selective). Reverse transcription-polymerase chain reaction (RT-PCR) analysis data demonstrated for the first time the expression of α1, α2, α3, α4 and α5 subunits in the rat thoracic aorta tissue. Tissue bath assays on isolated rat aortic rings revealed significant vasodilatory effects of diazepam, SH-I-048A, XHe-III-074, MP-III-022 and DK-I-56-1, all in terms of achieved relaxations (over 50% of relative tension decrease), as well as in terms of preventive effects on phenylephrine (PE) contraction. Diazepam was the most efficient ligand in the present study, while zolpidem showed the weakest vascular effects. In addition, diazepam-induced relaxations in the presence of antagonists PK11195 or bicuculline were significantly reduced (P < 0.001 and P < 0.05, respectively) at lower concentrations of diazepam (10-7 M and 3 × 10-7 M). The present work suggests that the observed vasoactivity is due to modulation of "vascular" GABAA receptors, which after further detailed research may provide a therapeutic target.
Collapse
Affiliation(s)
- Milica Gajić Bojić
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, 16 Save Mrkalja St, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Lidija Todorović
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Anja Santrač
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe St, 11000, Belgrade, Serbia
| | - Md Yeunus Mian
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer St., Milwaukee, WI, 53201, USA
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer St., Milwaukee, WI, 53201, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer St., Milwaukee, WI, 53201, USA
| | - Miroslav M Savić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe St, 11000, Belgrade, Serbia.
| |
Collapse
|
11
|
Tang IT, Hsu NW, Chou P, Chen HC. The association between various characteristics of hypnotics and cardiac autonomic control in community-dwelling older adults: the Yilan Study, Taiwan. Sleep Med 2020; 71:77-82. [PMID: 32502853 DOI: 10.1016/j.sleep.2020.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Alteration of cardiac autonomic function may underlie the link between hypnotics use and the risk for cardiovascular morbidity and mortality. This study aimed to examine the relationship between the various characteristics of benzodiazepine receptor agonists (BzRAs) and heart rate variability (HRV). METHODS A community-based survey using the cohort from the Yilan Study, Taiwan was conducted. Older adults aged 65 and older were randomly selected to participate from August 2013 to November 2016. Cardiac autonomic function was evaluated using HRV, and the lowest quartiles of HRV parameters were defined as unhealthy. Those who used BzRAs as a sleep aid were defined as BzRA hypnotic users. The characteristics of BzRA use were further detailed and included the half-life, drug compound, frequency of use, and cumulative daily equivalent dosage. RESULTS Of all participants, 379 (14.5%) were BzRA hypnotic users. After controlling for covariates, BzRA hypnotic users had a higher risk for unhealthier HRV than non-users. Among all BzRA hypnotic users, those who only used benzodiazepines (BZDs), used short half-life BzRAs, and used the middle tertile of daily cumulative BZD equivalent had a higher risk for poor total power (odds ratio [OR]: 2.11, 95% confidence interval [CI]: 1.07-4.16), high frequency (OR: 3.43, 95% CI: 1.07-10.97), and high frequency (OR: 2.94, 95% CI: 1.35-6.42), respectively, than their counterparts. CONCLUSIONS BzRA hypnotics are linked with poor cardiac autonomic function. Various characteristics of BzRA hypnotics showed an independent pattern of association with cardiac autonomic function.
Collapse
Affiliation(s)
- I-Tien Tang
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan; Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nai-Wei Hsu
- Division of Cardiology, Department of Internal Medicine & Community Medicine Center, National Yang-Ming University Hospital, Yilan, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Public Health Bureau, Yilan County, Taiwan
| | - Pesus Chou
- Community Medicine Research Center & Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Hsi-Chung Chen
- Department of Psychiatry & Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
12
|
Dexamethasone-Induced Perturbations in Tissue Metabolomics Revealed by Chemical Isotope Labeling LC-MS analysis. Metabolites 2020; 10:metabo10020042. [PMID: 31973046 PMCID: PMC7074358 DOI: 10.3390/metabo10020042] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Dexamethasone (Dex) is a synthetic glucocorticoid (GC) drug commonly used clinically for the treatment of several inflammatory and immune-mediated diseases. Despite its broad range of indications, the long-term use of Dex is known to be associated with specific abnormalities in several tissues and organs. In this study, the metabolomic effects on five different organs induced by the chronic administration of Dex in the Sprague–Dawley rat model were investigated using the chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-MS) platform, which targets the amine/phenol submetabolomes. Compared to controls, a prolonged intake of Dex resulted in significant perturbations in the levels of 492, 442, 300, 186, and 105 metabolites in the brain, skeletal muscle, liver, kidney, and heart tissues, respectively. The positively identified metabolites were mapped to diverse molecular pathways in different organs. In the brain, perturbations in protein biosynthesis, amino acid metabolism, and monoamine neurotransmitter synthesis were identified, while in the heart, pyrimidine metabolism and branched amino acid biosynthesis were the most significantly impaired pathways. In the kidney, several amino acid pathways were dysregulated, which reflected impairments in several biological functions, including gluconeogenesis and ureagenesis. Beta-alanine metabolism and uridine homeostasis were profoundly affected in liver tissues, whereas alterations of glutathione, arginine, glutamine, and nitrogen metabolism pointed to the modulation of muscle metabolism and disturbances in energy production and muscle mass in skeletal muscle. The differential expression of multiple dipeptides was most significant in the liver (down-regulated), brain (up-regulation), and kidney tissues, but not in the heart or skeletal muscle tissues. The identification of clinically relevant pathways provides holistic insights into the tissue molecular responses induced by Dex and understanding of the underlying mechanisms associated with their side effects. Our data suggest a potential role for glutathione supplementation and dipeptide modulators as novel therapeutic interventions to mitigate the side effects induced by Dex therapy.
Collapse
|
13
|
Srivastava AC, Thompson YG, Singhal J, Stellern J, Srivastava A, Du J, O'Connor TR, Riggs AD. Elimination of human folypolyglutamate synthetase alters programming and plasticity of somatic cells. FASEB J 2019; 33:13747-13761. [PMID: 31585510 DOI: 10.1096/fj.201901721r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Folates are vital cofactors for the regeneration of S-adenosyl methionine, which is the methyl source for DNA methylation, protein methylation, and other aspects of one-carbon (C1) metabolism. Thus, folates are critical for establishing and preserving epigenetic programming. Folypolyglutamate synthetase (FPGS) is known to play a crucial role in the maintenance of intracellular folate levels. Therefore, any modulation in FPGS is expected to alter DNA methylation and numerous other metabolic pathways. To explore the role of polyglutamylation of folate, we eliminated both isoforms of FPGS in human cells (293T), producing FPGS knockout (FPGSko) cells. The elimination of FPGS significantly decreased cell proliferation, with a major effect on oxidative phosphorylation and a lesser effect on glycolysis. We found a substantial reduction in global DNA methylation and noteworthy changes in gene expression related to C1 metabolism, cell division, DNA methylation, pluripotency, Glu metabolism, neurogenesis, and cardiogenesis. The expression levels of NANOG, octamer-binding transcription factor 4, and sex-determining region Y-box 2 levels were increased in the mutant, consistent with the transition to a stem cell-like state. Gene expression and metabolite data also indicate a major change in Glu and GABA metabolism. In the appropriate medium, FPGSko cells can differentiate to produce mainly cells with characteristics of either neural stem cells or cardiomyocytes.-Srivastava, A. C., Thompson, Y. G., Singhal, J., Stellern, J., Srivastava, A., Du, J., O'Connor, T. R., Riggs, A. D. Elimination of human folypolyglutamate synthetase alters programming and plasticity of somatic cells.
Collapse
Affiliation(s)
- Avinash C Srivastava
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, Duarte, California, USA
| | | | - Jyotsana Singhal
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, Duarte, California, USA
| | - Jordan Stellern
- Department of Cancer Biology, City of Hope National Medical Center, Duarte, California, USA
| | - Anviksha Srivastava
- Department of Cancer Biology, City of Hope National Medical Center, Duarte, California, USA
| | - Juan Du
- Integrative Genomics Core Facility, City of Hope National Medical Center, Duarte, California, USA
| | - Timothy R O'Connor
- Department of Cancer Biology, City of Hope National Medical Center, Duarte, California, USA
| | - Arthur D Riggs
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
14
|
Nath N, Prasad HK, Kumar M. Cerebroprotective effects of hydrogen sulfide in homocysteine-induced neurovascular permeability: Involvement of oxidative stress, arginase, and matrix metalloproteinase-9. J Cell Physiol 2018; 234:3007-3019. [PMID: 30206943 DOI: 10.1002/jcp.27120] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 01/25/2023]
Abstract
An elevated level of homocysteine (Hcy) leads to hyperhomocysteinemia (HHcy), which results in vascular dysfunction and pathological conditions identical to stroke symptoms. Hcy increases oxidative stress and leads to increase in blood-brain barrier permeability and leakage. Hydrogen sulfide (H2 S) production during the metabolism of Hcy has a cerebroprotective effect, although its effectiveness in Hcy-induced neurodegeneration and neurovascular permeability is less explored. Therefore, the current study was designed to perceive the neuroprotective effect of exogenous H 2 S against HHcy, a cause of neurodegeneration. To test this hypothesis, we used four groups of mice: control, Hcy, control + sodium hydrosulfide hydrate (NaHS), and Hcy + NaHS, and an HHcy mice model in Swiss albino mice by giving a dose of 1.8 g of dl-Hcy/L in drinking for 8-10 weeks. Mice that have 30 µmol/L Hcy were taken for the study, and a H 2 S supplementation of 20 μmol/L was given for 8 weeks to all groups of mice. HHcy results in the rise of the levels of superoxide and nitrite, although a concomitant decrease in the level of superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, and arginase in oxidative stress and a concomitant decrease in the endogenous level of H 2 S. Although H 2 S supplementation ameliorated, the effect of HHcy and the levels of H 2 S returned to the average level in HHcy animals supplemented with H 2 S. Interestingly, H 2 S supplementation ameliorated neurovascular remodeling and neurodegeneration. Thus, our study suggested that H 2 S could be a beneficial therapeutic candidate for the treatment of Hcy-associated neurodegeneration, such as stroke and neurovascular disorders.
Collapse
Affiliation(s)
- Nibendu Nath
- Department of LifeScience and Bioinformatics, Assam University, Silchar, India
| | | | - Munish Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, India
| |
Collapse
|
15
|
Everington EA, Gibbard AG, Swinny JD, Seifi M. Molecular Characterization of GABA-A Receptor Subunit Diversity within Major Peripheral Organs and Their Plasticity in Response to Early Life Psychosocial Stress. Front Mol Neurosci 2018; 11:18. [PMID: 29467616 PMCID: PMC5807923 DOI: 10.3389/fnmol.2018.00018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Gamma aminobutyric acid (GABA) subtype A receptors (GABAARs) are integral membrane ion channels composed of five individual proteins or subunits. Up to 19 different GABAAR subunits (α1–6, β1–3, γ1–3, δ, ε, θ, π, and ρ1–3) have been identified, resulting in anatomically, physiologically, and pharmacologically distinct multiple receptor subtypes, and therefore GABA-mediated inhibition, across the central nervous system (CNS). Additionally, GABAAR-modulating drugs are important tools in clinical medicine, although their use is limited by adverse effects. While significant advances have been made in terms of characterizing the GABAAR system within the brain, relatively less is known about the molecular phenotypes within the peripheral nervous system of major organ systems. This represents a potentially missed therapeutic opportunity in terms of utilizing or repurposing clinically available GABAAR drugs, as well as promising research compounds discarded due to their poor CNS penetrance, for the treatment of peripheral disorders. In addition, a broader understanding of the peripheral GABAAR subtype repertoires will contribute to the design of therapies which minimize peripheral side-effects when treating CNS disorders. We have recently provided a high resolution molecular and function characterization of the GABAARs within the enteric nervous system of the mouse colon. In this study, the aim was to determine the constituent GABAAR subunit expression profiles of the mouse bladder, heart, liver, kidney, lung, and stomach, using reverse transcription polymerase chain reaction and western blotting with brain as control. The data indicate that while some subunits are expressed widely across various organs (α3–5), others are restricted to individual organs (γ2, only stomach). Furthermore, we demonstrate complex organ-specific developmental expression plasticity of the transporters which determine the chloride gradient within cells, and therefore whether GABAAR activation has a depolarizing or hyperpolarizing effect. Finally, we demonstrate that prior exposure to early life psychosocial stress induces significant changes in peripheral GABAAR subunit expression and chloride transporters, in an organ- and subunit-specific manner. Collectively, the data demonstrate the molecular diversity of the peripheral GABAAR system and how this changes dynamically in response to life experience. This provides a molecular platform for functional analyses of the GABA–GABAAR system in health, and in diseases affecting various peripheral organs.
Collapse
Affiliation(s)
- Ethan A Everington
- Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Adina G Gibbard
- Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Jerome D Swinny
- Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Mohsen Seifi
- Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
16
|
Oyama Y, Bartman CM, Gile J, Sehrt D, Eckle T. The Circadian PER2 Enhancer Nobiletin Reverses the Deleterious Effects of Midazolam in Myocardial Ischemia and Reperfusion Injury. Curr Pharm Des 2018; 24:3376-3383. [PMID: 30246635 PMCID: PMC6318050 DOI: 10.2174/1381612824666180924102530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/10/2018] [Accepted: 09/16/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Recently, we identified the circadian rhythm protein Period 2 (PER2) in robust cardioprotection from myocardial ischemia (MI). Based on findings that perioperative MI is the most common major cardiovascular complication and that anesthetics can alter the expression of PER2, we hypothesized that an anesthesia mediated downregulation of PER2 could be detrimental if myocardial ischemia and reperfusion (IR) would occur. METHODS AND RESULTS We exposed mice to pentobarbital, fentanyl, ketamine, propofol, midazolam or isoflurane and determined cardiac Per2 mRNA levels. Unexpectedly, only midazolam treatment resulted in an immediate and significant downregulation of Per2 transcript levels. Subsequent studies in mice pretreated with midazolam using an in-situ mouse model for myocardial (IR)-injury revealed a significant and dramatic increase in infarct sizes or Troponin-I serum levels in the midazolam treated group when compared to controls. Using the recently identified flavonoid, nobiletin, as a PER2 enhancer completely abolished the deleterious effects of midazolam during myocardial IR-injury. Moreover, nobiletin treatment alone significantly reduced infarct sizes or Troponin I levels in wildtype but not in Per2-/- mice. Pharmacological studies on nobiletin like flavonoids revealed that only nobiletin and tangeritin, both found to enhance PER2, were cardioprotective in our murine model for myocardial IR-injury. CONCLUSION We identified midazolam mediated downregulation of cardiac PER2 as an underlying mechanism for a deleterious effect of midazolam pretreatment in myocardial IR-injury. These findings highlight PER2 as a cardioprotective mechanism and suggest the PER2 enhancers nobiletin or tangeritin as a preventative therapy for myocardial IR-injury in the perioperative setting where midazolam pretreatment occurs frequently.
Collapse
Affiliation(s)
- Yoshimasa Oyama
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, United States
| | - Colleen Marie Bartman
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, United States
| | - Jennifer Gile
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, United States
| | - Daniel Sehrt
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, United States
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, United States
| |
Collapse
|
17
|
Forkuo GS, Nieman AN, Yuan NY, Kodali R, Yu OB, Zahn NM, Jahan R, Li G, Stephen MR, Guthrie ML, Poe MM, Hartzler BD, Harris TW, Yocum GT, Emala CW, Steeber DA, Stafford DC, Cook JM, Arnold LA. Alleviation of Multiple Asthmatic Pathologic Features with Orally Available and Subtype Selective GABA A Receptor Modulators. Mol Pharm 2017; 14:2088-2098. [PMID: 28440659 PMCID: PMC5497587 DOI: 10.1021/acs.molpharmaceut.7b00183] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We describe pharmacokinetic and pharmacodynamic properties of two novel oral drug candidates for asthma. Phenolic α4β3γ2 GABAAR selective compound 1 and acidic α5β3γ2 selective GABAAR positive allosteric modulator compound 2 relaxed airway smooth muscle ex vivo and attenuated airway hyperresponsiveness (AHR) in a murine model of asthma. Importantly, compound 2 relaxed acetylcholine contracted human tracheal airway smooth muscle strips. Oral treatment of compounds 1 and 2 decreased eosinophils in bronchoalveolar lavage fluid in ovalbumin sensitized and challenged mice, thus exhibiting anti-inflammatory properties. Additionally, compound 1 reduced the number of lung CD4+ T lymphocytes and directly modulated their transmembrane currents by acting on GABAARs. Excellent pharmacokinetic properties were observed, including long plasma half-life (up to 15 h), oral availability, and extremely low brain distribution. In conclusion, we report the selective targeting of GABAARs expressed outside the brain and demonstrate reduction of AHR and airway inflammation with two novel orally available GABAAR ligands.
Collapse
Affiliation(s)
- Gloria S. Forkuo
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| | - Amanda N. Nieman
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| | - Nina Y. Yuan
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| | - Revathi Kodali
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| | - Olivia B. Yu
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| | - Nicolas M. Zahn
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| | - Rajwana Jahan
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| | - Guanguan Li
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| | - Michael Rajesh Stephen
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| | - Margaret L. Guthrie
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| | - Michael M. Poe
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| | - Benjamin D. Hartzler
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| | - Ted W. Harris
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| | - Gene T. Yocum
- Department of Anesthesiology, Columbia University, New York, New York, 10032
| | - Charles W. Emala
- Department of Anesthesiology, Columbia University, New York, New York, 10032
| | - Douglas A. Steeber
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| | - Douglas C. Stafford
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| | - James M. Cook
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| | - Leggy A. Arnold
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201
| |
Collapse
|
18
|
Kamat PK, Mallonee CJ, George AK, Tyagi SC, Tyagi N. Homocysteine, Alcoholism, and Its Potential Epigenetic Mechanism. Alcohol Clin Exp Res 2016; 40:2474-2481. [PMID: 27805256 PMCID: PMC5133158 DOI: 10.1111/acer.13234] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022]
Abstract
Alcohol is the most socially accepted addictive drug. Alcohol consumption is associated with some health problems such as neurological, cognitive, behavioral deficits, cancer, heart, and liver disease. Mechanisms of alcohol-induced toxicity are presently not yet clear. One of the mechanisms underlying alcohol toxicity has to do with its interaction with amino acid homocysteine (Hcy), which has been linked with brain neurotoxicity. Elevated Hcy impairs with various physiological mechanisms in the body, especially metabolic pathways. Hcy metabolism is predominantly controlled by epigenetic regulation such as DNA methylation, histone modifications, and acetylation. An alteration in these processes leads to epigenetic modification. Therefore, in this review, we summarize the role of Hcy metabolism abnormalities in alcohol-induced toxicity with epigenetic adaptation and their influences on cerebrovascular pathology.
Collapse
Affiliation(s)
- Pradip K Kamat
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida
| | - Carissa J Mallonee
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Akash K George
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
19
|
Luteolin Attenuates Airway Mucus Overproduction via Inhibition of the GABAergic System. Sci Rep 2016; 6:32756. [PMID: 27595800 PMCID: PMC5011760 DOI: 10.1038/srep32756] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022] Open
Abstract
Airway mucus overproduction is one of the most common symptoms of asthma that causes severe clinical outcomes in patients. Despite the effectiveness of general asthma therapies, specific treatments that prevent mucus overproduction in asthma patients remain lacking. Recent studies have found that activation of GABAA receptors (GABAAR) is important for promoting mucus oversecretion in lung airway epithelia. Here, we report that luteolin, a natural flavonoid compound, suppresses mucus overproduction by functionally inhibiting the GABAergic system. This hypothesis was investigated by testing the effects of luteolin on goblet cell hyperplasia, excessive mucus secretion, and GABAergic transmission using histological and electrophysiological approaches. Our results showed that 10 mg/kg luteolin significantly decreased the number of goblet cells in the lung tissue and inhibited mucus overproduction in an in vivo asthma model induced by ovalbumin (OVA) in mice. Patch-clamp recordings showed that luteolin inhibited GABAAR-mediated currents in A549 cells. Furthermore, the inhibitory effects of luteolin on OVA-induced goblet cell hyperplasia and mucus overproduction were occluded by the GABAAR antagonist picrotoxin. In conclusion, our observations indicate that luteolin effectively attenuates mucus overproduction at least partially by inhibiting GABAARs, suggesting the potential for therapeutic administration of luteolin in the treatment of mucus overproduction in asthma patients.
Collapse
|
20
|
Abstract
Suvorexant is a novel dual orexin receptor antagonist (DORA) newly introduced in the U.S. as a hypnotic, but no claim of superiority over other hypnotics has been offered. The manufacturer argued that the 5 and 10 mg starting doses recommended by the FDA might be ineffective. The manufacturer's main Phase III trials had not even included the 10 mg dosage, and the 5 mg dosage had not been tested at all in registered clinical trials at the time of approval. Popular alternative hypnotics may be similarly ineffective, since the FDA has also reduced the recommended doses for zolpidem and eszopiclone. The "not to exceed" suvorexant dosage of 20 mg does slightly increase sleep. Because of slow absorption, suvorexant has little effect on latency to sleep onset but some small effect in suppressing wakening after sleep onset and in improving sleep efficiency. The FDA would not approve the manufacturer's preferred 40 mg suvorexant dosage, because of concern with daytime somnolence, driving impairment, and possible narcolepsy-like symptoms. In its immediate benefits-to-risks ratio, suvorexant is unlikely to prove superior to currently available hypnotics—possibly worse—so there is little reason to prefer over the alternatives this likely more expensive hypnotic less-tested in practice. Associations are being increasingly documented relating hypnotic usage with incident cancer, with dementia risks, and with premature death. There is some basis to speculate that suvorexant might be safer than alternative hypnotics in terms of cancer, dementia, infections, and mortality. These safety considerations will remain unproven speculations unless adequate long-term trials can be done that demonstrate suvorexant advantages.
Collapse
Affiliation(s)
- Daniel F Kripke
- Scripps Clinic Viterbi Family Sleep Center, La Jolla, CA, USA
| |
Collapse
|
21
|
Won C, Lin Z, Kumar T P, Li S, Ding L, Elkhal A, Szabó G, Vasudevan A. Autonomous vascular networks synchronize GABA neuron migration in the embryonic forebrain. Nat Commun 2014; 4:2149. [PMID: 23857367 PMCID: PMC3763945 DOI: 10.1038/ncomms3149] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/14/2013] [Indexed: 02/06/2023] Open
Abstract
GABA neurons, born in remote germinative zones in the ventral forebrain (telencephalon), migrate tangentially in two spatially distinct streams to adopt their specific positions in the developing cortex. The cell types and molecular cues that regulate this divided migratory route remains to be elucidated. Here we show that embryonic vascular networks are strategically positioned to fulfill the task of providing support as well as critical guidance cues that regulate the divided migratory routes of GABA neurons in the telencephalon. Interestingly, endothelial cells of the telencephalon are not homogeneous in their gene expression profiles. Endothelial cells of the periventricular vascular network have molecular identities distinct from those of the pial network. Our data suggest that periventricular endothelial cells have intrinsic programs that can significantly mold neuronal development and uncovers new insights into concepts and mechanisms of CNS angiogenesis from both developmental and disease perspectives.
Collapse
Affiliation(s)
- Chungkil Won
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Determination of GABA(Aα1) and GABA (B1) receptor subunits expression in tissues of gilts during the late gestation. Mol Biol Rep 2012; 40:1377-84. [PMID: 23086273 DOI: 10.1007/s11033-012-2181-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
GABA(Aα1) and GABA(B1) receptor subunits are responsible for most behavioral, physiological and pharmacological effects of GABA receptors. We investigated the expression of GABA(Aα1) and GABA(B1) receptor subunits in different tissues of gilts during late pregnancy in hot summer. The mRNA abundance of GABA(Aα1) receptor subunit in different tissues of gilts at d 90 and d 110 of gestation was as follows: d 90: brain > lung > liver > ovary > spleen > kidney > heart; d 110: brain > lung > spleen > liver > ovary > kidney > heart. And, the mRNA abundance of GABA(B1) receptor subunit was as follows: d 90: spleen > lung > brain > kidney > ovary > liver > heart; d 110: spleen > lung > kidney > brain > ovary > liver > heart. The results in this trial indicated that the GABA(Aα1) receptor subunit was abundantly expressed in brain, while GABA(B1) receptor subunit was abundant in spleen and lung of gilts during late gestation. There were no gestation stage-dependent effects on GABA(Aα1) and GABA(B1) receptor subunits expression in all tissues.
Collapse
|
23
|
Central and Peripheral GABA(A) Receptor Regulation of the Heart Rate Depends on the Conscious State of the Animal. Adv Pharmacol Sci 2011; 2011:578273. [PMID: 22162673 PMCID: PMC3226329 DOI: 10.1155/2011/578273] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/05/2011] [Indexed: 12/29/2022] Open
Abstract
Intuitively one might expect that activation of GABAergic inhibitory neurons results in bradycardia. In conscious animals the opposite effect is however observed. GABAergic neurons in nucleus ambiguus hold the ability to control the activity of the parasympathetic vagus nerve that innervates the heart. Upon GABA activation the vagus nerve will be inhibited leaving less parasympathetic impact on the heart. The picture is however blurred in the presence of anaesthesia where both the concentration and type of anaesthetics can result in different effects on the cardiovascular system. This paper reviews cardiovascular outcomes of GABA activation and includes own experiments on anaesthetized animals and isolated hearts. In conclusion, the impact of changes in GABAergic input is very difficult to predict in these settings, emphasizing the need for experiments performed in conscious animals when aiming at determining the cardiovascular effects of compounds acting on GABAergic neurons.
Collapse
|
24
|
Krieg EF, Feng HA. The relationships between blood lead levels and serum follicle stimulating hormone and luteinizing hormone in the National Health and Nutrition Examination Survey 1999-2002. Reprod Toxicol 2011; 32:277-85. [PMID: 21669282 DOI: 10.1016/j.reprotox.2011.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 03/31/2011] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
Abstract
The relationships between blood lead levels and serum follicle stimulating hormone and luteinizing hormone were assessed in a nationally representative sample of women, 35-60 years old, from the National Health and Nutrition Examination Survey 1999-2002. The blood lead levels of the women ranged from 0.2 to 17.0 μg/dL. The estimated geometric mean was 1.4 μg/dL, and the estimated arithmetic mean was 1.6 μg/dL. As the blood lead level increased, the concentration of serum follicle stimulating hormone increased in post-menopausal women, women who had both ovaries removed, and pre-menopausal women. The concentration of luteinizing hormone increased as blood lead level increased in post-menopausal women and women who had both ovaries removed. The lowest concentrations of blood lead at which a relationship was detected were 0.9 μg/dL for follicle stimulating hormone and 3.2 μg/dL for luteinizing hormone. Lead may act directly or indirectly at ovarian and non-ovarian sites to increase the concentrations of follicle stimulating hormone and luteinizing hormone.
Collapse
Affiliation(s)
- Edward F Krieg
- National Institute for Occupational Safety and Health, Robert A. Taft Laboratories, 4676 Columbia Parkway, MS C-22, Cincinnati, OH 45226, USA.
| | | |
Collapse
|
25
|
Tyagi N, Givvimani S, Qipshidze N, Kundu S, Kapoor S, Vacek JC, Tyagi SC. Hydrogen sulfide mitigates matrix metalloproteinase-9 activity and neurovascular permeability in hyperhomocysteinemic mice. Neurochem Int 2009; 56:301-7. [PMID: 19913585 DOI: 10.1016/j.neuint.2009.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 11/03/2009] [Indexed: 11/26/2022]
Abstract
An elevated level of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), was associated with neurovascular diseases. At physiological levels, hydrogen sulfide (H(2)S) protected the neurovascular system. Because Hcy was also a precursor of hydrogen sulfide (H(2)S), we sought to test whether the H(2)S protected the brain during HHcy. Cystathionine-beta-synthase heterozygous (CBS+/-) and wild type (WT) mice were supplemented with or without NaHS (30 microM/L, H(2)S donor) in drinking water. Blood flow and cerebral microvascular permeability in pial vessels were measured by intravital microscopy in WT, WT+NaHS, CBS-/+ and (CBS-/+)+NaHS-treated mice. The brain tissues were analyzed for matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) by Western blot and RT-PCR. The mRNA levels of CBS and cystathionine gamma lyase (CSE, enzyme responsible for conversion of Hcy to H(2)S) genes were measured by RT-PCR. The results showed a significant increase in MMP-2, MMP-9, TIMP-3 protein and mRNA in CBS (-/+) mice, while H(2)S treatment mitigated this increase. Interstitial localization of MMPs was also apparent through immunohistochemistry. A decrease in protein and mRNA expression of TIMP-4 was observed in CBS (-/+) mice. Microscopy data revealed increase in permeability in CBS (-/+) mice. These effects were ameliorated by H(2)S and suggested that physiological levels of H(2)S supplementation may have therapeutic potential against HHcy-induced microvascular permeability, in part, by normalizing the MMP/TIMP ratio in the brain.
Collapse
Affiliation(s)
- Neetu Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Acute benzodiazepine administration induces changes in homocysteine metabolism in young healthy volunteers. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:933-8. [PMID: 19409441 DOI: 10.1016/j.pnpbp.2009.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/16/2009] [Accepted: 04/24/2009] [Indexed: 11/20/2022]
Abstract
PURPOSE High cortisol plasma concentrations have been shown to be associated with increases in homocysteine levels. Here we studied whether decreases in cortisol concentration, induced by an acute oral dose of a benzodiazepine, could decrease homocysteine, and if changes were similar in both genders. METHODS This was a double-blind, cross-over design study of acute oral flunitrazepam (1.2 mg) and placebo in young, healthy, male and female (n=21) volunteers. Blood samples were collected 3 h after ingestion (after peak-plasma concentration of flunitrazepam was reached). Various biochemical parameters were analysed, such as plasma homocysteine, cysteine, folate, vitamins B6, B12, and sexual hormones. RESULTS Flunitrazepam reduced cortisol (p=0.0011), cysteine (p=0.014) and homocysteine (p=0.028) concentrations, irrespective of gender. No correlations were found between cortisol and other biochemical markers (all r's<0.03). Concentration of cysteine and homocysteine were negatively correlated with plasma flunitrazepam concentration, suggesting that changes in these amino acids might be related to the metabolism of this benzodiazepine. CONCLUSION Acute administration of flunitrazepam decreases plasma homocysteine and cysteine by mechanisms that seem unrelated to changes in cortisol. Given the importance of homocysteine as a marker of life-threatening disorders, the mechanisms involved in the decrease of these amino acids are potential targets for clinical application.
Collapse
|
27
|
Young SZ, Bordey A. GABA's control of stem and cancer cell proliferation in adult neural and peripheral niches. Physiology (Bethesda) 2009; 24:171-85. [PMID: 19509127 PMCID: PMC2931807 DOI: 10.1152/physiol.00002.2009] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aside from traditional neurotransmission and regulation of secretion, gamma-amino butyric acid (GABA) through GABA(A) receptors negatively regulates proliferation of pluripotent and neural stem cells in embryonic and adult tissue. There has also been evidence that GABAergic signaling and its control over proliferation is not only limited to the nervous system, but is widespread through peripheral organs containing adult stem cells. GABA has emerged as a tumor signaling molecule in the periphery that controls the proliferation of tumor cells and perhaps tumor stem cells. Here, we will discuss GABA's presence as a near-universal signal that may be altered in tumor cells resulting in modified mitotic activity.
Collapse
Affiliation(s)
- Stephanie Z Young
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
28
|
Kumar M, Tyagi N, Moshal KS, Sen U, Pushpakumar SB, Vacek T, Lominadze D, Tyagi SC. GABAA receptor agonist mitigates homocysteine-induced cerebrovascular remodeling in knockout mice. Brain Res 2008; 1221:147-53. [PMID: 18547546 DOI: 10.1016/j.brainres.2008.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/03/2008] [Accepted: 04/06/2008] [Indexed: 11/15/2022]
Abstract
Individuals with homozygous deficiency in cystathionine-beta-synthase (CBS) develop high levels of homocysteine in plasma, a condition known as homocysteinuria. Mental retardation ensues with death in teens; the heterozygous live normally but develop vascular dementia and Alzheimer's disease (AD) in later part of life. The treatment with muscimol, a gamma amino butyric acid receptor-A (GABA(A)) agonist, mitigates the AD syndrome and vascular dementia. We tested the hypothesis that homocysteine (Hcy) antagonizes the GABA(A) receptor and behaves as an excitotoxic neurotransmitter that causes blood brain barrier (BBB) permeability and vascular dementia. The BBB permeability was measured by infusing Evan's blue dye (2% in saline 5 ml/kg concentration) in CBS-/+, GABA(A)-/-, CBS-/+/GABA(A)-/- double knockout, CBS-/+ mice treated with muscimol and wild type (WT) mice. Matrix Metalloproteinase (MMP-2, MMP-9), Tissue Inhibitor of Matrix Metalloproteinase (TIMP-3, TIMP-4), collagen-III and elastin levels were measured in whole brain by Western blot. These results suggested an increase in Evan's blue permeability: CBS-/+<GABA(A)-/-<CBS-/+/GABA(A)-/- compared to WT mice. Interestingly, in CBS-/+ mice treated with muscimol, BBB permeability was significantly decreased compared with the CBS-/+ group. There was a decrease in the TIMP-4 protein expression level, whereas the TIMP-3 level increased in CBS-/+, GABA(A)-/-, and CBS-/+/GABA(A)-/- mice compared to the WT. MMP-2 and MMP-9 expression significantly increased in all the groups compared to the wild type. The results suggested that Hcy caused cerebral interstitial remodeling in brain by distorting the extracellular matrix, thus increasing the blood brain permeability; treatment with muscimol mitigated BBB permeability.
Collapse
Affiliation(s)
- Munish Kumar
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tyagi N, Moshal KS, Tyagi SC, Lominadze D. gamma-Aminbuturic acid A receptor mitigates homocysteine-induced endothelial cell permeability. ACTA ACUST UNITED AC 2008; 14:315-23. [PMID: 18080868 DOI: 10.1080/10623320701746164] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many cerebrovascular disorders are accompanied by an increased homocysteine (Hcy) levels. We have previously shown that acute hyperhomocysteinemia (HHcy) leads to an increased microvascular permeability in the mouse brain. Hcy competitively binds to gamma -aminbuturic acid (GABA) receptors and may increase vascular permeability by acting as an excitatory neurotransmitter. However, the role of GABA-A (GABA(A)) receptor in Hcy-induced endothelial cell (EC) permeability remains unclear. In the present study we attempted to determine the role of GABA(A) receptor and the possible mechanisms involved in Hcy-induced EC layer permeability. Mouse aortic and brain ECs were grown in Transwells and treated with 50 mu M Hcy in the presence or absence of GABA(A)-specific agonist muscimol. Role of matrix metalloproteinase-9 (MMP-9) was determined using its activity inhibitor GM-6001. Involvement of extracellular signal-regulated kinase (ERK) signaling was assessed using its kinase activity inhibitors PD98059 or U0126. EC permeability to the known content of bovine serum albumin (BSA)-conjugated with Alexa Flour-488 was assessed by measuring fluorescence intensity of the solutes in the Transwell's lower chambers. It was found that Hcy induced the formation of filamentous actin (F-actin). Hcy-induced EC permeability to BSA was significantly decreased by GABA and muscimol treatments. Presence of MMP-9 or ERK kinase activity inhibitors restored the Hcy-induced EC permeability to its baseline level. The mediation BSA leakage through the ECs was further confirmed in the experiments where Hcy-induced alterations in transendothelial electrical resistance of confluent ECs were assessed. The data suggest that Hcy increases EC layer permeability through inhibition of GABA(A) receptor and F-actin formation, in part, by transducing ERK and MMP-9 activation.
Collapse
Affiliation(s)
- Neetu Tyagi
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | |
Collapse
|